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Abstract

We study the implications for optimal monetary policy of introducing habit formation in
consumption into a general equilibrium model with sticky prices. Habit formation affects the
model’s endogenous dynamics through its effects on both aggregate demand and households’
supply of output. We show that the objective of monetary policy consistent with welfare max-
imization includes output stabilization, as well as inflation and output gap stabilization. We
find that the variance of output increases under optimal policy, even though it acquires a higher
implicit weight in the welfare function. We also find that a simple interest rate rule nearly
achieves the welfare-optimal allocation, regardless of the degree of habit formation. In this rule,
the optimal responses to inflation and the lagged interest rate are both declining in the size of
the habit, although super-inertial policies remain optimal.
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1 Introduction

This paper investigates the implications of habit formation for optimal monetary policy. It is
motivated by recent studies (Edge (2000), Fuhrer (2000)) that show including habit formation
improves the degree to which small-scale business cycle models are able to fit certain aspects of
U.S. time series.! For example, Fuhrer argues that it helps to explain the gradual response of output
to shocks observed in VAR studies. Despite the large number of papers that examine the desirable
empirical properties of models with habit formation, only McCallum and Nelson (1999) and Fuhrer
(2000) have addressed the subject of monetary policy, and neither of these authors characterizes
optimal policy in a model in which agents make optimal choices about both consumption and labor
supply. This paper addresses this gap in the growing literature that evaluates optimal monetary
policy and simple interest rate rules within the context of small, structural models.

There is considerable empirical evidence that the autocorrelations of detrended output and
inflation are large and positive, and die out slowly, in most industrialized countries (Fuhrer and
Moore (1995), Coenen and Wieland (2000)). Including habit formation improves the empirical
performance of small-scale business cycle models because it introduces endogenous persistence into
the structural equations. From the Euler equation of an optimizing household, habit formation
implies that the marginal utility of current consumption depends upon both past and expected
future consumption. Therefore, the IS equation derived from this Euler equation depends upon both
expected future and lagged output. By contrast, the IS equation based on time-separable utility in
consumption depends only upon current and forward-looking variables. Similarly, as we will show,
habit formation alters the form of the Phillips curve. Current inflation depends upon both past
and expected future output gaps, in addition to the current output gap and expected inflation as in
the standard new-Keynesian Phillips curve. This occurs because the marginal utility of income of
consumers affects the optimal pricing decisions of suppliers. The reduced-form processes for output
and inflation thus change for two reasons: first, because inflation depends upon the output gap,
whose dynamic properties have been affected by the habit through an altered IS equation; and,

second, because the valuation of revenues by suppliers also depends upon the habit in consumption,

Habit formation has also been used to explain various anomalies in the finance literature. For example, see the
discussion in chapter 8 of Campbell, Lo and MacKinlay (1997). While habit formation may be useful in explaining
various aspects of aggregate data, direct evidence for habit formation based on consumption data is hard to find, see

Dynan (2000).



which leads to additional output gap terms appearing in the Phillips equation. Overall, a relatively
large habit in consumption can lead to substantial persistence in both output and inflation.

It can be difficult to distinguish, however, whether the observed persistence in the data is
derived from endogenous dynamics or exogenous shocks. Yet, optimal monetary policy may differ
in important respects depending upon the source of persistence. This is suggested by the existing
literature, which reaches different conclusions about the nature of desirable policies in part due to
differences in the specification of endogenous dynamics. For example, in studies based on a standard
sticky price model with optimizing agents, highly inertial policy is desirable and output terms
get a low weight in optimal interest rate rules (e.g. Rotemberg and Woodford (1999)). Neither
of these implications obtain from studies that use non-utility based models that include lagged
endogenous terms (e.g. Rudebusch and Svensson (1999)). It is therefore of interest to investigate
the implications for optimal policy of introducing habit formation — and, by implication, endogenous
persistence — into a model for monetary policy analysis, while at the same time maintaining the
advantages of working with an optimization-based model.

One of the advantages of working with an optimization-based model is that the representative
agent’s discounted utility function provides a natural measure to evaluate alternative policies. As in
other recent analyses of optimal policy (Rotemberg and Woodford (1997, 1999) and Erceg, Hender-
son and Levin (2000)), we evaluate alternative policies according to a second-order approximation
to agents’ utility. In their model with time-separable utility, Rotemberg and Woodford show that
welfare can be approximated by a function that depends negatively upon the variances of inflation
and the output gap, as well as the steady-state inflation rate. Notably, welfare is reduced only by
fluctuations in output that are not caused by movements in the natural rate of output. In contrast,
we show that the presence of habit formation leads to an approximation of welfare that does depend
upon variability in output itself, as well as the output gap, with the relative weights on these terms
changing with the size of the habit.

Regarding optimal policy, one result we obtain is that the variance of output increases dramat-
ically with the size of the habit, even though it acquires a higher implicit weight in the welfare
function. One way of interpreting this is through the effect that habit formation has on the be-
havior of the real interest rate in a hypothetical flexible price equilibrium. In particular, we show
that the variance of the Wicksellian natural rate of interest is increasing in the habit. In order

to maintain a reasonable degree of variability in interest rates (e.g., due to the zero lower bound



on nominal interest rates), part of this greater volatility, ceteris paribus, is realized in a higher
variance of output. As it turns out, even a higher weight on output in the policymaker’s objective
is not enough to reduce output variability under optimal policy in the light of more pronounced
fluctuations in the natural rate of interest.

Our second set of results on optimal policy concerns the properties of simple interest rate rules.
We show that rules restricted to include responses to current inflation and output, and the lagged
interest rate, nearly achieve the welfare obtained under the optimal plan. This result confirms the
similar conclusion reached by others using a wide variety of models and policymaker objectives (e.g.
Taylor (1999)). Furthermore, we show that “super-inertial” policy — as represented by a coefficient
greater than one on the lagged interest rate (Woodford (1999b)) — is optimal in the presence of
a habit. However, habit formation has the effect of reducing the size of the lagged interest rate
response because, given a particular path of persistently high interest rates, the additional inertia
in other variables caused by habit formation forces deviations of the output gap and inflation from
their steady-states to be larger and more persistent in the face of shocks. By toning-down the
threat to keep interest rates high after an inflationary shock, less excessive fluctuations in all of the
variables can be achieved.

The rest of the paper is structured as follows. In the next section, we introduce a model with
habit formation in which agents make optimal choices about consumption and output supply, and
we discuss our baseline calibration of the model. In section 3, we present an approximation to
the welfare function that monetary policy aims to maximize, and characterize optimal policy by
solving for the optimal plan. In section 4, we explore how closely simple interest rate rules come to
mimicking optimal policy. In section 5, we conduct some sensitivity analysis by investigating how
alternative calibrations impact upon the results provided in section 3. Some conclusions are offered
in the last section. Appendix A provides details on the derivation of the log-linear approximations
to the structural equations of the model and the second-order approximation of the welfare function.

Appendix B presents the equations characterizing the optimal plan.

2 A Structural Model with Habit Formation

To analyze the consequences for optimal monetary policy of habit formation in consumption, we

use a small structural model derived from optimizing behaviour of households and imperfectly



competitive suppliers. Except for the feature of habit formation, our model is identical to that of
Woodford (1999b). Specifically, we assume that the economy consists of a continuum of households,
each of which is the monopolistic supplier of one differentiated product. Because households derive
utility from consuming an aggregate of the differentiated products, suppliers face a downward-
sloping demand schedule for their product. To keep the model as simple as possible, the economy
is assumed closed, and there is no capital accumulation, so that goods market clearing requires
that all output is being consumed each period.

In this section, we derive the implications of habit formation in consumption for the relationship
between expected future real interest rates and aggregate demand for output as well as for the
relationship between output and inflation. We then choose parameter values for the structural

parameters and shock processes, and discuss the model’s empirical performance.

2.1 Aggregate Demand and Supply

There is a continuum of households uniformly distributed on the unit interval, each of them indexed

by the product of which it is the monopolistic supplier. Household ¢ maximizes
Ey Y f [U(Cfa Ci_1:&) — v(ye(i); ft)] (1)
t=0

C! is household i’s consumption in period ¢ of the usual Dixit-Stiglitz aggregate of differentiated
products, with the elasticity of substitution between products described by 6. We assume that the

felicity function u is given by
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which is a special case of the functional forms analyzed by Abel (1990) and Carroll et al. (2000).
The parameter h measures the strength of habit persistence. In the limiting case that h = 1, the
instantaneous utility derived from consumption depends only on the ratio of current to previous
period’s consumption. The opposite limiting case h = 0 is the standard case of time-separable
utility. In the latter case, the parameter o > 0 measuring the curvature of u corresponds to the
inverse of the intertemporal elasticity of substitution. The vector-valued random disturbance ¢ in
(1) represents taste shifters affecting the utility of consumption u(-,-;£) and the disutility of supply

v(+; &) respectively. The effects of £ on u and v are not required to be mutually orthogonal.



The household maximizes (1) subject to its budget constraint and the constraint that it satisfies
demand for its product at the price p¢() that household i charges per unit of its product, i.e.

(i) = (#)QY 3)

Here, P; and Y; denote the utility-based price index and the aggregate of individual households’
output respectively, corresponding to the aggregate C;. We assume that financial markets are
complete, and that households insure themselves against all idiosyncratic risk, such that their
wealth is identical ex ante. Therefore all households choose the same consumption path, which we

denote by {C;}. This path is characterized by the first-order condition
Ct—a ;’ll(l—a)ea’ﬁt — BhE; [Ctlglact—(l-‘rh(l—ff))ea’£t+1 — =0 (4)

where ¢; denotes the marginal utility of consumption in period t. To capture the idea that an
increase in past consumption raises the marginal utility of current consumption, it is necessary to
assume that o > 1, so that the exponent on C;_; is positive. While the first term in (4) measures
the effect that past consumption has on the marginal utility of current consumption, the second
term reflects the effect of a marginal change in current consumption on expected utility from next
period’s consumption.

Goods market clearing requires that Cy = Y; Vt. As shown in appendix A, taking a log-linear

approximation of the condition (4) leads to an intertemporal IS equation of the form

h
n_(fEtAytJrl = _%[Ayt + BE;Ayiyo] — BhEAgiyo + EtAge + [re — Eympq1] (5)

Here, y; denotes the percent deviation of aggregate output from its steady-state level, m; is the
growth rate of the aggregate price index, i.e. m = log(P;/P;—1), and r; is the nominal interest rate
on a one-period riskless bond.? The term g; represents variation in spending that is not caused by
changes in the real interest rate, such as disturbances to the marginal utility of consumption caused
by fluctuations in &. The parameters 1; and 7, are defined as h(1 — o) and o — Sh(1 + h(1 — 0))
respectively. Assuming that o > 1 and h € [0,1] (and hence n; < 0) implies that 72 > 0. The

presence of habit formation implies a positive correlation between the change in output expected

2More specifically, all log-linearizations are taken around a steady state with zero inflation. Hence, 7; is by
definition the percent deviation from its steady-state value, while r; denotes the percent deviation of the interest rate

from its steady state value associated with zero inflation.



from the current to the next period, and the change in output in the adjacent two periods. Without
habit formation in consumption, 7; = 0 and 72 = o, and (5) reduces to the standard intertemporal
IS equation E;Ayi 1 = EyAgir1+0[ry — Eymeyq] that characterizes the demand side in the model
of Woodford (1999b) and other recent studies of the effects of monetary policy.

Real effects of monetary policy arise in this model from the assumption that within a given
period not all suppliers are able to adjust their prices in response to fluctuations in demand.
Specifically, we follow Calvo (1983) in assuming that each period a fraction 1 — « of suppliers
is offered the opportunity to choose a new price, while the remaining suppliers have to maintain
whichever price they charged before. Moreover, suppliers are drawn randomly and independent of
their own history, in particular independent of the time they were last offered the opportunity to
adjust their price.

Since every supplier faces the same demand function (3), all suppliers chosen in period t to

adjust their price will choose the same price, which we denote by p;, and which maximizes

00 —0 -0
E 0> (aB) | dugy (%) \ Dy < Di ) Yitjs §ets (6)
J

s Py Pryj

The first term in brackets represents the household’s utility from consumption in period ¢ + j if it
chooses price p; in the current period. It is the product of its revenue (expressed in consumption
units) in period ¢ + j conditional on its price being p;, and the marginal utility of consumption
in period t + j. The second term represents the disutility incurred from supplying the amount of
its product demanded in period t + j if its price is still p;. Since the price chosen in period ¢ will
still be in effect j periods later with probability o, the household discounts the stream of future
utilities conditional on its choice of price today by the factor a/f.

The assumption that suppliers are offered the opportunity to reset their price independent of
their history leads to a simple law of motion for the aggregate price index. Combining this law
of motion with the expression for ¢; implied by (4) then leads to an aggregate supply equation

(derived in appendix A)

Tt = K [(1 ihﬁh +w> Xt + 1 jlﬁh (xt_1 + 5Etxt+1) + BEmi (7)

where x; = y; —y;* is the deviation of output from the natural rate of output y;*, the level of output

(measured as percent deviation from steady-state output) that would obtain if prices were flexible.



In Appendix A this is shown to be

yr = BmL ™ + 3 +mL o9 — BhEiger) + w(l — Bh)z) (8)

The natural rate of output is a composite of the shocks g; and z; that are measuring the effects of
the disturbance & on the marginal utility of consumption and the marginal disutility from output
supply respectively. L~z is here defined as Fyxyy1, and 13 = 12 +w(1 — Bh). The coefficient  is
a function of the structural parameters 3, 6, a, and the parameter w measuring the elasticity of the
disutility function v. Without habit formation, 7 = 0 and hence (7) reduces to the New-Keynesian
Phillips curve m; = k(0 +w)xt + SE:mi41. Habit formation causes inflation to depend on the lagged
and expected future output gap (beyond the dependence on expected future conditions captured
by Eimi41) because expected marginal revenues are valued by the marginal utility of consumption,
which does no longer depend on current output only. This effect of habit formation on the aggregate
supply side is absent from the model of McCallum and Nelson (1999) who assume inelastic labour
supply. Similarly, it is absent from Fuhrer’s (2000) study, who models the supply side by using a
reduced-form VAR equation.

The definition of the output gap z; can be used to rewrite the IS equation (5) as

1—ph
n_(fEtA$t+1 = —%[Axt + ﬁEtAxt-fz} + %[ﬁ - 7“? - Et7Tt+ﬂ (9)
where
n — o 5?71 n 12 n m n
"t =1_"3h ﬁhEt Ty SYtt2 + ;Ayt-&-l + ;Ayt + BhAGL+2 — Agra (10)

is the Wicksellian natural rate of interest, the real interest rate that would obtain if all prices were
flexible, and that would correspond to the equilibrium nominal interest rate in the case of price
stability. Insofar as under optimal monetary policy the real interest rate is made to follow the
natural rate (10), the effect of habit formation is that the real rate has to respond to higher-order

distributed leads and lags of the exogenous shocks than it would have to absent habit formation.

2.2 Calibration of the Model

For the characterization of optimal policy and the analysis of interest rate rules presented in the
following sections, the model’s structural parameters as well as the shock processes have to be

calibrated. The model’s structural parameters are 3,%,0,w and h. Because the focus of this



article is on exploring the effects of habit formation, below results are reported for various values
of h. Specifically, we consider the case of time-separable utility (h = 0), the case corresponding to
Fuhrer’s (2000) estimate of this parameter (h = 0.8), and an intermediate case (h = 0.4).

The model is calibrated to simulate data at a quarterly frequency, and hence (3 is set to the
conventional value of 0.99. The parameter k is set to 0.031, a value consistent with an average
lifetime of price contracts of three quarters (o = 0.66) and an average markup in goods markets
of 15% (9 = 7.88, or 525 = 1.15). This value of x is based on Rotemberg and Woodford’s
(1997) estimate of this parameter.? They argue that an average duration of price contracts of three
quarters is consistent with survey evidence on firms’ price setting, and that a 15% markup is neither
implausibly high, nor too low to be consistent with firms engaging in staggered price adjustment.

Estimates of the parameter o based on aggregate consumption data by Hall (1988) and Attanasio
and Weber (1993) are on the order of 3. Rotemberg and Woodford (1997), on the other hand,
provide an estimate of 0.16, which they obtain by matching impulse response functions implied by
their model to those obtained from a VAR using U.S. data. As they point out, their low estimate
of o is related to the fact that it measures the interest-rate sensitivity of total output (they use
GDP data), not just that of nondurable consumption. When h = 0, the parameter ¢ in our model
has the same interpretation as in Rotemberg and Woodford, implying that a low value would be
of greater relevance. As discussed above, however, a value exceeding 1 is necessary for the effect of
past consumption on current marginal utility to be positive, which is the essence of habit formation.
We therefore choose o to be 1.1.

The parameter w in our model is a combination of the Frisch elasticity of labour supply and
the elasticity of output with respect to hours. We set w to 0.6, which is consistent with a Frisch
elasticity of 5 and a Cobb-Douglas production technology with a coefficient on labour of 0.75 (which,
together with a steady-state markup of 15%, implies a labour share of about 2/3). Our choice of
w is motivated by the impulse responses to an interest rate innovation displayed in Figure 1. We
compute these impulse response functions by combining the structural equations (7) and (9) with
an interest rate rule

ry = 0.69 r—1 +0.67 m; + 0.15 y; + € (11)

This rule is a simplified version of the rule that characterizes U.S. monetary policy according to

3Their parameter s corresponds to #(o + w) in the present model.



Rotemberg and Woodford’s (1997) estimates.* The responses displayed in Figure 1 are those to a
1% innovation in €.% Given our choice of o, a value for w of 0.6 generates approximately the same
response of inflation to an interest rate innovation as estimated by Rotemberg and Woodford.%
As is evident from Figure 1, the impulse response of inflation is almost invariant with respect to
changes in h, so that our choice of w based on this impulse response remains valid across different
h.

The definition of the natural rate of interest (10) shows that it is a composite of the natural
rate of output y;* and the shock g;. Likewise, the definition (8) implies that y} is itself a composite
of the shocks g; and z; measuring the effects of & on the marginal utility of consumption and the
marginal disutility from output supply respectively. Both rj* and y;* are functions of the parameter
h, while g; and z; are not. We therefore calibrate the latter two shocks, and construct the former
two for any given value of h.

We calibrate these shocks using the method developed in Rotemberg and Woodford (1997).
Specifically, since their model is nearly identical to ours when h = 0, we can construct shock
processes such that, given our parameter values for ¢ and w, their model together with these
shock processes replicates exactly the law of motion of the endogenous variables as estimated by an
unrestricted VAR. Throughout, the processes g:, z; and y;* are measured (like y; and x;) as percent
of steady-state output, while r{* is measured as annual percent (like 7; and r¢). For ¢ = 1.1 and
w = 0.6, the standard deviation of rj* implied by this procedure is 22.42. This standard deviation is
much higher than 3.72; the value obtained under Rotemberg and Woodford’s parametrization of o
and w. Our choice of a higher value of ¢ in particular implies that considerably larger interest-rate
movements are required to offset the effects of shocks g; and y;* of a given magnitude on inflation,
raising the variability of the natural rate of interest. We assume that g; and z; (and hence yj*
and r}) are serially uncorrelated. The standard deviations of g; and z; implied by Rotemberg and
Woodford’s model are 5.09 and 14.22 respectively, and the correlation coefficient between the two
processes is -0.53. We scale the standard deviations by a factor 0.82 such that, for h = 0, the

standard deviation of r is 22.42, equal to Rotemberg and Woodford’s estimated value for this

“Rotemberg and Woodford’s rule includes extra lags of the variables; the coefficients in (11) equal the sums of the
coefficients for each variable in their rule.

5The responses of y; are omitted because they are identical to the responses of z; by construction.
6The main difference in Figure 1 from their impulse responses is the initial response of inflation and output, which

is restricted to be 0 under their identification strategy. Nonetheless, the paths of responses are quite similar.



Table 1: Model Calibration

Structural Parameters Shock Processes
6] 0.99/quarter std dev (g¢) 4.20
K 0.031 std dev () 11.75
o 1.1 corr (gt,2:) -0.53
w 0.6

h 0, 0.4, 0.8

statistic.” The calibration of the model is summarized in Table 1.

Figure 1 suggests that changes in h affect primarily the dynamics of the output gap. As h
increases, the response of the output gap to a monetary shock is initially more muted, but also
more protracted. These two effects — the weaker initial response and the more gradual return of
the output gap to zero — cause the impulse response of inflation to be almost unaffected by an
increase in h, because a smaller value (in absolute terms) of z; is offset by a larger value of Ejx;
in (7).

Figure 2 shows the responses of the four endogenous variables to a one standard deviation
innovation to the component of g; that is orthogonal to z;.® This innovation has the effect of raising
the marginal utility of consumption, while leaving the marginal disutility of supply unaffected; its
standard deviation is 3.56% of steady-state output. As in the previous figure, the different lines are
indexed by h. In the case h = 0, the shock initially has an expansionary effect on output and the
output gap since the interest rate increases less than 7} at first. Despite the increase in the output
gap, inflation falls immediately in response to persistently negative future output gaps, which come
about in part from smoothing of the interest rate (i.e. the positive dependence of r; on 71 in
(11)). As h increases, all of these dynamics are amplified. For example, under h = 0.8, the initial
response of output is higher, even though the interest rate response is considerably larger as well.
The large effect on the interest rate is partly the result of the initial impact of the shock on output,

movements in which monetary policy responds to contemporaneously. Larger and more persistent

"Scaling is necessary because there is not an exact 1-to-1 correspondance between our processes g; and z; and

their empirical counterparts in Rotemberg and Woodford’s model.
8This shock is identified by a Cholesky decomposition by ordering z; ahead of g;. Along with the monetary shock

€¢, this leaves one remaining shock that is correlated with both g; and z;.
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deviations of y; below y;* causes similar fluctuations in .

It is clear that different sizes of the habit have a much greater effect on these responses than
on those to a monetary policy shock. The differences are mainly attributable to the change in the
elasticity of x; with respect to (r; —r}*) and the increase in the variance of r{. While it is true that
shocks to the natural rate of interest are dampened by the smaller elasticity, changes in interest
rates are also less effective. However, a shock of any given size has a magnified impact on r, as
evidenced by the solid line in Figure 4, and therefore all of the endogenous variables become more
volatile.? This includes larger movements in the interest rate that partly, but not completely, offset
larger movements in r}'. To a lesser extent, the appearance of lagged endogenous variables in (5)
and (7) has an effect on all of the impulse responses that works in the same direction; the extra
forward-looking terms, i.e. Eixiio in (9) and Eiziqq in (7), have little effect on the responses.

A broader perspective of the effects of A on the dynamics of the model’s endogenous variables is
provided by the correlation functions displayed in Figure 3. For the computation of these correlation
functions, we assume that the interest rate innovation €; in (11) has standard deviation 0.85, which
is the standard deviation of the interest rate disturbance to Rotemberg and Woodford’s estimated
interest rate rule. As shown by the solid lines in the (1,1) and (2,2) panels of Figure 3, under our
assumption of serially uncorrelated shocks, the model generates no positive serial correlation in
either inflation or the output gap when utility is time-separable. This is a well-documented feature
of models in which the structural equations are entirely forward-looking. Increasing h has the effect
of inducing some positive serial correlation to the output gap and, quantitatively more important,
to inflation. This is consistent with increasing persistence in the output gap being transmitted to
inflation. The finding that the most pronounced effects of introducing habit formation are on the
serial correlation of inflation points to the importance of modelling the effects of habit formation
on the supply side of the model, as discussed in the introduction.

The largest changes in Figure 3 occur in the cross-correlations between inflation and the output
gap on the one hand, and the interest rate on the other. A first point to note is that positive
innovations to g; and z; cause the natural rates of both output and interest to rise. As long as the
interest rate rule implies that r; rises less than 1-for-1 with an increase in the natural rate (as is

the case under the rule (11)), the effect of positive innovations to g; and 2z; on balance tends to be

9This occurs even though the shock to g; is the same size regardless of the value of h.
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positive on all three variables.!? An interest rate innovation, by contrast, causes the interest rate to
increase and both inflation and the output gap to fall. The positive contemporaneous correlations
for h = 0 between the interest rate and inflation (0.3) and the interest rate and the output gap
(0.5) indicate that the correlation patterns in Figure 3 are mostly driven by innovations to g; and
z;. This is consistent with the fact that the standard deviation of the interest rate innovation is
not even 4% of the standard deviation of the natural rate.

As h increases, the contemporaneous correlation between the interest rate and the output gap
falls to 0.3, while that between the interest rate and inflation turns negative (-0.4). The intuition
behind these changes in the contemporaneous correlations can be explained by distinguishing several
effects of a change in h on equations (7) and (9). First, the effects of any innovations — whether
to g¢, 2, or the interest rate — on the output gap are affected by the increase in the coefficients
on Az; and ErAxy9 as h increases. Second, the effect of innovations to either the interest rate or
the natural rate on the output gap is weakened to the extent that é;—fn’i decreases for higher values
of h, as mentioned above. Moreover, as Figure 4 shows, the variance of r}* increases in h. Since
the variance of the interest rate innovation is not affected by h, innovations to the natural rate are
becoming an increasingly important source of fluctuations as h increases.

As the panel labelled x4, 7;—; shows, the endogenous response of the interest rate to the various
innovations has initially a weaker effect on x; as h increases, but the inertia inherent in the interest
rate rule (11) brings forth a series of negative output gaps. To explain the negative correlation
between current inflation and interest rates up to lag 6, it is important to note that, although the
factor 1—17—2% in (7) increases in absolute value, even for h = 0.8 the factor multiplying x; is more
than 7 times the size of the former. Because the latter factor is positive, the sequence of expected
negative output gaps displayed in the x4, 7;_; panel has the effect of reducing inflation. For h = 0.8,
this sequence of expected output gaps is sufficiently large to cause the correlation between m; and

ri—;, 0 < 7 <6 to turn negative.

19Tt was shown in Figure 2 that an orthogonalized innovation to g; has a negative contemporaneous effect on ,

but this is more than offset by the effect of the remaining innovation on both g: and 2.
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3 Optimal Monetary Policy

In this section we present an approximation to the representative household’s welfare when there
is habit formation in consumption. We then characterize the policy that minimizes welfare losses

according to this objective.

3.1 The Welfare Objective for Monetary Policy

The early literature on stabilization policy, such as Taylor (1979), postulates that the objective for
monetary policy should be to minimize some convex combination of the variances of inflation and
either output or the output gap. Within the context of an optimization-based model similar to the
one above, but with time-separable utility, Rotemberg and Woodford (1997) and Woodford (1999a)
show that maximization of the representative household’s welfare indeed implies minimization of
the variances of inflation and the output gap, where the relative weights on inflation and output
gap stabilization are determined by the model’s structural parameters. One effect of introducing
habit formation in consumption is that it changes this objective, in addition to changing the model
equations (5) and (7).

To describe how habit formation affects the objective for monetary policy, suppose that mon-
etary policy chooses at some point ¢ = 0 a plan that maximizes the representative household’s

welfare, defined by
o0 1
Ey {Z e [U(Yt,Yt—l;ﬁt) —/ U(yt(i%ft)dz}} (12)
t=0 0

The integral over v(y;(7); &) is taken in order to abstract from the effects on an individual house-
hold’s supply of the particular date at which it last had the opportunity to adjust its price. We
evaluate alternative policies under the assumption that subsidies for output are in place such that
the steady-state level of output is efficient despite the presence of imperfect competition.!! There-
fore, monetary policy has no inflationary bias. Nevertheless, as pointed out by Woodford (1999b),
the optimal response of monetary policy to shocks in a forward-looking model depends on whether
it is conducted under commitment or under discretion. We assume throughout that monetary pol-
icy is able to act under commitment, and benefit from the associated stabilization gains. Finally,

we assume that all state variables in the initial period are at their unconditional expectation of

HThe efficiency condition is stated in Appendix A.
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zero to ensure that the desirability of the chosen plan does not depend on any particular initial
conditions at time 0.
In appendix A we show that a second-order Taylor series expansion of (12) around the same

steady state that (5) and (7) have been derived can be expressed in the form of a loss function

W= i B'EoL, (13)
t=0

where the period-loss function L; is defined as

Li=724+ )\ [773%? + (7o + Briy) +m(Ye—1Ay — ﬁytJrlAytJrl)} (14)

and the weight \; is defined as ﬁ.m After some further simplifications (described in appendix
A) and taking the unconditional expectation of (13) to abstract from initial conditions (as discussed

above), the loss function becomes

W = Vim] +Aa{(n3 + (L + B)m)VIwe] + 01 (Viye +yer] — 21+ B)VIyd)} (15)

where the measure of variability for any variable z that is used here is defined by
ViZl=E l(l -5 ZBtEozf] (16)
t=0

Except for the discounting, this measure corresponds to the unconditional variance of z;.

Habit formation in consumption has three distinct effects compared to the case of time-separable
utility, in which the period-loss function is given by 77+ ﬂgj—wle With habit formation, variability
in output as well as the output gap is welfare reducing — while ; < 0, the product n1 (V [y: +yt—1] —
2(1 4+ B)V]ys]) is positive for h > 0. In our model, in which consumption equals output, output
variability reduces welfare because of the link from past output to the current marginal utility of
consumption. Second, the current period-loss function (14) depends on past and expected future,
as well as current, output and output gaps. As shown in (15), this has the effect of altering the
weights on output and output gap variability relative to inflation variability. Finally, the weight
Az is increasing in h. When inflation is measured as annual percent, while y; and z; are measured
as percent of steady-state output, the parameter values presented in Table 1 imply A, is 0.063

for h = 0. As h increases to 0.8, \; increases to 0.30. The combined effect is that the weight

2This formulation of the loss function, while useful for gaining intuition, omits one initial product yoy—_;. The

formulation in (15), on which the computations are based, does not.
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Az(m3 + (1 4 B)n1) on output gap stabilization decreases from 0.108 to 0.102 as h rises from 0 to
0.8, while A\;7m; increases in absolute value from 0 to 0.024.

Apart from a suboptimally low steady-state level of output due to imperfect competition, the
only departure of the model presented above from the efficient allocation is caused by distortions in
relative prices due to price stickiness. This distortion can be eliminated by a policy that implements
price stability, in which the real interest rate equals the natural rate of interest in every period. As
Rotemberg and Woodford (1997) point out, however, for a sufficiently variable process {rj'}, such a
policy requires a positive steady-state rate of inflation to avoid the zero lower bound on the nominal
interest rate. The second-order approximation of welfare given by (15) assumes that both 7 and
x¢ have steady-state values of 0. To account for the possibility that steady-state inflation 7 may
be non-zero under the optimal policy, (15) is augmented by a term measuring the consequences of
interest rate variability under a given interest rate policy for steady-state inflation.!3 We follow
Rotemberg and Woodford (1997) and penalize interest rate variability by assuming that, for any
level of interest rate variability, all realizations of the interest rate will be distributed within the
interval [E[r] — kV[r]'/2, E[r] + kV[r]'/?]. Hence, only interest rate policies such that kV[r]'/2
exceeds the steady-state net real interest rate 31 — 1 cause positive steady-state inflation rates.

Thus, the criterion for evaluating alternative policies is based on a modification of (15) given by
. . 2
Wy =W + (max{kV[r}l/Q — (-1, 0}) (17)

In the simulations below, we use k = 2.26 and a steady-state net real interest rate of 3% per annum,
which are based on the VAR estimated in Rotemberg and Woodford. This implies that a tradeoff
between perfect stabilization and zero steady-state inflation exists whenever the standard deviation
of the natural rate of interest exceeds 1.32.

Under the calibration of the shock processes discussed above (like under the estimated shock
processes of Rotemberg and Woodford (1997)), the zero lower bound is binding because V[r"]'/2
is found to exceed 1.32 for any value of h. In this case the modification of the loss function (15)
can alternatively be achieved by adding a term \,.r? to the period-loss function (14), as discussed

in Woodford (1999b). The loss function (15) is then modified as

Wy =W + \V[r] (18)

3In addition, the loss function contains a similar term related to the steady-state level of the output gap Z equal

to Az (n3 +m(1 + 8))Z°. By equation (7), Z = [k(ns +m(1 + 8))] ' (1 = B)(1 — Bh)T.
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Table 2: Optimal Plan, Base Case Calibration

h=0 h=04 h=08
X | 015 0.8 028
std(r™) | 2242 25.77  36.29

Vlr] | 186  1.88 197
Vix] | 050 066  1.46
V[z] | 1749 19.84  22.38
Vly] | 1347 3241 146

7 0.091  0.10 0.18
Wy 2.39 3.03 10.26

The weight A, is chosen such that the policy that minimizes the loss function (18) is the same that

minimizes (17), although the actual values of the two loss functions may be different.

3.2 The Optimal Plan

We begin to evaluate the consequences of habit formation for optimal monetary policy by comput-
ing, for different values of the parameter h, the optimal plan, i.e. the stochastic processes {m¢,ys, r+}
which minimize the loss function (17) subject to the constraint that the model’s structural equations
(7) and (9) hold at any date t > 0. The problem, and the first-order conditions characterizing the
optimal plan, are formally stated in appendix B. The first-order conditions are taken using the loss
function (14), augmented by a term \.r?, and numerical optimization is performed to determine
the value of A, that leads to the lowest welfare loss according to the original loss function (17).
For each of the three values of h, we characterize the optimal plan by the variability statistics for
the endogenous variables and the implied steady-state level of inflation that jointly determine the
welfare loss ;. These statistics, together with A\, and the standard deviation of r}, are reported
in Table 2.

In the standard case with time-separable utility, the standard deviation of r} is 22.42, the value
discussed in the previous section. By contrast, the variability of the interest rate, V|r|, is not
even 1/2% of the variance of the natural rate, implying that the stabilization gains from matching
the natural rate more closely are outweighed by the losses from increased steady-state inflation.

Steady-state inflation is non-zero, though still very low (0.1% at annual rate), and therefore the
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marginal effect of reducing V[r] would be to reduce the welfare loss Wy by a fraction 0.15 of the
reduction in V[r], other things equal. Despite the fact that stabilization is not nearly complete,
V[n] is quite low at 0.5% annual rate. The consequences of not matching rj* perfectly are most
visible in the variability measures for output and the output gap.

As h increases, so does the standard deviation of the natural rate. There are two separate effects

of h on r}* working in opposite directions. As the dashed line in Figure 4 shows, the variance of the
¢ Lph

n - . e e
£=r{’, is decreasing in h, because the polynomial in y;* inside

expectational term in (10), i.e. o
the brackets is becoming more similar to a moving average.!'* The dominant effect, however, is that
the factor in front of the expectations operator increases in h. This rise in the standard deviation
of r{* causes all the statistics in Table 2 to rise as well. It therefore amounts to an outward shift
of the “optimal policy frontier”, the locus of feasible minimum variances of all of the endogenous
variables.

The second effect of increasing h is to change the relative weights on inflation, output, and
output gap variability in the objective Wi. Despite the fivefold increase in A, as h rises from 0 to
0.8, the weight on V[z] falls slightly, from 0.108 to 0.103. By contrast, the combined contribution
of the terms related to output variability increases from 0 to a fraction 0.044 of V[y].

However, while the relative concern for output fluctuations increases, the rise in output vari-
ability is the most pronounced among the endogenous variables because interest rate variability
increases only marginally, compared to the precipitous increase in the variability of the natural
rate. The small change in interest rate variability reflects the substantial increase in \. as h, and
with it the variability of the natural rate, increases. Hence, the increase in V[r] is not nearly suffi-
cient to fully offset the effects of a more variable natural rate on the variability of inflation, output,
and the output gap.

Figure 5 shows impulse responses of the four endogenous variables to a shock that raises the
marginal utility of consumption, while leaving the marginal disutility of supply unaffected. (It is
the same shock analysed in Figure 2.) The solid lines in the four panels show that for A = 0 the

initial effect of the innovation is positive on all four variables. Under the optimal plan, the interest

1_aﬁhr{" takes the form g, — o [(n2 — m)yd + myi1].

n our case, in which g; and z; are serially uncorrelated,
Notice that the sum of the weights on the y™-terms is 72, which is a decreasing function of h under our parameteri-
zation. Thus, not only is a moving average of the y"-terms taken for h greater than zero, a scaling reduction is also

applied.
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rate returns to zero only very gradually. Expectations of persistently high interest rates have the
effect of reducing both inflation and the output gap below zero in the period following the shock,
from where both variables return to their steady-state levels. The concern for minimizing inflation
variability is evident by the deflationary periods following the initial inflation. By reducing inflation
below zero for some periods, monetary policy succeeds in reducing the discounted sum of squared
deviations from the steady-state.

As the dashed and the dashed-dotted lines in Figure 5 show, the effect of increasing h is to
magnify the responses of all four variables. The initial response of all variables is again positive.
Inflation falls for the next two periods, the output gap for the next three, and output for the
next four, while the interest rate peaks only in the quarter following the innovation. The gradual
declines in the impulse responses of x; and y; are partly driven by the increasing importance of
lagged endogenous variables in the structural equations, as well as the interaction of a larger impact
of the shock on r}* with a reduced elasticity of the output gap with respect to the interest rate gap.
These are the factors that were evident in Figure 2 (see section 2.3). However, notice that for larger
values of h, both output and the output gap are allowed to rise substantially at first. This occurs
because further dampening of the impact of the shock on these two variables would involve a more
than offsetting rise in welfare losses due to the higher interest rates necessary, i.e. higher interest
rate variability and steady-state inflation.

Comparing Figure 5 with Figure 2 helps clarify the nature of optimal policy relative to alterna-
tives, such as our characterization of historical policy in (11). Optimal policy has a strong influence
on how the endogenous variables respond to this type of shock. This can be explained by two
differences of optimal policy versus (11). First, optimal policy entails much smaller responses to
output, which means that the interest rate hardly increases in response to the substantial rise in
output following this type of shock. Second, optimal policy is much more inertial. Thus, the rise in
the interest rate is smaller, but it is more drawn out. The combination of these two factors allows
output to increase more initially (i.e. policy is more expansionary to begin with), but subsequent
fluctuations around the steady state are greatly reduced because large negative values of the output
gap are avoided by a smaller rise in the interest rate in the first few periods. These effects become
stronger as h increases. The consequences for inflation are that it actually increases initially, and
then it falls below the steady-state in a less pronounced way. One conclusion from this analysis is

that a rule such as (11) does not respond optimally to a shock of this type.
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Table 3: Simple Rules, Base Case Calibration

h=0 h=04 h=03
a | 1.72  1.66 1.32
b | 237 197 0.76
c 0 -0.001  0.007
Vir] | 1.86  1.87 1.96
Vir] | 054  0.70 1.58
Viz] | 17.47  19.86  22.33
Viy] | 13.35  32.62 146
7 | 0.090  0.10 0.18
Wy | 242 3.07 10.34

4 Simple Interest Rate Rules

The results presented in the previous section characterize optimal monetary policy, yet they do not
provide any instruction of how such a policy would be implemented. In this section we analyze
feedback rules for the interest rate as a mechanism to implement alternative policies. In princi-
ple, the first-order conditions presented in appendix B can be solved for the feedback rule that
implements the optimal plan. However, such a feedback rule would be quite complicated, as it
would depend on the entire history of inflation, output and the interest rate, and involve several
different viewpoints of expectations. Moreover, it would involve feedback from the output gap.
Orphanides (1998) argues that rules that respond to the output gap may perform poorly because
of the problems associated with accurate measurement of the natural rate of output. Instead, we

consider the performance of an interest rate rule of the form
re = arg_1 + bm + cyy (19)

This rule is of the form proposed by Taylor (1993), augmented to allow feedback from the lagged
interest rate.!> It does not require the central bank to observe any of the model’s shock pro-
cesses. The response to the lagged interest rate generates history dependence of policy, which is an
important feature of optimal policy in forward-looking models, as Woodford (1999b) emphasizes.

Table 3 reports the coefficients a, b and ¢ that minimize the loss function W in (17), along with

5Notice that this rule is of the same form as (11), which will help to highlight the differences between an optimized

rule and our description of historical policy.
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the variability measures for the endogenous variables, steady-state inflation, and the welfare loss
for the same three values of h as in the previous section. Comparing the entries in the last six rows
of Table 3 to those in Table 2 reveals how remarkably close the simple rules come to replicating
the optimal plan. The measure Vr|, and hence steady-state inflation, are almost identical under
the simple rules compared to their counterparts in Table 2. The same holds for output and output
gap variability. The only marked difference in the statistics occurs for V[r|, the values of which
under the simple rules exceed those obtained under the optimal plan by up to 8% of the latter. The
higher values for V[n] explain why the welfare losses under the simple rules are about 1% higher
than those under the optimal plan. Variation in h causes each of the six statistics to change exactly
like under the optimal plan, and the interpretation presented in the previous section applies.

The interest rate rules that achieve this close approximation to the optimal plan are character-
ized by coefficients a larger than one. Such “super-inertial” behaviour of interest rates is consistent
with a stationary equilibrium of the system of equations because the private sector’s anticipation of
this behaviour leads to responses of output and inflation that prevent interest rates from following
an explosive path. In the standard case of time-separable utility, Rotemberg and Woodford (1997)
and Woodford (1999b) discuss the optimality of super-inertial interest-rate rules. As shown in Table
3, the response to the lagged interest rate weakens as h increases, because the higher inertia in both
output and inflation under habit formation implies more drawn-out responses of these variables to
the interest rate. A higher degree of habit formation therefore acts to some extent as a substitute
for interest rate inertia. Nevertheless, the coefficient a is well above 1 even when h = 0.8.

The increasing inertia of inflation and output for higher values of h has a stronger effect on the
response to inflation. For h = 0.8, the coefficient b is only one third of its size in the time-separable
case. The response to output is weak regardless of the value of h, despite the fact that the weight
on output stabilization rises as h increases from 0 to 0.8 (see above). While the specific values
for the coeflicients a,b, and c are likely to be sensitive to the structure of the model as well as its
calibration, our findings suggest that an optimal value of a exceeding 1 is robust with respect to
the introduction of habit formation in consumption.

Finally, comparing the optimal rules to the rule (11) illustrates the differences between optimal
and historical policy discussed in the previous section. The response to the lagged interest rate is
much larger in the optimal rules across all values of h. Even in the case h = 0.8, this coefficient is

nearly twice as large. Moreover, the response to output in (11) is at least 20 times the size of the

20



response in any of the optimal rules. These two properties explain the differences in the responses

to shocks presented in Figures 2 and 5.

5 Sensitivity Analysis

In view of the uncertainty surrounding the appropriate values for ¢ and w, in this section we
assess the effects on our results from choosing alternative values for these two parameters. As
mentioned before, Hall (1988) and Attanasio and Weber (1993) arrive at estimates of o considerably
higher than 1.1. The interpretation of ¢ in the present study as the interest-rate sensitivity of
output, instead of nondurable consumption, implies that a value lower than found in those studies
is appropriate. Nevertheless, a value between 1.1, and the preferred estimates of Hall and Attanasio
and Weber of around 3, might be interesting. We therefore consider in this section a value o = 2.

Similarly, while estimates of the elasticity of labour supply reported by Mulligan (1998) are
mostly between 0.5 and 2, those surveyed in Pencavel (1986) do not exceed 1. This suggests
exploring the consequences of an elasticity of labour supply much lower than the value 5 implied by
our calibration of w = 0.6. Combined with a coefficient on labour in a Cobb-Douglas production
function of 0.75, a labour supply elasticity of 0.8 implies w = 2. We therefore choose w to be 2.
Setting both o and w to 2 affects the values of k and \,.'6 The former is now 0.01, while A, = 0.022
for h =0, and \; = 0.10 for h = 0.8.

The calibration of the shock processes is again based on the properties of the processes g, 2,
and 7y implied by Rotemberg and Woodford’s model under our alternative parameter values, as
described in section 2.2. For the sake of comparison to our earlier results, we first scale the standard
deviations of g; and z; such that the standard deviation of rj* remains at 22.42, given the correlation
between g; and z; of -0.53. This calibration is labelled “Case 1”7 in Table 4. Alternatively, the
standard deviation of r{ implied by Rotemberg and Woodford’s model when o = w = 2 is 40.54,
while the standard deviations of g; and z; are 3.45 and 8.31, and the correlation between the two
is -0.13. We again scale the standard deviations by a factor 1.08 such that, for h = 0, the standard
deviation of r{* is 40.54. This calibration is labelled “Case 2” in Table 4.

The two cases of shock processes presented in Table 4 provide two directions in which to inves-

16 This is seen from the form for » given in Appendix A, and recalling that ), is a function of & (section 3.1). We

keep « and 0 constant at their previous values of 0.66 and 7.88, respectively.
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Table 4: Alternative Model Calibration

Structural Parameters Shock Processes

I} 0.99/quarter Case 1 Case 2
K 0.010 std dev (g¢)  1.63 3.72

o 2 std dev (z;)  4.56 8.96

w 2 corr (g, 2) -0.53 -0.13

h 0, 0.4, 0.8

tigate the sensitivity of our results. The first is the changing of ¢ and w to 2, while keeping the
variance of 77" constant (for A = 0). This corresponds to comparing the Case 1 alternative to our
base case calibration. The appeal of this exercise is as follows. When i = 0, the model reduces to
the standard case. Moreover, none of the elements of the welfare function involve y; itself, so the
only barrier to complete stabilization is the zero lower bound on nominal interest rates. Thus, we
can focus directly on fluctuations in r}* as the source of welfare reductions. Keeping the variance
of r’ constant, for h = 0, allows us to isolate the effects of changing the structural parameters in
question. Of course, the variance of rj* may not be equal across parameterizations of o and w as h
changes, but this is precisely one of the effects of habit formation we wish to explore. The second
exercise we consider is changing the variances of the processes g; and z;, and hence 77, while hold-
ing the structural parameters constant. This involves comparing our two alternative calibrations,

Cases 1 and 2, against each other. We investigate these changes in turn, respectively.

5.1 Implications of Changing ¢ and w

Statistics characterizing the equilibrium under the optimal plan for our alternative Case 1 calibra-
tion are presented in Table 5. The first observation is that all of the statistics are lower under Case
1. This is best explained by examining Figure 6, which plots the components of the variance of r},
analogous to Figure 4. While the values of the standard deviation of r} are identical in the two
graphs for h = 0, the portion of this statistic corresponding to the expectation of the shocks (see
(10)) is much lower for ¢ = w = 2 (as shown by the dashed line). The larger value of o reduces
the size of the elasticity of output with respect to the one-period expected real interest rate. The
scaling factor in r}* (which is the inverse of this elasticity) thus becomes relatively large, meaning

that the variance of the expectational component must be smaller to achieve the same variance for
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Table 5: Optimal Plan, Alternative Calibrations

Case 1 Case 2
h=0 h=04 h=08|h=0 h=04 h=08
Ar 0.040  0.043 0.051 | 0.093 0.10 0.13
std(r™) | 22.42  28.38 36.86 | 40.54  51.55 67.91

V] | .78 178 179 | 182 182 185
Vir] | 010 012 018 | 040 048  0.74
Viz] | 561 435 176 | 2030 1572  6.85
Vly] | 203 305 577 | 1264 1862  31.92

7_T 0.024  0.023 0.030 | 0.055  0.055 0.086
Wi 0.59 0.53 0.84 2.16 2.12 4.27

ri* as in our base case. Thus, the overall impact of shocks in the Case 1 calibration is smaller. At
the same time, the potency of policy is reduced by a larger o. On balance, the variability of all the
endogenous variables, and hence welfare losses, are reduced under the alternative calibration.

Figure 7 shows the impulse responses of the endogenous variables to a marginal utility of
consumption shock under the alternative calibrations. To focus on the effects that the alternative
calibrations have, Figure 7 presents the impulse responses for h = 0. The impulse responses under
our base case calibration are identical to the solid lines in Figure 5, and are reproduced here for
convenience. The size of the shock to r{* is identical in both the base case (solid) and Case 1
(dashed). Although the initial response of the interest rate is slightly smaller in the latter case, the
output gap does not expand as much in the period of the shock.!” Moreover, the output gap returns
and stays closer to the steady-state, which results in lower inflation variability. These results are
driven by slightly higher interest rate inertia under the optimal policy in Case 1, which succeeds in
reducing fluctuations in inflation and output.

In the alternative Case 1 calibration, as in our base case, the variance of r{* increases with h,
while the variance of the term I—_U@Tf decreases. Similarly, as h increases, the overall impact of
shocks is lessened, and so is the potency of policy through a lower elasticity in the IS equation and a
smaller k in the AS equation. The decline in the variance of the output gap as h increases is the most

noticeable difference between Case 1 and the base case. The reason for such different performance

"Nonetheless, the output gap is positive in both instances since policy does not respond 1-to-1 to the shock in 7

in either case.
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is that the trade-off between output gap and interest rate variability improves substantially in favor
of the output gap as o is raised from 1.1 to 2. Large reductions in V[z] are obtained with virtually
no increase in V[r]. Moreover, the shadow value on interest rate variability hardly increases in
Case 1, from 0.04 for h = 0 to 0.05 for A = 0.8, compared to the increase in A, from 0.15 to 0.28
in the base case. Similarly, the increases in V[y] are relatively small compared to Table 2. Finally,
one interesting feature of the outcomes under Case 1 is the non-monotonicity in the level of welfare
achieved for different values of h. In particular, Wi is smaller when h = 0.4 than when h is 0 or
0.8. Apparently, the improvement in the trade-off between interest rate and output gap variability
as h increases more than offsets the welfare-reducing effects of larger variation in r.

Comparison of the solid and dashed lines in Figure 8 to their counterparts in Figure 7 shows
that the differences between the impulse responses due to the alternative calibrations are becoming
more pronounced as h increases. In particular, the initial response of the interest rate shown in
Figure 8 is much lower in Case 1 (the dashed line), and it reaches its peak after 3 quarters, compared
to 1 quarter in the base case (the solid line). The response of the output gap and inflation are
relatively more muted compared to the base case; however, the overshooting of the output gap to
below its steady-state is delayed, and a similar course is followed by inflation, which does not occur
to the same extent in the base case.

One notable effect of the combination of larger ¢ and A is that the optimal responses of the
variables are more hump-shaped, something that does not occur when h = 0 for 0 = w = 2.
The same behavior is reflected in the impulse responses in the base case to a much lesser extent.
This is a result of having at the same time smaller elasticities in the IS and AS equations and a
muted transmission of interest rate changes due to the appearance of extra output gap terms in

the structural equations.

5.2 Implications of Changing ¢;, z, and var(r})

In our second robustness check, we change the variances of the shock processes ¢g; and z;, and hence,
ri* and y;*, while keeping the structural parameters at the same values. A comparison between our
alternative Cases 1 and 2 is relevant here. The statistics describing the equilibrium under the
optimal plan for our Case 2 calibration are also presented in Table 5. As can be seen in the second
row of the table and Figure 9, the variance of 7" is almost double the value in Case 1 across the

range of h. With the structural parameters being identical across these two cases, this naturally
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leads to higher variances for the endogenous variables, as well as higher welfare losses.

Since the variance of the shock g; is larger, the standard deviation of the component of rp
that is orthogonal to z; is 2.67 times larger than in Case 1. However, as shown in Figure 7,
for h = 0 the increase in the initial response of the interest rate in Case 2 (the dashed-dotted
line) compared to Case 1 (the dashed line) is much lower than this factor. Instead, the greater
magnitude of the shock to r}* is reflected by interest rates remaining higher for a prolonged period.
Nevertheless, the response of the interest rate does not prevent the other endogenous variables to
increase substantially at time 0 as well.

As shown by the impulse responses in Figure 8, the initial response of the interest rate is
relatively small for h = 0.8 as well, compared to the increase in the standard deviation of the
shock in Case 2. Relatively larger upward movements in the interest rate are now required in later
quarters compared to when h = (0. The magnitude of this dynamic response is due in large part
to the higher variance of rj* for the higher value of h. However, the relatively persistent larger
movements under Case 2 compared to Case 1 are not due to changes in the variance of 7 alone,
but also the fact that the variance of y;* is larger in Case 2 and variation in output, as well as
the output gap, now matters for welfare.!® As a consequence of the delayed, yet persistent rise in
the interest rate, the output gap remains positive longer and takes longer to converge back to the
steady-state compared to when h = 0, with similar consequences for inflation.

As can be seen in Table 5, one major difference between Cases 1 and 2 is the percentage
increase in the shadow value A,. Since the structural parameters as well as the weights on the
other terms in the welfare objective are the same under the two cases, the change in A\, means
that the indifference curves implied by the welfare objective are shifting in favour of interest rate

stabilization. Nevertheless, the variance of the interest rate increases under the optimal plan.!?

181n fact, the variance of r}* increases by a greater percentage under Case 1 in going from h = 0 to h = 0.8.
9Note that, despite the overall increase in variability in Case 2, the result described in the previous sub-section

about the variance of the output gap declining with A continues to hold since this is entirely driven by the larger

values for o and w compared to the base case.
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6 Conclusions

In this paper, we developed a model for the analysis of optimal monetary policy that includes house-
holds making optimal choices over consumption and output supply, and features habit formation
in consumption. The log-linearized version of our model consists of generalizations of the standard
forward-looking IS curve and the New-Keynesian Phillips curve, to include extra terms involving
past output and expected future output. The presence of habit formation introduces endogenous
persistence into the model, and under our base case calibration, we showed that a large habit in
consumption can lead to a substantial increase in the serial correlation of inflation.

We then used the model to analyze the implications of habit formation for optimal policy. We
found large increases in the variance of output under optimal policy, despite the fact it acquires
a higher implicit weight in the welfare function. Similarly, interest rate variability also increases
even with a higher weight in the objective, although much less than in the case of output. We
obtained these results because the variance of the natural rate of interest increases precipitously
with the size of the habit. We also investigated the properties of a simple interest rate rule, and
found that it performs nearly as well as the optimal plan. In particular, we found that rules with
a coefficient greater than one on the lagged interest rate are preferred across the range of values of
the habit that we consider, and that the optimal value of this coefficient, as well as the coefficient
on the current inflation term, decline as the habit increases. Our characterization of optimal policy
in the presence of habit formation is thus supportive of two findings that have emerged from the
recent literature, namely, Woodford’s (1999b) result that super-inertial policy is desirable and the
approximately optimal nature of simple interst rate rules for conducting monetary policy. Our
specific results show exactly how the character of policy should change depending upon the degree

of habit formation in consumption.
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A Log-linear Approximations

A.1 Derivation of Equations (5) and (7)

In deriving (5) and (7) we take first-order Taylor-series expansions of the exact non-linear equi-
librium conditions. If ||| is a measure of the magnitude of fluctuations of the process {&}, the
expansions in this subsection are accurate up to a remainder of size O(||¢]|?), which we omit from
the equations. For ease of exposition, we assume that the steady-state level of output is at its

efficient level Y*, characterized in our model by
(1= BR)Y™ " = v, (Y*;0) (20)

where v = 0 + h(1 — o), and all Taylor series expansions are taken around Y*. For a discussion
of the case in which the steady-state output level is inefficient, see Woodford (1999a). Moreover,
all expansions are developed around a zero inflation steady state, and we assume that the steady
state value of &; is zero as well.

The Lagrangian of household 7 at time 0 is

0o -0 ;
> s {—1 L (CCT> 6 —olu(i &) - o [ - TP o 20D, ) }] 1)
t=0 -

where B; denotes the amount of nominal riskless one-period bonds bought by the household at the

Eq

end of period ¢ that pay a gross return of R; units of the numeraire in every state in period ¢ + 1.

The first-order conditions with respect to Cy and B; are given by (4) and

on
— = E
P OR.E,

D141

22
Pt (22)

The first-order condition (4) implies that ¢ = (1 — 3h)Y* ". A log-linear approximation of (4) can

then be written as

: —16h [—oc; — h(1 = 0)ei—y + 0gs — BhE(1 — 0)erpr — (1 +h(1 — 0))es + ogist]] = ¢ (23)

where

C .
¢y = log (Y—i) , ¢ = log (%) , g =0 tdg

(22) can be approximated as

¢t = Eyri1 + 11 — Eympa (24)
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where 7, = log(8R;). Combining (23) and (24) and substituting y; = log(Y;/Y™) for ¢; yields (5).
The first step in deriving (7) is to take the partial derivative of (6) with respect to p; and

approximate it around the same steady state as before:

j=0 k=1

oo R J J
E Yy (aB) {¢t+j + 00— > Tork — @Yers — zi4j — 0D — Zﬂwk)}} =0 (25)
k=1

where

" V43 - Uyy(Y*§O)Y* _ UyE(Y*?O)
b "g( )"“ vy (r0) A= T oy

In the special case in which prices are flexible, & = 0, and since all firms choose the same price,

pr = 0 as well. Therefore (25) simplifies to the condition that

Qgt =w(yt — 2) (26)

By combining again (23) and (24), substituting y; for ¢;, then substituting for ¢ in (26) and solving
for y; we obtain the “natural rate of output” defined in (8), i.e. the level of output that would
obtain if prices were flexible. In the general case in which some firms cannot adjust their price, i.e.

a > 0, substituting from (23) for ¢;,; in (25) and solving for j; yields

0o J
pe = (1—af)E; jzo(aﬂ)j = ,Bh)l(l T oh) (M35 + M (Tegjm1 + BTegjr1)) + 1;1 Ttk | (27)

where z; = y; — y;* is the output gap.
Because all firms that are offered the opportunity to choose a new price in period ¢ will choose

the same price, the aggregate price index evolves according to
P, =[aBS + (1 - a)p} |7 (28)

Log-linearizing this equation yields
e

ﬁt = 1_047Tt (29)

Furthermore, the double sum in (27) can be simplified as

J=0

S (@YY e = (1—af) ! {i(aﬁ)jmj - m} (30)
=0 k=1

Substituting (29) and (30) into (27), rearranging, and quasi-differencing the resulting expression,

we obtain (7), where
(I-a)l-af) 1
a 1+ wb

K
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A.2 The Representative Household’s Welfare

The second-order approximation (13) to the representative household’s welfare (12) is derived in
this section, using methods discussed in more detail in Woodford (1999a). The second-order Taylor
series expansion of (12) is formed around the steady state characterized by the efficient output level
Y* defined in (20) and zero inflation, i.e. the same steady state around which the model’s exact
equilibrium conditions have been log-linearized.

Let Uy = u(Yz, Yi—1;&) — fol v(ye(2); &)di, where the market clearing condition C; = Y; V¢ has

been substituted in. The first term in U; can be approximated as

- l1-0
u(Ys, Yi156) = Y e+ Tth — hyi—1
h2(1—o )
A= b= oYy + owg — hoyegr| +tip+ O (3D

where the notation t.7.p. stands for terms that are independent of monetary policy.
Following the same steps as e.g. in Rotemberg and Woodford (1997), the second term in U; can

be approximated as
1
/0 v(ye(1); &) di

— oY g Gl 507 @) —wp] + tip.+ O @2

where z; and w are defined as in (23), 9:(i) = log(y:(7)/Y™), and var; measures the variance of g ()

across 7. Subtracting (32) from (31), and using from (20) that v,Y* = (1—ph)Y* ', and from (3)

1—v

that var;(9:(i)) = 0%var;(log p;(i)), we obtain
Y*lfu

1 1
U = —— {Qh |:yt1 + 5%2—1 — By + 59?)} + (0 + (1= Bhw)y;

+20(1 = )yeyr—1 — (1 + h(1 = 0))yiy — 2(1 = Bh)wzys
—20g:(ye — hye—1) + (1 = BR)O(1 + wh)vary(log (i)} + tip. + O(JEl*)  (33)

Forming the sum Y {°, 5'U;, rearranging terms across summands, and using the definition (8)

of y*, the objective (12) can be expressed as

*1—1/

> Y 1
B3 fUn = —o5—Ea | Ml + 5u20) = B+ h(1— o))y, + h(1 = o)yoy
t=0

o
+> 6 {?733?% + (@7 + B7) + m (Y1 Ay — Byer1Ayiga)
=0

+(1 = Bh)O(L + wh)var;(log pi(i))}] + t.i.p. + O([¢]) (34)
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Finally, using the approximation that

o]
(07

S t (o i) = b2 i 3
3 Bvars(logpu(i) = =y =gy & A + i+ OEI) (35)

(see Woodford (1999a)) and suppressing a constant and terms independent of policy, we obtain the
loss function (14), where A\, = T 5Ry-

Further rearranging of terms across summands in (34) yields
b 1

EoY U = ~0Eo A {20y + 5020) — b1+ A= )iy + ety o)}
t=0

+y 4 {W? + A [(773 + Bm)ad + Bmaiy g + 2myeye1 — Bm (i + yt2+1)} }]
t=0

Ftip. + O(lE)?) (36)

wl-v _
where ) = YTW Note that all right-hand side terms on the first line are independent
of the policy adopted at time 0. Replacing the cross-product 2y:y: 1 by (y¢ +y-1)> — y? — v? 1,

applying the operator (16), and noting that for any variable z;, V[z] = V]z:11], we obtain (15).

B Conditions Characterizing the Optimal Plan
From (36) we obtain a loss function of the form (13), where the period-loss function is

Ly =7+ g [(ns + Bm)xi + Bmaiiy + 2myy—1 — Bm(yi + yt2+1)}

Appending the term \.77 to L; for the reasons discussed in section 2, replacing y; by z; + ¥, and
omitting terms independent of policy, the problem of choosing at time 0 an optimal plan for the

endogenous variables {x, 7,7} can be stated as a Lagrangian

0
Ey) f' {th + Az [773563 + 2m (21 + Ty + Te1yy) — 20m (zeyy’ + xt+1y{‘+1)} + A7
t=0

- - 1-h
+ 2¢14 {_772 > Moy — %xwz =B L1 + %wt—l + g

(re — 7§ — Tev1)

K K K
+ 202, |:7Tt 1 _n;hxt 1 _n;hxtq 1 _ﬁghxtﬂ — B4

} (37)

where (9) and (7) are the constraints, and {¢1,¢, ¢2¢} are sequences of Lagrange multipliers associ-

ated with the constraints. The first-order conditions with respect to z;, 7, and r; are respectively

0 = Xe{mze +m(ze—1 +yi 1) + BmEi[rer +yiq] — L+ 8)mys'}
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1 _
+= (2 —m)er,t — ﬂ4251,t—2 - 772_5771(251,::—1 + BmEid1 141
o B B
K
T M3b2,t +mp2t—1 + B Erdo 1] (38)
1—5h
0 = m— 5 O1t-1 + P2t — D241 (39)
o8
1—5h
0 = M+ 05 P14 (40)

An optimal plan is defined as a bounded solution {7, x¢, 7¢, ¢1.¢, P2, Frog to the system of equations

(5), (7), and (38)-(40) together with the initial condition that ¢y 1 = ¢1 _2 = o _1 = 0.
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Figure 1: Model Impulse Responses to a Monetary Policy Shock

under Estimated Interest Rate Rule
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Notes: The figure shows the impulse responses of some of the endogenous variables to a one-unit
monetary policy shock at time 0, using the model equations (7) and (9) and the interest rate rule
given in (11). The different lines correspond to different values of h: 0 (solid), 0.4 (dash) and
0.8 (dash-dot). One period is equal to a quarter. Inflation and the interest rate are expressed in
annualized percentages, the output gap in percentages.
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Figure 2: Model Impulse Responses to a Marginal Utility of Consumption Shock
under Estimated Interest Rate Rule
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Notes: The figure shows the impulse responses of the endogenous variables to a one-standard devia-
tion shock to the orthogonalized innovation in the process g; at time 0. This has the interpretation
of a shock to the marginal utility of consumption that does not also directly affect the disutility
of labour supply. These are based on the model equations (7) and (9) and the interest rate rule
given in (11). The different lines correspond to different values of h: 0 (solid), 0.4 (dash) and
0.8 (dash-dot). One period is equal to a quarter. Inflation and the interest rate are expressed in
annualized percentages, output and the output gap in percentages.
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Figure 3: Model Autocorrelation Functions
under Estimated Interest Rate Rule

Notes: The figure shows the autocorrelation functions of some of the endogenous variables based
on the model equations (7) and (9) and the interest rate rule given in (11). The different lines
correspond to different values of h: 0 (solid), 0.4 (dash) and 0.8 (dash-dot). One period is equal to
a quarter.
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Figure 4: Standard Deviation of the Natural Rate of Interest
Base Case Calibration
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Notes: The figure shows the unconditional standard deviation of the natural rate of interest
ry (solid), given in equation (10), across different values of h. Also shown is the component
of the standard deviation related to the conditional expectation of the shock processes, i.e.
std.dev.(r})(1—Bh) /o (dash), and the threshold at which the zero lower bound on nominal interest
rates becomes binding, i.e. std.dev.(rj") = 1.32 (dash-dot). The natural rate of interest is expressed
in annualized percentages.
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Figure 5: Impulse Responses to a Marginal Utility of Consumption Shock
Optimal Plan, Base Case Calibration
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Notes: The figure shows the impulse responses of the endogenous variables to a one-standard devia-
tion shock to the orthogonalized innovation in the process g; at time 0. This has the interpretation
of a shock to the marginal utility of consumption that does not also directly affect the disutility
of labour supply. The different lines correspond to different values of h: 0 (solid), 0.4 (dash) and
0.8 (dash-dot). One period is equal to a quarter. Inflation and the interest rate are expressed in
annualized percentages, output and the output gap in percentages.

38



Figure 6: Standard Deviation of the Natural Rate of Interest
Alternative Calibration, Case 1
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Notes: The figure shows the unconditional standard deviation of the natural rate of interest
ry (solid), given in equation (10), across different values of h. Also shown is the component
of the standard deviation related to the conditional expectation of the shock processes, i.e.
std.dev.(r})(1—Bh) /o (dash), and the threshold at which the zero lower bound on nominal interest
rates becomes binding, i.e. std.dev.(r}") = 1.32 (dash-dot). The natural rate of interest is expressed
in annualized percentages.
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Figure 7: Impulse Responses to a Marginal Utility of Consumption Shock
Optimal Plan, Base Case vs. Alternative Calibrations, h = 0
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Notes: The figure shows the impulse responses of the endogenous variables to a one-standard devia-
tion shock to the orthogonalized innovation in the process g; at time 0. This has the interpretation
of a shock to the marginal utility of consumption that does not also directly affect the disutility
of labour supply. The different lines correspond to different cases for calibration of the parameters
and shocks: base case (solid), alternative case 1 (dash) and alternative case 2 (dash-dot). The pa-
rameter h is set to 0. One period is equal to a quarter. Inflation and the interest rate are expressed
in annualized percentages, output and the output gap in percentages.
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Figure 8: Impulse Responses to a Marginal Utility of Consumption Shock
Optimal Plan, Base Case vs. Alternative Calibrations, h = 0.8
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Notes: The figure shows the impulse responses of the endogenous variables to a one-standard devia-
tion shock to the orthogonalized innovation in the process g; at time 0. This has the interpretation
of a shock to the marginal utility of consumption that does not also directly affect the disutility
of labour supply. The different lines correspond to different cases for calibration of the parameters
and shocks: base case (solid), alternative case 1 (dash) and alternative case 2 (dash-dot). The
parameter h is set to 0.8. One period is equal to a quarter. Inflation and the interest rate are
expressed in annualized percentages, output and the output gap in percentages.
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Figure 9: Standard Deviation of the Natural Rate of Interest
Alternative Calibration, Case 2
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The figure shows the unconditional standard deviation of the natural rate of interest

ry (solid), given in equation (10), across different values of h. Also shown is the component
of the standard deviation related to the conditional expectation of the shock processes, i.e.
std.dev.(r})(1—Bh) /o (dash), and the threshold at which the zero lower bound on nominal interest
rates becomes binding, i.e. std.dev.(r}") = 1.32 (dash-dot). The natural rate of interest is expressed

in annualized percentages.
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