The Limitations of Forward Guidance

ECB Workshop on Non-Standard Monetary Policy Measures
Frankfurt am Main

William T. Gavin

Federal Reserve Bank of St. Louis

October 7, 2014
Coauthors and Disclaimer

This is a joint work with

Benjamin D. Keen, University of Oklahoma
Alexander W. Richter, Auburn University
Nathaniel A. Throckmorton, College of William and Mary.

The ideas in this paper are those of the authors and do not necessarily reflect official views of the Federal Reserve Bank of St. Louis, the Board of Governors of the Federal Reserve System, or anyone else in the Federal Reserve System.
Campbell et al. (2012) differentiate between two types of forward guidance.

1. **Delphic forward guidance** is a central bank’s forecast of its own policy based on its own policy rule and its forecasts of inflation and output.

2. **Odyssean forward guidance** is a central bank’s commitment to deviate from its own policy rule at sometime in the future when the policy rate is normally expected to rise above zero.
Our Contribution

This paper examines forward guidance (FG) in a New Keynesian model where FG impacts the economy via news shocks to the monetary policy rule.

Key findings:

1. Conventional monetary policy is more stimulative than FG away from the ZLB.
2. If agents believe the economy will recover slowly, then the simulative effect of FG is limited.
3. Longer FG horizons do not reverse the stimulative effect, but rather spread the effect across the entire horizon.
Key Features of Our New Keynesian Model

- **Households:**
 1. Maximize utility from consumption and leisure.
 2. No capital accumulation.
 3. Stochastic discount factor shock:
 \[
 \ln(\beta_t / \beta) = \rho \ln(\beta_{t-1} / \beta) + \varepsilon_{\beta, t},
 \]
 where \(0 \leq \rho < 1\) and \(\varepsilon_{\beta, t} \sim N(0, \sigma_{\beta})\).

- **Firms:**
 1. Monopolistically competitive producers of differentiated goods.
 2. Each firm faces a Rotemberg (1982) quadratic cost of adjusting its price, \(P_{i,t}:\)
 \[
 \frac{\varphi}{2} \left(\frac{P_{i,t}}{\pi P_{i,t-1}} - 1 \right)^2 y_t.
 \]
The central bank follows a nonlinear nominal interest rate rule:

\[r_t = \max\{1, r(\pi_t / \pi)^{\phi_{\pi}} \exp(x_t)\} \]

- The monetary policy parameter, \(x_t \), is a function of an unexpected policy shock, \(\varepsilon_{r,t} \), and previously announced “news” shocks, \(\varepsilon_{r,t-j} \), in periods \(t - 1, \ldots, t - q \):

\[x_t = \sum_{j=0}^{q} \alpha_j \varepsilon_{r,t-j}, \text{ such that } \sum_{j=0}^{q} \alpha_j^2 = 1. \]

- \(\alpha_j \in [0, 1] \) is the intensity of new \(j \) periods in the future, \(q \) is the forward guidance horizon,

\[r = 1.015, \pi = 1.005, \sigma_\varepsilon = 0.0025, \text{and } \phi_{\pi} = 1.5 \]
Computational Procedure–Richter, Throckmorton and Walker (2013)

- We solve the nonlinear model using policy function iterations.
- This solution method discretizes the state space and uses time iteration to determine the updated decision rules.
- Expectations of future variables are approximated using piecewise linear interpolation.
- Advantages of this approach:

1. The duration of ZLB events is stochastic.
2. The probability of returning to the ZLB after exiting is nonzero.
Decision Rules: 1-Quarter Horizon

Key assumptions: Note that a hat indicates a % deviation from steady state

- In period t, the initial shadow interest rate, \tilde{r}_t^*, (the nominal interest rate without a ZLB constraint) is 0 ($\hat{\beta}_t = 1.15$).
- In the absence of any “news” shocks, agents expect $\hat{\beta}$ to gradually revert to its mean so that $E_t[r_{t+i}] > 1$ for all $i = 1, 2, ..., \infty$.
- Three cases are examined:

1. No FG ($\alpha_0 = 1$)
 \[
 x_t = \varepsilon_{r,t}.
 \]
2. 1-quarter FG ($\alpha_0 = 0$ and $\alpha_1 = 1$)
 \[
 x_t = \varepsilon_{r,t-1}.
 \]
3. 1-quarter equal FG ($\alpha_0 = \alpha_1 = \sqrt{1/2}$)
 \[
 x_t = \sqrt{1/2}(\varepsilon_{r,t} + \varepsilon_{r,t-1}).
 \]
The Limitations of Forward Guidance

Decision Rules: Unanticipated Policy Shock

- Consumption (\hat{c}_t)
- Inflation Rate ($\hat{\pi}_t$)
- Expected Interest Rate ($E_t[\hat{r}_{t+1}]$)
- Nominal Interest Rate (\hat{r}_t)

Graphs showing the response of consumption, inflation rate, expected interest rate, and nominal interest rate to monetary policy shocks without forward guidance (No FG).
The Limitations of Forward Guidance

Decision Rules: 1-Quarter Horizon News Shock

- Consumption (\hat{c}_t)
- Expected Interest Rate ($E_t[\hat{r}_{t+1}]$)
- Inflation Rate ($\hat{\pi}_t$)
- Nominal Interest Rate (\hat{r}_t)

No FG vs 1-Quarter FG

Monetary Policy Shock ($\hat{\varepsilon}_t$) vs

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-2.1 -1.8 -1.5 -1.2 -0.9
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.8 -0.7 -0.6 -0.5 -0.4
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

0 0.2 0.4 0.6 0.8 1
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
Decision Rules: 1-Quarter Horizon Equal News Shock

- Consumption (\hat{c}_t)
- Inflation Rate ($\hat{\pi}_t$)
- Expected Interest Rate ($E_t[\hat{r}_{t+1}]$)
- Nominal Interest Rate (\hat{r}_t)

Graphs
- **No FG**: Solid black line
- **1-Quarter FG**: Dashed blue line
- **1-Quarter Equal FG**: Dotted red line

Data Points
- For Consumption (\hat{c}_t), the y-axis ranges from -0.9 to 1.
- For Inflation Rate ($\hat{\pi}_t$), the y-axis ranges from -0.8 to 0.
- For Expected Interest Rate ($E_t[\hat{r}_{t+1}]$), the y-axis ranges from 0 to 1.
- For Nominal Interest Rate (\hat{r}_t), the y-axis ranges from 0 to 0.8.

Monetary Policy Shock ($\hat{\varepsilon}_t$)
- The x-axis for all graphs ranges from -1 to 1.
The Limitations of Forward Guidance

Expectations about the Economic Recovery Matter

- The amount of persistence in the discount factor determines the strength of expectations about future consumption and interest rates.
- A lower value of ρ_β means that β_t reverts to its steady state faster. (i.e., agents expect a more robust recovery.)
- Same assumptions apply as in the decision rules graphs.
- Our comparative measure is the difference between 1-quarter FG and no FG.
Baseline Result with 1-Quarter Horizon

- Slower Recovery ($\rho_\beta = 0.80$)

Consumption (\hat{c}_t)

-1 -0.75 -0.5 -0.25
0.1
0.15
0.2
0.25
0.3

Expected Interest Rate ($E_t[\hat{r}_{t+1}]$)

-1 -0.75 -0.5 -0.25
-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
Decision Rules: 1-Quarter Horizon News Shock

- **Consumption** (\hat{c}_t)
- **Exp. Int. Rate** ($E_t[\hat{r}_{t+1}]$)
- **Inflation Rate** ($\hat{\pi}_t$)
- **Nom. Int. Rate** (\hat{r}_t)

Graphs show the comparison between no forward guidance (No FG) and 1-Quarter FG, with monetary policy shock ($\hat{\varepsilon}_t$) on the x-axis and various economic indicators on the y-axis.
Baseline Result with 1-Quarter Horizon

Slow Recovery ($\rho_\beta = 0.80$)

Consumption (\hat{c}_t)

Exp. Int. Rate ($E_t[\tilde{r}_{t+1}]$)

Monetary Policy Shock ($\hat{\epsilon}_t$)
Persistence Matters—Lower value means faster recovery

- Slower Recovery ($\rho_\beta = 0.80$)
- Faster Recovery ($\rho_\beta = 0.75$)
Forward Guidance at and above the ZLB

- Same assumptions apply as in the original decision rules graphs.
- We focus on the impact of four different initial shadow interest rates:
 1. The economy is at its steady state ($\tilde{r}_t^* = 1.5$).
 2. The economy is below trend but above its ZLB ($\tilde{r}_t^* = 0.25$).
 3. The economy is in a large enough recession so that the ZLB just binds ($\tilde{r}_t^* = 0$).
 4. The economy is in a deep recession ($\tilde{r}_t^* = -0.5$).

- Our comparative measure is the difference between 1-quarter FG and no FG.
Initial State Matters

- Steady State (1.5)

Graph 1: Consumption (\hat{c}_t) vs. Monetary Policy Shock ($\hat{\epsilon}_t$)

Graph 2: Expected Interest Rate ($E_t[\hat{r}_{t+1}]$) vs. Monetary Policy Shock ($\hat{\epsilon}_t$)
The Limitations of Forward Guidance

Initial State Matters

Steady State (1.5) vs. Low State (0.25)

- Consumption (\hat{e}_t)
- Expected Interest Rate ($E_t[\hat{r}_{t+1}]$)

Monetary Policy Shock (\hat{e}_t) vs. MPC Shock (\hat{e}_t)
The Limitations of Forward Guidance

Initial State Matters

Graphs showing the relationship between monetary policy shocks and consumption and expected interest rates. The graphs illustrate the impact of different initial states on economic outcomes, highlighting the importance of initial conditions in forward guidance scenarios.
The Limitations of Forward Guidance

Initial State Matters

- Steady State (1.5)
- Low State (0.25)
- ZLB (0)
- Deep ZLB (-0.5)

Consumption (\hat{c}_t)

Expected Interest Rate ($E_t[\hat{r}_{t+1}]$)

Monetary Policy Shock ($\hat{\sigma}_t$)

Monetary Policy Shock (\hat{e}_t)
One possible reason for a weak response to FG may be the initial state.

If one computes the expected effect in a DSGE model without imposing the zero lower bound, then the model will overstate the expected effect.

In the next experiment, the shadow rate is zero, so the ZLB is just binding and the nominal rate is expected to rise in the next period.
ZLB Constraint Matters
Without the ZLB Constraint Negative Rates Stimulate
Generalized Impulse Responses to a Policy Shock

- The initial shadow interest rate, \widetilde{r}_t^*, is set to -0.24 which is its average value conditional on the ZLB binding in a 500,000 quarter simulation.
- The generalized impulse response functions (GIRFs) (see Koop et al. (1996)) are calculated based on 10,000 Monte Carlo simulations.
- The GIRFs are the average difference between the responses from agents learning in period 1 of a -50 basis point policy shock to that of a random shock.
- Three types of forward guidance (FG) are examined:
 1. No FG ($\alpha_0 = 1$)
 2. 1-quarter FG ($\alpha_0 = 0$ and $\alpha_1 = 1$)
 3. 1-quarter equal FG ($\alpha_0 = \alpha_1 = \sqrt{1/2}$)
Generalized Impulse Responses to a Policy Shock

The Limitations of Forward Guidance
The Limitations of Forward Guidance

Generalized Impulse Responses to a Policy Shock

- **No FG**
- **1-Quarter FG**

- **Consumption (\hat{c}_t)**
- **Inflation Rate ($\hat{\pi}_t$)**
- **Nom. Int. Rate ($\hat{\pi}_t$)**
- **Labor Hours (\hat{n}_t)**
- **Exp. Infl. Rate ($E_t[\pi_{t+1}]$)**
- **Exp. Int. Rate ($E_t[r_{t+1}]$)**
Generalized Impulse Responses to a Policy Shock

- **No FG**
- **1-Quarter FG**
- **1-Quarter Equal FG**

Consumption (\hat{c}_t)

Inflation Rate ($\hat{\pi}_t$)

Nom. Int. Rate ($\hat{\rho}_t$)

Labor Hours (\hat{n}_t)

Exp. Infl. Rate ($E_t[\pi_{t+1}]$)

Exp. Int. Rate ($E_t[r_{t+1}]$)
Decision Rules: 2-Quarter Horizon

- Key assumptions are all the same:
- Three cases are examined:
- 1. No FG ($\alpha_0 = 1$)
 $$x_t = \varepsilon_{r,t}.$$
- 2. 2-quarter FG ($\alpha_0 = 0$, $\alpha_1 = 0$ and $\alpha_2 = 1$)
 $$x_t = \varepsilon_{r,t-2}.$$
- 3. 2-quarter equal FG ($\alpha_0 = \alpha_1 = \alpha_2 = \sqrt{1/3}$)
 $$x_t = \sqrt{1/3}(\varepsilon_{r,t} + \varepsilon_{r,t-1} + \varepsilon_{r,t-2}).$$
The Limitations of Forward Guidance

Decision Rules: 2-Quarter Horizon

No FG

- Consumption (\hat{c}_t)
- Exp. Int. Rate ($E_t[\tilde{r}_{t+1}]$)
- Inflation Rate ($\tilde{\pi}_t$)
- Nom. Int. Rate (\tilde{r}_t)

Monetary Policy Shock (\hat{e}_t)
Decision Rules: 2-Quarter Horizon

- No FG
- 2-Quarter FG

Graphs showing: Consumption (\hat{c}_t), Expected Interest Rate ($E_t[\tilde{r}_{t+1}]$), Inflation Rate ($\tilde{\pi}_t$), and Nominal Interest Rate (\tilde{r}_t) against Monetary Policy Shock ($\hat{\epsilon}_t$).
The Limitations of Forward Guidance

Decision Rules: 2-Quarter Horizon

- No FG
- 2-Quarter FG
- 2-Quarter Equal FG

Consumption (\hat{c}_t)

Exp. Int. Rate ($E_t[\hat{r}_{t+1}]$)

Inflation Rate ($\hat{\pi}_t$)

Nom. Int. Rate (\hat{r}_t)

Monetary Policy Shock ($\hat{\varepsilon}_t$)
2-Quarter Equal and Full Forward Guidance

- Laseen and Svensson (2011), Carlstrom et al. (2012), Del Negro et al. (2012) and others examine forward guidance but do not hold the news process constant.
- We compare the stimulative effects of 2-quarter equal FG ($\alpha_0 = \alpha_1 = \alpha_2 = \sqrt{1/3}$) with 2-quarter full FG ($\alpha_0 = \alpha_1 = \alpha_2 = 1$).
- Same assumptions apply as in the original decision rules.
2-Quarter Equal and Full Forward Guidance
2-Quarter Equal and Full Forward Guidance

Graph:
- **X-axis:** Monetary Policy Shock (\hat{e}_t)
- **Y-axis:** Consumption (\hat{c}_t) and Expected Interest Rate ($E_t[r_{t+1}]$)

Legend:
- **2-Quarter Equal FG** (solid line)
- **2-Quarter Full FG** (dashed line)
Longer Horizons: GIRFs to a Policy Shock

- To reduce dimensionality of our problem, the continuous distribution of the news shock is discretized using Tauchen’s (1986) method.
- That is, we specify three values in the state space \((-50,0,50)\) for the news shock and calculate the probabilities of each event.
- The initial shadow interest rate, \tilde{r}_t^*, is set to -0.24 which is its average value conditional on the ZLB binding in a 500,000 quarter simulation.
- The GIRFs are calculated based on 10,000 Monte Carlo simulations.
The GIRFs are the average difference between the responses from agents learning in period 1 of a −50 basis point policy shock to that of a random shock.

Four types of FG are examined: 1-quarter, 4-quarter, 8-quarter, and 10-quarter equal FG:

\[\{\alpha_i\}_{i=0}^{m} = \sqrt{\frac{1}{1 + m}} \text{ for } i = 0, 1, \ldots, m. \]
Longer Horizons: Generalized Impulse Responses to a Policy Shock
Longer Horizons: Generalized Impulse Responses to a Policy Shock

Consumption (\hat{c}_t)
Inflation Rate ($\hat{\pi}_t$)
Nom. Int. Rate (\hat{r}_t)
Labor Hours (\hat{n}_t)
Exp. Int. Rate ($E_t[\pi_{t+1}]$)
Shadow Interest Rate ($E_t[r_{t+1}]$)

1-Quarter 4-Quarter
Longer Horizons: Generalized Impulse Responses to a Policy Shock

- Consumption (\hat{c}_t)
- Inflation Rate ($\hat{\pi}_t$)
- Nominal Interest Rate (\hat{r}_t)
- Labor Hours (\hat{n}_t)
- Expected Interest Rate ($E_t[\pi_{t+1}]$)
- Shadow Interest Rate ($E_t[r_{t+1}]$)
Longer Horizons: Generalized Impulse Responses to a Policy Shock

The Limitations of Forward Guidance
The Impact of a Policy Shock on Interest Rates

- Key assumptions same as earlier experiments
- Agents learn in period 0 about a −50 basis point shock.
- Four types of forward guidance (FG) are examined:

1. No FG \((\alpha_0 = 1)\)
2. 1-quarter equal FG \((\alpha_0 = \alpha_1 = \sqrt{1/2})\)
3. 2-quarter equal FG \((\alpha_0 = \alpha_1 = \alpha_2 = \sqrt{1/3})\)
4. 4-quarter equal FG \((\alpha_0 = \alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = \sqrt{1/5})\)
The Expected Interest Rate and Forward Guidance

Expected Rate in Quarter j ($E_0[r_j]$)

No FG
The Limitations of Forward Guidance

The Expected Interest Rate and Forward Guidance

![Graph showing the expected interest rate in Quarter j ($E_0[r_j]$) with and without forward guidance (FG). The graph compares the expected rate for 'No FG' and '1-Quarter FG' over different quarters.]
The Limitations of Forward Guidance

The Expected Interest Rate and Forward Guidance

Expected Rate in Quarter j ($E_0[r_j]$)

- **No FG**
- **1-Quarter FG**
- **2-Quarter FG**
The Limitations of Forward Guidance

The Expected Interest Rate and Forward Guidance

- No FG
- 1-Quarter FG
- 2-Quarter FG
- 4-Quarter FG

Expected Rate in Quarter j ($E_0[r_j]$)
The Yield Curve and Forward Guidance

\[\text{Yield to Maturity} \left(\left(\prod_{j=0}^{m} E_{0}[r_{j}] \right)^{1/(m+1)} - r_{0} \right) \]

- No FG
The Yield Curve and Forward Guidance

\[\text{Yield to Maturity} = \left(\prod_{j=0}^{m} E_0 [r_j] \right)^{1/(m+1)} - r_0 \]

- **No FG**
- **1-Quarter FG**
The Yield Curve and Forward Guidance

\[\text{Yield to Maturity} \left(\left(\prod_{j=0}^{m} E_0[r_j] \right)^{1/(m+1)} - r_0 \right) \]

- **No FG**
- **1-Quarter FG**
- **2-Quarter FG**
The Limitations of Forward Guidance

The Yield Curve and Forward Guidance

\[\text{Yield to Maturity} = \left(\prod_{j=0}^{m} E_{0} [r_j] \right)^{1/(m+1)} - r_0 \]

- **No FG**
- 1-Quarter FG
- 2-Quarter FG
- 4-Quarter FG

Maturity

0 1 2 3 4 5

0 0.1 0.2 0.3 0.4 0.5 0.6
The Limitations of Forward Guidance

The Impact of the shadow interest rate at time t

ZLB ($\hat{r}_0^* = 0$)

Deep ZLB ($\hat{r}_0^* = -0.5$)

No FG
The Limitations of Forward Guidance

The Impact of the shadow interest rate at time t

- **No FG**
- **4-Quarter Equal FG**

ZLB ($\tilde{r}_0^* = 0$)

Deep ZLB ($\tilde{r}_0^* = -0.5$)
The Limitations of Forward Guidance

Low demand shock and 4-quarter equal forward guidance

Consumption (\hat{c}_t)

5-Quarter Yield ($\left(\prod_{j=0}^{4} E_0[r_j]\right)^{1/5}$)

Lower Demand and Forward Guidance
Low demand shock and 4-quarter equal forward guidance
Low demand shock and 4-quarter equal forward guidance

The Limitations of Forward Guidance

Graphs showing consumption and 5-quarter yield under different conditions.
Conclusions

• This paper examines forward guidance (FG) in a New Keynesian model where FG impacts the economy via news shocks to the monetary policy rule.

• Key findings:

1. Conventional monetary policy is more stimulative than FG away from the ZLB.

2. If agents believe the economy will recover slowly, then the simulative effect of FG is limited.

3. Longer FG horizons do not reverse the stimulative effect, but rather spread the effect across the entire horizon.