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Abstract

This paper studies the scope for cross-border contagion in the European banking sector using true
exposure data at a bank-to-bank level. Using a model of sequential solvency and liquidity cascades in a
network setting we analyze geographical patterns of loss propagation from 2008 until 2012, and study
the distributions of contagion outcomes after a common shock and an exogenous bank default over
100 couples of simulated networks of long- and short-term claims. To obtain a realistic representation
of interbank exposures, we exploit for the first time a unique dataset of money market transactions
estimated from TARGET2 payments data. Our results document the critical impact of the underlying
network structure on the propagation of financial losses and point to the importance of considering
the evolving nature of interbank claims when running realistic contagion simulations. An econometric
analysis of the determinants of contagion shows that bank exposures to the riskiest counterparties in
the system and bank position in the network before the shock are significant explanatory variables of
default outcomes, behind banks’ own financial ratios.
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1 Introduction

The 2007-2008 financial crisis revealed the fragility of financial institutions worldwide. More
importantly, it disclosed the major role of interconnectedness among banks in the propagation of
financial distress. Interconnections, due to bilateral contractual obligations but also to exposure to
common risk factors and sudden collapses in market confidence, have grown dramatically in the
run-up to the crisis. 1 While higher interconnectedness is a crucial means of efficient risk transfer, it
may also lead to contagious default cascades : an initial shock may propagate throughout the entire
banking system via chains of defaults and liquidity shortages that follow highly dynamic patterns.

Direct and indirect linkages among banks arose as a key component of financial contagion in
the European Union, as revealed first by the default of Lehman Brothers in September 2008, and
then by the euro area sovereign debt crisis. Especially after the European Banking Authority’s
disclosure of the extent of European banks’ common exposures to stressed sovereigns in 2011[EBA,
2011a], the potential for contagion effects through interbank transactions has taken a peculiar
- geographical - dimension in the euro area, with banks reducing their exposure particularly to
banks headquartered in the periphery of the euro area (see, e.g., Abascal et al. [2013] who measure
fragmentation in interbank market and three other financial markets (sovereign debt, equity and
the CDS market for financial institutions).

This paper is the first to investigate the scope for cross-border contagion in Europe using true
exposure data at a bank-to-bank level. We analyze geographical patterns of shock propagation
between 73 European banking groups from end-2008 until end-2012. Cross-border interbank
exposures are generally hard to obtain. National supervisors can have at best a partial view of
the largest long-term credit claims of supervised banks via credit registers. 2 To circumvent the
unavailability of accurate information on domestic and cross-border interbank exposures, and obtain
a realistic representation of how European banks are connected through their long- and short-term
claims, we exploit for the first time a unique dataset of interbank money market transactions,
with various maturities, estimated from TARGET2 payment data (see Arciero et al. [2013]). More
specifically, we employ money market loans with maturities up to one month to reconstruct the
network of short-term interbank linkages and a realistic probability map of short-term loans among
banks ; at the same time, we use information on the size and frequency of money market loans with
longer maturities to construct a realistic probability map of long-term bank-to-bank exposures.
These maps, together with the amount of individual banks’ aggregate loans to other banks, are
used to simulate a large number of long-term exposure matrices through a novel methodology
proposed by Halaj and Kok [2013].

The extent of interbank contagion is assessed relying on Fourel et al. [2013] model of sequential

1. Total cross-border banking flows rose several-fold from 1978 to 2007 compared to their long-term average, see
Minoiu and Reyes [2011].

2. For instance, the German credit register contains quarterly data on large bilateral exposures - derivative, on-
and off-balance sheet positions - above a threshold of EUR 1.5 m. The French "grands risques" data include individual
banks’ quarterly bilateral exposures that represent an amount higher than 10% of their capital or above EUR 300 m.
Italian banks submit to the Banca d’Italia their end-of-month bilateral exposures to all other banks.
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solvency and liquidity cascades in a network setting. More specifically, we look at the distribution of
simulation outcomes resulting from a common market shock on (listed) banks’ capital, coupled with
an exogenous bank default ; the distributions are obtained over 100 different simulated networks
of long- and short-term exposures. We observe the total number of defaulted banks after several
rounds of solvency and liquidity contagion, and the total capital loss experienced by a certain
country’s banking sector when contagion is triggered by a default of a foreign or domestic bank.
Heat maps are used to assess, on the one hand, which banking sectors are the most "systemic" in
terms of the losses that the failure of one of their banks can impose to foreign countries’ banks and,
on the other, to identify which banking sectors are the most prone to cross-border contagion from
European counterparties.

Simulation of multiple realistic short- and long-term networks allows us to analyze the
determinants of contagion using an econometric approach. Relying on five years of data and 100
pairs of simulated networks we are able to identify both bank and network characteristics that
make a bank/system more fragile/resilient to contagion.

We find that both solvency and liquidity contagion are tail risks : losses averaged over stress-
scenario, initial bank defaults or simulated networks are rather limited ; however, averaging conceals
rare extreme events. We document that losses at the tail of the distribution can reach one third of
the system capital in 2008, and that the resilience of the system improves significantly over time.
Under severe equity market stress and following an exogenous default of one bank, cross-border
contagion can materialize in the European banking system. The overall average losses caused by
a foreign bank default, however, vary remarkably over time and over different banking sectors. A
foreign default has on average a small impact on most banking sectors and even less over time.
However, for some banking systems, a default by a foreign bank may cause a loss as large as 15%
of the capital of the impacted banking sector. Overall, tour results document that the European
banking system has substantially increased its capacity to withstand the same kind of adverse
financial conditions that it had to face after the default of Lehman Brothers. The heat maps
allow us to discern specific geographical patterns of cross-border contagion in the European Union,
which vary significantly over the years. In general, the maps for 2009, 2010 and 2012 show that
the potential for cross-border contagion has constantly decreased over time. This is related to a
generalized reduction in the share of long-term interbank loans in bank balance sheets, on the one
hand, and to an increase in banks’ capitalization during those years compared to 2008.

Finally, our results show the strong impact on the domestic and cross-border propagation of
losses of heterogeneity and concentration in the structure of interbank exposures. The number of
defaults resulting from extreme market stress coupled with one bank’s default can be five or six
times larger depending on the underlying structure of interbank linkages. This is consistent with
recent models of contagion in financial networks relying on simulated networks of exposures (see,
Georg [2013] and Gai and Kapadia [2010]), and points to the need to account for the evolving
nature of the web of interbank linkages when running contagion analysis. This is the first paper,
to our knowledge, to document this feature simulating probabilistic interbank exposures based on
actual bank-to-bank level data.
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A large literature exists that relies on counterfactual simulations based on a network setting
to estimate the potential for interbank contagion (see Upper [2011] for a comprehensive survey).
Notwithstanding the increasingly international dimension of contagion, however, these simulations
have so far focused essentially on national banking sectors, estimating their frailty/resilience only
at one specific point in time. Moreover, only very recently have economists started to integrate
behavioral foundations into their modelling frameworks, hence providing different contagion
channels, and to consider the impact of common shocks on the network of interbank loan exposures,
possibly resulting in concurrent losses for banks.

Our study contributes to this literature by analyzing cross-border contagion at a bank-to-
bank level using realistically simulated networks from true exposure data. Up to now, a handful
of papers have analyzed cross-border contagion using price data such as equity or credit default
swaps, therefore relying on some form of market efficiency and not being able to identify the
structural channels driving the co-movement of prices (see, Gropp et al. [2009]). Other papers
focused their attention on BIS country statistics to study cross-border contagion ; but this has the
strong drawback that authors have to assume that the whole or a part of a country’s banking
system defaults and that losses propagate to other country’s banking sectors (see, Degryse et al.
[2009] and Espinosa-Vega and Sole [2010]).

We exploit the idea of probabilistic networks to study propagation of contagion : multiple
simulated networks, drawn from real data probability maps (thanks to TARGET2 data), differ
from the real existing network and, moreover, demonstrate significant heterogeneity. This allows us
to analyze not only the vulnerability of one particular network realization retrieved from the real
data, but plenty of potential realistic networks. All the simulated networks display well-documented
properties such as a low density and a highly skewed (weighted and unweighted) degree distribution.
Furthermore, we pursue the analysis one step further and econometrically identify balance sheet
and network properties which drive the contagion outcome.

We perform an econometric exercise on three different levels. First, we investigate bank-level
contagion and explain the determinants of bank fragility or systemicity with both banks’ balance
sheet and exposure characteristics. Then we consider the system as a whole and analyze the
determinants of system-wide contagion by exploiting within-year across-networks heterogeneity.
And lastly, we refine the analysis at a more granular level by scrutinizing what drives cross-border
contagion at the country-level.

The remainder of this article is structured as follows. In section 2, we present the theoretical
model for the imputation of losses and the liquidity hoarding mechanism. In section 3, we describe
the banks’ sample, the interbank exposures data and the algorithm used to generate interbank
networks. We provide descriptive evidence on both the European banking system in the period
2008-2012 and the structural properties of generated long- and short-term networks. The results of
our simulations are presented and commented on in section 4. Section 5 introduces the econometric
analysis of the determinants of contagion outcomes. Section 6 discusses robustness checks, section
7 concludes.
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2 The model

Our model builds on the work by Fourel et al. [2013]. In the following we expose its main
theoretical blocks as well as some extensions we implement, while we refer the reader to Fourel
et al. [2013] for more details.

Let us consider a system of N financial institutions indexed by i. Each of them is characterized
by a stylized balance sheet presented in Table 1. The asset side of bank i is decomposed into
several items : long- and short-term interbank exposures (ELT (i, j) and EST (i, j) for j ∈ [1;N ]),
cash and liquid assets (cash from now on) Ca(i) and other assets OA(i). We denote the total assets
by TA(i). The liability side of bank i consists of equity C(i) (hereafter capital), long- and short-
term interbank exposures (ELT (j, i) and EST (j, i) for j ∈ [1;N ]) and all other liabilities gathered
in OL(i).

Assets Liabilities
Long Term ELTt (i, 1) ELTt (1, i) Long Term

Interbank
...

... Interbank
Assets ELTt (i,N) ELTt (N, i) Liabilities
Short Term ESTt (i, 1) ESTt (1, i) Short Term

Interbank
...

... Interbank
Assets ESTt (i,N) ESTt (N, i) Liabilities
Cash Cat(i) OLt(i) Others
Others OAt(i) Cat(i) Capital
Total assets TAt(i) TLt(i) Total liabilities

Table 1: Bank i’s stylized balance sheet at date t

Banks are connected by two types of links : short-term and long-term commitments. The
distinction between these links is essential within the present model as it enables defining two
channels of contagion (liquidity vs. solvency contagion). Short-term exposures are represented
mainly by short-term loans, e.g. with overnight or one-week maturity, and a link can be easily
cut from a certain day/week to the subsequent one. This property of the link allows banks to hoard
liquidity, that is, to reduce or to cut their exposures to a counterparty when needed. As explained
below, liquidity contagion here propagates through the network of short-term exposures. On the
contrary, long-term exposures represent a more stable source of funding and can not be cut before
maturity. Therefore, only if a bank defaults do its counterparties lose all their long-term exposures
to it (taking a recovery rate into account). A network of long-term exposures is the main channel
for the propagation of solvency contagion.

The model consists of three parts : a common market shock, solvency contagion propagation and
liquidity hoarding behavior. This section provides the main intuitions and describes the building
blocks, while additional technical details can be found in Appendix A.1.
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Common market shock

The way a market shock is simulated is essential. The latter weakens the resilience of the
system, thus revealing more plainly the potential for contagion (see Upper [2011]). In the absence
of national supervisory data allowing to shock various asset classes in bank balance-sheets (as in
Elsinger et al. [2006a], Elsinger et al. [2006b], or in Fourel et al. [2013]), we implement a common
shock directly on all listed banks’ capital using a one-factor model for equity returns (see details
in Appendix A.1). The same shock is consistently applied over the whole time period, 2008-2012,
which allows us to make sure that contagion in the system is driven purely by the change in the
network structure and banks’ capitalization and liquidity levels. As depicted in figure 2, the shocks
represent on average 5% of bank capital among scenarios but can reach up to 25% in extreme cases ;
such orders of magnitude are absolutely in line with bank capital losses observed during the recent
crisis (see, e.g., on Banking Supervision [October, 2010] and Strah et al. [2013]).

After the system is hit by a market shock, one bank at a time is exogenously pushed to default.
Losses through solvency and liquidity contagion channels are then computed. The fact that only
one banks fails at a time allows us to estimate losses due to the default of each bank and to rank
the banks as more or less systemic.

Solvency contagion

Following Fourel et al. [2013], we define solvency contagion as follows. Let bank i default, then
its counterparts lose all their exposures to this bank. If another bank or some of the banks are
highly exposed to the defaulted bank, they might default as well. A general condition for a bank
to default due to default contagion is as follows :

[C(j)− ε(j)]︸ ︷︷ ︸
Capital after initial shock

−
∑
i

RS(i)E(j, i)︸ ︷︷ ︸
non-recovered exposures

< 0 (2.1)

where (1 − RS(i)) is a recovery rate. To account for all the losses due to solvency contagion,
the Furfine algorithm of iterative default cascade (Furfine [2003]) is used. This algorithm allows
incorporating liquidity hoarding behavior of banks in the same framework with solvency contagion.

Liquidity hoarding

Banks regularly perform liquidity management, estimating their liquidity stock, outflows and
inflows for the next period. In normal times, they can foresee with some certainty how much liquidity
they will need to satisfy reserve requirements or other commitments ; to this end they can borrow
from other banks in the interbank market as well as from the central bank (e.g. through weekly main
refinancing operations). In a well functioning interbank market banks with excess liquidity can lend
it to those who lack short-term funding. This situation can however radically change during times
of increased uncertainty. On one hand, banks’ assets become much more volatile creating liquidity
outflows in terms of margin calls, higher haircuts and requirements for collateral, which are difficult
to foresee. On the other hand, confidence in the market evaporates quickly, counterparty risk rises,
and banks fear both their inability to get liquidity when needed as well as counterparty risk. All this
can lead banks to a precautionary demand for liquidity hence to hoarding behavior, by which they
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Figure 1: Liquidity hoarding behaviour.

reduce lending to each other in order to secure their own liquidity needs and to reduce exposure to
counterparty risk. 3

Banks start hoarding liquidity when there is a signal of market malfunctioning or they start
experiencing problems themselves. For instance, a signal can be a drop in asset prices, high volatility
or unexpectedly large losses. In our simulations we assume that a shock-related capital loss above a
certain threshold represents such a signal. Therefore, banks that were impacted by a market shock
and/or by solvency contagion will start hoarding liquidity, and the higher loss they experience, the
more they hoard. We assume a function for liquidity hoarding depends linearly on the capital loss,
λ(Loss). The function, Figure 1, has 4 intervals : banks do not hoard liquidity in intervals 1 and
4, that is, when capital loss is below some threshold A% (no signal of crisis) or more than 100%
(bank is insolvent). Banks hoard less (a%) in interval 2 when the shock is moderate and more (b%)
in interval 3 when the shock is more adverse.

Banks will decide how much to hoard based on their own perception of market uncertainty. But
they also have to decide how much and from which counterparty they will hoard. A straightforward
assumption is that the riskier the counterparty is, the more a bank hoards liquidity. Provided banks
have no private information about the riskiness of other banks’ portfolios, they can rely on leverage
µ as a proxy for the riskiness of a counterparty (Das and Sy [2012], Lautenschlager [2013]). The
easiest way for a bank to hoard liquidity is to stop rolling over short-term loans. After all the banks
decide how much to hoard and make claims, the following condition has to be satisfied for a bank
to be liquid :

[Cash ] + [ToBeRecieved ]− [ToBePaid ] > 0 (2.2)

3. For the UK sterling market, Acharya and Merrouche [2013] document that riskier UK settlement banks held
more reserves relative to expected payment value in the immediate aftermath of 9 August 2007, thus igniting the rise
in interbank rates and the decline in traded volumes. Berrospide [2013] documents evidence for the precautionary
motive of liquidity hoarding for U.S. commercial banks during the recent financial crisis.
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3 Interbank exposures and network simulation

This section presents the numerical algorithm used to generate a large number of networks of
long- and short-term interbank exposures, as well as the data used to calibrate and run it. Additional
balance sheet items used for the simulations and the econometric analysis are also presented. The
last subsection provides descriptive evidence on the structure of simulated networks and on the
domestic versus cross-border nature of the simulated national banking sectors.

3.1 The algorithm

We apply the algorithm proposed by Halaj and Kok [2013] to simulate a large number of
interbank networks that are used to run the stress scenarios. In the absence of interbank lending
and borrowing data, one common method in the literature relies on their estimation through entropy
maximization (see Sheldon and Maurer [1998], Wells [2004] and Mistrulli [2011] for a comparison of
this methodology with actual exposure data). We adopt an alternative methodology proposed by
Halaj and Kok [2013] for different reasons. First, one essential drawback of the entropy maximization
method is that the obtained matrix of bilateral exposures is such that strictly positive links are
estimated between any two banks which have a strictly positive aggregate interbank exposure, i.e.
the obtained network is not sparse and does not display the empirically documented core-periphery
structure (averaging bias). When national banking systems are considered, such an undesirable
feature may be neglected, as domestic banks within a country are typically densely interconnected.
On the contrary, applying the same methodology when cross-border exposures are considered would
amount to neglect either a possible home-bias in interbank exposures or the fact that financial
interconnections are evenly spread nor among banks within a national banking sector neither
among different countries’ banking sectors. In other words, preferential banking relationships do
exist, as well as strong geographical patterns. Second, the entropy maximization method yields a
unique solution for the bilateral exposures matrix, and may therefore badly account for the fact
that interbank exposures are likely to change quickly. In addition, performing stress scenarios on
a unique exposures matrix typically fails to obtain a probability distribution over the simulation
outcomes. By contrast, the methodology introduced by Halaj and Kok [2013] addresses these two
issues by enabling the construction of a large number of sparse and concentrated networks that all
match the aggregate exposure levels. Third, this methodology enables us to make use of additional
information on actual interbank links obtained from TARGET2 payment data. 4

The algorithm to simulate bilateral exposure matrices relies on two inputs : (i) a probability
map and (ii) aggregate interbank exposures data at a bank level (i.e. the sum of the exposures of
any bank i to all other banks in the system). Denote Πt a N ×N probability map at date t whose
each element (i, j) is πij ∈ [0; 1] with πii = 0 and

∑
j πij = 1 for all i. πij is the share of funds lent

by any bank i to any bank j and is later used as the probability structure of interbank linkages.

4. In 2012 TARGET2 settled 92% of the total large value payments traffic in euro.
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The construction of a large number of exposure matrices at date t relies on the Πt matrix and
on the total interbank loans granted by any bank i to all its counterparties within the network,
denoted Lti. The construction of one particular exposure matrix, i.e. of all bilateral elements Ltij ,
uses an "Accept-Reject" scheme. A pair (i, j) of banks is randomly drawn, with all pairs having
equal probability. This link in the interbank network is kept with a probability πij and, if so, the
absolute value of this exposure, denoted L̃ij , equals Li multiplied by a random number drawn from
a uniform distribution with support [0; 1]. The amount of exposures left to be allocated is thus
reduced. The procedure is repeated until the difference

(
Li −

∑
j L̃ij

)
is below some threshold κ.

3.2 Data and calibration

3.2.1 Banks’ sample

We run our contagion analysis using a sample of 73 European banking groups, whose list is
provided in Table 4. Given our focus on the resilience of the European banking system, we select a
subset of the banks that underwent the 2011 stress tests carried out by the European Banking
Authority (EBA). In particular, our sample includes all the banking groups headquartered in
Europe that are part of the list of Global Systemically Important Banks (G-SIBs), while it excludes
some Spanish "cajas" to avoid an over-representation of the Spanish banking sector. 5 It is worth
noting that our sample also includes savings and cooperative banks, hence non-listed European
institutions : differently from the extant empirical literature on contagion that relies on market
data, this allows us to assess also the impact of a shock hitting relatively smaller market players.

3.2.2 Simulating European interbank exposures : TARGET2 data and the probability
maps

Long-term interbank exposures. Information on the total interbank loans Li granted by any
bank i to all its counterparties within the network is retrieved via the balance sheet item named
"Net loans to banks" available in SNL Financials. 6

The probability map Πt is obtained based on term interbank money market loans settled in
TARGET2 during each year t. The money market dataset we use is the output of the Eurosystem’s
implementation of the Furfine [1999] methodology to TARGET2 payment data (see Arciero et al.
[2013] for more details on the identification methodology). More specifically, we use loans with

5. See EBA [2011b]. The latest list of G-SIBs has been published by the Financial Stability Board in November
2012 and is available at http://www.financialstabilityboard.org/publications/r_111104bb.pdf.

6. Net loans to banks are defined as Net loans and advances made to banks after deducting any allowance for
impairment. The main difference between this item and "Loans and advances to banks" or "Deposits from banks"
available e.g. in Bankscope, is that the latter also include loans to or from central banks (see Upper [2011]), which
would be a major drawback for our analysis.
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maturities ranging from one month and up to six months to compute shares of preferential lending.
These percentages are then imputed in the simulation algorithm as prior probabilities about the
existence and size of an interbank linkage.

For the last quarter of each year, for each lender, we bundle all term loans and compute the
average amount lent to each borrower ; hence based on such average amounts we look at how total
credit was allocated among counterparties. Three details are worth noting in the assumptions we
make to build the probability structure of interbank exposures. First, our computation includes all
the banking groups participating in the interbank euro money market, i.e. not only the 73 banks
belonging to our sample. Subsequently, to form the ‘true’ as well as the simulated networks of
exposures, the shares are normalized to consider only the 73 sample banks. 7 Second, we use only
the term market segments in the calculations because it is for unsecured lending at such longer
maturities that preferential interbank lending relationships are more likely to exist and relatively
stronger geographical patterns emerge. This is especially so in periods of heightened uncertainty
about counterparties’ solvency. 8 Third, we consider the average size of a long-term loan traded
between a lender-borrower couple independently of the frequency at which the two banks interact
in the market over the quarter. An undesirable aspect of this choice is that we may turn up assigning
a very high link probability to a lender-borrower couple even if they have interacted only rarely in
the market. Nonetheless, we deem this choice to be the most appropriate in the context of assessing
interbank contagion, since it is the actual size of exposures/links that matters for the propagation
of distress (see Cont et al. [2010]), independently of whether that link was set up every month
rather than just once in the whole quarter. 9

Short-term interbank exposures. In the context of our model, liquidity contagion occurs
through liquidity hoarding in the unsecured interbank money market. We take actual interbank
loans, with maturities from overnight to one month, among the 73 sample banks from the dataset of
Arciero et al. [2013]. Notwithstanding the availability of five real networks of short-term interbank
exposures from end-2008 to end-2012, we decided to simulate for each year 100 short-term interbank
networks using the Halaj and Kok algorithm. This allows us to duly capture the evolving nature
of short-term funding linkages and its impact on contagious losses. Moreover, we will use the
large number of simulated long- and short-term networks to analyze the effect of their structural

7. This enables us to avoid any bias in the results related to the assignment of too large shares of interbank credit
to banks that are in our sample but may represent only a small fraction of the amounts lent by a certain bank to
European counterparties. Note that the 73 sample banks represent on average more than 90% of the overall euro
money market turnover in the various maturity segments.

8. See Cocco et al. [2009] and Brauning and Fecht [2012] for evidence of interbank lending relationships in the
Portuguese and German money market, respectively. The second paper finds that during the 2007-08 crisis German
borrowers paid on average lower interest rates to their relationship-lenders than to spot-lenders. The ECB euro money
market study ECB, 2010 reports increasing market fragmentation in the euro money market in relation to the euro
area sovereign debt crisis.

9. Alternative calibrations, e.g. in which prior probabilities are based on the daily average amount lent to
counterparties (thus also taking into account the frequency of bank interactions over the quarter), have been used
as a robustness check. Also, note that, as reported in Arciero et al. [2013], the algorithm underestimates longer term
loans at the beginning and at the end of the sample. This possibly affects our construction of the probability map for
2012 as this relies on loans traded in the last quarter of the year. We will be able to account for the underestimation
as soon as new estimates of the loans are available that include TARGET2 transactions in the first months of 2013.
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properties on the propagation of both solvency and liquidity contagion.

3.2.3 Additional balance sheet data

Additional year-end balance sheet information (Cash and cash equivalents, Total assets,
Common equity) is retrieved from SNL Financials. 10 Table 5 reports, for each year, a set of summary
statistics of banks’ balance sheet ratios that are relevant for our analysis. On average, interbank
exposures represent about 8% of total assets over the sample period. In 2009 banks display a reduced
aggregate amount of interbank exposures (in percentage of total assets) than in 2008. The variation
in the cross-section is also lower, while the ratio of common equity to total assets is on average
higher, which could possibly result from the recapitalization imposed by banking supervisors after
the EBA stress tests in 2009. In 2010 interbank loans continue decreasing, whereas bank liquidity
deteriorates slightly and bank equity to assets ratio remains constant. In 2011 and 2012 liquidity
improves, on average, while the level of common equity to total assets reduces. In fact, this is related
to the negative common equity reported by various Greek and one Spanish bank for the last two
years. Excluding from the sample banks with negative common equity, we can observe an increase
in the average equity to assets ratio from 4.20% to 4.43% in 2011 and from 4.42% to 5% in 2012. 11

3.2.4 Simulation dates

We repeat our counterfactual simulations at year-end for five
dates, t = 2008, 2009, 2010, 2011, 2012. 12 Repeating the same stress scenario at multiple points
in time allows tracking the evolution both of the financial system resilience to extreme financial
distress and of the relative influence of the different contagion channels over time.

3.3 Descriptive evidence on simulated interbank networks

Table 6 reports summary statistics about the structure of the 100 long-term interbank networks
simulated using the Halaj and Kok’s algorithm and the TARGET2-based probability map. The
topological properties of the average simulated network are similar across the years and consistent

10. Data are exceptionally retrieved from Bankscope when not available in SNL. Consistency between the two
databases has been carefully cross-checked.
11. In 2011 and 2012 balance sheet data are not available for two Greek banks (Agricultural Bank of Greece, or

ATE Bank, recapitalized in July 2011 after having failed EBA stress tests and subsequently sold to Piraeus Bank
in 2012, and TT Hellenic Postbank, liquidated in August 2012), nor for Bank of Cyprus and Cyprus Popular Bank
in 2012. Additionally, Eurobank Ergasias and Piraeus Bank report negative common equity in 2011 and 2012, while
Alpha Bank, National Bank of Greece, and Bankia have negative common equity in 2012.
12. Given that the TARGET2 database for unsecured interbank loans starts as of June 2008, it is not possible to

run the simulation for earlier years.
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with those observed for real interbank structures. 13 For instance, each bank is connected only with
a small subset of other banks in the market (five on average across the years), so that the degree of
connectivity or density of the networks is very small. This notwithstanding, the average length of
intermediation chains is very short, i.e. banks are generally close to each other, and losses can spread
from the bank in difficulty to its direct and indirect counterparties via less than three exposures,
on average, and at most via four. While most of the banks have very few counterparties, there are
some banks who lend to many others. The ratio between the maximum and the median number of
counterparties (the degree), is high and increases over time : in 2012, on average across 100 networks,
the most interconnected bank was about five times more connected than half of the others ; for one
network the ratio between maximum and median degree was as high as seven. This points to an
increasing concentration of exposures over the years and to a core-periphery market structure.
Table 7 reports summary statistics for the structure of the 100 short-term interbank networks
obtained using the Halaj and Kok algorithm and actual short-term money market exposures. The
topological properties of the average short-term simulated network are similar to those of the long-
term one across the years.

Table 8 reports summary statistics of cross-country long-term exposures over 100 simulated
interbank networks. The numbers displayed are the average ratios of domestic and cross-border
country-level exposures in percentage of the total capital of the country. In the upper part of the
table, we notice that on average during the five years banks of one country are at least 2 times more
exposed to their home counterparties, with domestic exposures reaching 19% of a country’s capital
and foreign exposures being around 4-7%. These average figures conceal a high heterogeneity across
the simulated banking sectors, which shows up clearly looking at the maximum ratios of domestic
and foreign exposures to aggregate capital. The maximum ratios are of similar order but follow
different trends over the years. Domestic interbank exposures steadily decrease from 1.89 times the
country’s capital in 2008 to 0.76 in 2011, with a jump to 1.48 in 2012 ; whereas maximum foreign
exposures increase from 1.10 times the country’s capital in 2008 to 2.04 in 2011, and decline slightly
to 1.94 in 2012. However, it is important to keep in mind that such big ratios of domestic and cross-
border interbank exposures relative to a banking sector’s total capital are very rare events. The
median domestic and foreign exposures ratios range between 1 to 6% of countries’ capital.

All in all, this evidence supports our claim about the realism of the exposure networks over
which contagion simulations are run. The methodology we adopt is realistic in terms of the
structural properties verified, but also because it allows capturing an evolving nature of bank
interconnections. The simulated networks can be considered as probabilistic networks ; networks
that could be possibly formed in other realizations, however a specific simulated exposure can
differ remarkably from one network to another, as well as from the actual short-term funding loan
observed in the unsecured euro money market via TARGET2.

13. See for instance Soramaki et al. [2007] and Iori et al. [2008].
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4 Simulation results

In this section we look at simulation outcomes resulting from several rounds of solvency and
liquidity contagion triggered by 500 different realizations of the 5% worse equity market shocks,
and an exogenous bank default. As widely used in the literature we impose idiosyncratic bank
defaults one by one. For each year, for each shock scenario, simulation results are computed over
100 pairs of simulated networks of long-term and short-term interbank exposures. The parameters
used to calibrate the common market shock and the model are given in Table 3 in Appendix 1. It
is important to keep in mind that the results are three-dimensional : we compute the distributions
of number of bank failures/losses in the European banking system due to an initial default of one
of the 73 banks, over 500 market shock scenarios and 100 network pairs. Thus, in order to describe
the results we aggregate contagion outcomes at the level of market and idiosyncratic shocks (initial
bank defaults).

We start our analysis by looking at the distribution of average and maximum losses caused
by the default of one bank over a set of shock scenarios. Then we compute a Value at Risk-like
indicator of losses in the system, thereby synthesizing tail risks in our three-dimensional simulation
framework. Thereafter, we study the extent of cross-border contagion in the European banking
system and use heatmaps to visualize the more systemic or more fragile national banking sectors.
Similarly, we try to exploit contagion outcomes to rank European banks as most systemic or most
fragile. We conclude by describing changes in simulation results over the years, trying to identify
patterns of increasing or decreasing system resilience.

4.1 Contagion as a tail risk

Table 10 depicts the distribution of losses in the system averaged over the shock scenarios and
over the defaults of an initial bank. The part ’...before liquidity hoarding’ accounts for losses due
to both the common market shock and solvency contagion (excluding the capital loss of the bank
exogenously set into default) ; the part ’...after liquidity hoarding & further rounds of contagion’
displays total losses due to all contagion channels. The difference between the two can therefore be
attributed to mere liquidity contagion. We can see that average losses are rather limited in terms
of number of defaulted banks as well as in size of depleted capital (less than 2 and 5% of system
capital, respectively), and that the common shock and the solvency contagion channel account for
most of them. In fact, the summary statistics in table 10 show that the distributions of losses
due to the shock and to solvency contagion are relatively thin-tailed across the 100 network pairs,
suggesting that the underlying long-term interbank networks display only a mild variation. On the
contrary, short-term interbank exposures seem to be more volatile : while in half of the network
pairs average system losses (5% of overall system capital) can be explained by the initial shocks and
by solvency contagion, the heavy tail of the distribution of total losses captures the variability of
liquidity contagion results, with the share of depleted capital after all contagion channels reaching
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a maximum value of 13% in 2008 and of 10% in 2012 (corresponding to more than 4 bank failures
in 2008 and more than 3 in 2012).

The relatively low dispersion of these results is easily explained : by averaging over the initial
bank default, we average away the high heterogeneity of a realistic banking system. On the contrary,
European interbank networks are highly heterogenous, with a handful of very large banks and
numerous small ones whose default impact on the system can be markedly different. This can
easily be seen by analyzing the maximum number of bank failures and the maximum share of
depleted capital upon an initial bank default. Table 11 shows that the exogenous default of one
bank (always coupled with a common market shock) can lead to the default of other 14 banks in
2008 and to a capital loss as large as one third of total system capital. Also in this table the common
shock and solvency contagion account for most of the failures/losses. Notice that upon the default
of the same bank, the maximum amount of losses is significantly larger in 2008 than afterwards.

Figures 3, 4 and 5, 6 and 7 allow us to have a more detailed view of how maximum losses (in
terms of capital and number of bank failures) can vary from one network to another. Figure 3 depicts
the share of depleted capital in the system over networks ordered by total losses. We can observe
that losses merely due to liquidity contagion (the difference between the green and blue dots) as
well as total losses (the green dots) indeed vary among the networks. Total losses (due to the market
shock and both contagion channels) can represent from about 10% to 35% of total system capital
in 2008, and from about 7% to 22% in other years. Interestingly, liquidity hoarding plays a very
different role from one year to another, and seems to be more important in 2008 and 2010 : for some
networks, losses due to liquidity contagion can represent up to half of the total. The same findings
are observed by comparing figures 4 and 5 with maximum losses in capital and figures 6 and 7 with
maximum number of bank failures, where we present distributions in the form of box plots. In these
figures, we exclude losses due to the market shock. Both distributions in terms of capital losses or
number of failures have in general higher median and heavier tails after accounting for the impact
of liquidity contagion, particularly in 2008 and 2010. The number of defaults resulting from the
market stress coupled with one bank’s default can vary significantly depending on the underlying
structure of interbank linkages : from 7.5% of system’s capital (or 4 banks) in one network to 30%
of capital (or 14 banks) in another. Thus, consistently with recent models of contagion in financial
networks relying on simulated networks of exposures (see, Georg [2013] and Arinaminpathy et al.
[2012]), our results reveal the critical impact of the underlying network structure on the propagation
of financial losses. Importantly, it points to the need to account for the evolving nature of the web
of interbank linkages when running contagion simulations.

So far, we have averaged contagion outcomes over the market shocks and looked at how different
the impact of contagion is with respect to the initial default bank and the underlying network. We
have seen that maximum losses can be sizeable, whereas average losses are limited. To better
investigate the likelihood of such tail risks, we analyze for each year the distribution of the Value
at Risk (V aR) or V aR(5%) of our banking system. This is defined as the 95th left percentile of the
distribution of losses (as a percentage of system capital) over both idiosyncratic and market shock
scenarios. Figure 9 plots the distribution of V aR(5%) of losses due to contagion over 100 network
pairs. We can see that the 5% worst capital loss stands on average at 8% and 5% over the networks
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in 2008 and all other years correspondingly, and that the loss distribution in 2008 has heavier tail.
By comparing figure 9 and 5, we observe that losses in the 5% worst cases are almost half smaller
than in the worst case, demonstrating the tail nature of contagion.

4.2 Cross-border contagion

Table 12 allows us to glance at the extent of domestic versus cross-border contagion in the
European banking sector. It summarizes the results provided in the heat maps (figures from 10
to 14) : panel A. presents the distribution of the losses on the main diagonal for each of the heat
map figures, that is total losses imposed by an average bank in a banking system on its domestic
counterparties ; panel B. shows the distribution of the off-diagonal losses, in other words, losses
imposed by an average bank in a banking system on its foreign countparties. We can immediately
observe that, on average, a national banking sector imposes larger losses domestically than across
the borders. However, maximum losses imposed domestically are usually smaller than losses imposed
across the borders, except in years 2010 and 2012, when they are almost equal.

We plot heat maps in order to analyze the potential for cross-border contagion in the European
banking sector. The cells (A;B) of the map represent with colors the strength of the total capital
loss experienced by country A’s banking sector (as a fraction of its aggregate initial capital) given a
common market shock and the default of a bank in the foreign banking system B. Examining heat
maps in figures from 10 to 14, we can easily identify the most ’systemic’ banking sectors, on the one
hand (i.e. those resulting in a vertical line in which warmer-colors prevail), and the systems which
are the most ’fragile’, on the other (i.e. those resulting in a horizontal line in which warmer colors
dominate). Note that a black in the color-scale of the map corresponds to a maximum country loss
ranging between 7% and 14%, respectively in 2010 and in 2008, of the country’s aggregate initial
capital, while white cells correspond to no loss at all. 14

In 2008 the banking sectors of countries E, H and K appear to be more systemic in terms of the
total capital loss that a default of an average bank in these countries can impose on foreign banking
sectors. The systems B and J follow, but the aggregate losses that the default of an average bank
from these countries imposes on foreign banking sectors are much lower. The default of a bank
headquartered in D, F, G or I does not have a sizeable impact on other European banks. With
regard to the banking sectors that are the most exposed to cross-border contagion, banks from A,
B and J generally seem to experience the highest loss following a foreign default (more numerous
red and/or orange cells).

The 2009 and 2010 maps show that the potential for cross-border contagion has constantly

14. Total country capital losses following the market shock and an idyosincratic foreign bank default are computed
on average over 500 realizations of the market shock ; over 100 different pairs of long- and short-term exposure
networks ; over the initially defaulting foreign banks. They have been normalized to account for the different number
of banks (and hence of simulations) considered for the various national banking sectors. Heat maps have been
anonymized for data confidentiality reasons, and countries for which less than 3 banks are available in the sample
have been removed. Countries are ordered randomly, with the same order over time.
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decreased over time, and that the overall potential capital loss through contagion was twice lower
in 2010 than it was back to the end of 2008. More specifically, table 12 shows that the maximum
loss caused by a foreign bank’s default reduced from a value of 14% of foreign countries’ total
banking capital in 2008 to an overall loss of 10% in 2009 and of 7% in 2010. This is possibly related
to a generalized reduction of long-term interbank loans and to an increase in banks’ capitalization
during those years (see section 3.2). In 2009 and 2010 we observe the geographical patterns identified
persisting : E remains the most systemic banking sector ; A and B the most fragile with respect
to cross-border contagion stemming from a number of other European banking sectors ; C and
G appear vulnerable only to a few banking systems. Banks in I are relatively isolated in 2008
but become progressively more exposed to cross-border contagion in 2009 and even more in 2010.
The level of vulnerability observed for most other countries changes across the years, although, as
already mentioned, a generalized increase in the resilience of the system can be observed.

In 2011 and 2012 the light colors in the maps reveal a European banking system overall less
vulnerable to cross-border contagion. However, the lower extent of contagion in these two years,
and especially in 2012, compared to 2008 conceals important differences among national banking
sectors.

All in all, we find that, under extreme equity market stress and following the exogenous default
of one bank, cross-border contagion can materialize in the European banking system. The average
and maximum loss caused by a foreign bank’s default, however, varies remarkably over time. In
particular, in 2009 and 2010 the European banking system seems to have significantly increased
its capacity to withstand the same kind of adverse financial conditions that it had to face after
the default of Lehman Brothers. In 2011 and 2012, banks reduce their interbank exposures (see
table 5), and most notably so cross-country (see table 8), possibly as a consequence of continued
sovereign-bank financial tensions in Europe. This leads to lower contagion losses overall concealing,
however, a high heterogeneity across countries.

4.3 Systemic and fragile banks

Figure 15 depicts the systemic importance of all banks in each year from 2008 to 2012. We define
a bank as ’systemic’ when its default imposes more than the 85th percentile of the loss distribution
over a given network pair. On the vertical axis we see the number of networks in which each bank
appears to be systemic. Most of the banks are systemic in none or very few networks, however
some banks turn out to be systemic in more than 60% and even 90% of the networks. Interestingly,
this chart points to the same subset of banks as ’usual suspects’ across the years, however there is
also some variability : the subset is not identical from one year to another, only 60% of the banks
appear systemic in more than 3 years.

Similarly, we try to rank banks according to the capital loss that they experience following the
default of all other banks. In particular, we define a bank as ’fragile’ if it suffers losses above the
85th percentile of the loss distribution over the set of shock scenarios. Figure 16 points in all the
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years from 2008 to 2010 some of the banks that did experience severe difficulties in 2011-2012.

4.4 Focusing on system resilience over time

As already highlighted, the system vulnerability to contagion differs from one year to another.
The evidence presented so far points to a pattern of increasing (although not uniform) resilience
to contagion from 2008 to 2012. For instance, we have seen in Table 10 and Table 11 that upon
the default of the same bank, the average and maximum amount of losses are significantly larger
in 2008 than in the subsequent years. The larger maximum shares of depleted capital in 2011 and
2012 are possibly related to the disappearance of 4 and 9 banks, respectively, from the sample in
these years due to actual defaults. This determines both a lower total system capital and a lower
diversification of interbank assets, thus resulting in a higher contagion outcome.

Figures 8 and 9 demonstrate the evolution of the system resilience to contagion over time. The
year when the system was the most fragile is 2008, both with respect to solvency and liquidity
contagion. In fact, in both graphs the 2008 loss distributions are characterized by a higher median
and a heavier tail than those in the other years. The overall resilience of the system with respect
to solvency contagion gradually improved over time, except for a small deterioration in 2011. By
comparing the distributions in both figures, we can deduce that losses due to liquidity contagion do
not follow the same pattern : the system seemed to be again more fragile in 2010. To statistically test
this hypothesis, we perform the two-sample Kolmogorov-Smirnov test which allows us to compare
the distributions of losses due solely to solvency contagion versus losses due to both contagion
channels. This test shows that at 5% confidence level we can reject the null hypothesis of the
two data sets being drawn from the same distribution for years 2008 and 2010, which means that
liquidity hoarding behaviour was more of an issue in those years.

Resilience to solvency contagion. The reasons behind increasing system resilience to solvency
contagion are threefold. First, banks became better capitalized : average (max) common equity to
total assets ratio increased from 4.18% (11.13%) in 2008 to 5% (14.82%) in 2012 with a decrease to
4.43% in 2011 (table 5). Second, the average fraction of ’Net loans to banks’ to total assets gradually
fell from 8.31% in 2008 to 6.81% in 2012 (table 5), and ’Net loans to banks’ is the item used to
reconstruct the long-term exposure networks on which solvency contagion takes place. Third, the
network characteristics also changed. Namely, the network became less connected over the years
(the ratio of actual to possible links reduced from 8% in 2008 to 5% in 2012) ; more skewed (the
ratio of max to average degree jumped from 3.35 in 2008 to 4.6 in 2012) ; with increasing average
shortest path length (in 2008, the median distance separating any two banks was of only 2.64 other
institutions, whereas it reached 3.14 in 2012, and 2.77 in 2011) (table 6).

The intuition for the relationships between network measures and the results of contagion
propagation goes as follows. First, less connected networks are less fragile because there are less
links through which contagion may propagate. Second, more skewed networks may be more resilient
to contagion, on average, since most of the banks have only few exposures, so that their default
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has little impact on the system. However, in those rare scenarios when a highly connected bank
defaults, losses can be sizeable. This is consistent with the observation that although the system
is on overage safer in 2012 than in 2008, in some extreme cases losses can reach 22% of the total
system capital. Third, a higher average shortest path length has a direct explanation for the ease
of losses propagation : the lower the average length of intermediation chains, the more easily losses
may reach any other bank.

Resilience to liquidity contagion. As already mentioned, the system is most vulnerable to
liquidity hoarding in 2008 and 2010. Given that in the algorithm liquidity contagion comes after
solvency domino effects, one could expect to observe the following relationship : higher losses due
to solvency contagion → weaker system → more banks hoard liquidity → higher losses due to
liquidity contagion. Indeed, this mechanism does in part explain the impact of liquidity hoarding
on the system, most notably in 2008 ; but it is not the only reason. An explanation why the system
appears to be so vulnerable in 2010, for instance, comes from balance sheet statistics : banks held
less cash in 2010, only 8.68% of total assets while more than 9.5% in all the other years (see table 5).

Short-term network characteristics do play a role too : banks were on average at a shorter
distance from each other exactly in 2008 and 2010, and the logic behind the ease of propagation of
interbank losses is the same as for solvency contagion. Moreover, the ratio of max to mean degree
for short-term networks was lower in 2008 and 2010, which suggests that the relationship between
the skewness of the degree distribution in short-term networks and system resilience is opposite
to the one discussed above for long-term networks and solvency contagion. The intuition between
the lower max to mean degree ratio figures and system stability goes as follows : the less skewed
the distribution of the number of counterparties, the higher the number of banks that could hoard
liquidity from many of their borrowers, thus increasing the potential for liquidity contagion. Finally,
it is interesting to note that the short-term networks in 2009 and 2012 (the years displaying lower
contagion) look very similar : they are the least connected (on average only 6% of all possible
exposures do actually exist, against 8-9% in other years) ; have the longest intermediation chains
(3.11 and 2.97 links separate any two banks in 2009 and 2012, respectively, against 2.55 in other
years) ; are the most skewed (the most connected bank is exposed to a number of counterparties
about 4 times larger than the average bank in 2009 and 2012, against only about 3 in other years).

5 Econometric analysis

In order to shed light on the relationship between simulation results, banks’ financial ratios
and network characteristics, we conduct an econometric analysis of the determinants of contagion.
First, we analyze the determinants of bank-level contagion. In later subsections, we study contagion
outcomes at a system level and at a country level.
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5.1 Econometric specification

As explained below, all our dependent variables are bounded below (by zero) and above (by the
number of banks in the system, or by the capital in the system) and both boundary values are likely
to be observed in the data. The estimation of such a model cannot rely on OLS. A convenient way
of overcoming this difficulty is by normalizing the dependent variables so that they take values on
[0; 1]. For instance, rather than using the average number of times that a bank defaults following a
set of shock scenarios, we focus on the average frequency with which it defaults ; rather than using
the loss amount suffered by a bank, we use the average proportion of its capital that gets depleted
following the shock scenarios. The estimation of models with fractional response variables relies
on the methodology proposed by Papke and Woolridge [1996]. It uses the generalized linear model
(GLM) developed by Nelder and Wedderburn [1972] and McCullagh and Nelder [1989].

Let Y be the dependent variable. It is assumed to be generated from a distribution in the exponential
family, whose mean µ depends on the independent variables X through :

E [Y ] = µ = Γ−1 (Xβ) (5.3)

where β is a vector of unknown parameters and Γ the p.d.f. of the link function. Furthermore, the
variance of Y is a function of the mean, so that :

Var [Y ] = Var
[
Γ−1 (Xβ)

]
(5.4)

In order to model proportions, a convenient specification is that by Papke and Woolridge [1996]
who assume that the dependent variable can be modeled by a binomial distribution, in combination
with a logit link function Γ. The vector of parameters β is estimated by maximum likelihood.

5.2 Bank-level determinants of contagion

This section explains the determinants of bank fragility or vulnerability with both balance sheet
and exposure characteristics.

5.2.1 Default outcomes

This section estimates the determinants of both bank fragility (i.e. average number of defaults
and average amount of losses suffered following a set of shock scenarios) and bank systemicity (i.e.
the average number of defaults and average amount of losses caused by the initial default of a bank,
over a set of shock scenarios). Thus, dependent variables in the various specifications of the default
model are related to default outcomes, whereas independent variables are network, exposure and
balance sheet characteristics.
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More specifically, for each year of results we estimate the following specification :

Y (i, n, t) = g−1(β0 + β1 ∗X(i, n, t)) + ε(i, n, t), (5.5)

where Y (i, n, t) denotes the various fragility or systemicity default outcomes for simulated (pair of)
network n in year t. The vector of regressors X(i, n, t) is composed of variables related to financial
ratios, network position pre-shock, exposures to the weakest banks and control variables described
below.

5.2.2 Explanatory variables and expected effects

The following regressors have been used to estimate equation 5.5 :

Financial ratios. Solvency ratio : Common equity / Total assets ; Liquidity ratio : Short −
term funding / Total assets. 15 Everything else equal, we expect banks that are more capitalised
and more liquid to be less vulnerable to contagion due to their long and short term interbank
exposures. The effect of higher financial ratios on bank systemicity is less obvious. Nonetheless, the
mechanics of the model suggests that removing well capitalised and liquid banks from the system
would result in a more fragile banking sector overall. Therefore, we can expect that being more
leveraged and illiquid results in higher bank systemicity.

(Long-term) Network position pre-shock. Closeness, betweenness or eigenvector centrality in the
network of long-term interbank exposures have been alternatively tested as explanatory variables. 16

Recent literature has shown that the position occupied by a financial institution in the network
of interbank connections can explain e.g. its capacity to access interbank liquidity after a shock
(see Abbassi et al. [2013]), the price at which it can fund itself in the money market (see Gabrieli
[2012]), or its daily liquidity holdings as a participant in a large value payment system (see Bech
et al. [2010]). Based on this evidence, we expect (i) banks occupying a more central position in the
interbank network in terms of being directly exposed to many counterparties (i.e. banks that are
closer to all banks), (ii) banks that are more central in that they interpose themselves on many
intermediation chains in the interbank network (i.e. banks with higher betweenness), (iii) banks
occupying a central position because of their exposures to highly central counterparties (i.e. banks
with higher eigenvector centrality) to be more systemic. The effect of higher centrality on bank
fragility is less clear cut. On the one hand, one could expect more central banks (in terms of the
three measures described) to be more exposed, hence more vulnerable, to contagion. On the other,
banks that are direct lenders to many counterparties are also more diverisified in the asset side of
their balance sheet, hence potentially more resilient to the propagation of interbank losses.

15. The ratio of long term exposures to common equity has also been tested as proxy for bank solvability. The
ratio of short term to long term funding and the so called "interbank ratio" (interbank assets divided by interbank
liabilities) have been tested as proxies for bank liquidity.
16. Refer to Abbassi et al. [2013] for a description of network centrality indicators and their economic interpretation.
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Exposures to weakest banks. For each bank and year, we construct the share of bank i long-term
interbank lending directed to the three "riskiest" banks in the system. The latter are identified
as the three (i) most leveraged, (ii) least liquid, (iii) most interconnected, (iv) most indebted
European banks at the end of year t. Beyond the importance of a bank’s own financial ratios,
exposures to risky counterparties can have a negative effect on banks’ resilience to adverse shocks.
In general, we expect a bank’s fragility to be higher the higher the share of its interbank loans
granted to risky (more leveraged, less liquid, more indebted) counterparties. The effect of being
largely exposed to very interconnected banks, however, is less straightforward. As in the case of
banks with high eigenvector centrality, being exposed to banks with many counterparties in the
long-term exposures network might actually lower bank fragility, because of the higher resilience
of very connected (hence more diversified) counterparties. At the same time, however, exposures
to banks that are highly interconnected in the short term (liquidity) networks could increase bank
frailty, because a very connected counterparty could be subject to more contemporaneous liquidity
withdrawals.

Control variables. To clearly identify the effect of the regressors of interest on the contagion-
dependent variables, we control for the structural features of the simulated long- and short- term
networks. These are notably : network clustering, reflecting the extent to which banks lending to
each other tend to have a third common counterparty ; average shortest path length, reflecting the
length of intermediation chains ; the ratio of maximum to mean degree, indicating to what extent
the distribution of the number of bank counterparties is heavy tailed, with few (core) banks that are
very highly interconnected, and most (peripheral) banks that have links only to few counterparties.

5.2.3 Results

Bank fragility. Table 13 shows the results for Y (i, n, t) being successively the average number of
defaults and average amount of losses suffered by bank i in network (pair) n in t = 2008 over a set of
500 shock scenarios. The results show that balance sheet ratios (for both solvency and liquidity) are
key determinants of banks’ vulnerability to contagion, especially in terms of the number of times
that a bank defaults. The coefficient capturing the role of a bank position in the network before
the shock is also significant. Interestingly, it reveals that banks that are highly interconnected
are less likely to default following a shock scenario, but more likely to suffer larger losses. This
result is consistent with our expectations : on the one hand, a higher degree of interconnectedness
reflects a higher degree of diversification of interbank assets, thus reducing the frequency of bank
defaults across scenarios ; on the other, being directly exposed to a high number of counterparties
can induce larger losses. The coefficients of the shares of interbank lending directed to the riskiest
banks in the system confirm our intuition that being exposed to the most leveraged and least liquid
banks increases both the likelihood of bank failure and the amount of losses experienced. These
"exposure metrics" are however less important than network centrality and banks’ own financial
ratios in economic terms. Finally, it is interesting to note that structural network characteristics do
not explain different degrees of bank vulnerability. The only exception is the extent to which the
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interbank network tends toward a core-periphery structure. More specifically, a system where few
banks have several times the number of counterparties of the average institution seems to be more
resilient to the propagation of interbank losses.
We obtain similar evidence for 2009, although the network variable that turns out to better explain
bank fragility is eigenvector and not closeness centrality. For this year, longer intermediation chains
can explain both a lower fragility and a lower systemicity of the average bank. Results are consistent
across years with minor differences.

Bank systemicity. Table 14 shows the results for Y (i, n, t) being successively the average number
of defaults and average amount of losses caused by the failure of bank i in network (pair) n in
t = 2008 over a set of 500 shock scenarios. Similarly to the results for bank fragility, a bank’s
own financial ratios appear to be the most important determinants of its contagious impact. The
magnitude of estimated coefficients is, however, lower than in the previous tables both for the
average proportion of bank defaults and the average amount of losses. Closeness centrality turns out
to increase a bank systemicity : the closer a bank is to a higher number of counterparties because of
its numerous direct lending exposures, the higher the proportion of banks failing and the proportion
of capital lost in the banking network following the propagation of a shock. Differently from the
fragility regressions, these tables show that being exposed to the riskiest counterparties does not
influence a bank’s systemic importance. However, being largely exposed to the most indebted banks
increases both the likelihood of causing other failures and the proportion of losses following a shock.

5.3 System-wide determinants of contagion

In this section, we analyze the determinants of system-wide contagion by exploiting within-year
heterogeneity. Thus the European banking sector is tentatively treated as a unique system. The
methodology described in 5.1 will be used to study the determinants of system fragility measured
by both aggregate number of defaults and aggregate losses in each network (pair) n in each year
t (t = 2008, 2009, ..., 2012) over a set of 500 shock scenarios. More specifically, we estimate the
following regression :

Y (n, t) = g−1(β0 + β1 ∗X(n, t)) + ε(n, t), (5.6)

where Y (n, t) denotes the contagion output variables for simulated (pair of) network n in year t.
As in the bank level specification, we transform the dependent variables so as to obtain fractional
responses taking values on [0; 1]. For instance, rather than using the aggregate number of bank
defaults following a set of shock scenarios, we focus on the average proportion of bank defaults ;
rather than using the absolute loss suffered by the banking system as a whole, we focus on the
proportion of system capital that is lost following shock scenarios. The regressors are the aggregate
version of those described for the bank-level specification.

22



5.3.1 Results

[TO COMPLETE]

5.4 Country-level determinants of cross-border contagion

In this section, we refine the analysis at a more granular level by investigating the country-level
determinants of cross-border contagion.

5.4.1 Results

[TO COMPLETE]

6 Ongoing work

We are currently completing the analysis presented in the paper. In particular :
– The money market dataset that we rely upon to build the probability maps matches potential
loan payments between direct TARGET2 participants (i.e. settler banks). However, a new
dataset with originators and beneficiaries of TARGET2 transactions (i.e. indirect TARGET2
participants) has been recently made available. Such a dataset will allow us to obtain a more
reliable representation of the universe of interbank money market loans, and potentially affect the
construction of the probability maps that we use to simulate probabilistic networks of interbank
exposures. In particular, the identified geographical patterns of cross-border contagion may differ
from those obtained using the dataset with settler banks. The difference may reveal substantial
for specific network realizations ; on the other hand, the impact on average results - i.e., those
we present in the paper, for instance through heat maps - is less clear cut.

– We are running several robustness checks to test the stability of simulation results after
changes to model parameters.

– Finally, we plan to complete the results section with system-level and country-level regressions.

7 Conclusions

This paper investigates the scope for cross-border contagion in Europe based on true exposure
data at a bank-to-bank level in a joint framework of solvency and liquidity contagion. We analyze
geographical patterns of shock propagation between 73 European banking groups from end-2008
until end-2012.
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We exploit for the first time a unique dataset of interbank money market transactions, with
various maturities, estimated from TARGET2 payment data (see Arciero et al. [2013]) to obtain a
realistic representation of how European banks are connected through their long- and short-term
claims. We rely on the money market database to construct realistic probability maps of interbank
exposures. This maps, together with the amount of individual banks’ aggregate loans to other
banks, are used to simulate a large number of long- and short-term exposure matrices through a
novel methodology proposed by Halaj and Kok [2013].

Simulation of multiple networks from real data probability maps with significant heterogeneity
among them allows us to analyze not only the vulnerability of one particular network realization
retrieved from the real data, but of plenty of potential realistic networks. We find that both solvency
and liquidity contagion are tail risks : losses averaged over stress-scenarios, initial bank defaults
or simulated networks are rather limited ; however, averaging conceals rare extreme events. We
document that losses at the tail of the distributions can reach one third of the system capital in
2008, and that the resilience of the system improves significantly over time.

We find that, under extreme equity market stress and following the exogenous default of one
bank, cross-border contagion can materialize in the European banking system. The average and
maximum losses caused by a foreign bank’s default, however, varies remarkably over time. In
particular, in 2009 and 2010 the European banking system seems to have significantly increased
its capacity to withstand the same kind of adverse financial conditions that it had to face after
the default of Lehman Brothers. In 2011-2012, banks reduce their interbank positions, and most
notably so cross-country, possibly as a consequence of continued sovereign-bank financial tensions
in Europe. This leads to lower contagion losses overall, concealing however a high heterogeneity
across-countries.

Finally, we document a strong impact on the cross-border propagation of losses of heterogeneity
and concentration in the structure of interbank exposures. Moreover, the number of defaults
resulting from extreme market stress coupled with one bank’s default can be more than three
times larger depending on the underlying structure of interbank linkages. This is consistent with
recent models of contagion in financial networks relying on simulated networks of exposures (see,
Georg [2013] and Arinaminpathy et al. [2012]), and points to the need to account for the evolving
nature of the web of interbank linkages when running contagion analysis. Furthermore, we exploit
this heterogeneity in order to investigate the determinants of bank fragility or systemicity that
drive contagion outcomes with both banks’ balance sheet and exposure characteristics. As well,
we analyze the determinants of system-wide and country-level contagion by exploiting within-year
across-networks heterogeneity.
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A Appendix

A.1 The model

A.1.1 Common market shock

We model a shock with both a common component and an idiosyncratic component. First, a
market shock hits all listed banks’ capital. As mentioned by Upper [2011], contagion is more likely
with such a shock. Second, a bank is exogenously assumed to fail.

The market shock is modeled using a one-factor model for equity returns. The principal factor
and loading coefficients for all listed banks 17 in our sample (42 institutions) are computed using
daily equity returns over a period spanning from January 1999 to December 2008. The first factor
is fitted to a Student t distribution, from which 100,000 simulations are drawn. The 500 left-tail
realizations of the first principal component are kept, corresponding to approximatively 5% tail
shocks. The impact on each bank’s capital is recovered through the factor loadings.

We keep the same market shock for each year in order to make sure about the change in fragility
of the system to contagion during these five years.

Simultaneously, one bank is forced to default. One advantage of such a shock is that it enables
analyzing the systemic importance of each institution, even though it abstracts from actual bank
probabilities of default. Losses through solvency and liquidity channels are then computed.
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Figure 2: Distribution of the shocks to individual banks over 500 shock scenarios, measured as percentage
of banks’ capital

17. Non-listed banks are assumed to face no market shock, as their equity value is assumed not to be correlated
with market prices.
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Table 2: Distribution of the idiosyncratic and market shocks to the whole system measured as percentage
of total system capital

Min Mean Median Max

Idiosyncratic shock 0,04% 1,37% 0,70% 6,64%
Market shock 1,94% 3,38% 2,66% 16,17%

A.1.2 Solvency contagion

We closely follow the model by Fourel et al. [2013]. At time t = 1, banks are hit by a shock ε
according to the methodology previously described. If the initial losses are higher than the capital
of a bank, the latter goes into bankruptcy. We can therefore define the set of all banks defaulting
due to a market shock, named "fundamental defaults", as

FD(C) =

i ∈ N : C0(i) + ε(i)︸︷︷︸
initial shock

≤ 0


= {i ∈ N : C1(i) = 0} ,

(A.7)

where C1(i) = (C0(i) + ε(i))+ is the capital of bank i just after the initial shock.

From this situation, we can define a solvency default cascade (in Amini et al.’s terminology) as
a sequence of capital levels (Ck2 (i), i ∈ N)k≥0 (where k represents the algorithmic step) occurring
at time t = 2 and corresponding to the defaults due to insolvency : C0

2 (i) = C1(i)
Ck2 (i) = max(C0

2 (i)−
∑
{j, Ck−1

2 (j)=0}(1−R
S)× E0(i, j); 0), for k ≥ 1,

(A.8)

where RS is an exogenous recovery rate for solvency contagion.

The sequence is converging (in at most n steps) since (Ck2 )k is a component-wise decreasing
sequence of positive real numbers. Note that subscripts are used for periods of time and superscripts
for rounds of cascades. By "period", we mean the sequential spread of losses through different
channels. This should not be interpreted stricto sensu : we rather consider a sequence of events
that can concomitantly occur in a short period of time, e.g. within one week.

Comparison of the banks initially in default (that is FD(C)) and the banks in default at the
end of t = 2 corresponds to the set of institutions that defaulted only due to solvency default
contagion. We label this set S2.

A.1.3 Liquidity hoarding

In the liquidly hoarding section of our contagion simulations we employ a different functional
form than in Fourel et al. [2013]. We closely follow their model in the remaining sections.
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Decision on how much to hoard

To know how much liquidity a bank hoards in total, and how much it hoards from each
counterparty, we make some assumptions. First of all, the total amount of liquidity withdrawn
depends on the size of the shock to the bank’s capital : the bigger the losses due to the market
shock, the more the bank hoards liquidity. The proportion of liquidity to be hoarded by bank
i is λ(i) ∈ [0; 1]. It is assumed to depend on the capital loss Loss(i) : at time t, we denote
λt(i) = aLoss(i)1[A;B] + b Loss(i)1[B;100], where 1 is an indicator function 18. We assume that
bank i curtails its positions in the short-term interbank money market by stopping rolling over
debt for a total amount λt(i)ESTt (i) where ESTt (i) =

∑
j∈St−1 E

ST
t−1(i, j) and St−1 is the set of

non-defaulted banks at the end of period t− 1.

How much to hoard from each counterparty

Second, the amount of liquidity the bank hoards from each counterparty depends on the
generalized market perception of its credit risk, for which the leverage ratio can be used as a
proxy. The higher the leverage, the riskier a bank is perceived, the more its counterparties will
hoard from it. Defining µt(j) as µt(j) = 1− Ct(j)/TAt(j), we can decompose the total amount of
liquidity hoarded by bank i from its counterparties as follows :

λt(i)EST,k−1
t (i) = λt(i)EST,k−1

t (i)
∑

j,Ck−1
t (j)≥0

µt(j)EST,k−1
t (i, j)

Σhµt(k)EST,k−1
t (i, h)︸ ︷︷ ︸

=1

. (A.9)

Liquidity condition

When a bank hoards liquidity, it improves its short-term funding position, whereas liquidity
withdrawals by its counterparties deteriorate it. The following liquidity condition must hold :

Cat(i)︸ ︷︷ ︸
cash

+ λt(i)EST,k−1
t (i)︸ ︷︷ ︸

hoarding inflows

−
∑

j,Ck−1
t (j)≥0

λt(j)EST,k−1
t (j) µt(i)EST,k−1

t (j, i)
Σlµt(l)EST,k−1

t (j, l)︸ ︷︷ ︸
hoarding outflows

> 0. (A.10)

That is, bank i needs to have enough liquid assets, either interbank or non-interbank, to pay its
short-term debt.

In line with the solvency contagion algorithm, we state that a bank is in default when its capital
has been fully wiped out (solvency condition) or when it can not satisfy its short-term commitments
(liquidity condition).

Update of the algorithm to account for the losses due to solvency and liquidity contagion

18. We test a range of parameters value in order to check the robustness of our results.
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C0
t (i) = Ct−1(i)
for k ≥ 1,
Solvency condition :
C ′kt (i) = C0

t (i)−
∑
{j, Ck−1

t (j)=0}(1−R
L)ESTt (i, j)

Liquidity condition :

C ′′kt (i) =


0 if Cat(i) + λt(i)EST,k−1

t (i)−∑
h,Ck−1

t (h)≥0 λt(h)EST,k−1
t (h) µt(i)EST,k−1

t (h,i)
Σlµt(l)EST,k−1

t (h,l)
< 0

C ′jt (i) otherwise
Updating equation :
Ckt (i) = max(C ′kt (i);C ′′kt (i); 0)

(A.11)

At the end of period t, the algorithm provides the status of each bank (alive or in default), its
capital level and short-term exposures. Some banks may have defaulted during period t, thus some
non-defaulted banks have recorded losses on their capital level. If the capital is then lower than
their economic one, another round of liquidity hoarding treated in period t+ 1 will take place.

A.1.4 Model calibration

The following exogenous values are used to calibrate the model.

Table 3: Parameters used to calibrate the model

Values of exogenous parameters

Recovery rate (RS) 0,4
First hoarding threshold (A) 0

Amount hoarding (a) 0,1
Second hoarding threshold (B) 0,3

Amount hoarding (b) 0,5
Proportion of free cash 0,4
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A.2 The sample

Table 4: The sample

Country Bank Name Country Bank Name

AT Erste Group Bank GR Alpha Bank**
AT Raiffeisen Bank International GR ATE Bank*
AT Oesterreichische Volksbanken GR Eurobank Ergasias*
BE Dexia GR National Bank of Greece**
BE KBC Groep GR Piraeus Bank*
CH Credit Suisse Group GR TT Hellenic Postbank*
CH UBS HU OTP Bank Nyrt
CY Bank of Cyprus Public** IE Allied Irish Banks
CY Cyprus Popular Bank Public** IE Bank of Ireland
DE Bayerische Landesbank IT Banca Monte dei Paschi di Siena
DE Commerzbank IT Banca Popolare dell’Emilia Romagna
DE DekaBank IT Banco Popolare Società Cooperativa
DE Deutsche Bank IT Intesa SanPaolo
DE HSH Nordbank IT Unicredit
DE Hypo Real Estate Holding IT Unione di Banche Italiane
DE Landesbank Baden-Württemberg MT Bank of Valletta
DE Landesbank Berlin Holding NL ABN AMRO Group
DE Landesbank Hessen-Thueringen NL ING Bank
DE Norddeutsche Landesbank NL Rabobank Group
DE Westdeutsche Genossenschafts-Zentralbank NL SNS Bank
DK Danske Bank NO DnB ASA
DK Jyske Bank PL Powszechna Kasa Oszczednosci
DK Nykredit Realkredit PT Banco BPI
DK Sydbank PT Banco Comercial Português
ES Banco Bilbao Vizcaya Argentaria PT Caixa Geral de Depositos
ES Banco de Sabadell PT Espirito Santo Financial Group
ES Banco Popular Espanol SE Nordea Bank
ES Banco Santander SE Skandinavinska Enskilda Banken
ES Bankinter SE Svenska Handelsbanken
ES Caja de Ahorros y Monte de Piedad de Madrid** SE Swedbank
ES Caja de Ahorros y Pensiones de Barcelona SI Nova Ljubljanska Banka
FI Op-Pohjola Group UK Barclays
FR BNP Paribas UK Lloyds Banking Group
FR BPCE UK HSBC Holdings
FR Crédit Agricole UK Royal Bank of Scotland
FR Crédit Mutuel UK Standard Chartered
FR Société Générale

This table provides the sample of 73 banks used for the default simulations and the econometric analysis, as well as
their domestic country. It is a subset of the list of banks that underwent the 2011 stress tests carried out by the
European Banking Authority (EBA [2011b]). The * and ** indicate banks which are not included in the 2011 and
2012 sample, respectively, due either to failures or to unavailable data. The country abbreviations are as follows :
AT = Austria, BE = Belgium, CH = Switzerland, CY = Cyprus, DE = Germany, DK = Denmark, ES = Spain, FI
= Finland, FR = France, GR = Greece, HU = Hungary, IE = Ireland, IT = Italy, MT = Malta, NL = Netherlands,
NO = Norway, PL = Poland, PT = Portugal, SE = Sweden, SI = Slovenia, UK = United Kingdom.
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A.3 Descriptive statistics

Table 5: Descriptive statistics of sample banks’ balance sheet ratios

Year

2008 2009 2010 2011 2012
Cash and cash Equivalents / Total Assets

Average 9.96% 9.54% 8.68% 9.64% 9.68%
Minimum 1.44% 1.45% 1.03% 1.09% 0.99%
Median 8.70% 8.49% 7.71% 8.38% 8.34%

Maximum 32.78% 29.35% 30.64% 29.88% 27.53%
Standard deviation 5.94% 5.19% 5.20% 5.48% 5.10%

Common Equity / Total Assets
Average 4.18% 4.73% 4.73% 4.20%* 4.42%*

Minimum 0.62% 1.05% 0.08% -5.72% -4.54%
Median 3.90% 4.40% 4.55% 3.76% 4.33%

Maximum 11.13% 13.06% 13.32% 13.85% 14.92%
Standard deviation 2.25% 2.35% 2.42% 2.76% 2.99%

Net Loans to Banks / Total Assets
Average 8.31% 7.93% 7.19% 7.24% 6.81%

Minimum 0.88% 0.88% 0.68% 0.64% 0.54%
Median 7.09% 6.61% 5.60% 5.49% 4.70%

Maximum 31.73% 29.14% 30.17% 29.61% 26.28%
Standard deviation 6.01% 5.55% 5.50% 5.65% 5.73%

* Excluding from the sample banks with negative common equity, we can observe an increase in the average leverage
ratio from 4.20% to 4.43% in 2011 and from 4.42% to 5% in 2012. Source : SNL Financials and own calculations.
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Table 6: Descriptive statistics of the 100 networks of long-term interbank exposures.
Networks have been simulated using the methodology developed by Halaj and Kok [2013]. The probability map has
been obtained from data on actual euro money market loans with maturities from one to six months.

Year
2008 2009 2010 2011 2012

Number of links
Minimum 298.00 316.00 295.00 291.00 205.00
Median 398.50 405.50 378.50 365.50 272.00

Maximum 622.00 624.00 609.00 580.00 438.00
Standard deviation 37.40 38.92 35.32 32.38 25.97

Density
Minimum 0.06 0.06 0.06 0.06 0.04
Median 0.08 0.08 0.07 0.07 0.05

Maximum 0.12 0.12 0.12 0.11 0.08
Standard deviation 0.01 0.01 0.01 0.01 0.00

Average shortest path
Minimum 2.29 2.30 2.29 2.43 2.64
Median 2.64 2.80 2.80 2.77 3.14

Maximum 3.07 3.60 3.42 3.19 4.09
Standard deviation 0.15 0.15 0.17 0.14 0.22

Max / Median degree
Minimum 2.20 2.17 2.40 2.55 3.00
Median 3.35 3.00 3.68 3.89 4.60

Maximum 5.88 4.67 7.00 6.29 7.80
Standard deviation 0.62 0.52 0.81 0.74 0.86
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Table 7: Descriptive statistics of the 100 networks of short-term interbank exposures.
Networks have been simulated using the methodology developed by Halaj and Kok [2013]. The probability map has
been obtained from data on actual euro money market loans with maturities up to one month.

2008 2009 2010 2011 2012

Number of links
Average 468,43 289,43 437,30 439,47 319,97

Minimum 423,00 205,00 403,00 403,00 284,00
Median 467,50 272,00 435,00 439,50 321,00

Maximum 500,00 480,00 474,00 476,00 349,00
Standard deviation 15,29 64,71 14,36 17,82 11,68

Density
Average 0,09 0,06 0,08 0,08 0,06

Minimum 0,08 0,04 0,08 0,08 0,05
Median 0,09 0,05 0,08 0,08 0,06

Maximum 0,10 0,09 0,09 0,09 0,07
Standard deviation 0,00 0,01 0,00 0,00 0,00

Average shortest path
Average 2,44 3,11 2,58 2,63 2,97

Minimum 2,22 2,45 2,40 2,29 2,67
Median 2,42 3,12 2,58 2,62 2,94

Maximum 3,09 3,88 2,91 2,96 3,49
Standard deviation 0,11 0,29 0,09 0,13 0,15

Max. / Median degree
Average 2,78 4,38 2,93 3,30 3,66

Minimum 2,14 2,00 2,00 2,50 2,88
Median 2,76 4,33 2,91 3,27 3,63

Maximum 3,80 7,17 3,91 4,50 4,86
Standard deviation 0,28 1,01 0,39 0,39 0,42
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Table 8: Descriptive statistics of domestic and cross-country exposures in the 100 long-term interbank
networks.
The probability map has been obtained from data on actual euro money market loans with maturities from one to six
months. Table A. shows statistics of total exposures of banks to their domestic counterparties over the total capital
of the system. Table B. shows statistics of exposures of banks to their foreign counterparties (by country) divided by
the total capital of the system.

Year

2008 2009 2010 2011 2012
A. Domestic interbank exposures
(country level, % of country’s capital)

Mean 15% 19% 12% 12% 19%
Min 0% 0% 0% 0% 0%

Median 1% 6% 6% 5% 3%
Max 184% 189% 112% 76% 148%

Std dev 40% 41% 24% 19% 36%
B. Cross-border interbank exposures
(country level, % of country’s capital)

Mean 6% 5% 5% 7% 4%
Min 0% 0% 0% 0% 0%

Median 1% 2% 1% 2% 0%
Max 110% 116% 116% 204% 194%

Std dev 13% 11% 11% 20% 14%
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Table 9: Explanatory variables for the system-wide determinants of cross-border contagion
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A.4 Simulation results

Table 10: Summary statistics of simulation results averaged over 500 shock scenarios and the defaults of
an initial bank.
Distribution of default outcomes over 100 pairs of networks. Default outcomes are averaged over the shock scenarios
and over the defaults of an initial bank. Default outcomes are reported in terms of number of bank failures triggered
by the default of an initial bank and of losses as a proportion of total system capital (i.e. of depleted capital). All the
losses due to the common market shock and to solvency contagion are accounted for in ’... before hoarding’, whereas
total losses are accounted for in ’... after hoarding’. Thus the difference between the two is attributed to liquidity
contagion

2008 2009 2010 2011 2012

A. Number of defaults before hoarding
Min 1,27 1,19 1,18 1,22 1,08

5th percentile 1,33 1,23 1,20 1,24 1,12
Mean 1,49 1,34 1,28 1,33 1,19

95th percentile 1,73 1,54 1,41 1,44 1,30
Max 1,97 1,68 1,51 1,58 1,45

Std dev 0,13 0,10 0,06 0,07 0,06
B. Percentage of depleted capital before hoarding

Min 4,61% 4,41% 4,38% 4,46% 4,40%
5th percentile 4,67% 4,45% 4,39% 4,47% 4,43%

Mean 4,95% 4,61% 4,51% 4,58% 4,55%
95th percentile 5,45% 4,82% 4,69% 4,72% 4,77%

Max 6,38% 5,05% 5,01% 5,14% 4,95%
Std dev 0,26% 0,12% 0,10% 0,09% 0,11%

C. Number of defaults after hoarding
Min 1,29 1,22 1,18 1,25 1,09

5th percentile 1,35 1,25 1,23 1,26 1,12
Mean 1,74 1,44 1,61 1,47 1,25

95th percentile 3,13 2,07 2,88 2,34 1,41
Max 4,55 2,49 5,21 3,25 3,11

Std dev 0,58 0,25 0,74 0,37 0,26
D. Percentage of depleted capital after hoarding

Min 4,65% 4,45% 4,40% 4,46% 4,40%
5th percentile 4,76% 4,48% 4,41% 4,50% 4,43%

Mean 5,37% 4,71% 4,87% 4,70% 4,65%
95th percentile 7,43% 5,22% 6,74% 5,27% 4,94%

Max 13,41% 5,92% 8,65% 6,86% 10,22%
Std dev 1,29% 0,27% 0,81% 0,35% 0,61%
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Table 11: Summary statistics of simulation results : maximum losses over 500 shock scenarios and the
defaults of an initial bank.
Distribution of maximum default outcomes over 100 pairs of networks. Maximum default outcomes are measured in
terms of maximum number of bank failures triggered by the default of an initial bank and of losses as a proportion
of total system capital (i.e. of depleted capital). All the losses due to the common market shock and to solvency
contagion are accounted for in ’... before hoarding’, whereas total losses are accounted for in ’... after hoarding’. Thus
the difference between the two is attributed to liquidity contagion

2008 2009 2010 2011 2012

A. Number of defaults before hoarding
Min 4,00 3,00 3,00 3,00 2,00

5th percentile 4,00 3,09 3,00 3,00 2,30
Mean 6,89 5,44 4,41 4,97 3,92

95th percentile 10,11 9,00 7,00 7,70 6,50
Max 13,00 11,00 9,00 9,14 9,00

Std dev 2,02 1,67 1,21 1,27 1,33
B. Percentage of depleted capital before hoarding

Min 10,57% 8,29% 8,34% 8,61% 7,29%
5th percentile 11,84% 8,87% 9,09% 8,93% 8,61%

Mean 17,01% 12,28% 11,69% 12,13% 11,34%
95th percentile 26,41% 17,03% 15,77% 16,19% 15,86%

Max 33,43% 21,67% 18,13% 20,73% 22,34%
Std dev 4,63% 2,60% 2,06% 2,34% 2,52%

C. Number of defaults after hoarding
Min 4,00 3,00 3,00 3,00 2,00

5th percentile 5,00 3,81 3,01 3,06 2,31
Mean 7,62 5,90 5,31 5,31 4,11

95th percentile 11,71 9,01 8,51 8,00 7,00
Max 14,00 11,00 11,02 9,14 9,00

Std dev 2,24 1,82 1,72 1,33 1,39
D. Percentage of depleted capital after hoarding
Min 11,25% 8,35% 8,34% 8,65% 7,29%

5th percentile 12,59% 9,38% 9,30% 9,10% 8,90%
Mean 18,13% 12,81% 12,40% 12,39% 11,72%

95th percentile 29,11% 17,76% 16,98% 17,25% 16,70%
Max 33,43% 24,18% 20,50% 20,73% 22,34%

Std dev 5,04% 2,72% 2,43% 2,44% 2,67%
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Table 12: Summary statistics of simulation results : domestic and cross-country losses averaged over 500
schock scenarios and the defaults of an initial bank.
Table A. presents by-country distributions of average losses (over 100 network pairs) imposed by a bank on its
domestic counterparties over the total capital of the system. Table B. presents by-country distributions of average
losses (over 100 network pairs) imposed by a bank on its foreign counterparties over the total capital of the system.

Year

2008 2009 2010 2011 2012
A. Losses imposed on domestic banking system
Mean 1,60% 1,56% 1,49% 1,31% 1,86%
Min 0,00% 0,00% 0,00% 0,00% 0,00%

Median 1,00% 1,20% 1,34% 0,90% 0,68%
Max 7,59% 6,00% 7,03% 4,91% 12,33%

Std dev 2,08% 1,70% 1,75% 1,53% 3,06%
B. Losses imposed on a foreign banking system
Mean 1,29% 0,87% 1,03% 0,86% 0,56%
Min 0,00% 0,00% 0,00% 0,00% 0,00%

Median 0,86% 0,52% 0,70% 0,37% 0,19%
Max 14,36% 10,59% 7,20% 15,47% 11,81%

Std dev 1,80% 1,20% 1,19% 1,50% 1,05%

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

Ordered networksLo
ss
es

in
ca
pi
ta
la

s
%

of
to
ta
lc

ap
ita

l

Share of depleted capital, year 2010 (max over banks)

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

Ordered networksLo
ss
es

in
ca
pi
ta
la

s
%

of
to
ta
lc

ap
ita

l

Share of depleted capital, year 2008 (max over banks)

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

Ordered networksLo
ss
es

in
ca
pi
ta
la

s
%

of
to
ta
lc

ap
ita

l

Share of depleted capital, year 2009 (max over banks)

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

Ordered networksLo
ss
es

in
ca
pi
ta
la

s
%

of
to
ta
lc

ap
ita

l

Share of depleted capital, year 2011 (max over banks)

0 10 20 30 40 50 60 70 80 90 1000

10

20

30

Ordered networksLo
ss
es

in
ca
pi
ta
la

s
%

of
to
ta
lc

ap
ita

l

Share of depleted capital, year 2012 (max over banks)

Before liquidity hoarding
After liquidity hoarding

Figure 3: Share of interbank losses -before and after liquidity hoarding- ordered by the size of
total losses (as % of total system capital)
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Figure 4: Distribution of losses due to solvency contagion (as % of total system capital)

Figure 5: Distribution of losses due to both solvency and liquidity contagion (as % of total
system capital)
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Figure 6: Distribution of maximum number of failures due to solvency contagion

Figure 7: Distribution of maximum number of failures due to both solvency and liquidity
contagion
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Figure 8: Distribution of the 5% worst losses due to solvency contagion over 500 shock scenarios
and 100 network pairs (as % of total system capital)

Figure 9: Distribution of the 5% worst losses due to both solvency and liqidity contagion over
500 shock scenarios and 100 network pairs (as % of total system capital)
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Figure 10: Total cross-border contagion in 2008
The cells (A;B) of the map represent with colors the strength of the total capital loss experienced by country A’s
banking sector (as a fraction of its aggregate initial capital) given a common market shock and the default of a
bank in the foreign banking system B. Total country capital losses are computed on average over 500 realizations
of the market shock and 100 different pairs of long- and short-term exposure networks. They have been normalized
to account for the different number of banks (and hence of simulations) considered for the various national banking
sectors. Heatmaps have been anonymized for data confidentiality reasons ; countries for which less than 3 sample
banks are availble have been removed from the charts. Countries are ordered randomly, but the order is the same
across years.

Figure 11: Total cross-border contagion in 2009
See caption in Figure 10.
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Figure 12: Total cross-border contagion in 2010
See caption in Figure 10.

Figure 13: Total cross-border contagion in 2011
See caption in Figure 10. Note that one additional country has been removed from the 2011 heat map because of
data unavailability for sample banks from this country in 2011.
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Figure 14: Total cross-border contagion in 2012
See caption in Figure 10. Note that one additional country has been removed from the 2012 heat map because of
data unavailability for sample banks from this country in 2012.
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Figure 15: Systemic banks for each of the 5 years of analysis.
For each year, we have number of networks in which each bank is systemic. Most of the banks are either never systemic
or rarely systemic, whereas some are systemic in almost all 100 simulated networks. We define a bank to be systemic,
when losses (through both channels of contagion) imposed on the system by its default exceed 85th percentile of loss
distribution.

Figure 16: Fragile banks for each of the 5 years of analysis.
For each year, we have number of networks in which each bank is fragile. Most of the banks are either never fragile or
rarely fragile, whereas some are fragile in more than half of 100 simulated networks. We define a bank to be fragile,
when it defaults due to an initial default more frequently that 85% of other banks.
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A.5 Econometrics

(1) (2) (3) (4) (5) (6)
NBD NBD NBD Capital loss Capital loss Capital loss

main
Capital ratio -88.87∗∗∗ -88.88∗∗∗ -88.80∗∗∗ -18.17∗∗∗ -18.15∗∗∗ -18.16∗∗∗

(-10.35) (-10.36) (-10.33) (-20.92) (-20.93) (-20.95)

ST funding / Assets 20.06∗∗∗ 20.08∗∗∗ 20.13∗∗∗ 5.110∗∗∗ 5.107∗∗∗ 5.104∗∗∗

(9.30) (9.45) (9.62) (4.79) (4.78) (4.79)

Closeness -16.10∗∗ -16.28∗∗ -16.96∗∗ 3.593∗ 3.918∗ 3.625∗

(-2.01) (-2.02) (-2.10) (1.72) (1.85) (1.68)

EXP. low ST funding / Assets 1.710∗∗∗ 1.703∗∗∗ 1.665∗∗∗ 0.852∗∗∗ 0.845∗∗∗ 0.838∗∗∗

(4.49) (4.50) (4.38) (5.30) (5.31) (5.28)

EXP. low Capital 0.977∗∗∗ 0.973∗∗∗ 1.020∗∗∗ 0.489∗∗∗ 0.486∗∗∗ 0.495∗∗∗

(5.12) (5.08) (5.31) (6.52) (6.41) (6.55)

EXP. high N. Counterparties -0.558∗∗∗ -0.556∗∗∗ -0.543∗∗∗ -0.156∗∗∗ -0.154∗∗∗ -0.153∗∗∗

(-3.64) (-3.65) (-3.56) (-3.70) (-3.65) (-3.64)

LT Clustering -0.182 0.581 0.516 0.781
(-0.05) (0.16) (0.50) (0.75)

LT Avg. Path length 0.368 -0.0265 0.271 0.134
(0.52) (-0.04) (1.38) (0.68)

LT Max / Mean degree 0.0603 0.0467 0.128 0.120
(0.19) (0.15) (1.46) (1.36)

ST Clustering -2.107 -0.806
(-0.75) (-0.96)

ST Avg. Path length -0.105 -0.0429
(-0.33) (-0.49)

ST Max / Mean degree -0.775∗∗∗ -0.266∗∗∗

(-3.19) (-4.26)
Observations 6500 6500 6500 6500 6500 6500
BIC . . . . . .
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 13: Explaining bank fragility.
The dependent variable in columns (1), (2) and (3) is the frequency of defaults of bank i, for each network n, following
the default of another bank j, j 6= i. The dependent variable in columns (4), (5) and (6) is the share of losses suffered
by bank i, for each network n, following the default of another bank j, j 6= i.
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(1) (2) (3) (4) (5) (6)
NBD NBD NBD Capital loss Capital loss Capital loss

main
Capital ratio -18.49∗∗∗ -18.48∗∗∗ -18.48∗∗∗ -6.649∗∗∗ -6.631∗∗∗ -6.635∗∗∗

(-15.37) (-15.36) (-15.43) (-20.03) (-20.10) (-20.16)

ST funding / Assets 1.574∗ 1.566∗ 1.538∗ 0.644∗∗ 0.639∗∗ 0.636∗∗

(1.92) (1.90) (1.88) (2.46) (2.45) (2.44)

Closeness 27.79∗∗∗ 28.26∗∗∗ 28.58∗∗∗ 16.41∗∗∗ 17.01∗∗∗ 16.89∗∗∗

(6.71) (6.74) (6.62) (11.37) (11.68) (11.32)

EXP. low ST funding / Assets 0.0117 0.00489 -0.0126 0.0510 0.0423 0.0383
(0.08) (0.03) (-0.08) (0.93) (0.79) (0.72)

EXP. low Capital 0.0818 0.0805 0.0974 -0.0928 -0.0970 -0.0939
(0.35) (0.34) (0.42) (-1.15) (-1.22) (-1.19)

EXP. high Beta 0.281∗∗∗ 0.281∗∗∗ 0.277∗∗∗ 0.156∗∗∗ 0.157∗∗∗ 0.157∗∗∗

(3.64) (3.65) (3.60) (5.37) (5.42) (5.41)

LT Clustering 0.571 1.657 0.750 0.942∗

(0.35) (0.97) (1.38) (1.68)

LT Avg. Path length 0.192 -0.0953 0.288∗∗∗ 0.214∗∗

(0.62) (-0.31) (2.65) (1.96)

LT Max / Mean degree 0.146 0.127 0.199∗∗∗ 0.194∗∗∗

(1.54) (1.35) (5.91) (5.75)

ST Clustering -4.165∗∗∗ -0.644
(-2.59) (-1.19)

ST Avg. Path length -0.309 -0.0177
(-1.51) (-0.30)

ST Max / Mean degree -0.634∗∗∗ -0.143∗∗∗

(-5.34) (-3.73)
Observations 6500 6500 6500 6500 6500 6500
BIC . . . . . .
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 14: Explaining bank systemicity.
The dependent variable in columns (1), (2) and (3) is the frequency of failures imposed by the default of bank i, for
each network n. The dependent variable in columns (4), (5) and (6) is the share of losses imposed by the default of
bank i, for each network n.
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