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Combining forecasts from different models

The predictive density of y′ given data y and modelsMk, k = 1, ...,K:

p
(
y′ | y

)
=
∑
k

π (Mk | y) p
(
y′ | Mk, y

)
(1)

where

π (Mk | y) =
p (y | Mk)π (Mk)∑
k

p (y | Mk)π (Mk)

The weights in (1) are the models’posterior probabilities, determined by the
marginal likelihoods and the models’prior probabilities.



Marginal likelihood example

IfMk is an AR model of y,

p (y | Mk) = p
(
yT , ..., y1 | y0,Mk

)

=
T−1∏
t=0

p
(
yt+1 | yt,Mk

)

=
T−2∏
t=0

p
(
yt+2, yt+1 | yt,Mk

)
=
T−3∏
t=0

p
(
yt+3, yt+2, yt+1 | yt,Mk

)
= ...

Marginal likelihood measures the overall out-of-sample predictive performance
of a model (not predictive performance at a particular horizon).



Challenges

1. Each model being compared must be a model of the same data y.

2. It must be that “each of the discrete [models] makes scientific sense, and
there are no (...) models in between.“ Gelman et al. (1995), p.176.

(a) If the space of models is too sparse, posterior probabilities of mod-
els tend to come out implausibly decisive and to display a bang-bang
pattern over time.

It is clear in principle how to confront these challenges.



Confronting the challenges in practice

• Geweke and Amisano (2011) form a weighted sum of predictive densities
(here, K = 2):

λ ∗ p
(
y1,t+h | yt1, yt2,M1

)
+ (1− λ) ∗ p

(
y1,t+h | yt1, yt3,M2

)

where λ ∈ [0, 1], h ≥ 1, and maximize the product of these sums w.r.t. λ.

• This paper proposes:

λt ∗ p
(
y1,t+h | yt1, yt2,M1

)
+ (1− λt) ∗ p

(
y1,t+h | yt1, yt3,M2

)

plus a law of motion for λt.



Implementation

• Nonlinear stace-space system: the 2nd expression on the previous slide
is the measurement equation, the law of motion for λt is the transition
equation.

• Use a particle filter to infer λ1:T , also infer parameters of the law of motion
for λt.

• When inferring parameters ofM1 andM2, neglect information in λ1:T .
This is reasonable.



Application

• Forecast growth rates of Y and P using DSGE models: SWπ and SWFF .

— SWFF has an extra observable: corporate bond spread.

— Sample starts in 1964Q1, forecast evaluation in 1992Q1-2011Q2, real-
time data.

• The dynamic pool yields good forecasts.

• λt varies considerably over time, while staying away from 0 and 1.



Takeaways

• This is a very useful methodology.

• Paying some attention to the corporate bond spread was a good idea
throughout the evaluation period.

• Paying a lot of attention to the corporate bond spread was a good idea
already before the Lehman crisis.

• Let’s not stop here, let’s learn from the evidence and improve our models.



Back to the challenges: sparsity

• The space of models seems too sparse.

• I agree that a nonlinear encompassing model (e.g., a DSGE with regime
switches) seems worth exploring in the future.

• One could also use that model as a prior for a less restricted model (e.g.,
a VAR with regime switches), with the weight of the prior distributed
continuously and inferred rather than fixed.

— In analogy to the DSGE-VAR of Del Negro and Schorfheide (2004).



Back to the challenges: modelling all the data y

• In principle, it is possible to form an encompassing model and to think
of models omitting particular elements of y as restricted versions of the
encompassing model.

• Jarocínski and Máckowiak (2014) show that the posterior probability of
the relevant restriction can be expressed analytically in a Gaussian VAR
with a conjugate prior.

— Like this paper, we find that the corporate bond spread was useful for
forecasting Y and P already before the Lehman crisis.


