Do newspaper articles on card fraud affect debit card usage?

A study on the impact of skimming fraud in the Netherlands

Anneke Kosse De Nederlandsche Bank

Joint ECB-OeNB Conference Vienna, 12 - 13 May 2011

Outline

- Background
- Research objective & question
- 3. Literature
- 4. Data collection
- Methodology & Empirical model
- 6. Results
- 7. Conclusions & Follow-up

Rapid growth of debit card usage

Introduced in late 1980s

- o 2009:
 - ± 28% of total transactions
 - ± 54% of total sales
- o More and more small transactions:
 - EUR 44.60 (2005) → EUR 39.07 (2009)

Growth debit card skimming fraud

- Debit card skimming fraud NL
 - EUR 4 mln (2005) → EUR 36 mln (2009)
 - 0.03% debit card sales
 - 0.3% debit cards
 - 0.4% ATM & POS terminals

- Indirect costs of skimming fraud
 - For accountholders
 - For banks and retailers

Debit card skimming fraud

- Social impact may be larger!
 - Erosion of consumer confidence
 - Shift towards less efficient payment instruments

Clear evidence is lacking!

Ticket machines still not secure

ERMFLO - De Nederlandse Spoorwegen gaan voorlopig alieen de treinkaartjesautomaten op de stations in Ermelo en Vecnendaal beveitigen tegen het zogeheten skimmen - het stickem kopiëren van pinpassen. Nadai vorig jaar was geknoeid met de pingleuf van de automaat in /ecnendaal en een maand geleden op

<u>Substantial</u> <u>increase in debit</u> card fraud RIJSWIJK - Criminelen kopiéren (skimmen) steeds vaker pinpasgegevens bij de kaartjesapparaten op

tailers face skimming fraud increase

Criminelen houden zich al jaren op grote schaal bezig met het zogenaamde skimmen. Door speciale apparatuur op een geld- of betaalautomaat te plaatsen kunnen skimmers de gegevens van uw bankpas kopiëren om vervolgens met een

Increase skimming fraud at railway stations

ANNTERDANT. Het aantal gevallen van het illegaal logiëren van pinjusgeopevers via kasa tjesantomaten op NS stations is in oktober en

Knamen bij de Spoornegoplitie dit jaar tot oktober neg driebenderd meldingen

van 'skimmen' bij kantjesantomen op NS-stations binnen, in oktober en november sterk gestegen

Research objective & question

Objective:

To further analyse consumers' payment behaviour in relation to safety

o Question:

Impact of newspaper articles about debit card skimming fraud on aggregate debit card payments?

Payments literature

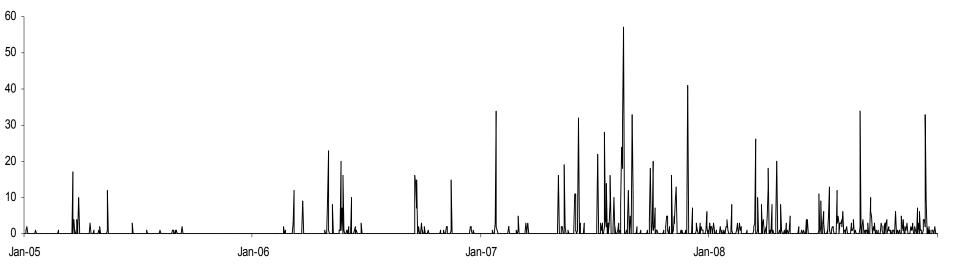
- o Theoretical papers:
 - Alvarez & Lippi (2009), Bolt & Chakravorti (2008), He et al. (2008), Kahn & Roberds (2009)
 - No attention for safety costs of debit cards
- o Survey-based papers:
 - Cheney (2006), Jonker (2007), Borzekowski et al. (2008), Kosse (2010), Yin & DeVaney (2001), Schuh & Stavins (2010)
 - Provide no unanimous answer
- o Macro analyses:
 - Humphrey et al. (1996)
 - Annual data & crime rates as proxy of safety

Intuition from other research fields

- Food science, political science, economics:
 - Van Ravenswaay & Hoehn (1991), Smith et al. (1988), Dahlgran & Fairchild (1987), Piggot & Marsh (2004), Radwan et al. (2008), Miller et al. (1979), Alsem et al. (2008), Campbell et al. (2003)
 - The effects of newspaper reports are small and short-lived

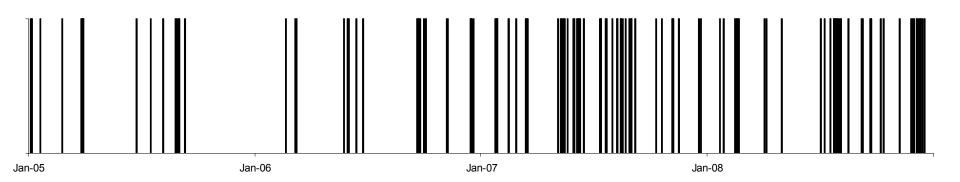
Data collection: daily debit card usage

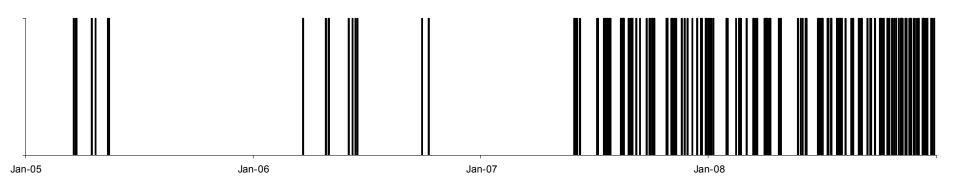
- o Source: Equens
- Daily data
- o From 01/01/2005 to 31/12/2008
- All Dutch debit card payments
- All Dutch points-of-sale
- Broken down by zip-code



Data collection: newspaper articles

- o Source: LexisNexis
- National & regional newspapers
- Daily data
- o From 01/01/2005 to 31/12/2008
- Keywords: skimming / debit card fraud
- 1586 articles from 54 papers


Data collection: newspaper articles



Data collection: newspaper articles

Skimming fraud at ATM's

Skimming fraud at ticket machines and POS's

■ Days with at least one publication on debit card skimming fraud

Data collection: control variables

- o Calendar and holiday effects
 - Day-of-the-week
 - Week-of-the-month
 - Month-of-the-year
 - Fixed holidays
 - Moving holidays
 - Pre- & post-holidays
- Daily rainfall
 - Source: KNMI
 - From 01/01/2005 to 31/12/2008
 - Daily precipitation (in 0.1 mm)
 - At different weather stations

o Trend variable

Time-series analysis

- 1. Tests for unit root
- 2. Cointegration Equation:

$$\log NRPOS_{t} = \alpha_{0} + \sum_{k=1}^{K} \beta_{k} CALEND_{t} + \phi RAIN_{t} + \delta t + \sum_{l=0}^{L} \chi_{l} PUBPOS_{t-l} + \sum_{l=0}^{L} \varphi_{l} PUBATM_{t-l} + \varepsilon_{t}$$

- 3. Test for unit root in \mathcal{E}_t
- 4. Error Correction Model:

$$\Delta \log NRPOS_{t} = \sum_{k=1}^{K} \gamma_{k} \Delta CALEND_{t} + \eta \Delta RAIN_{t} + \kappa \Delta t + \sum_{l=0}^{L} \lambda_{l} \Delta PUBPOS_{t-l} + \sum_{l=0}^{L} \mu_{l} \Delta PUBATM_{t-l} - (1-\theta)[error_{t-1}] + \mathcal{E}_{t}$$

5. OLS with Newey-West standard errors

Results: control variables

- o Calendar effects
 - Lowest on Sundays, peak on Saturdays
 - Highest in 1st and 4th week of the month
 - Lowest in January, February & August, peak in December
- Holiday effects
 - Higher on days prior to holidays
 - Decrease on the holidays themselves
 - Decrease on some post-holidays
- o Rain
 - Significant negative impact (-0.02% / 0.1 mm)
- o Trend
 - Significant positive impact: +0.027% a day

Results: newspaper effects

COINTEGRATION	EQUATION	ERROR CORRECTION MODEL	
Regressors	logNRPOS	Regressors	Δ logNRPOS
PUBPOS _{t=0}	01216***	Δ PUBPOS _{t=0}	01319****
	(.005)		(.005)
PUBPOS _{t-1}	.00290	Δ PUBPOS _{t-1}	.00283
	(.006)		(.007)
PUBPOS _{t-2}	00100	Δ PUBPOS _{t-2}	00126
	(.008)		(.004)
$PUBATM_{t=0}$	00156	Δ PUBATM _{t=0}	00105
	(.007)		(.006)
PUBATM _{t-1}	.01075*	Δ PUBATM _{t-1}	.01168**
	(.007)		(.006)
PUBATM _{t-2}	00311	Δ PUBATM _{t-2}	00111
	(.008)		(.006)
Constant	13.7393****	Constant	.00012
	(.018)		(.001)
		Error correction	92089****
		term	(.047)
No. Observations	1454	No. Observations	1454
R-squared	.980	R-squared	.485
F-Statistic	56289.55	F-Statistic	143105.33
Prob(F-statistic)	.0000	Prob(F-statistic)	.0000
Durbin-Watson stat.	1.84148		

Nr. debit card trx. 1.2 % lower on days with pubs on POS skimming

Nr. debit card trx. 1.1 % higher the day after pubs on ATM skimming

^{**} Significant at 10% level **** Significant at 1% level

Panel analysis

- 10 individual Dutch cities
- o From 01/01/2005 to 31/12/2008
- Local daily debit card usage
- Local daily rainfall
- Publication about local POS skimming incidents
- Publication about local ATM skimming incidents

Panel analysis

o Fixed-effects model:

$$\log NRPOS_{it} = \sum_{j=1}^{10} \alpha_{j} CITY_{ij} + \sum_{k=1}^{K} \beta_{k} CALEND_{it} + \phi RAIN_{it} + \delta t_{i} + \sum_{l=0}^{L} \chi_{l} PUBPOS_{it-l} + \sum_{l=0}^{L} \lambda_{l} PUBPOSLOCAL_{it-l}$$

$$+ \sum_{l=0}^{L} \varphi_{l} PUBATM_{it-l} + \sum_{l=0}^{L} \theta_{l} PUBATMLOCAL_{it-l} + \varepsilon_{It}$$

- o Heteroskedasticity & autocorrelation:
 - OLS with Newey-West standard errors
 - OLS with panel-corrected standard errors
 - FGLS

Results: control variables

- Individual city effects
 - Differ significantly
- Calendar effects
 - Lowest on Sundays, peak
 - Highest in 1st and 4th
 - Lowest in Januar

k in December

- o Holiday and ays themselves nost-holidays
 - ne post-holidays
 - significant negative impact (-0.02% / 0.1 mm)
- o Trend

0

Significant positive impact: +0.022% a day

Results: newspaper effects

	NEWEY- WEST	PCSE	FGLS
PUBPOS _{t=0}	00777	00777	00777*
	(.007)	(.009)	(.005)
PUBPOS _{t-1}	.00397	.00397	.00397
	(.006)	(.010)	(.005)
PUBPOS _{t-2}	00275	00275	00275
	(.005)	(.010)	(.005)
PUBPOSLOCAL $_{t=0}$	00676	00676	00676
	(.019)	(.030)	(.031)
PUBPOSLOCAL t-1	.02889	.02889	.02889
	(.044)	(.032)	(.032)
PUBPOSLOCAL t-2	01811	01811	01811
	(.027)	(.030)	(.031)
$PUBATM_{t=0}$.00645	.00645	.00645
	(.005)	(.010)	(.006)
PUBATM _{t-1}	.01118***	.01118	.01118**
	(.005)	(.011)	(.006)
PUBATM _{t-2}	00837*	00837	00837*
	(.005)	(.010)	(.006)
$PUBATMLOCAL_{t=0}$	01166	01166	01166
	(.027)	(.040)	(.040)
PUBATMLOCAL t-1	.02417	.02417	.02417
	(.043)	(.041)	(.041)
PUBATMLOCAL t-2	00499	00499	00499
	(.022)	(.040)	(.040)
Constant	8.83367****	8.83367****	8.83367****
	(.033)	(.014)	(.008)

Nr. debit card trx. 0.8 % lower on days with pubs on POS skimming

No extra/other effect of local POS skimming incidents

Nr. debit card trx. 1.1 % higher the day after pubs on ATM skimming

No extra/other effect of local ATM skimming incidents

Conclusions

- Newspaper articles about skimming fraud do affect debit card usage
- Impact depends on type of skimming fraud addressed
 - ATM skimming fraud → debit card payments ↑
 - POS skimming fraud → debit card payments ↓
- No difference between local and national incidents
- Effects are economically small
- Effects are short-lived

Follow-up

- o For this paper:
 - Structural breaks
 - Theory of consumer inattention
 - Social cost estimation

- o For future work?
 - ATM withdrawals
 - Transaction values
 - Impact on an entrepreneurial level

De Nederlandsche Bank

Thank you for your attention

Questions?

Anneke Kosse + 31 (0)20-524 2827 <u>j.c.m.kosse@dnb.nl</u>

