Measuring Uncertainty about Long-Run Predictions

Ulrich K. Müller and Mark W. Watson
Princeton University

Presentation at ECB

June 14, 2014
Set-up

- Observe data \(x_t, \ t = 1, \cdots, T \), such as growth rates of GDP, or inflation

- Want to forecast average over the next \(\lfloor \lambda T \rfloor \) periods

\[
f = [\lambda T]^{-1} \sum_{l=1}^{\lfloor \lambda T \rfloor} x_{T+l}
\]

where \(\lambda = 0.5 \), say.

- Aim: Construct interval from data \(\{x_t\}_{t=1}^{T} \) that contains \(f \) with, say, 90% probability in repeated samples
US Postwar GDP Per Capita
Focus and Challenges

• This paper: statistical (rather than "structural") univariate long-term forecasting

• Econometric challenges
 – Only limited sample information about long-term behavior
 – Set of plausible models of long-term behavior?
 – How to deal with model and/or parameter uncertainty?
Low-Frequency Transformations

- Intuitively, question concerns low-frequency properties of x_t.

- Extract relevant information by computing low-frequency transforms (Müller and Watson, 2008)

$$X_j = T^{-1} \sum_{t=1}^{T} \sqrt{2} \cos(\pi j t / T)x_t, \quad j = 1, \cdots, q$$

where q is a number like $q = 12$, and treat $(X_1, \cdots, X_q)'$ and $\hat{\mu} = T^{-1} \sum_{t=1}^{T} x_t$ as only available data.
$q = 12$ LF Transforms for GDP
GDP LF Projection
Pros and Cons of LF Transforms

• Extract low-frequency information in \(\{x_t\} \)

• Avoids modelling and potential misspecification of higher frequency aspects

• Captures notion that relevant sample information about long-run forecasts limited

• But potential loss of efficiency (see paper)
Standard I(0) Asymptotics for Time Series

- Under a range of primitive conditions on the dependent and heterogeneous mean-zero process \(\{u_t\} \), a Central Limit Theorem holds for all fractions of the sample, i.e. for all \(0 \leq r_1 < r_2 \leq s_1 < s_2 \),

\[
\left(\frac{1}{\sqrt{T}} \sum_{t=[r_1 T]+1}^{[r_2 T]} u_t \right) \Rightarrow \mathcal{N}\left(0, \begin{pmatrix} \sigma^2(r_2 - r_1) & 0 \\ 0 & \sigma^2(s_2 - s_1) \end{pmatrix} \right)
\]

- This (almost) implies the "Functional" Central Limit Theorem for nicely behaved I(0) processes

\[
T^{-1/2} \sum_{t=1}^{[T]} u_t \Rightarrow \sigma W(\cdot)
\]
Implications for Low-Frequency Transformations

- Suppose \(x_t = \mu + u_t \) and \(u_t \) is \(I(0) \) in the sense \(T^{-1/2} \sum_{t=1}^{\lfloor T \rfloor} u_t \Rightarrow \sigma W(\cdot) \).

- Cosine weights are orthogonal to constant:
 \[
 X_j = \frac{\sqrt{2}}{\sqrt{T}} \sum_{t=1}^{T} \cos(\pi j t / T) x_t = \frac{\sqrt{2}}{\sqrt{T}} \sum_{t=1}^{T} \cos(\pi j t / T) u_t
 \]

- With \(\hat{\mu} = T^{-1} \sum_{t=1}^{T} x_t \), \(f = [\lambda T]^{-1} \sum_{l=1}^{\lfloor \lambda T \rfloor} x_{T+l} \), \(X_0 = \sqrt{T}(\hat{\mu} - \mu) \), and \(Y = \sqrt{T}(f - \mu) \), we obtain
 \[
 (X_0, \cdots, X_q, Y)' \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma)
 \]
 since weighted averages of Gaussian processes are multivariate Gaussian.

- If \(\mu \) and \(\sigma^2 \Sigma \) were known, then could simply report 90% set of the (suitably scaled and centered) conditionally normal distribution \(Y | \{X_j\}_{j=0}^{q} \).
Invariance

- Impose scale and translation invariance:
 \[\{x_t\}_{t=1}^{T} \mapsto \{m + cx_t\}_{t=1}^{T} \] for any \(m \) and \(c \neq 0 \)
 must lead to corresponding transformation of predictive set

- Can show: Under invariance, asymptotic problem becomes construction of prediction set of

 \[Y^s = \frac{Y - X_0}{s_X} \text{ given } X^s = \left(\frac{X_1}{s_X}, \ldots, \frac{X_q}{s_X} \right)' \]
 where \(s_X^2 = q^{-1} \sum_{j=1}^{q} X_j^2 \)
 \[\Rightarrow \text{Invariance takes care of lack of knowledge of } \mu \text{ and } \sigma \text{ (but still need to know } \Sigma \text{ to compute the conditional distribution)} \]
Low-Frequency Forecasts—I(0) Model

- In I(0) model, it turns out that

\[Y^s = \frac{Y - X_0}{s_X} \]

is scaled Student-t, scaled by \(\sqrt{1 + \lambda^{-1}} \)

- \(X^s \) is independent of \(Y^s \)

\[\Rightarrow \] intervals for \(f \) are of the form \(\hat{\mu} \pm \) student-t quantiles multiplied by

\[\frac{(1 + \lambda^{-1})^{1/2} s_X}{\sqrt{T}} \]
GDP 50% and 90% Intervals in I(0) Model
Beyond the I(0) Model

• Natural concern that I(0) model is “too stationary”

• Assume local-level model

\[x_t = \mu + \frac{g}{T} \sum_{s=1}^{t} \eta_s + \varepsilon_t = \mu + u_t \]

where \(\{\varepsilon_t\} \) and \(\{\eta_t\} \) are I(0) with identical long-run variance \(\sigma^2 \), so that \(g \geq 0 \) measures extent of local mean variability

• Still implies

\[T^{-1/2} \sum_{t=1}^{[\cdot T]} u_t \Rightarrow \sigma G(\cdot) \]

(1)

for Gaussian process \(G \), so that \((X_0, \cdots, X_q, Y)' \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma) \), where now \(\Sigma = \Sigma(g) \)
GDP Predictive Densities, LLM, $\lambda = 0.2$
GDP LF Likelihood in LLM
GDP Bayes Predictive Densities

- Flat Prior
- Downward Sloping
- Upward Sloping
Beyond the Local-Level Model

- Approach generalizes to any model $x_t = \mu + u_t$ that satisfies

$$T^{-\alpha} \sum_{t=1}^{\lfloor T \rfloor} u_t \Rightarrow \sigma G(\cdot)$$

for some Gaussian process G and α (for example: fractional model).

- Possible to derive predictive set that remains valid for arbitrary G? No, since Σ then entirely unconstrained.

- Need some regularity of x_t to be able to forecast.

- Consider covariance stationarity of Δx_t (allowing mean growth rate to vary stochastically).
Local-To-Zero Spectrum

- Let \(s_T : [-\pi, \pi] \mapsto \mathbb{R}_+ \) be a sequence of (pseudo) spectral densities of \(\{x_t\} \), and define the local-to-zero spectrum \(S : \mathbb{R} \mapsto \mathbb{R} \) via

\[
S(\omega) = T^{-2\alpha+1} \lim_{T \to \infty} s_T(\omega/T),
\]

for suitable \(\alpha \).

- Under some linear process conditions on \(\Delta x_t \) and (1), we show

\[
(X_0, \ldots, X_q, Y)' \Rightarrow \mathcal{N}(0, \sigma^2 \Sigma)
\]

where \(\Sigma \) is a function of \(S \).

\(\Rightarrow \) Long-run forecasting uncertainty is fully determined by (pseudo) spectral shape close to origin.
Local Spectra

- Fractional model:

\[S_d(\omega) \propto |\omega|^{-2d}, \quad d \in (-0.5, 1.5) \]

- Local-to-Unity model (AR(1) with \(\rho_T = 1 - c/T \)):

\[S_c(\omega) \propto 1/(\omega^2 + c^2) \]

- Local-Level model \(x_t = \mu + b\varepsilon_t + \frac{1}{T} \sum_{s=1}^{t} \eta_s \):

\[S_b(\omega) \propto 1/\omega^2 + b^2 \]

⇒ All these local spectra are in bcd-family

\[S_\theta(\omega) \propto \left(\frac{1}{\omega^2 + c^2} \right)^{2d} + b^2, \quad \theta = (b, c, d) \]
Local Log-Spectra

Fractional Model

Local-Level Model

Local-To-Unity Model

bcd Model
Parameter Uncertainty

• Local spectrum depends on $\theta = (b, c, d)$, which cannot be estimated consistently by fixed number q of cosine transforms.

• Recall that via invariance, (asymptotic) problem is to forecast $Y^s = \frac{Y - X_0}{s_X}$ by $X^s = \left(\frac{X_1}{s_X}, \ldots, \frac{X_q}{s_X}\right)'$, where $s_X^2 = q^{-1} \sum_{j=1}^{q} X_j^2$.

• Let $\Psi(X^s)$ be a predictive interval of level $1 - \alpha$. Determine Ψ^* that minimizes weighted average expected length over θ, subject to coverage constraint for all values of θ:

$$\min_{\Psi} \int w(\theta) E_{\theta}[\text{length}(\Psi(X^s))] d\theta \quad \text{s.t.} \quad P_{\theta}(Y^s \in \Psi(X^s)) \geq 1 - \alpha \quad \forall \theta \in \Theta$$

\Rightarrow Almost same problem as in Müller, Elliott and Watson (2013)
Parameter Uncertainty: Conditional Properties

- Potential problem: $\Psi^*(X^s)$ could be empty for some X^s, and have otherwise unreasonable conditional properties

 \Rightarrow generic potential problem of descriptions of uncertainty in nonstandard problems with sets that (only) satisfy confidence type property

 \Rightarrow see Müller and Norets (2012)

- Solution: Impose that $\Psi^*(X^s)$ contains the $1-a$ credible set relative to the prior w.
Implementation

- Set $q = 12$.

- Choose weighting function w uniformly distributed on $d \in [-0.4, 1.4]$ in fractional model

 \Rightarrow seek to minimizes expected length on average with data drawn from fractional model, subject to including the $1 - \alpha$ credible set with that prior and model

- Impose coverage $P_\theta(Y^s \in \Psi(X^s)) \geq 1 - \alpha$ in larger class with local-to-zero spectrum

 $$S_\theta(\omega) \propto \left(\frac{1}{\omega^2 + c^2}\right)^{2d} + b^2$$

 with $d \in [-0.4, 1.4]$ and b, c arbitrary.

 \Rightarrow Frequentist robustification of Bayes credible set
GDP 90% Intervals
US Postwar PCE Inflation
Inflation 50% Intervals
Labor Productivity 50% Interval
Labor Productivity 90% Interval
Conclusions

• Formalization of uncertainty of statistical long-term predictions
 – Low-frequency transformations to yield robustness.
 – Need regularity. Express regularity via shapes of local-to-zero spectrum.
 – Parameter uncertainty resolved by length minimizing robustification of Bayes credible sets.

• Extension to multivariate problem computationally difficult