

Discussion of

"Frictions in the Interbank money market and the Demand for Reserves: Lessons from the Financial Cricis"

Flemming Würtz European Central Bank

The views expressed herein may not reflect the views of the ECB, the Eurosystem or the ESCB

EUROPEAN CENTRAL BANK

The paper

- Paper models (corridor position of) O/N-rate as a function of
 - Daily excess liquidity
 - Transaction costs
 - Credit risk
 - Several dummies
- Paper finds that
 - Increased excess liquidity reduces O/N-rate;
 - Transaction costs brings O/N-rate closer to mid-point and reduces risk of exceeding corridor;
 - Credit risk increases O/N-rate;

Comment I: to model O/N rate before August 2007, it is particularly important to consider expectations of accumulated liquidity, not daily liquidity

• Gaspar et al (2004):

$$r_t = E_t(r_{t+1}) + \pi_t$$

Where π_t is compensation for risk of using standing facilities already on day t.

• In case π_t is zero on all but the last day, T, of the maintenance period: $r_t = E_t(r_T) = P_t(deficit) \cdot r_{MLF} + P_t(surplus) \cdot r_{DF}$ Deficit if accumulated liquidity supply < reserve requirements Surplus if accumulated liquidity supply > reserve requirements

3

Comment I: to model O/N rate before August 2007, it is particularly important to consider expectations of accumulated liquidity, not daily liquidity

• What matters is **expected accumulated** liquidity conditions

- Several papers, e.g. Würtz (2003), show that, before the crisis:
 - Expectations about net use of standing facilities on last day of the maintenance period give rise to the main liquidity effect
 - daily liquidity insignificant => change measure for excess liquidity

- π_t is no longer zero until last day of the maintenance period
- Funding liquidity risk => preference for "frontloading"
- => daily excess liquidity is significant

- At any point in time, the effect of daily liquidity depends on liquidity position on previous days, and expected future availability => change measure for excess liquidity to account for accumulated position
- Demand varies strongly in the course of a maintenance period
 => one could allow parameters to vary across an MP(?)
- Liquidity supply is highly endogenous to the O/N-rate:
 - August 2007 to October 2008: non-neutral OMO allotments
 - since October 2008: fixed rate full allotment
 - => use instruments or reduce sample to days with no OMOs

6

- Banks have different initial endowment of liquidity
 - some banks will have negative marginal utility out of trading =>
 - different equilibrium O/N-rate than assumed in paper =>
 - What happens to proposition I (on effect of transaction costs)?

Comment 3: introducing reasonable heterogeneity of banks would bring into question the theoretical conclusions

- Some banks do not have access to standing facilities =>
 - notably in times of frictions (e.g. high transaction costs) the corridor does not bind O/N rate (contrary to proposition I)

- Banks have different degrees of credit risks
 - assume credit risk increases excessively for some banks =>
 - they can no longer borrow in the market and borrows from the central bank instead =>
 - excess liquidity increases and there is less average credit risk underlying the (remaining) average market transactions =>
 - The O/N-rate does not increase but declines (contrary to proposition 2)

Comment 4: Do not measure transaction costs from the spread between I week overnight index swap (OIS) and realised EONIA

- Cashflow on an OIS is the realised average path of EONIA =>
 - Transaction costs equally priced into EONIA and OIS
 - Difference between OIS and realised EONIA reflects new information (uncertainty/volatility) or patterns which are averaged out in the one week OIS;
- Probably, the transaction cost measure applied by the paper (based on one week OIS) is very significant in explaining EONIA, because $r_t = E_t(r_{t+1}) \approx OIS_t$
- Alternative: use bid/ask spread

9