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Abstract

In this paper we analyze Granger causality testing in a mixed-frequency VAR, originally
proposed by Ghysels (2012), where the difference in sampling frequencies of the variables
is large. In particular, we investigate whether past information on a low-frequency vari-
able help in forecasting a high-frequency one and vice versa. Given a realistic sample
size, the number of high-frequency observations per low-frequency period leads to param-
eter proliferation problems in case we attempt to estimate the model unrestrictedly. We
propose two approaches to solve this problem, reduced rank restrictions and a Bayesian
mixed-frequency VAR. For the latter, we extend the approach in Banbura et al. (2010)
to a mixed-frequency setup, which presents an alternative to classical Bayesian estimation
techniques. We compare these methods to a common aggregated low-frequency model as
well as to the unrestricted VAR in terms of their Granger non-causality testing behavior
using Monte Carlo simulations. The techniques are illustrated in an empirical application
involving daily realized volatility and monthly business cycle fluctuations.
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1 Introduction

Economic time series are published at various frequencies. While higher frequency variables
used to be aggregated (e.g., Silvestrini and Veredas, 2008), it has become more and more
popular to consider models that take into account the difference in frequencies of the processes
under consideration. As argued extensively in the mixed-frequency literature (e.g., Ghysels
et al., 2007), working in a mixed-frequency setup instead of a common low-frequency one is
advantageous due to the potential loss of information in the latter scenario and feasibility of
the former through MI(xed) DA(ta) S(ampling) regressions (Ghysels et al., 2004), even in the
presence of many high-frequency variables compared to the number of observations.

Until recently, the MIDAS literature was limited to the single-equation framework, in which
one of the low-frequency variables is chosen as the dependent variable and the high-frequency
ones are in the regressors. Since the work of Ghysels (2012) for stationary series and the
extension of Götz et al. (2013) and Ghysels and Miller (2013) for the non-stationary and possibly
cointegrated case, we can analyze the link between high- and low-frequency series in a VAR
system treating all variables as endogenous. Ghysels et al. (2013) define causality in such
a mixed-frequency VAR and develop a corresponding test statistic. The authors, however,
make an implicit assumption on the variables involved, which does not hold in many economic
applications: The number of high-frequency observations within a low-frequency period is rather
small, e.g., as in a year/quarter- or quarter/month-example.

In this paper we analyze the finite sample behavior of Granger non-causality tests when
the number of high-frequency observations per low-frequency period is large, e.g., as in a
month/working day-example (like the application presented in this chapter). To potentially
avoid the proliferation of parameters we consider two parameter reduction techniques, reduced
rank restrictions and a Bayesian mixed-frequency VAR. With respect to the latter we show
how to properly extend the dummy observation approach of Banbura et al. (2010) to a mixed-
frequency setting.1 Importantly, due to stacking the high-frequency variables in the mixed-
frequency VAR (Ghysels, 2012), their approach cannot be applied directly such that a properly
adapted choice of auxiliary dummy variables corresponding to the prior moments is required.
The aforementioned approaches are compared to a common low-frequency VAR, obtained by
temporally aggregating the high-frequency variable (?), and the unrestricted model, which is
expected to suffer from a parameter proliferation problem.

The rest of the paper is organized as follows. In Section 2 notations are introduced, the
mixed-frequency VAR (MF-VAR hereafter) for our specific case at hand is presented and
Granger (non-)causality is defined formally. Section 3 discusses the approaches to reduce the
number of parameters to be estimated, whereby reduced rank restrictions (Section 3.1) as well
as Bayesian MF-VARs (Section 3.2) are presented in detail. The finite sample performances
of these tests are analyzed via a Monte Carlo experiment in Section 4. An empirical example
with U.S. data on the monthly industrial production index and daily volatility in Section 5

1Banbura et al. (2010) refer to these variables as dummy observations. To avoid confusion between high- and
low-frequency observations and auxiliary variables, we use the term ’auxiliary dummy variables’.
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illustrates the results. Section 6 gives concluding remarks.

2 Causality in a Mixed-frequency VAR

2.1 Notation

Let us start from a two variable mixed-frequency system, where yt, t = 1, . . . , T, is the low-

frequency variable and x
(m)
t−i/m are the high-frequency variables with m high-frequency observa-

tions per low-frequency period t. Contrary to Ghysels et al. (2013), we assume m to be rather
large as in a year/month- or month/working day-example. We also assume m to be constant
rather than varying with t.2 The value of i indicates the specific high-frequency observation

under consideration, ranging from the beginning of each t-period (x
(m)
t−(m−1)/m) until the end

(x
(m)
t with i = 0). These notational conventions have become standard in the mixed-frequency

literature and are similar to the ones in Götz et al. (2014), Clements and Galvão (2008, 2009)
or Miller (2012).

Furthermore, let Wt = (W ′t−1, W ′t−2, . . ., W ′t−p)
′, i.e., it stacks the last p low-frequency lags

of any process W . Finally, 0i×j (1i×j) denotes an (i×j)-matrix of zeros (ones), Ii is an identity
matrix of dimension i, ⊗ represents the Kronecker product and vec corresponds to the operator
stacking the columns of a matrix.3

2.2 MF-VARs

Considering each high-frequency variable such that

X
(m)
t = (x

(m)
t , x

(m)
t−1/m, . . . , x

(m)
t−(m−1)/m)′,

a dynamic structural equations model for the stationary multivariate process Zt = (yt, X
(m)′
t )′

is given by AcZt = c+A1Zt−1 + . . .+ApZt−p+εt,
4 where Σε is a diagonal covariance matrix and

Ac pertains to contemporaneous relationships between the series. Note that the parameters in

Ac are related to the ones in A1 due to stacking the high-frequency observations X
(m)
t in Zt

2As long as m is deterministic, even time-varying frequency discrepancies do not pose a problem on a theo-
retical level. However, the assumption of constant m simplifies the notation greatly (Ghysels, 2012).

3Extensions towards representations of higher dimensional multivariate systems as in Ghysels et al. (2013) can
be considered, but are left for further research here. Analyzing Granger causality among more than two variables
inherently leads to multi-horizon causality (see Lütkepohl, 1993 among others). The latter implies the potential
presence of a causal chain: For example, in a trivariate system, X may cause Y through an auxiliary variable
Z. To abstract from that scenario, Ghysels et al. (2013) often consider cases, in which high- and low-frequency
variables are grouped and causality patterns between these groups, viewed as a bivariate system, are analyzed.
They study the presence of a causal chain and multi-horizon causality in a Monte Carlo analysis though.

4Compared to Ghysels (2012) we put the low-frequency variable first.
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(Ghysels, 2012). Explicitly, for a lag length of p = 1 the model reads as:


1 β1 β2 . . . βm
δ1 1 −ρ1 . . . −ρm−1

δ2 0 1 . . . −ρm−2
...

...
...

. . .
...

δm 0 0 . . . 1





yt

x
(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m


=


c1

c2
...

cm+1

+


ρy θ1 θ2 . . . θm
ψ2 ρm . . . . . . 0
ψ3 ρm−1 ρm . . . 0
...

...
...

. . .
...

ψm+1 ρ1 ρ2 . . . ρm





yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+


ε1t

ε2t
...

ε(m+1)t

 .

(1)

The matrix Ac links contemporaneous values of y and x: βj 6= 0 implies that yt is affected

by incoming observations of X
(m)
t , whereas δj 6= 0 implies that the high-frequency observations

are influenced by yt (see Götz and Hecq, 2014). The latter becomes interesting for studying
policy analysis, where the high-frequency policy variable(s) may react to current low-frequency
conditions (see Ghysels, 2012 for details). Note that an AR(m) model is assumed for the high-
frequency process. If instead it is assumed to follow an AR(q) model with q < m, one should
set ρq+1 = . . . = ρm = 0 in (1).

Pre-multiplying (1) by A−1
c we get to the mixed-frequency reduced-form VAR(p), i.e., the

aforementioned MF-VAR, model:

Zt = A−1
c c+A−1

c A1Zt−1 + . . .+A−1
c ApZt−p +A−1

c εt
= µ+ Γ1Zt−1 + . . .+ ΓpZt−p + ut

or
Zt = µ+B′Zt + ut, (2)

where B = (Γ1,Γ2, . . . ,Γp)
′. Equation (2) is easy to estimate on small systems. As an example,

4



let us explicitly write a VAR(1) as

yt

x
(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m


=


µ1

µ2
...

µm+1

+


γ1,1 γ1,2 · · · γ1,m+1

γ2,1 γ2,3 · · · γ2,m+1
...

...
. . .

...
γm+1,1 γm+1,2 · · · γm+1,m+1


︸ ︷︷ ︸

Γ1

×



yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+


u1t

u2t
...

u(m+1)t

 ,

(3)

ut ∼ N(0((m+1)×1),Σu), Σu =


σ1,1 σ1,2 . . . σ1,m+1

σ2,1 σ2,2 . . .
...

...
...

. . .
...

σm+1,1 . . . . . . σm+1,m+1

 .

2.3 Granger Causality in MF-VARs

Let the information set generated by the collection of sigma-fields Ft = σ(Zs, s ≤ t), t ≥ 0 be
denoted by Ωt. Furthermore, let Zt be adapted to that filtration such that Ωt represents the
set of information available at moment t (?). ΩW

t denotes the information set containing the

information for all stochastic process except W up to moment t. P [X
(m)
t+h|Ω

W
t ] is the best linear

forecast of X
(m)
t+h based on ΩW

t and likewise for P [yt+h|ΩW
t ]. Granger non-causality is defined

as follows (?):

Definition 1 y does not Granger cause X(m) if

P [X
(m)
t+1 |Ω

y
t ] = P [X

(m)
t+1 |Ωt].

Similarly, X(m) does not Granger cause y if

P [yt+1|ΩX(m)

t ] = P [yt+1|Ωt].

In other words, y does not Granger cause X(m) if past information of the low-frequency
variable do not help in predicting current (or future) values of the high-frequency variables and
vice versa (?). In terms of (3), testing for Granger non-causality implies the following null (and
alternative) hypotheses:
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� y does not Granger cause X(m)

H0 : γ2,1 = γ3,1 = . . . = γm+1,1 = 0,
HA : γi,1 6= 0 for at least one i = 2, . . . ,m+ 1.

� X(m) does not Granger cause y

H0 : γ1,2 = γ1,3 = . . . = γ1,m+1 = 0,
HA : γ1,i 6= 0 for at least one i = 2, . . . ,m+ 1.

Ghysels et al. (2013) implicitly assume m to be rather small (m = 3 or 4 in their case) in
order to estimate the MF-VAR and then test for Granger non-causality. With m large (say
m ≥ 12), we would need a much larger sample than is usually applicable for macroeconomic
data sets to estimate the parameters and test for causality properly. Additional lags (p > 1)
would further complicate the issue.

2.4 Remark on Nowcasting Causality

It becomes clear from Section 2.3 that Granger non-causality in both directions is defined in
terms of the low frequency index t. Given the mixed-frequency nature of the variables under

consideration, it may be of interest to analyze whether knowing the values of x
(m)
t−i/m, i =

0, . . . ,m−1, helps to predict yt, which is referred to as instantaneous causality in the common-
frequency case (?, Lütkepohl, 2005, p.42, Hamilton, 1994, p. 301, Gianetto and Räıssi, 2012).

Götz and Hecq (2014) have introduced the term nowcasting causality as the mixed-frequency
analogue to instantaneous causality, because it amounts to predicting yt using values of the high-
frequency variables within period t. In terms of testing for nowcasting non-causality, Götz and

Hecq (2014) argue that X
(m)
t is not nowcasting causal for yt if and only if the corresponding

errors of the data generating process of Zt are uncorrelated (Lütkepohl, 2005). Indeed, testing
for nowcasting non-causality corresponds to βj = δj = 0 ∀j in (1). In that case, though, Σu

is block diagonal with σ1,j = σj,1 = 0, j = 2, . . . ,m + 1, because Σu = A−1
c ΣεA

−1′
c . Thus, we

can test for nowcasting non-causality by using a Wald test on the (1, j)-elements of Σ̂u, i.e.,
σ̂1,j = 1

T

∑T
t=1 û1tûjt, j = 2, . . . ,m+ 1, where ûjt corresponds to the residuals of equation j.5

3 Parameter Reduction

This section presents techniques that we have considered, and evaluated through a Monte Carlo
exercise, with the aim to reduce the amount of parameters to be estimated in the MF-VAR
model. Two approaches are discussed in detail, reduced rank restrictions and a Bayesian MF-
VAR.

5In this paper we do not include degree of freedom corrections when computing estimates of covariance
matrices due to their invariance asymptotically.
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There are many alternative approaches to reduce the number of parameters among which
are principal components, Lasso (Tibshirani, 1996) or ridge regressions.6 The reason not to
consider principal components is that it does not necessarily preserve the dynamics of the
VAR under the null. To be more precise, nothing prevents, e.g., the first and only principal
component to be loading only on y implying that the remaining dynamics enter the error term.
In other words, principal components may and will most likely not preserve the autoregressive
matrices in (2). This affects, in a possibly drastic manner, the block of parameters we test on
for Granger non-causality.

3.1 Reduced Rank Restrictions

3.1.1 Reduced Rank Regression Model

In order to reduce the number of parameters to estimate in the MF-VAR, we propose the
following reduced rank regression model, in which we assume that rk(B′

X(m)) = r < m (Carriero
et al., 2011) with B′

X(m) being obtained from B′ by excluding the first columns of Γ1, Γ2, . . .,
Γp. The model reads as

Zt = µ+ γ·,1yt + α
∑p

i=1 δ
′
iX

(m)
t−i + νt

= µ+ γ·,1yt + αδ′X
(m)
t + νt,

(4)

where γ·,1 is the (m + 1) × p matrix containing the first columns of Γ1,Γ2, . . . ,Γp and α and
δ = (δ′1, . . . , δ

′
p)
′ are (m + 1) × r and pm × r matrices, respectively. Note that (4) can also be

written in terms of Zt. Let us define Γi ≡ (γ
(i)
·,1 , αδ

′
i), where γ

(i)
·,1 , i = 1, . . . , p, corresponds to

the ith column of γ·,1. Then, (4) is equivalent to

Zt = µ+B′Zt + νt, (5)

6Cubadda and Guardabascio (2012) analyze a so-called ’medium-N ’ approach arguing that many of the results
in the literature favor a number of predictors (N) that is considerably larger than in usual small-scale forecasting
problems, but not too large for being forced to rely on double (T and N) asymptotic methods. The authors find,
using Monte Carlo simulations, that, under the so-called Helland and Almoy (1994) condition, both principal
components and partial least squares (to be discussed later) provide consistent estimates in such a medium-N
framework as only the sample size diverges.
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where B = (Γ1, . . . ,Γp)
′. For p = 1 the models becomes

yt
x(m)

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m

 = µ+


γ1,1

γ2,1
...

γm+1,1

 yt−1 +


α1

α2
...

αm+1

 δ′1


x

(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m

+ νt

= µ+




γ1,1

γ2,1
...

γm+1,1

 ,


α1

α2
...

αm+1

 δ′1


︸ ︷︷ ︸

Γ1

×



yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+ νt,

where each αi, i = 1, . . . ,m+ 1, is of dimension 1× r and where δ1 is an m× r matrix. Hence,

we could call δ′X
(m)
t a vector of r observable high-frequency factors. Note that r = m − s,

where s represents the rank reduction we are able to achieve within X
(m)
t .7

In terms of parameter reduction, the unrestricted VAR in (2) requires p(m+ 1)2 coefficients
to be estimated in the autoregressive matrices, whereas the VAR under reduced rank restrictions
in (4) or (5) needs p(m + 1) + r(m + 1) + prm parameter estimates. As an example, assume
p = 1 and m = 20. Then, if r = 1, 2 or 3, there are, respectively, 62, 103 or 144 coefficients to
be estimated in Γ1 instead of 441 in Γ1 in (3). Note that we do not require yt−1 to be included
in the same transmission mechanism as the x variables.

3.1.2 Obtaining Observable Factors

We use three ways to obtain the observable factors, canonical correlation analysis (CCA here-
after), partial least squares (PLS hereafter) and heterogeneous autoregressive (HAR heferafter)
type restrictions.

CCA is based on analyzing the eigenvalues and corresponding eigenvectors of

Σ̂−1

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃

Σ̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m) (6)

or, similarly, of the symmetric matrix

Σ̂
−1/2

X̃
(m)

X̃
(m)Σ̂X̃

(m)
Z̃

Σ̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m)Σ̂
−1/2

X̃
(m)

X̃
(m) . (7)

7There are two ways to justify the reduced rank feature of the autoregressive matrix. First, at the model
representation level we may assume that x follows an AR(q) process with q < m and that the last m−q elements

of each X
(m)
t−i , i = 1, . . . , p, have a zero coefficient in the equation for yt. Plugging these restrictions into (2) results

in a reduced rank of B′
X(m) . Second, at the empirical level we can interpret the MF-VAR as an approximation

of the VARMA obtained after the block marginalization of a high-frequency VAR for each variable. In this
situation, reduced rank matrices may empirically not be rejected by the data.

8



For a detailed discussion we refer the reader to Anderson (1951) or Vahid and Engle (1993)
for the application to common dynamics. Note that Σ̂ij represents the empirical covariance

matrix of processes i and j. Furthermore, Z̃ and X̃
(m)

indicate Zt and X
(m)
t , respectively, to

be concentrated out by the variables that do not enter in the reduced rank regression, i.e., the
intercept and yt−1. Denoting by V̂ = (v1, v2, . . . , vr), with v′ivj = 1 for i = j and 0 otherwise,
the eigenvectors corresponding to the r largest eigenvalues of the matrix in (7), we obtain the
estimators of α and δ as:

α̂ = Σ̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m)Σ̂
−1/2

X̃
(m)

X̃
(m) V̂

δ̂ = Σ̂
−1/2

X̃
(m)

X̃
(m) V̂ .

Note that the estimation of the eigenvectors obtained from the canonical correlation analysis
in (6) or (7) may, however, perform poorly with high-dimensional systems, because inversions
of the large variance matrices Σ̂−1

Z̃Z̃
and Σ̂−1

X̃
(m)

X̃
(m) are required.

As an alternative to CCA we use a PLS algorithm similar to the one used in Cubadda and
Hecq (2011) or Cubadda and Guardabascio (2012). In order to make the solution of this eigen-
value problem invariant to scale changes of individual elements, we compute the eigenvectors

associated with the largest eigenvalues of the matrix D̂
−1/2

X̃
(m)

X̃
(m) Σ̂

X̃
(m)

Z̃
D̂−1
Z̃Z̃

Σ̂
Z̃X̃

(m) D̂
−1/2

X̃
(m)

X̃
(m)

with D̂
X̃

(m)
X̃

(m) and D̂Z̃Z̃ being diagonal matrices having the diagonal elements of, respectively,

Σ̂
X̃

(m)
X̃

(m) and Σ̂Z̃Z̃ as their entries. The computation of α̂ and δ̂ works in a similar fashion as

with CCA-based factors.
Finally, we may impose the presence of r = 3p factors,8 inspired by the Corsi HAR-model

(Corsi, 2009). For i = 1, . . . , p:

δi =


03(i−1)×m

1 01×(m−1)

11×( 1
4
m) 0(1× 3

4
m)

11×m
03(p−i)×m


′

⇒ δ′X
(m)
t =



x
(m)
t−1∑ 1

4
m−1

i=0 x
(m)
t−1−i/m∑m−1

i=0 x
(m)
t−1−i/m
...

x
(m)
t−p∑ 1

4
m−1

i=0 x
(m)
t−p−i/m∑m−1

i=0 x
(m)
t−p−i/m


.

For m = 20, i.e., the month/working day-example mentioned before, and p = 1 this corresponds
to

δ′X
(m)
t =


x

(20)
t−1∑4

i=0 x
(20)
t−1−i/20∑19

i=0 x
(20)
t−1−i/20

 ≡
 xDt−1

xWt−1

xMt−1

 ,

8To ensure that r < m we assume hence that p < 1
3
m in this case.
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with xDt , x
W
t and xMt denoting daily, weekly and monthly measures, respectively. As noted in

Ghysels and Valkanov (2012) and Ghysels et al. (2007), these HAR-type restrictions are a special
case of MIDAS with step functions introduced in Forsberg and Ghysels (2007). Considering

partial sums of regressors x as Xt(K,m) =
∑K

i=0 x
(m)
t−i/m, a MIDAS regression with M steps

reads as

yt = µ+

M∑
j=1

βjXt(Kj ,m) + εt,

where K1 < . . . < KM . Alternative to this type of HAR-restrictions, we could use MIDAS
restrictions as introduced in Ghysels et al. (2004). Indeed, the difference between HAR and
MIDAS models can be small (Ghysels and Valkanov, 2012). However, step functions have the
advantage of not requiring non-linear estimation methods, since the distributed lag pattern is
approximated by a number of discrete steps. Also, implementing MIDAS restrictions and testing
for Granger non-causality implies the well-known Davies (1987) problem, i.e., the parameters
determining the MIDAS weights (see Ghysels et al., 2004 for details) are not identified under
the null hypothesis.9

3.1.3 Testing for Granger Non-Causality

Given r, we can test for Granger non-causality by defining R as the matrix that picks the
set of coefficients we want to do inference on, i.e., Rvec(B̂), where B̂ is the estimator of B.
For a general construction of the matrix R in the presence of several low- and high-frequency
variables, we refer the reader to Ghysels et al. (2013). The Wald test is then constructed as

ξ̃W =
[
Rvec(B̂)

]′
(RΩ̂R′)−1

[
Rvec(B̂)

]
, (8)

with
Ω̂ = (W ′W )−1 ⊗ Σ̂,

where Σ̂ = 1
T û
′û is the empirical covariance matrix of the disturbance terms and W is the

regressor set, i.e., an intercept, yt−1 and the high-frequency factors δ′X
(m)
t . As illustrated in

Ghysels et al. (2013), ξW is asymptotically χ2
rank(R). A robust version of (8) is also implemented

in the empirical section.

9To properly test for Granger non-causality in this case, a grid for the weight specifying parameter vector has
to be considered and the corresponding Wald tests for each candidate have to be computed. Subsequently, one
can calculate the supremum of these tests (Davies, 1987) and obtain an ’asymptotic p-value’ using bootstrap tech-
niques (see Hansen, 1996 or Ghysels et al., 2007 for details). While this approach is feasible, it is computationally
more demanding due to applying bootstrapping within a relatively large (due to large m) regression. Admittedly,
the HAR-type restrictions provide less flexibility than the MIDAS approach, yet rely on linear estimation of the
model, which simplifies the analysis greatly and is therefore very appealing from an applied perspective.
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3.2 Bayesian MF-VARs

3.2.1 Restricted MF-VARs

No restrictions are placed on the coefficients in the autoregressive matrices, i.e., B, in (2).
While this may seem reasonable for the first equation, i.e., the one for yt, it is less clear for
the remaining ones. Ghysels (2012) discusses the issue of parsimony in MF-VAR models by
specifying the high-frequency process in such a way as to allow a number of parameters that is
independent from m. In particular, assuming x to follow an ARX(1) process with only one lag
of y in the regressor set yields

x
(m)
t−i/m = µi+2 + ρx

(m)
t−(i+1)/m + πyt−1 + υ(i+2)t for i = 0, . . . ,m− 1. (9)

Completing the system with the first equation of the unrestricted MF-VAR, i.e.,

yt = µ1 +

p∑
k=1

γ(k)
1,1yt−k +

m+1∑
j=2

γ
(k)
1,j x

(m)
t−k−(m−1)/m

+ υ1t, (10)

where γ
(k)
i,j corresponds to the (i, j)-element of matrix Γk in (2), leads to the following restricted

MF-VAR:

yt

x
(m)
t

x
(m)
t−1/m

...

x
(m)
t−(m−1)/m


=


µ1∑m−1

i=0 ρiµ2+i∑m−2
i=0 ρiµ3+i

...
µm+1

+


γ

(1)
1,1 γ

(1)
1,2 γ

(1)
1,3 . . . γ

(1)
1,m+1

π
∑m−1

i=0 ρi ρm

0m×(m−1)
π
∑m−2

i=0 ρi ρm−1

...
...

π ρ

×


yt−1

x
(m)
t−1

x
(m)
t−1−1/m

...

x
(m)
t−1−(m−1)/m


+
∑p

k=2

(
γ

(k)
1,1 γ

(k)
1,2 . . . γ

(k)
1,m+1

0m×(m+1)

)

×


yt−k

x
(m)
t−k
...

x
(m)
t−k−(m−1)/m

+


υ1t∑m−1

i=0 ρiυ(m+1−i)t∑m−2
i=0 ρiυ(m+1−i)t

...
υ(m+1)t


︸ ︷︷ ︸

υ∗t

.

(11)
As for the error terms in (9) and (10), we denote, similarly to Ghysels (2012), that E(υitυit) =
σHH , E(υ1tυit) = σHL for i = 2, . . . ,m + 1, and that E(υ1tυ1t) = σLL. Furthermore, each
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error term is assumed to possess a zero mean and to be normally distributed. Consequently,
υ∗t ∼ N(0(21×1),Συ∗) in (11) with

Συ∗ =

(
σLL σ′·L
σ·L ΣH

υ∗

)
, (12)

where

σ·L = σHL

(
m−1∑
i=0

ρi,

m−2∑
i=0

ρi, . . . ,

1∑
i=0

ρi, 1

)′
and

ΣH
υ∗ = σHH



∑m−1
i=0 ρ2i

∑m−2
i=0 ρ2i+1 . . .

∑1
i=0 ρ

2i+m−2 ρm−1∑m−2
i=0 ρ2i+1

∑m−2
i=0 ρ2i . . .

∑1
i=0 ρ

2i+m−3 ρm−2

...
...

. . .
...

...∑1
i=0 ρ

2i+m−2
∑1

i=0 ρ
2i+m−3 . . .

∑1
i=0 ρ

2i ρ
ρm−1 ρm−2 . . . ρ 1

 .

3.2.2 The Auxiliary Dummy Variable Approach for Mixed-Frequency Data

We will rely heavily on the restricted VAR in (11) when formulating prior beliefs for the pa-
rameters, which are going to be estimated using Bayesian techniques. Indeed, as pointed out
by Carriero et al. (2011), Bayesian methods allow the imposition of such restrictions, while ad-
mitting influence of the data as well. Consequently, Bayesian shrinkage has become a standard
tool when being faced with large-dimensional estimation problems such as large VARs (e.g.,
Banbura et al., 2010, Kadiyala and Karlsson, 1997). Within a MF-VAR, Ghysels (2012) de-
scribes a way to sample the MIDAS hyperparameters and subsequently formulates prior beliefs
for the remaining parameters.10 Once these hyperparameters are taken care of, the Bayesian
analyses of mixed- and common-frequency VAR models are quite similar and, hence, traditional
Bayesian VAR techniques (e.g., Kadiyala and Karlsson, 1997, Litterman, 1986) can be applied.
This amounts to imposing a normal inverted Wishart prior for the VAR parameters, which
retains the principles of the previously specified prior beliefs.

Banbura et al. (2010) show, for the common-frequency case, that adding a set of auxiliary
dummy variables to the system is equivalent to imposing the aforementioned normal inverted
Wishart prior. In the mixed-frequency scenario this approach can, however, not be applied

directly due to the stacked nature of X
(m)
t within Zt. In the sequel, we properly extend this

auxiliary dummy variable approach to the mixed-frequency setup and, thereby, show precisely

10Sekhposyan et al. (2014) use a Sims-Zha shrinkage prior and the algorithm in Waggoner and Zha (2003) to
solve the parameter proliferation problem with Bayesian estimation techniques. Bayesian methods within mixed-
frequency VARs were also considered by Schorfheide and Song (2012). However, the VAR under consideration
differs from the one of Ghysels (2012) in the sense that the high-frequency observations of the low-frequency
variables are assumed to be missing. Hence, it is a ’parameter-driven’ (Cox et al., 1981) high-frequency VAR
with latent variables instead of the ’observation-driven’ VAR considered here. We comment on this difference
more elaborately at a later stage.
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how to choose the moments of the normal inverted Wishart prior when faced with mixed
frequencies.

Let us start by considering the MF-VAR in (2) and choosing the moments for the prior
distributions of the coefficients in B:

E[γ
(k)
i,j ] =


ρm if i = j = k = 1

ρm+j−i if k = 1, j = 2, i > 1
0 else

,

V ar[γ
(k)
i,j ] =


φ λ2

(km+j−2)2
SLH for i = 1, j > 1

φ λ2

(km+2−i)2SHL for j = 1, i > 1
λ2

(km+j−i)2 else

,

(13)

where all γ
(k)
i,j are assumed to be a priori independent and normally distributed. Note that the

covariance matrix of the residuals is for now assumed diagonal and fixed, i.e., Σu = Σ = Σd

with Σd = diag(σ2
L, σ

2
H , . . . , σ

2
H) of dimension m+ 1. Furthermore, Sij =

σ2
i

σ2
j
, i, j = L,H. For µ

we take a diffuse prior.
This specification of prior beliefs is derived from the Minnesota prior in Litterman (1986)

and was extended to the mixed-frequency case by Ghysels (2012). In short, λ determines the
tightness of the prior distributions around the ARX(1) specification in (9), the influence of low-
on high-frequency data and vice versa is controlled by φ and, finally, Sij governs the difference
in scaling between y and the x-variables. Note that λ ≈ 0 results in the posterior coinciding
with the prior, whereas λ =∞ causes the posterior mean to coincide with the OLS estimate of
the unrestricted VAR in (2). From (13) it becomes clear that the prior variances decrease very
quickly as m grows. Hence, in contrast to De Mol et al. (2008), we can already assume that,
for a given sample size, λ needs to grow with the size of the system in order for the data to
have any influence on the estimates also when m is large.

Define Z = (Zµ1 , . . . , Z
µ
T )′, where Zµt = (Z ′t, 1)′, and let us re-write the MF-VAR in (2) in

the following way:
vec(Z)︸ ︷︷ ︸

(m+1)T×1

= Z∗︸︷︷︸
(m+1)T×(m+1)n

vec(B∗)︸ ︷︷ ︸
(m+1)n×1

+ vec(E)︸ ︷︷ ︸
(m+1)T×1

, (14)

where Z = (Z1, . . . , ZT )′, Z∗ = Im+1⊗Z, E = (u1, . . . , uT )′, B∗ = (B′, µ)′ and n = (m+1)p+1.
In order to drop the undesirable feature of a fixed and diagonal covariance matrix Σ, we impose
a normal inverted Wishart prior (at the cost of having to set φ = 1) with the following form
(Kadiyala and Karlsson, 1997):

vec(B∗)|Σ ∼ N(vec(B∗0), [Z∗′0 (Σ−1 ⊗ IT )Z∗0 ]−1) and
Σ ∼ iW (V0, v0),

(15)

where Z∗0 = Z0 ⊗ Im+1.11 B∗0 and Z0 have to be chosen as to let expectations and variances of

11We can re-write the MF-VAR in (2) as in Banbura et al. (2010). In that case, the variance of vec(B∗)
simplifies to Σ ⊗ (Z′0Z0)−1 = Σ ⊗ Ω0. However, it will prove useful to express the MF-VAR as done in (14) in
our mixed-frequency setup.

13



the elements in B∗ coincide with the moments of the prior in (13). Likewise, V0 and v0 need to
be set such that E[Σ] = Σd, i.e., the fixed, diagonal covariance matrix introduced before.

As for the common-frequency case, the priors in (13) ensure that more recent lags provide
more reliable information than more distant ones. However, due to the stacked nature of

X
(m)
t , the prior variances V ar[γ

(k)
i,j ] do not only decrease for larger low-frequency lag lengths

k = 1, . . . , p, but also within a low-frequency period. Put differently, given λ, φ and Sij ,
the coefficients are not shrunk according to the low-frequency time difference between the
corresponding variables, but according to their high-frequency time difference. This is the
reason why not only k, but also m, j and i appear in the denominators of the prior variances.
As a consequence, and in severe contrast to the common-frequency case in Banbura et al. (2010),
the matrix Z0, which needs to be chosen to match prior variances with the variance of vec(B∗),
changes with each column of B∗.

Still, we can show that adding Td = naux+(m+1), with naux = m(2p+1), auxiliary dummy
variables Yd and Xd to (14) is equivalent to imposing the normal inverted Wishart prior in (15).
To this end, let

B∗aux0 = (X ′dXd)
−1X ′dYd,

Zaux0 = Xd

V0 = (Yd −XdB
∗aux
0 )′(Yd −XdB

∗aux
0 ) and

v0 = m+ 3 = Td − naux + 2,

(16)

and subsequently set

vec(B∗0) = S′vec(B∗aux0 ) and
V ar[vec(B∗)] = S′[Z∗aux′0 (Σ−1 ⊗ IT )Z∗aux0 ]−1S,

(17)

where S is an [(m+ 1)naux× (m+ 1)n]-dimensional selection matrix filled with ones and zeros,
the precise construction of which is given in Appendix A. Intuitively speaking, Zaux0 is an
auxiliary matrix constructed as the ’union’ of the Z0 matrices corresponding to the different
columns of B∗. The non-random matrix S then selects, for each column of B∗, the corresponding
elements of Zaux0 in order to let the variance of each element in B∗ match the corresponding
prior variance. Likewise, B∗aux0 is an auxiliary matrix from which we derive B∗0 . The auxiliary
dummy variables that imply a matching of the prior moments turn out to be

Yd︸︷︷︸
Td×(m+1)

=



02(m−1)×1

DρσLmρ
m/λ

0

0(m(2p−1)−1)×(m+1)

diag(σL, σH , . . . , σH)
01×(m+1)

 , (18)

Xd︸︷︷︸
Td×naux

=


J1
p ⊗ diag(σL, σH)/λ 02pm×(m−1) 02pm×1

0(m−1)×2pm J2
pσH/λ 0(m−1)×1

0(m+1)×2pm 0(m+1)×(m−1) 0(m+1)×1

01×2pm 01×(m−1) ε

 , (19)
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where Dρ = diaga(mρm, (m − 1)ρm−1, . . . , 2ρ2, ρ)σHλ ⊗ (0, 1)′, with diaga(·) denoting an anti-
diagonal matrix. Furthermore,

J1
p = diag(1, 2, . . . ,m,m+ 1, . . . , 2m, . . . , . . . , pm),

J2
p = diag(pm+ 1, pm+ 2, . . . , pm+m− 1).

The last line of both, Yd and Xd, corresponds to the diffuse prior for the intercept (ε is a very
small number), the block above imposes the prior for Σ and the remaining blocks set the priors

for the coefficients γ
(k)
i,j . As Banbura et al. (2010), we set σ2

i = s2
i , i = L,H, where s2

i is the

variance of a residual from an AR(p), respectively an AR(mp), model for yt, respectively x
(m)
t .12

Let us now augment the model in (14) by the auxiliary dummy variables in (18) and (19).
To this end, let Zdj = (Z ′, (XdSj)

′)′, j = 1, . . . ,m+ 1, where Sj is the jth block of the selection
matrix S (see Appendix A for details). Here, Sj picks the elements of Zaux0 = Xd corresponding
to column j of B∗. Then, the augmented system becomes

vec(Z∗)︸ ︷︷ ︸
(m+1)(T+Td)×1

= Z∗∗︸︷︷︸
(m+1)(T+Td)×(m+1)n

vec(B∗)︸ ︷︷ ︸
(m+1)n×1

+ vec(E∗)︸ ︷︷ ︸
(m+1)(T+Td)×1

, (20)

where Z∗ = (Z ′, Y ′d)′, E∗ = (E′, E′d)
′ and Z∗∗ is block diagonal with Z∗∗ = diag{Zd1, Zd2, . . . , Zdm+1}

and off-diagonal elements equal to 0(T+Td)×n. The posterior then has the form

vec(B∗)|Σ, Z ∼ N(vec(B̂∗), [Z∗′∗ (Σ−1 ⊗ IT+Td)Z
∗
∗]
−1) and

Σ|Z ∼ iW (V̂ , T +m+ 3),
(21)

where

vec(B̂∗) = [Z∗′∗ (Σ−1 ⊗ IT+Td)Z
∗
∗]
−1Z∗′∗ (Σ−1 ⊗ IT+Td)vec(Z∗),

and where V̂ = Ê′∗Ê∗ with vec(Ê∗) = vec(Z∗)−Z∗∗vec(B̂∗) such that Ê∗ is a (T +Td)× (m+ 1)
matrix. Note that the posterior mean of the coefficients equals the GLS estimate of a SUR
regression of vec(Z∗) on Z∗∗. As for the common-frequency case, it can be checked that it also
coincides with the posterior mean for the prior setup in (13). In practice, we estimate Σ in the
standard way, i.e., Σ̂ = 1

T+Td
Êols′∗ Êols∗ , where Êols∗ denotes the OLS residuals of the system in

(20).13

As a final comment, note that (10) actually corresponds to a U-MIDAS regression (Foroni
et al., 2012) without contemporaneous observations of the high-frequency variable. It is worth
mentioning that MIDAS restrictions (Ghysels et al., 2004) can be imposed here as an alternative.
However, doing so implies leaving the linear framework, which is needed to apply the auxiliary

12We propose to choose λ in such a way as to control the size of our Granger causality tests, because their
analysis is the ultimate purpose of this work. To this end, we also allow λ to change with T , the sample size.
More details on how we choose λ are given in the Monte Carlo section.

13The ith column of Êols∗ , i = 1, . . . ,m + 1, corresponds to the residuals of a regression of (Z′·,i, Y
′
d,i)
′ on Zdi ,

where Z·,i and Yd,i denote the ith columns of Z and Yd, respectively.
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dummy variable approach presented above. Furthermore, even after having drawn the MIDAS
hyperparameters, one still faces the aforementioned Davies (1987) problem when attempting to
test for Granger non-causality from X(m) to y (see the end of Section 3.1.2). For those reasons
we leave the corresponding parameters in (10) unrestricted.

3.2.3 Testing for Granger Non-Causality

Ultimately, our goal is to compare our parameter reduction techniques with each other, and
two benchmark models to be introduced below, in terms of their Granger non-causality testing
behavior. To this end, the implementation of the Bayesian MF-VAR via the auxiliary dummy
variable approach is preferable to classical Bayesian methods, since we obtain a closed-form
solution for the posterior mean of the coefficients of interest. Intuitively speaking, we ’disguise’
the Bayesian approach as a frequentist approach by adding our auxiliary dummy variables. As
for the parameter estimates, it is desirable to deal with a testing framework that is common
to all approaches considered in this paper, i.e., the Wald test.14 Consequently, to subsequently
test for Granger non-causality, the relevant test statistic is computed as

ξ∗W = [Rvec(B̂∗)]′
{
R[Z∗′∗ (Σ̂−1 ⊗ IT+Td)Z

∗
∗]
−1R′

}−1
[Rvec(B̂∗)], (22)

where R is the suitably adjusted matrix picking the set of coefficients to test for Granger
non-causality. Note that the auxiliary dummy variables enter ξ∗W through vec(B̂∗), Z∗∗ and Σ̂.

3.3 Common Low-Frequency VARs

Before the introduction of MIDAS regression models, high-frequency variables were usually ag-
gregated to the low frequency in order to obtain a common frequency for all variables appearing
in a regression (Silvestrini and Veredas, 2008 or Marcellino, 1999). Likewise for systems, the ob-
servations of a high-frequency, say monthly, variable were usually aggregated to a low frequency,
say quarterly, such that the VAR could be estimated in the resulting common frequency.

Temporally aggregating the high-frequency variable also leads to a great reduction in pa-
rameters which need to be estimated. After all, each set of m high-frequency variables per
t-period is aggregated into one low-frequency observation. In terms of the (p = 1)-example in
(3), instead of (m+ 1)2 parameters to estimate in Γ1, a common low-frequency VAR as in(

yt
xt

)
=

(
µ1

µ2

)
+

(
γLF1,1 γLF1,2

γLF2,1 γLF2,2

)
︸ ︷︷ ︸

ΓLF1

(
yt−1

xt−1

)
+

(
u1,t

u2,t

)
(23)

14Similar to the relationship between the posterior mean of the coefficients to the GLS estimate of an adequately
constructed SUR regression, there is large sample correspondence between classical Wald and Bayesian posterior
odds tests (?). For certain choices of the prior distribution, the posterior odds ratio is approximately equal to
the Wald statistic. ? shows that for any significance level α there exist priors such that the aforementioned
correspondence holds, and vice versa.
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requires only 4 parameter estimates in ΓLF1 .15 Note that xt = W (L1/m)x
(m)
t , where W (L1/m)

denotes a high-frequency lag polynomial of order A, i.e., W (L1/m)x
(m)
t =

∑A
i=0wix

(m)
t−i/m (Sil-

vestrini and Veredas, 2008). This generic specification nests the two dominating aggregation
schemes in the literature, Point-in-Time (A = 0, w0 = 1) and Average sampling (A = m−1, wi =
1/m ∀i), where the former is usually applied to stock and the latter to flow variables. In view
of the high-frequency variable we consider in our empirical application, the natural logarithm
of bipower variation, we focus on Average sampling in this paper.

Of course, the decrease in parameters to estimate comes at the cost of disregarding infor-
mation embedded in the high-frequency process. As argued in Miller (2011), if the aggregation
scheme used to compute xt is different from the true underlying aggregation scheme, potentially
crucial high-frequency information will be forfeited. Additionally, aggregating a high-frequency
variable may lead to ’spurious’ (non-)causality in the common low-frequency setup (?), since
causality is a property which is not invariant to temporal aggregation (Marcellino, 1999 or Sims,
1971).

As far as testing for Granger non-causality is concerned, we can rely on the Wald statistic
in (8), where the set of regressors W , the matrix R and the coefficient matrix B are suitably
adjusted.

3.4 Unrestricted VARs

Finally, we can attempt to estimate the full MF-VAR in (2) ignoring the fact that, given the
sample sizes usually available, the amount of parameters may be too large to estimate them
properly or to test for any causality pattern adequately. Still, it may serve as benchmark case.
To this end we estimate the MF-VAR using ordinary least squares disregarding the parameter
proliferation problem we inevitably run into.16 Similar to the previous section, we can test for
Granger non-causality using the Wald statistic in (8).17

4 Monte Carlo Simulations

In order to assess the finite sample performance of our different parameter reduction techniques,
we conduct a Monte Carlo experiment. Unlike Ghysels et al. (2013), we do not start with a
common high-frequency data generating process (DGP hereafter), but rather a mixed-frequency
one. The former implies the assumption that the low-frequency variable has high-frequency ob-
servations that are missing. Given such a situation it seems natural to cast the model in state
space form and estimate the parameters using the Kalman filter. However, this amounts to a
’parameter-driven’ model (Cox et al., 1981), which contains latent processes, by construction.

15Of course, a similar argument holds for p > 1: Instead of p(m + 1)2 parameters to estimate in the autore-
gressive matrices Γ1, . . . ,Γp in (2), the common low-frequency VAR(p) requires only 4p parameter estimates in
ΓLF1 , . . . ,ΓLFp .

16In this sense the comparison is related to the one of U-MIDAS (Foroni et al., 2012) and MIDAS regression
models.

17Again, W , R and B have to be adjusted adequately.
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The latter is a feature we try to avoid in our MF-VAR. Say we are interested in the impact
of shocks to one or several variables on the whole system. Using a high-frequency DGP with
missing observations implies that shocks to these latent processes are also latent and unobserv-
able. This is undesirable given that, e.g., policy shocks are, of course, observable (Foroni and
Marcellino, 2013).

Recall from Section 2.1 that Zt = (yt, x
(m)
t , . . ., x

(m)
t−(m−1)/m)′ = (yt, X

(m)′
t )′. In light of

our empirical investigation (Section 5) we set m = 20, i.e., a month/ working day-example.
Furthermore, we start by investigating the case where p = 1 and keep the analysis of higher lag
orders for future research.

As far as investigating the size of our Granger non-causality tests is concerned, we assume
that the data are generated as a mixed-frequency white noise process, i.e.,

Zt = ut. (24)

To analyze the power of the tests, we generate two different DGPs that are closely related to
the restricted VAR in (11):

Zt = ΓPZt−1 + ut (25)

with

ΓP =


γ1,1 γ1,2 γ1,3 . . . γ1,21

γ∗2,1 ρ20 0 . . . 0

γ∗3,1 ρ19
... . . . 0

...
...

...
. . .

...
γ∗21,1 ρ 0 . . . 0

 ,

where γ1,1 = 0.5, ρ = 0.6 and γ1,j = 2w∗j−1(−0.01) for j > 1.18 The parameter values for w∗j
and γ∗j,1, j = 2, . . . , 21, are depicted in Figure 1.19

The reason to consider two different DGPs for power is that due to the zero-mean feature
of w∗j−1(ψ) and γ∗j,1, j = 2, . . . , 21, in the second power DGP, we expect the presence of Granger
causality to be ’hidden’ when Average sampling the high-frequency variable as discussed in
Section 3.3. If this expectation can be confirmed, the situation underlying the second power

18Additionally, we have considered three alternative DGPs for size, all based on the restricted VAR in (11):
(i) γ1,i = γ∗i,1 = 0, (ii) γ1,i = 0 and γ∗i,1 6= 0 or (iii) γ∗i,1 = 0 and γ1,i 6= 0 ∀i = 2, . . . , 21. Results are available
upon request.

19The parameter values have been chosen to mimic part of the structure of the restricted VAR in (11) and to
ensure stability of the system. The first DGP we consider for investigating power is characterized by positive,
but decreasing coefficients w∗j−1(ψ) and γ∗j,1. In other words, the later the observation of x in t − 1, the larger
its impact on yt. Furthermore, positive values of y in the preceding period will increase x towards the end of
the current period, but hardly have an impact on it at the beginning. One can think of a delayed impact of y
on x here. For the second power DGP the general pattern of the coefficients w∗j−1(ψ) and γ∗j,1 does not change,
except that they now possess a mean of zero. This implies that large values of x early in t − 1 have a negative
effect on yt, whereas large x-values late in t − 1 have a positive effect. Similarly, positive values of y in period
t− 1 have a negative impact on early x-values in period t, but a positive impact on x-values towards the end of
the period.
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Figure 1: Parameter values for w∗ and γ∗j,1

Note: This figure graphs the parameter values for w∗j−1(ψ) and γj,1, j = 2, . . . , 21. In the first power DGP

w∗i (ψ) = wi(ψ) with wi(ψ) = exp(ψi2)∑20
i=1 exp(ψi

2)
, whereas in the second power DGP w∗i (ψ) = wi(ψ)−w(ψ), where the

horizontal bar symbolizes the arithmetic mean. This specification actually corresponds to the two-dimensional
exponential Almon lag polynomial with the first parameter set to zero (Ghysels et al., 2007). Likewise, γ∗j,1 =
γj,1 (first power DGP) and γ∗j,1 = γj,1 − γ·,1 (second power DGP) for j = 2, . . . , 21 with γ2,1 = 0.25 and
γj,1 = (γj−1,1)1.11 for j = 3, . . . , 21. Note that γ·,1 = 1

20

∑21
j=2 γj,1.

DGP would be one, in which classical temporal aggregation fails (Marcellino, 1999) and an
alternative way of dealing with high-frequency observations would be called for. The first
power DGP serves as a benchmark in the sense that we do not a priori expect one approach to
be better or worse than the others.

For the methods in Section 3 we analyze size and size-adjusted power for T = 50, 250 and
500, corresponding to roughly 4, 21 and 42 years of monthly data. Note that an additional 100
monthly observations are used to initialize the process. As far as the error term is concerned,
we assume ut ∼ N(0(21×1),Σu), where Σu has the same structure as Συ∗ in (12) with σLL = 0.5,
σHH = 1 and σHL = −0.1.20

20We choose these values since they are close to the data we use in the empirical section to come. In particular,
the sample variance of the low-frequency variable, an estimator of σLL, turns out to be 0.55, the mean of the
sample variances of x

(20)

t−i/20, i = 0, . . . , 19 is equal to 1.09 and approximates σHH and, finally, the mean of the

covariances between y and x
(20)

t−i/20, i = 0, . . . , 19 estimating σHL is −0.22. We deviate from the exact values to

achieve positive-definiteness of Σu. Note also that since σHL 6= 0 nowcasting causality is present (see Section
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Similar to the lag length, we restrict the amount of factors (when considering CCA and PLS)
to one in this paper and leave the analysis of higher factor dimensions for further research. The
figures in the tables below represent the percentage amount of rejections at the 5% level.21 All
figures are based on 2,500 replications and are computed using GAUSS12.

4.1 Size

Table 1 contains the size results for the the common low-frequency VAR (LF-VAR hereafter),
the unrestricted VAR (U-VAR hereafter), the VARs after reduced rank restrictions have been
imposed and the Bayesian MF-VAR (B-MF-VAR hereafter) implemented via the auxiliary
dummy variable approach. With respect to reduced rank restrictions, the factors are obtained
via CCA, PLS or HAR-type restrictions.

Table 1: Size of Granger Non-Causality Tests

S’le Size LF-VAR U-VAR CCA PLS HAR B-MF-VAR Direction

T=50 0.062 0.13 0.202 0.346 0.067 0.05

X(m) to yT=250 0.059 0.067 0.294 0.349 0.052 0.058
T=500 0.056 0.061 0.3 0.36 0.057 0.054

T=50 0.052 0.926 0.858 0.634 0.604 0.713

y to X(m)T=250 0.054 0.108 0.185 0.139 0.097 0.271
T=500 0.045 0.066 0.124 0.105 0.063 0.146

T=50 0.086 0.113 0.131 0.065 0.435
y to X(m)

T=250 0.057 0.082 0.095 0.056 0.097
T=500 0.041 0.066 0.082 0.04 0.061 (Bonferroni)

Note: The figures represent the percentage of rejections of the Wald test statistic in (22) for B-MF-VAR or the
one in (8), properly adapted if necessary, for the remaining methods at the 5% level. Prior to estimation, the
initial VAR has been transformed into a common low-frequency VAR as discussed in Section 3.3, left unrestricted
as discussed in Section 3.4, reduced rank restrictions, with CCA-, PLS- or HAR-based factors, have been imposed
as discussed in Section 3.1 or the VAR has been augmented to a Bayesian MF-VAR through the auxiliary dummy
variable approach in Section 3.2. The number of factors (for CCA and PLS) and the lag length of the estimated
VARs are equal to 1. The underlying DGP is found in (24), where the variance-covariance matrix of the error
term is equal to Σu.

Let us focus on the top two blocks of Table 1. While the low-frequency VAR has size close
to the nominal one, the unrestricted approach suffers from parameter proliferation for small T .
Note that the former result is not surprising because the flat aggregation scheme underlying
the low-frequency VAR is correct in this mixed-frequency white noise DGP. For large sample
sizes the two approaches perform almost equally well. As far as reduced rank restrictions and
testing the direction from X(m) to y is concerned, computing the factors by CCA or PLS

2.4). If we set it equal to zero instead, nowcasting causality would have been absent. The results are, however,
similar in both cases.

21Outcomes for the 10% and 1% levels are available upon request.
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delivers size distortions, whereas the use of HAR-type factors leads to very good size results
irrespective of T . With respect to testing for causality in the reverse direction, the tests are
severely oversized for small T , whereas they perform more satisfactory (especially for HAR) as
T grows. Finally, the Bayesian MF-VAR yields optimal size results for the direction from X(m)

to y by construction as we choose λ as to control the size of Granger non-causality tests in this
direction (see below). For the reverse direction, however, a similar picture as for CCA or PLS
arises, i.e., size distortions also for large T .

When testing for Granger non-causality from y to X(m) in all approaches except the low-
frequency VAR is the test oversized for small T , but yields better size results for a larger sample
size. Note that we compute a joint test on 20p parameters in this case, which distorts our size
results, especially for small T . In order to address this issue, we re-compute the rejection
frequencies using the Bonferroni correction (Dunn, 1961) and report the results in the lowest
block of Table 1. It turns out that the results improve for all sample sizes, yet only for the
reduced rank restrictions with HAR-type factors (and the unrestricted VAR to a lesser degree)
are the outcomes satisfactory also for small T .

As far as B-MF-VAR and the choice of λ is concerned, closer inspection of the prior variances

of the parameters of interest reveals that V ar[γ
(k)
1,j ] < V ar[γ

(k)
i,1 ] for i, j = 2, . . . ,m + 1 and

k = 1, . . . , p (see (13)). Consequently, for a given m and λ the parameters corresponding to
Granger (non-)causality from X(m) to y get shrunk more than the ones corresponding to the
direction from y to X(m). As the Bonferroni correction presents a way to lower size distortions
in the latter case, we opted to set λ as to control size in the former direction. Denoting the
value of λ that equates the corresponding actual and nominal size for a certain T and m by
λ(T,m), we obtain λ(50, 20) ≈ 3.12, λ(250, 20) ≈ 4.8 and λ(500, 20) ≈ 5.6.22

4.2 Power

Table 2 reports size-adjusted power of the Granger non-causality tests for the various parameter
reduction techniques and the unrestricted VAR. The top half of the table contains the outcomes
for the first power DGP (w∗j−1(ψ) and γ∗j,1, j = 2, . . . , 21, possess non-zero means), while the
bottom half does so for the second power DGP (w∗j−1(ψ) and γ∗j,1, j = 2, . . . , 21, possess means
of zero). Within each half, the top two blocks correspond to the usual Wald statistics and the
bottom block reports the results after using the Bonferroni correction.

Let us start by considering the first power DGP, for which no method is a priori expected to
perform better or worse than the others. When testing for Granger non-causality from X(m) to
y, all parameter reduction approaches lead to very good power results. For the reverse direction
we obtain a similar pattern as for size, i.e., size-adjusted power is low for small T , yet improves
quickly as T grows. Although the results improve slightly when using the Bonferroni correction

22For m = 4, 5, 7 and 10 we obtain λ(i, 4) = 1.3, 1.45, 1.6, λ(i, 5) = 1.55, 2, 2.8, λ(i, 7) = 1.8, 2.4, 3.7 and
λ(i, 10) = 2.45, 2.6, 4.5 for i = 50, 250 and 500, respectively. A detailed analysis of the relationship between m,T
and λ as well as the potential introduction of an equation-dependent λ, say λL and λH , to address the different
evolvement of prior variances of the Granger (non)-causality determining parameters, are of great interest, but
beyond the scope of this paper and thus left for future work.
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Table 2: Size-adjusted Power of Granger Non-Causality Tests

S’le Size LF-VAR U-VAR CCA PLS HAR B-MF-VAR Direction

T=50 0.992 1 0.909 0.975 1 1

X(m) to yT=250 1 1 1 1 1 1
T=500 1 1 1 1 1 1
T=50 0.182 0.063 0.004 0.098 0.116 0.172

y to X(m)T=250 0.866 0.88 0.857 0.908 0.935 0.931
T=500 0.995 0.999 0.999 0.999 0.999 0.999
T=50 0.125 0.181 0.181 0.25 0.094

y to X(m)

T=250 0.97 0.976 0.969 0.982 0.98
T=500 1 1 1 1 1 (Bonferroni)

T=50 0.046 0.963 0.636 0.865 0.999 1

X(m) to yT=250 0.054 1 1 1 1 1
T=500 0.064 1 1 1 1 1
T=50 0.058 0.054 0.016 0.057 0.065 0.144

y to X(m)T=250 0.049 0.35 0.304 0.42 0.411 0.376
T=500 0.058 0.779 0.829 0.862 0.826 0.766
T=50 0.075 0.071 0.063 0.098 0.076

y to X(m)

T=250 0.472 0.528 0.489 0.514 0.519
T=500 0.874 0.928 0.906 0.896 0.888 (Bonferroni)

Note: The underlying DGP is found in (25), where the top half of the Table reports the outcomes for the first
power DGP, in which w∗j−1(ψ) and γ∗j,1, j = 2, . . . , 21, contain a non-zero mean, and where the bottom half gives
the results for the second power DGP, in which they possess a mean of zero. For the rest see Table 1.

(except for B-MF-VAR), the general pattern remains the same.
Let us now turn to the second power DGP. Most importantly, the results for the low-

frequency VAR show that aggregation of the high-frequency variable by averaging annihilates
the causality features between the series for all sample sizes (size-adjusted power actually almost
coincides with the nominal size of 5%). Put differently, the outcomes confirm that Granger
causality is not invariant to temporal aggregation (Marcellino, 1999) if the causal effects get
averaged out as in this case. For the other approaches a similar pattern as for the first power
DGP emerges: Granger non-causality from X(m) to y is usually rejected, whereby power is
slightly lower for small T in case of CCA and, to a lesser extent, PLS.23 For the reverse
direction, power is very small for T = 50 (whereby B-MF-VAR provides the least bad outcome
and CCA the worst) and is satisfactory for T = 500. For T = 250 size-adjusted power equals
about 30-40% for all approaches (except LF-VAR, of course) implying much smaller values than

23PLS has the disadvantage that the loadings corresponding to the first factor are bound to be larger than
zero. With several negative coefficients in the underlying DGP, this could explain losses of power for the direction
from X(m) to y. This problem would most likely vanish for a larger amount of factors, since negative loadings
are possible from the second factor onwards.
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in the top half of the table. Overall, it seems that reduced rank restrictions with HAR-type
factors results in best size-adjusted power (except maybe for T = 50 and testing the direction
from y to X(m)). Application of the Bonferroni correction yields similar outcomes.

A final comment on the results of the Monte Carlo study. Note that these results are specific
to one particular example, in which m = 20, the lag length and number of factors are one and
which is based on DGPs that are closely related to the restricted VAR in (11). It is well possible
that the outcomes change for different situations, i.e., reduced rank restrictions using factors
based on CCA and PLS or B-MF-VAR may perform better in other scenarios. In any case,
both approaches are valuable contributions to the set of parameter reduction techniques that
could be considered in practice as the next section shows.

5 Application

We apply the parameter reduction approaches described in Section 3 to a MF-VAR consisting of
the monthly growth rate of the industrial production index (ipi hereafter), a measure of business
cycle fluctuations, and the logarithm of daily bipower variation (bv hereafter), a measure of
volatility. While the degree to which macroeconomic variables can help to predict volatility
movements has been investigated widely in the literature (see Schwert, 1989b, Hamilton and
Gang, 1996, or Engle and Rangel, 2008, among others), the reverse, i.e., whether the future
path of the economy can be forecasted using return volatility, has been granted comparably few
attention (examples are Schwert, 1989a, Mele, 2007, and Andreou et al., 2000). Instead of using
an aggregate measure of volatility measure (Chauvet et al., 2013) such as, e.g., realized volatility
or GARCH, we use daily bipower variation computed on 5-minute returns.24 With the bv-series
being available at a higher frequency than most indicators of business cycle fluctuations, we
obtain the mixed-frequency framework analyzed in this paper.

The sample covers the period from January 2000 to June 2012, yielding a sample size of
T = 150, and m = 20. Figure 2 plots the data. We take m = 20 as it is the maximum
amount of working days that is available in every month throughout the sample we deal with.
Consider the following table illustrating the notation for our month/working day-example,
where t = 2012M06, i.e., June 2012.

In this particular case, it means that although there are 21 open days in June 2012, we do
not consider the first day, i.e., June 1. For May 2012 we do not consider the first three days.
An alternative (balanced) strategy would have been to take the maximum number of days in a
particular month (i.e., 23, usually in July, August or October) and to create additional values
for non-existing days in other months whenever necessary. As far as the treatment of daily

data is concerned we have also taken bv
(20)
t = bv

(20)
t−1/20 when there are no quotations for bv

(20)
t .

Because m = 20 we have BV
(20)
t = (bv

(m)
t , bv

(m)
t−1/m, . . . , bv

(m)
t−(m−1)/m)′.

24Data are obtained from the database in Heber, Gerd, Asger Lunde, Neil Shephard and Kevin Sheppard
(2009), Oxford-Man Institute’s realized library (version 0.2), Oxford-Man Institute, University of Oxford. Note
that bv is considered as a measure that is less sensitive to jumps compared to realized volatility.
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Notation Meaning

ipit ipi in June, 2012
No working day bv on June 30, 2012

bv
(20)
t bv on June 29, 2012

bv
(20)
t−1/20 bv on June 28, 2012

...
...

bv
(20)
t−19/20 bv on June 4, 2012

ipit−1 ipi in May, 2012

bv
(20)
t−1 bv on May 31, 2012

bv
(20)
t−1−1/20 bv on May 30, 2012

Figure 2: Growth Rate of Industrial Production Index and the logarithm of Bipower Variation

Note: This figure shows the monthly growth rate of the industrial production index (lower line), i.e., ipi, and
the logarithm of daily bipower variation (top lines), i.e., BV (20), for the time period from January 2000 to June
2012

Table 3 contains the outcomes of Granger non-causality tests for all approaches discussed in
Section 3. Note that a length of p = 1 and 2 is considered and that the figures represent p-values.
For all approaches, except the one described in Section 3.2, we also consider a heteroscedasticity
consistent variant of (8) by computing a robust estimator of Ω (see Ravikumar et al., 2000) to
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account for the potential presence of a time varying multivariate process:

Ω̂R = T ((W ′W )−1 ⊗ Im+1)Ŝ0((W ′W )−1 ⊗ Im+1), (26)

where

Ŝ0 =
1

T

T∑
t=1

(Wt ⊗ ût)′(Wt ⊗ ût).

Table 3: Testing for Granger Non-Causality between ∆lnIPI and lnBV

Factors p = 1 p = 2 Direction
Wald White Wald White

LF-VAR
< 0.001 0.002 < 0.001 0.021 bv to ipi
0.001 0.015 0.004 0.05 ipi to bv

U-VAR
0.128 0.069 0.028 0.005 bv to ipi
0.127 0.005 0.04 < 0.001 ipi to bv

CCA

r = 1 0.02 0.039 0.064 0.118
bv to ipir = 2 0.05 0.09 0.004 0.031

r = 3 0.003 0.009 0.01 0.061

r = 1 0.09 < 0.001 0.011 < 0.001
ipi to bvr = 2 0.135 0.006 0.002 < 0.001

r = 3 0.213 0.012 0.002 < 0.001

PLS

r = 1 < 0.001 0.002 0.001 0.013
bv to ipir = 2 0.002 0.006 < 0.001 0.011

r = 3 < 0.01 0.003 0.001 0.028

r = 1 0.057 < 0.001 0.015 < 0.001
ipi to bvr = 2 0.063 < 0.001 0.011 < 0.001

r = 3 0.055 < 0.001 0.011 < 0.001

HAR
r = 3 0.007 0.019 0.011 0.072 bv to ipi
r = 3 0.081 < 0.001 0.016 < 0.001 ipi to bv

B-MF-VAR
0.006 0.001 bv to ipi
0.022 0.003 ipi to bv

Note: The figures represent the p-values associated with the Wald test statistic in (22) for B-MF-VAR, the
one in (8), properly adapted if necessary, for the remaining methods, labeled ’Wald’, and the one derived from
(26), labeled ’White’. The models considered are the common low-frequency VAR as discussed in Section 3.3,
the unrestricted VAR as discussed in Section 3.4, the VAR with reduced rank restrictions, using CCA-, PLS-
or HAR-based factors, as discussed in Section 3.1 and the B-MF-VAR implemented via the auxiliary dummy
variable approach as discussed in Section 3.2. The lag order p is equal to 1 or 2 and the number of factors (for
CCA and PLS) is equal to 1, 2 or 3.
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The top part of the table shows the outcomes after the initial MF-VAR has been trans-
formed into a common low-frequency VAR by temporally aggregating the high-frequency vari-

able: bv
(aggr)
t = ln( 1

20

∑19
i=0 exp(bv

(20)
t−i/20)). Clearly, the figures suggest bi-directional Granger

causality.
The second block from the top presents the outcomes when leaving the MF-VAR unre-

stricted. The outcomes partly differ if we consider the standard Wald test or its robust version.
Based on the latter we usually reject Granger non-causality in both directions. Based on the
former, however, we only do so for p = 2; for p = 1 no Granger causality is found in any
direction. However, although not displayed here,25 the Bonferroni correction points towards
Granger causality from ipi to BV (20). Hence, apart from the Wald test for p = 1, we conclude
again bi-directional Granger causality.

As far as parameter reduction by reduced rank restrictions is concerned, canonical correla-
tion tests26 favor r = 2 factors whereas the approach of Cubadda and Hecq (2011) selects r = 1.
Consequently, we present the results for 1, 2 as well as 3 factors, i.e., r = 1, 2, 3. Of course, for
the HAR-type factors, the number of factors is r = 3p. The third block of Table 3 displays the
results when the factors are computed using CCA, whereas the subsequent two blocks show the
outcomes when they are based on PLS and HAR-type restrictions, respectively.

For all three approaches based on reduced rank restrictions, Granger causality from BV (20)

to ipi is detected for almost all combinations of p, f , ’Wald’ and ’White’. For the reverse
direction and p = 1, ’White’ also leads to a rejection of Granger non-causality, whereas ’Wald’
either suggests a rejection of Granger non-causality at roughly 6% (PLS) and 9% (HAR or
CCA with r = 1) or the absence of Granger causality altogether (CCA with r > 1). For a lag
length of 2, both tests imply a rejection of the null hypothesis in almost cases. These results
are generally confirmed by the use of the Bonferroni correction.

Finally, the bottom part of Table 3 contains the results for the Bayesian MF-VAR imple-
mented through the auxiliary dummy variable approach.27 Here, the figures clearly suggest
bi-directional Granger causality between the two variables of interest. Again, this conclusion is
confirmed by the use of the Bonferroni correction.

Overall, the outcomes point towards bi-directional Granger causality between uncertainty
in financial markets, as measured by bipower variation, and business cycle fluctuations, as
measured by growth in the industrial production index.

25Results available upon request.
26For i.i.d. normally distributed disturbances, the likelihood ratio test statistic for the null hypothesis that

there exist at most r = 20−s common feature combinations within X
(m)
t is given by ζLR(s) = −T

∑s
j=1 ln(1−λ̂j),

where λ̂j denotes the s = 1, . . . , 20, smallest eigenvalues associated with Σ̂
−1/2

Z̃Z̃
Σ̂
Z̃X̃

(m)Σ̂
−1

X̃
(m)

X̃
(m)Σ̂X̃(m)

Z̃
Σ̂
−1/2

Z̃Z̃
,

i.e., the matrix in (7) with the roles of Z̃ and X̃
(m)

interchanged.
27Note that we do not compute a heteroscedasticity consistent variant of (22) for this case.

26



6 Conclusion

Using the example of analyzing the link between uncertainty in financial markets and economic
fluctuations, we investigated Granger non-causality testing in a MF-VAR, where the mismatch
between the sampling frequencies of the variables under consideration is large. Indeed, the
observable MF-VAR by Ghysels (2012) quickly becomes very large when the mismatch between
sampling frequencies grows, causing estimation and inference to be potentially problematic due
to parameter proliferation.

To potentially avoid this issue we discussed two parameter reduction techniques in detail,
reduced rank restrictions and a Bayesian MF-VAR approach. The former achieves a reduction
in parameters by looking for a reduced rank structure within the coefficient matrix pertaining
to the high-frequency variables (Carriero et al., 2011). The corresponding observable high-
frequency factors were computed either by CCA or PLS, or imposed as HAR-type factors. The
Bayesian MF-VAR was implemented through the mixed-frequency extension of the approach in
Banbura et al. (2010). Using a Minnesota prior for the coefficients (Ghysels, 2012), it was shown
that augmenting the unrestricted MF-VAR by a set of auxiliary dummy variables and estimating
the resulting system by GLS is equivalent to considering the mean of the corresponding posterior
distribution. Finally, we also transformed the MF-VAR into a common low-frequency one by
a simple aggregation scheme. Subsequently, we compared these approaches with each other
and an unrestricted VAR in terms of their Granger non-causality testing behavior using Monte
Carlo simulations.

In our particular case we found that while the low-frequency VAR may lead to very poor
results, the unrestricted VAR resulted in size distortions for small sample sizes due to parameter
proliferation. Reduced rank restrictions based on CCA and PLS yielded relatively poor size and
power outcomes, whereas the ones based on HAR-type factors lead to very good size and the
overall best power results. Despite power being nearly as high as for the latter approach, the
Bayesian MF-VAR approach lead to size distortions when testing for causality in the direction
from low- to high-frequency variables. Size for the reverse direction was nearly optimal by
construction. Reduced rank restrictions and Bayesian MF-VARs are, in any case, valuable
contributions to the available set of techniques to address the proliferation of parameters in
large MF-VAR models.

An application investigating the presence of a causal link between business cycle fluctu-
ations and volatility illustrated the practical usefulness of these approaches. In most cases,
bi-directional Granger causality between uncertainty in financial markets and the growth rate
of the industrial production index was detected.

A number of avenues should be pursued in future work: A formal comparison of the canonical
correlation approach with alternative options; An analysis of the relationship between the
tightness of the prior distribution around the restricted MF-VAR, the sample size and the
frequency discrepancy between the variables (λ, T and m); A potential generalization of the
the paper’s findings to different data generating processes, especially a common high-frequency
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DGP;28 The consideration of higher lag orders and a larger number of factors for CCA and PLS;
Reduced-rank Bayesian VARs; The assessment of the various models’ forecasting performances;
An extension of the Monte Carlo study to investigate the presence of causal chains and their
impact on Granger causality tests.

Nevertheless, the approaches presented in this paper indicate that many empirical research
questions, where the sampling frequencies of the variables involved differ considerably and where
a link between these variables is of interest, can be addressed in the future. More importantly,
these problems can be tackled without the need to temporally aggregate the high-frequency
variable, thus avoiding the risk to create non-existing or conceal existing causality patterns.

28It would be useful to explore whether causality patterns in a common high-frequency VAR can be preserved
in the MF-VARs after the various parameter reduction approaches have been applied (Ghysels et al., 2013).
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A Construction of the selection matrix S

Let us investigate the variance of vec(B∗)|Σ more closely. Noting that we have to choose Z0,
or Z∗0 in (15), in such a way as to let the variances of the corresponding coefficients coincide
with the prior variances in (13), it turns out that we need to set

V ar[vec(B∗)|Σ] =



σ2
LΩ

(2)
0 0n×n . . . . . . 0n×n

0n×n σ2
HΩ

(2)
0 0n×n . . . 0n×n

... 0n×n σ2
HΩ

(3)
0 . . .

...
...

...
...

. . . 0n×n

0n×n 0n×n . . . 0n×n σ2
HΩ

(m+1)
0


,

where

Ω
(i)
0 = diag( λ2

(m+2−i)2σ2
L
, λ2

(m+2−i)2σ2
H
, λ2

(m+3−i)2σ2
H
, . . . , λ2

(m+m+1−i)2σ2
H
, . . . ,

. . . , λ2

(pm+2−i)2σ2
L
, λ2

(pm+2−i)2σ2
H
, . . . , λ2

(pm+m+1−i)2σ2
H
, 1
ε2

)

for i = 2, . . . ,m+ 1.

Hence, unlike in the common-frequency case, where Ω
(i)
0 = Ω0 ∀i (Banbura et al., 2010),

the set of variances changes due to the stacked nature of the vector Zt and the specific lag
structure for each coefficient (see the variances in (13)). Let us form an auxiliary matrix Ωaux

0 ,

which contains the union of all elements in Ω
(2)
0 , . . . ,Ω

(m+1)
0 . Each matrix Ω

(i)
0 contains p + 1

new elements compared to Ω
(i−1)
0 for i > 2. As there are n elements in Ω

(2)
0 , we end up with a

dimension of m(2p+ 1) = naux for the square matrix Ωaux
0 :

Ωaux
0 = diag( λ2

12σ2
L
, λ2

12σ2
H
, . . . , λ2

m2σ2
L
, λ2

m2σ2
H
, λ2

(m+1)2σ2
L
, λ2

(m+1)2σ2
H
, . . . , λ2

(2m)2σ2
H
,

. . . , . . . , λ2

(pm)2σ2
L
, λ2

(pm)2σ2
H
, λ2

(pm+1)2σ2
H
, . . . , λ2

(pm+m−1)2σ2
H
, 1
ε2

).

All that remains is to define a [(m + 1)naux × (m + 1)n]-dimensional selection matrix S such
that S′(Σd ⊗ Ωaux

0 )S = V ar[vec(B∗)|Σ] . Note that from Ωaux
0 we can then derive Zaux0 = Xd

by using Ωaux
0 = Zaux

′
0 Zaux0 .

Let us denote by 1i an naux-dimensional column vector with a one in row i and zeros
elsewhere. It turns out that S is a block-diagonal matrix, i.e., S = diag(S1, S2, . . . , Sm+1),
where each off-diagonal block is 0naux×n. Each Sj , j = 1, . . . ,m+1, can be described as follows:

Sj = (S1
j , S

2
j , 1naux) for j = 2, . . . ,m+ 1,

where

S1
j = ( 12m−(2j−3), 12m−(2j−4), 12m−(2j−6), . . . , 14m−(2j−2), 14m−(2j−3), . . . ,

16m−(2j−2), . . . , . . . , 12pm−(2j−3), 12pm−(2j−4), . . . , 12pm),
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S2
j =

{
∅ for j = m+ 1
(12pm+1, 12pm+2, . . . , 12pm+m−(j−1)) else

and
S1 = S2.

Each of the indices in Sj reveals which row element of the jth column of Baux
0 gets selected by

S. Put differently, the indices that are missing in Sj correspond to elements of Baux
0 (in column

j) that will not get chosen by S. This implies that the values of these elements do not play a
role for the computation of vec(B∗0). Consequently, when constructing Baux

0 , and subsequently
also Yd, we assign these elements a value of zero for simplicity.
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