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Abstract: YADA (Yet Another Dsge Application) is a Matlab program for Bayesian estimation and
evaluation of Dynamic Stochastic General Equilibrium and vector autoregressive models. This pa-
per provides the mathematical details for the various functions used by the software. First, the
different prior distributions that are supported, the state-space representation and the Kalman
filter used to evaluate the log-likelihood are presented. Since YADA uses the Anderson-Moore
algorithm (AiM) to solve log-linearized DSGE models, the matrix specification of the DSGE model
is provided and linked to the state-space model. Various tools for evaluating an estimated DSGE
model are provided, including impulse response functions, forecast error variance decomposi-
tions, historical forecast error and observed variable decompositions. This paper also provides
information about the various types of input that YADA requires and how these inputs should
be prepared. Furthermore, it discusses how the posterior mode is computed, including how the
original model parameters are transformed internally to facilitate the posterior mode estimation.
Next, the paper provides some details on the algorithm used for sampling from the posterior dis-
tribution: the random walk Metropolis algorithm. In order to conduct inference based on the
draws from the MCMC sampler, tools for evaluating convergence are considered next. We are
here concerned both with simple graphical tools, as well as formal tools for single and parallel
chains. Different methods for estimating the marginal likelihood are considered thereafter. Such
estimates may be used to evaluate posterior probabilities for different DSGE models. Estimation
of a VAR model with a prior on the steady state parameters is also examined. The main concerns
are: prior hyperparameters, posterior mode estimation, posterior sampling via the Gibbs sampler,
and marginal likelihood calculation (when the full prior is proper). Finally, forecasting issues,
such as the unconditional and conditional predictive distributions, are examined. At the end of
each section, the main YADA functions for the different tasks are presented.
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1. Introduction

YADA is a Matlab program for Bayesian estimation of and inference in Dynamic Stochastic
General Equilibrium (DSGE) and Vector Autoregressive (VAR) models. DSGE models are micro-
founded optimization-based models that have become very popular in macroeconomics over
the past 25 years. The most recent generation of DSGE models is not just attractive from
a theoretical perspective, but is also showing great promise in areas such as forecasting and
quantitative policy analysis; see, e.g., Adolfson, Laséen, Lindé, and Villani (2007a), Christiano,
Eichenbaum, and Evans (2005), Smets and Wouters (2003, 2005), and An and Schorfheide
(2007).

YADA is developed in connection with the New Area-Wide Model (NAWM) project at the
ECB; cf. Christoffel, Coenen, and Warne (2008). The software relies on code made available to
the NAWM project by colleagues at both central bank institutions and the academic world. In
particular, it relies to some extent on the code written by the group of researchers at Sveriges
Riksbank that have developed the Riksbank DSGE model (Ramses). This group includes Malin
Adolfson, Stefan Laséen, Jesper Lindé, and Mattias Villani. YADA also relies on a Matlab version
of the Anderson-Moore algorithm for solving linear rational expectations models (AiM) and
writing them in state-space form; see, e.g., Anderson (1999) or Zagaglia (2005).

In contrast with other software that can estimate DSGE models, YADA has a Graphical User
Inference (GUI) from which all actions and settings are controlled. The current document does
not give much information about the GUI. Instead it primarily focuses on the mathematical
details of the functions needed to calculate, for instance, the log-likelihood function. The in-
stances when this documents refers to the GUI are always linked to functions that need certain
data from the GUI. The help file in the YADA distribution covers the GUI functionality.

This document is structured as follows. In the next section, we start with Bayes theorem,
giving the notation for the prior density, the conditional and the marginal density of the data,
as well as the posterior density. We then turn to the density functions that can be used in YADA
for the prior distribution of the DSGE model parameters. Parametric definitions are provided
and some of their properties are stated.

This leads us into the actual calculation of the likelihood using the Kalman filter. Notation and
main equations of this tool are given in Section 3. Since the computation of the Kalman filter for
a particular value of the parameters requires that we can solve the DSGE model for that value,
Section 4 provides an overview of the matrix representation of linear rational expectations
models and how these can be analysed with the Anderson-Moore algorithm.

In Section 5 we turn to various tools for analysing the properties of a DSGE model. Such
tools include, for example, impulse responses and forecast error variance decompositions. The
next steps are taken in Section 6, where the reading of observed data into YADA, the setup of
the prior, the construction of the files for the measurement equations, additional parameters,
and the AiM model file are covered. Once these tasks have been achieved, YADA is ready for
estimation of the posterior mode and the inverse Hessian at the mode.

Since some of the parameters can have bounded support, e.g., a standard deviation of a
shock only taking on positive values, the optimization problem typically involves inequality
restrictions. Having to take such restrictions into account can slow down the optimization time
considerably. A natural way to avoid this computational issue is to transform these parameters
such that the support of the transformed parameters is the real line. In that way we shift from
a constrained optimization problem to an unconstrained one. The specific transformations that
YADA can apply are discussed in Section 7 as well as how this affects the estimation of the
posterior mode, a topic which is thereafter covered in Section 8.

Once the posterior mode and the Hessian at the mode has been calculated, we can construct
draws from the posterior distribution using the random walk Metropolis algorithm. This issue
is discussed in section 9. Given a sample of such draws it is important to address the question if
the posterior sampler has converged. In Section 10 we deal with simple graphical tools as well
as formal statistical tools for assessing convergence in a single chain and in parallel chains.
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When we are satisfied that our posterior sampler has converged, we may turn to other issues
regarding Bayesian inference. In Section 11 we examine the problem of computing the marginal
likelihood of the DSGE model. This object can be used for relative model comparisons and
potentially also for comparisons with alternative models, such as Bayesian VARs.

The next topic of the document is Bayesian VARs. In particular, YADA supports VAR models
for forecasting purposes. The types of prior that may be used, computation of posterior mode,
posterior sampling with the Gibbs sampler, and the computation of the marginal likelihood are
all given some attention in Section 12. One specific feature of the Bayesian VAR models that
YADA support is that the steady state parameters are modelled explicitly.

Finally, certain out-of-sample forecasting issues are discussed in Section 13 for both the
DSGE/state-space models and Bayesian VARs. Both unconditional and conditional forecast-
ing are considered as well as a means for checking if the conditional forecasts are subject to
the famous Lucas (1976) critique or not. Since the document concerns the implementation of
various mathematical issues in a computer program, all sections end with a part that discusses
some details of the main functions that are made use of by YADA.

2. Prior and Posterior Distributions

2.1. Bayes Theorem

Let yt denote the observed variables, a vector of dimension n. Furthermore, the sample is given
by t = 1, . . . , T and we collect the data into the n × T matrix Y . For simplicity we here neglect
any exogenous or predetermined variables as they do not matter for the exposition.

The density function for a random matrix Y conditional on θ is given by p(Y |θ), where θ
is a vector of parameters. The joint prior distribution of θ is denoted by p(θ). From Bayes
theorem we then know that the posterior distribution of θ, denoted by p(θ|Y), is related to
these functions through

p(θ|Y) =
p(Y |θ)p(θ)

p(Y)
, (2.1)

where p(Y) is the marginal density of the data, defined from

p(Y) =
∫
θ∈Θ

p(Y |θ)p(θ)dθ, (2.2)

with Θ being the support of θ. Since p(Y) is a constant we know that the posterior density
of θ is proportional to the product p(Y |θ)p(θ). Hence, if we can characterize the distribution
of this product we would know the posterior distribution of θ. For complex models like those
belonging to the DSGE family this characterization is usually not possible. Methods based on
Markov Chain Monte Carlo (MCMC) theory can instead be applied to generate draws from the
posterior.

Still, without having to resort to such often time consuming calculations it should be noted
that the mode of the posterior density can be found by maximizing the product p(Y |θ)p(θ).
Since this product is usually highly complex, analytical approaches to maximization are ruled
out from the start. Instead the posterior mode, denoted by θ̃, can be estimated using numerical
methods. In the Section 2.2 we provide the individual density functions for the elements of θ
that YADA supports. Through the independence assumption, the joint prior p(θ) is simply the
product of these individual (and marginal) prior densities. The computation of the likelihood
function for any given value of θ is thereafter discussed in Section 3.

2.2. Density Functions for the Prior Distributions

In the Bayesian DSGE framework it is usually assumed that the parameters to be estimated,
denoted here by θ, are a priori independent. For parameters that have support R, the prior
distribution is typically Gaussian. Parameters that instead have support R+ tend to have either
gamma or inverse gamma prior distributions, while parameters with support (c, d), where d > c
and both are finite, are usually assumed to have beta prior distributions; see, e.g., An and
Schorfheide (2007). In some cases, e.g., Adolfson et al. (2007a), the distribution may be left
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truncated normal for a certain parameter. Below the density functions of these distributions
as well as of the uniform distribution are given. In addition, YADA can support a number of
additional distributions through parameter transformation functions. These include the Weibull
and Snedecor (better known as the F or Fisher) distributions. First, however, the gamma and
beta functions are presented as these often appear in the integration constants.

2.2.1. The Gamma and Beta Functions

The gamma function is defined by the following integral identity:

Γ(a) =
∫ ∞

0
xa−1 exp(−x)dx, a > 0. (2.3)

In many cases integer or half integer values of a are used. Here it is useful to know that Γ(1) = 1,
while Γ(1/2) =

√
π. Integration by parts of (2.3) gives for a > 1 that Γ(a) = (a − 1)Γ(a − 1).

The beta function β(a, b) for a, b > 0 is defined as:

β(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx. (2.4)

It is related to the gamma function through the following relationship:

β(a, b) =
Γ(a)Γ(b)
Γ(a + b)

. (2.5)

Matlab contains two useful functions for dealing with the gamma function. One is gamma
which works well for relatively small values of a. The other is gammaln which calculates the
natural logarithm of the gamma function and works well also with large values of a. Similarly,
for the beta function Matlab provides the functions beta and betaln.

2.2.2. Gamma, χ2, Exponential, Erlang and Weibull Distributions

A random variable z > 0 has a gamma distribution with shape parameter a > 0 and scale
parameter b > 0, denoted by z ∼ G(a, b) if and only if its pdf is given by

pG(z|a, b) =
1

Γ(a)ba
za−1 exp

(−z
b

)
. (2.6)

It is worthwhile to keep in mind that if z ∼ G(a, b) and y = z/b, then y ∼ G(a,1). Further-
more, E[z] = ab, while E[(z − ab)2] = ab2; see, e.g., Bauwens, Lubrano, and Richard (1999)
or Zellner (1971). If a > 1, then the pdf has a unique mode at z = b(a − 1).

Letting µΓ and σ2
Γ denote the mean and the variance, respectively, we can directly see that

a =
µ2

Γ

σ2
Γ

, b =
σ2

Γ

µΓ
. (2.7)

In practise, most economists (and econometricians) are probably more comfortable formulating
a prior in terms of the mean and the standard deviation, than in terms of a and b. The mode
can, when it exists, also be expressed in terms of the mean and the variance parameters. Letting
µ̃Γ be the mode, equation (2.7) gives us

µ̃Γ = µΓ −
σ2

Γ

µΓ
,

and the mode therefore exists when µ2
Γ > σ2

Γ , i.e., when the mean is greater than the standard
deviation.

One special case of the gamma distribution is the χ2(q). Specifically, if z ∼ χ2(q) then this
is equivalent to stating that z ∼ G(q/2,2), with mean q and variance 2q. The mode of this
distribution exists and is unique when q ≥ 3 and is equal to q − 2.

Another special case is the exponential distribution. This is obtained by letting a = 1 in (2.6).
With z ∼ �(b) ≡ G(1, b), we find that the mean is equal to µ� = b and the variance is σ2

� = b2.
Similarly, the Erlang distribution is the special case of the gamma when a is an integer. For this
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case we have that Γ(a) = (a − 1)!, where ! is the factorial function. The parameterization of
the Erlang density is usually written in terms of λ = 1/b, a rate parameter.

YADA can also support the Weibull distribution through the gamma prior and the so called file
with parameters to update; see Section 6.4. Specifically, if x ∼ G(1,1) ≡ �(1) and x = (z/a)b

with a, b > 0, then z has a Weibull distribution with scale parameter a and shape parameter
b, i.e. z ∼ W(a, b). In YADA one would specify a prior for the random variable x and compute
z = ax1/b in the file with parameters to update. The density function is now

pW(z|a, b) =
b

ab
zb−1 exp

(
−
[
z

a

]b)
, z > 0.

The mean of the Weibull distribution is µW = aΓ(1 + (1/b)), the variance is σ2
W = a2[Γ(1 +

(2/b)) − (Γ(1 + (1/b)))2], whereas the mode exists and is given by µ̃W = a((b − 1)/b)(1/b)

when b > 1.

2.2.3. Inverse Gamma Distribution

The definition of the inverse gamma distribution given below is taken from Zellner (1971).1 A
random variable z > 0 has an inverse gamma distribution with parameters a > 0 and b > 0,
denoted by z ∼ IG(a, b), if and only if its pdf is given by

pIG(z|a, b) =
2

Γ(a)ba
z−(2a+1) exp

(−1
bz2

)
. (2.8)

This pdf has a unique mode at z = (2/(b(2a+ 1)))1/2.
This pdf is commonly used as a prior for a standard deviation. Letting σ = z, a = q/2, and

b = 2/qs2, we get

pIG(σ|s, q) =
2

Γ(q/2)

(
qs2

2

)q/2

σ−(q+1) exp
(−qs2

2σ2

)
, (2.9)

where s, q > 0. The parameter q is an integer (degrees of freedom) while s is a location
parameter. This pdf has a unique mode at µ̃IG = s(q/(q + 1))1/2. Hence, the mode is below s
for finite q and increasing towards s with q.

The moments of this distribution exists when q is sufficiently large. For example, if q ≥ 2,
then the mean is µIG = (Γ((q − 1)/2)/Γ(q/2))(q/2)1/2s, while if q ≥ 3 then the variance is
given by σ2

IG = qs2/(q − 2) − µ2
IG; see Zellner (1971) for details.

Another parameterization of the inverse gamma distribution is used in the software devel-
oped by Adolfson et al. (2007a). Letting a = d/2 and b = 2/c, the pdf in (2.8) can be written
as:

pIG(z|c, d) =
2

Γ(d/2)

( c
2

)d/2
z−(d+1) exp

( −c
2z2

)
.

The mode of this parameterization is found by setting z = (c/(d + 1))1/2. With c = qs2 and
d = q this parameterization is equal to that in equation (2.9) with z = σ.

2.2.4. Beta and Snedecor (F) Distributions

A random variable c < x < d has a beta distribution with parameters a > 0, b > 0, c and d,
denoted by x ∼ B(a, b, c, d) if and only if its pdf is given by

pB(x|a, b, c, d) =
1

(d − c)β(a, b)

(
x − c

d − c

)a−1(
1 − x − c

d − c

)b−1

. (2.10)

The standardized beta distribution can directly be determined from (2.10) by defining the
random variable z = (x− c)/(d− c). Hence, 0 < z < 1 has a beta distribution with parameters

1 Bauwens, Lubrano, and Richard (1999) refer to the inverse gamma distribution as the inverse gamma-1 distribu-
tion. The inverse gamma-2 distribution is then defined for a variable x = z2, where z follows an inverse gamma-1
distribution.
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a > 0 and b > 0, denoted by z ∼ B(a, b) if and only if its pdf is given by

pSB(z|a, b) =
1

β(a, b)
za−1(1 − z)b−1. (2.11)

For a, b > 1, the mode of (2.11) is given by z = (a − 1)/(a + b − 2). Zellner (1971) provides
general expressions for the moments of the beta pdf in (2.11). For example, the mean of the
standardized beta is a/(a + b), while the variance is ab/((a + b)2(a + b + 1)).

Let µSB and σ2
SB be the mean and the variance, respectively, of the standardized beta distri-

bution. Some algebra later we find that the a and b parameters can be expressed as:

a =
µSB

σ2
SB

[
µSB
(
1 − µSB

) − σ2
SB

]
,

b =

(
1 − µSB

)
µSB

a.

(2.12)

From these expressions we see that a and b are defined from µSB and σ2
SB when µSB

(
1−µSB

)
>

σ2
SB > 0 with 0 < µSB < 1.

Letting µB and σ2
B be the mean and the variance of x ∼ B(a, b, c, d), it is straightforward to

show that:
µB = c +

(
d − c

)
µSB,

σ2
B =
(
d − c

)2
σ2
SB.

(2.13)

This means that we can express a and b as functions of µB, σB, c, and d:

a =
(µB − c)

(d − c)σ2
B

[(
µB − c

)(
d − µB

) − σ2
B

]
,

b =

(
d − µB

)
(
µB − c

)a. (2.14)

The conditions that a > 0 and b > 0 means that c < µB < d, while (µB − c)(d − µB) > σ2
B.

The beta distribution is related to the gamma distribution in a particular way. Suppose
x ∼ G(a,1) while y ∼ G(b,1). As shown by, e.g., Bauwens, Lubrano, and Richard (1999,
Theorem A.3), the random variable z = x/(x + y) ∼ B(a, b).

The beta distribution is also related to the Snedecor or F (Fisher) distribution. For example,
suppose that x ∼ B(a/2, b/2) with a, b being positive integers. Then z = bx/(a(1 − x)) can
be shown to have an F(a, b) distribution; cf. Bernardo and Smith (2000, Chapter 3). That is,

pF(z|a, b) =
a(a/2)b(b/2)

β(a/2, b/2)
z(a/2)−1

(
b + az

)(a+b)/2
, z > 0.

The mean of this distribution exists if b > 2 and is then µF = b/(b − 2). The mode exists and
is unique with µ̃F = (a − 2)b/(a(b + 2)) when a > 2. Finally, if b > 4 then the variance exists
and is given by σ2

F = 2b2(a + b − 2)/(a(b − 4)(b − 2)2).
Although YADA does not directly support the F distribution, the combination of the beta prior

and the file with parameters to update (see Section 6.4) makes it possible to indirectly support
this as a prior.

2.2.5. Normal and Log-Normal Distributions

For completeness, the Gaussian density function is also provided. Specifically, a random variable
z is Gaussian with parameters µ ∈ R, σ > 0, denoted by z ∼ N(µ, σ2), if and only if its pdf is
given by

pN(z|µ, σ) =
1√

2πσ2
exp
(
−(z− µ)2

2σ2

)
. (2.15)

The mode of this density is, of course, z = µ, while the mean is also equal to µ and the variance
is σ2.
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YADA does not directly support the log-normal as a prior distribution. Nevertheless, log-
normal priors can be used by combining the normal distribution with the file with parameters
to update; cf. Section 6.4. That is, the normal prior is specified for the random variable x, while
z = exp(x) is given in the file with parameters to update.

The density function of the log-normal distribution is

pLN(z|µ, σ) =
1√

2πσ2
z−1 exp

(
− 1

2σ2

(
lnz − µ

)2
)
, z > 0.

The mean of the log-normal distribution is µLN = exp(µ + (σ2/2)), the variance is σ2
LN =

exp(2µ + σ2)(exp(σ2) − 1), while the mode is µ̃LN = exp(µ − σ2); see Gelman, Carlin, Stern,
and Rubin (2004).

2.2.6. Left Truncated Normal Distribution

The left truncated normal distribution can be defined from (2.15) by introducing a lower bound
c. This means that a random variable z ≥ c is left truncated normal with parameters µ ∈ R,
σ > 0, and finite c, denoted by z ∼ LTN(µ, σ2, c), if and only if its pdf is

pLTN(z|µ, σ, c) =
1√

2πσ2
exp
(
−(z− µ)2

2σ2

)(
1 − Φ((c − µ)/σ)

)−1
, (2.16)

where

Φ(a) =

⎧⎨
⎩(1 + κ(a/

√
2))/2 if a > 0

(1 − κ(−a/√2))/2 otherwise,

κ(b) =
2√
π

∫ b
0

exp
(−x2)dx.

(2.17)

Hence, the left truncated normal density is given by the normal density divided by 1 minus the
cumulative normal distribution up to the point of left truncation, i.e., (c − µ)/σ. The function
κ(b) is often called the error function. In Matlab, its name is erf.

As long as µ ≥ c, the mode is given by z = µ, while µ < c means that the mode is z = c.

2.2.7. Uniform Distribution

A random variable z is said to have a uniform distribution with parameters a and b with b > a,
denoted by z ∼ U(a, b) if and only if its pdf is given by

pU(z|a, b) =
1

b − a
. (2.18)

The mean and the variance of this distribution are:

µU =
a + b

2
,

σ2
U =

(b − a)2

12
.

The beta distribution is equivalent to a uniform distribution with lower bound c and upper
bound d when µB = (c+d)/2 and σ2

B = (d−c)2/12; see, also, Bauwens, Lubrano, and Richard
(1999) for additional properties of the uniform distribution.

2.3. YADA Code

The density functions presented above are all written in natural logarithm form in YADA. The
main reason for this is keeping the scale manageable. For example, the exponential function
in Matlab, like any other computer software available today, cannot deal with large numbers.
If one attempts to calculate e700 one obtains exp(700) = 1.0142e+304, while exp(720) = Inf.
Furthermore, and as discussed in Section 2.2.1, the gamma and beta functions return infinite
values for large input values, while the natural logarithm of these functions return finite values
also for large (but finite) input values.
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2.3.1. logGammaPDF

The function logGammaPDF calculates lnpG(z|a, b) in (2.6). Required inputs are z, a, b, while
the output is lnG. Notice that all inputs can be vectors, but that the function does not check
that the dimensions match. This is instead handled internally in the files calling or setting up
the input vectors for logGammaPDF.

2.3.2. logInverseGammaPDF

The function logInverseGammaPDF calculates lnpIG(σ|s, q) in (2.9). Required inputs are sigma,
s, q, while the output is lnIG. Notice that all inputs can be vectors, but that the function does
not check that the dimensions match. This is instead handled internally in the files calling or
setting up the input vectors for logInverseGammaPDF.

2.3.3. logBetaPDF

The function logBetaPDF calculates lnpB(z|a, b, c, d) in (2.10). Required inputs are z, a, b, c,
and d, while the output is lnB. Notice that all inputs can be vectors, but that the function does
not check that the dimensions match. This is instead handled internally in the files calling or
setting up the input vectors for logBetaPDF.

2.3.4. logNormalPDF

The function logNormalPDF calculates lnpN(z|µ, σ) in (2.15). Required inputs are z, mu, sigma,
while the output is lnN. Notice that all inputs can be vectors, but that the function does not check
that the dimensions match. This is instead handled internally in the files calling or setting up
the input vectors for logNormalPDF.

2.3.5. logLTNormalPDF

The function logLTNormalPDF calculates lnpLTN(z|µ, σ, c) in (2.16). Required inputs are z, mu,
sigma, c, while the output is lnLTN. This function calls the PhiFunction described below. Notice
that the function does not check if z ≥ c holds. This is instead handled by the functions that
call logLTNormalPDF.

2.3.6. logUniformPDF

The function logUniformPDF calculates lnPU(z|a, b) in (2.18), i.e., the log height of the uniform
density, i.e., − ln(b − a). The required inputs are a and b, where the former is the lower bound
and the latter the upper bound of the uniformly distributed random vector z.

2.3.7. PhiFunction

The function PhiFunction evaluates the expression for Φ(a) in (2.17). The required input is
the vector a, while the output is PhiValue, a vector with real numbers between 0 and 1.

2.3.8. Discussion

YADA needs input from the user regarding the type of prior to use for each parameter it should
estimate. In the case of the beta and normal distributions the parameters needed as input
are assumed to be the mean and the standard deviation. If you wish to have a general beta
prior you need to provide the upper and lower bounds as well or YADA will set these to 1 and
0, respectively. For the gamma and the left truncated normal distribution, the parameters to
assign values for are given by µ, σ, and a lower bound c. For the gamma distribution this
the first two parameters are the mean and the standard deviation, while for the left truncated
normal they are defined in equation (2.16).

Similarly, for the inverse gamma distribution the parameters to select values for are s, q,
and a lower bound c. The s parameter is, as mentioned above, a location parameter and q is
a degrees of freedom parameter that takes on integer values. The location parameter s can,
e.g., be selected such that the prior has a desired mode. Relative to equation (2.9) we are
now dealing with the location parameter (s − c) and the random variable (σ − c) since the
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density is expressed for a random variable that is positive. The mode for this parameterization
is µ̃IG = s(q/(q + 1))1/2 + c(1 − (q/(q + 1))1/2).

Finally, for the uniform distribution the lower and the upper bound are required.
For all distributions but the beta and the gamma, there is no need for internally transform-

ing the distribution parameters. For these two distributions, however, transformations into
the a and b parameters are needed, using the mean and the standard deviation as input.
YADA has two functions that deal with these transformations, MomentToParamGammaPDF and
MomentToParamStdbetaPDF, respectively. Both functions take vectors as input as provide vec-
tors as output. The formulas used are found in equations (2.7) and (2.12) above. Since YADA
supports a lower bound that can be different from zero for the gamma prior, the mean minus
the lower bound is used as input for the transformation function MomentToParamGammaPDF. Sim-
ilarly, the mean and the standard deviation of the standardized beta distribution are computed
from the mean and the standard deviation as well as the upper and lower bounds of the general
beta distribution. Recall that these relations are µSB = (µB − c)/(d − c) and σSB = σB/(d− c).

3. The Kalman Filter

The solution to a log-linearized DSGE model can be written as a VAR model, where some of the
variables may be unobserved. This suggests that any approach to estimation of its parameters is
closely linked to estimation of state-space models. In the case of DSGE models, the solution of
the model is represented by the state equation, while the measurement equation provides the
link from the state (or model) variables into the observable variables, the steady-state of the
DSGE model, and possible measurement errors.

The Kalman filter was originally developed by Kalman (1960) and Kalman and Bucy (1961)
to estimate state-space models. It can be applied to compute the sample log-likelihood function
of the data for a given set of parameter values, i.e., lnp(Y |θ). It can also be used for forecasting
the observed variables in the model as well as all the state variables. The notation used in
this section follows the notation in Hamilton (1994, Chapter 13) closely, where details on the
derivation of the filter are also found.

3.1. The State-Space Representation

Let yt denote an n×1 dimensional vector of variables that are observed at date t. The measure-
ment (or observation) equation for y is given by:

yt = A′xt +H′ξt +wt. (3.1)

The vector xt is k × 1 dimensional and contains only deterministic variables. The vector ξt is
r × 1 dimensional and is known as the state vector and contains possibly unobserved variables.
The term wt is white noise and is called the measurement error.

The state equation of the dynamics of y is given by:

ξt = Fξt−1 + vt, (3.2)

where F is the state transition matrix. The term vt is white noise and it is assumed that vt and
wτ are uncorrelated for all t and τ , with

E[vtv′τ] =

⎧⎨
⎩Q for t = τ,

0 otherwise,

while

E[wtw
′
τ] =

⎧⎨
⎩R for t = τ,

0 otherwise.
The parameter matrices are given by A (k×n), H (r ×n), F (r × r), Q (r × r), and R (n×n).

These matrices are known once we provide a value for θ. To initialize the process described by
(3.1) and (3.2), it is assumed that ξ1 is uncorrelated with any realizations of vt or wt.
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3.2. Forecasting yt and ξt

Let 
t = {yt, yt−1, . . . , y1, xt, xt−1, . . . , x1} denote the set of observations up to and including
period t. The Kalman filter provides a method for computing optimal forecasts of yt conditional
on its past values and on the vector xt as well as the associated mean squared error matrix.2

These forecasts and their mean squared errors can then be used to compute the value of the
log-likelihood function for y. Given the state-space representation in (3.1) and (3.2), it can
directly be seen that the calculation of such forecasts requires forecasts of the state vector ξt
conditional on the observed variables.

Let ξt+1|t denote the linear projection of ξt+1 on 
t. The Kalman filter calculates these fore-
casts recursively, generating ξ1|0, ξ2|1, and so on. Associated with each of these forecasts is a
mean squared error matrix, represented by

Pt+1|t = E
[
(ξt+1 − ξt+1|t)(ξt+1 − ξt+1|t)′|
t

]
.

To start up the algorithm we may let:

ξ1|0 = E[ξ1].

In a log-linearized version of a DSGE model, ξt measures the state variables as deviations from
steady state. Hence, a natural candidate for the expected value of ξ1 is 0 (the variables are
initially in steady state). Note, however, that this candidate is natural when ξt is covariance
stationary, i.e., if all eigenvalues of F are inside the unit circle.

Let yt|t−1 be the linear projection of yt on 
t−1 and xt. From the measurement equation
(3.1) and the assumption about wt we have that:

yt|t−1 = A′xt +H′ξt|t−1. (3.3)

It can be shown (see, Hamilton, 1994, p. 379) that:

E
[
(yt − yt|t−1)(yt − yt|t−1)′|
t−1

]
= H′Pt|t−1H + R. (3.4)

To compute the forecasts and mean squared errors for y, we thus need to know the sequence of
forecasts and mean squared error matrices of ξt. This means that we also need a value for P1|0
to start up the filter.

If ξt is covariance stationary, the unconditional covariance matrix E[ξtξ′t] = Σ exists. From
the state equation (3.2) we find that:

Σ = FΣF′ + Q. (3.5)

The solution to (3.5) is given by

vec(Σ) =
[
Ir2 − (F ⊗ F

)]−1
vec(Q), (3.6)

where vec is the column stacking operator, and ⊗ the Kronecker product. One candidate for
P1|0 is therefore Σ.

3.3. Updating ξt

The reason for needing an update of ξt can be directly seen from the state equation (3.2). That
is, projecting both sides on 
t and a constant gives us:

ξt+1|t = Fξt|t. (3.7)

The updated or filtered value of ξt relative to its forecasted value is now given by:

ξt|t = ξt|t−1 + Pt|t−1H
[
H′Pt|t−1H + R

]−1(
yt − yt|t−1

)
. (3.8)

Substituting (3.8) into (3.7), gives us:

ξt+1|t = Fξt|t−1 +Kt

(
yt − yt|t−1

)
, (3.9)

where
Kt = FPt|t−1H

[
H′Pt|t−1H + R

]−1
, (3.10)

2 The forecasts are optimal in a mean squared error sense among any functions of (xt,
t−1).
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is known as the Kalman gain matrix.
To complete the filter, it remains to calculate Pt+1|t. There are several ways to determine this

matrix, but for DSGE models it appears that the fastest approach is based on the Kalman gain
matrix. This updating formula states that

Pt+1|t =
(
F −KtH

′)Pt|t−1
(
F −KtH

′)′ +KtRK
′
t + Q. (3.11)

3.4. Summary of the Kalman Filter

The Kalman filter makes it possible to calculate the forecast of yt conditional on 
t−1 in equation
(3.3) as well as the mean squared error matrix in equation (3.4) for all t using equations (3.9),
(3.10), and (3.11) given a set of initial values for ξ1|0 and P1|0, e.g., ξ1|0 = 0 and P1|0 = Σ. If
ξt is covariance stationary, these initial values are natural candidates since the state vector ξ is
initialized at its steady state mean and covariance.

However, if r is large then the calculation of Σ in (3.6) may be too cumbersome, especially
if this has to be performed frequently (e.g., during the stage of drawing from the posterior).
In such cases, it may be better to make use of the Doubling Algorithm. Equation (3.5) is a
Lyapunov equation, i.e., a special case of the Sylvester equation. Letting γ0 = Q and α0 = F we
can express the iterations

γk = γk−1 + αk−1γk−1α
′
k−1, k = 1,2, . . . (3.12)

where
αk = αk−1αk−1.

The specification in (3.12) is equivalent to expressing:

γk =
2k−1∑
j=0

FjQF′j .

From this relation we can see that limk→∞ γk = Σ. Moreover, each iteration doubles the number
of terms in the sum and we expect the algorithm to converge quickly since ||αk|| should be close
to zero also for relatively small k when all the eigenvalues of F lie inside the unit circle.

Alternatively, it may be better to let P1|0 = cIr for some constant c and only use values of
yt|t−1 and its mean squared error matrix for some time period tm and onwards, where tm > 1.
The YADA code takes both these alternatives to using equation (3.6) into account.

3.5. The Likelihood Function

The sample log-likelihood function for yT, yT−1, . . . , y1 can be expressed as:

lnL
(
T ; θ

)
=

T∑
t=1

lnp
(
yt|xt,
t−1; θ

)
, (3.13)

by the usual factorization and assumption regarding xt. To compute the right hand side for a
given θ, we need to make some distributional assumptions regarding ξ1, vt, and wt.

In YADA it is assumed that ξ1, vt, and wt are multivariate Gaussian with Q and R being
positive semi-definite. This means that:

lnp
(
yt|xt,
t−1; θ

)
= − n

2
ln(2π) − 1

2
ln
∣∣H′Pt|t−1H + R

∣∣+
− 1

2

(
yt − yt|t−1

)′[
H′Pt|t−1H + R

]−1(
yt − yt|t−1

)
.

(3.14)

The value of the sample log-likelihood can thus be calculated directly from the 1-step ahead
forecasts of yt and the mean squared error matrix of this forecast.

3.6. Smoothing of ξt

Since many of the elements of the state vector are given structural interpretations in the DSGE
framework, it can be of interest to use as much information as possible to predict this vector.
That is, we are concerned with the smooth predictions ξt|T . In equation (3.8) we already have
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such a prediction for t = T . It thus remains to determine the backward looking predictions for
t < T .

Hamilton (1994, Chapter 13.6) shows that the smooth predictions of the state vector are
given by:

ξt|T = ξt|t + Jt
(
ξt+1|T − ξt+1|t

)
, t = 1, . . . , T − 1, (3.15)

where the Kalman smoothing matrix Jt is given by

Jt =Pt|tF′P−1
t+1|t,

Pt|t =Pt|t−1 − Pt|t−1H
[
H′Pt|t−1H + R

]−1
H′Pt|t−1.

The mean squared error of the smooth prediction ξt|T is now:

Pt|T = Pt|t + Jt
(
Pt+1|T − Pt+1|t

)
J ′t. (3.16)

To calculate ξt|T and Pt|T one therefore starts in period t = T − 1 and then iterates backwards
until t = 1.

The smoothing expression in (3.15) requires that Pt+1|t is a full rank matrix. This assumption
is violated if, for instance, R = 0 (no measurement errors) and rank(Q) < r with P1|0 = Σ. The
Kalman filter itself is still valid provided that H′Pt+1|tH has full rank n. In this case we may use
an eigenvalue decomposition such that Pt+1|t = SΛS′, where S is r × s, r > s, Λ is a diagonal
full rank s× s matrix, and S′S = Is. Replacing Jt with

J∗t = Pt|tF′S(S′Pt+1|tS)−1S′,
the smoothing algorithm remains otherwise intact.

In fact, smoothing allows us to estimate the shocks to the state equations using as much
information as possible. In particular, by projecting both sides of equation (3.2) on the data
until period T we find that

vt|T = ξt|T − Fξt−1|T , t = 2, . . . , T. (3.17)

To estimate v1 we would need an estimate of ξ0|T . A crude approach would be to let ξ0|T = 0,
i.e., the state variables are assumed to be in steady state at time 0. Alternatively, we could use
part of the sample to “train” the Kalman filter and simply let ξ0|T be the last smoothed estimate
of the state variables from the training sample. In YADA, ξ0|T = 0 unless you have selected a
training sample for the state vector. In that case, the latter approach is used.

Similarly, the measurement errors can be estimated using all the sample information once
the smoothed state variables have been computed. In this case, we turn to the measurement
equation (3.1) and simply let the smoothed estimate of the measurement error be

wt|T = yt −A′xt −H′ξt|T , t = 1, . . . , T. (3.18)

If the covariance matrix R = 0, then wt|T = 0 by construction. Notice that the estimation of the
measurement errors does not require any special treatment of t = 1.

The measurement equation can also be extended to the case when the measurement matrix
H is time varying. With H replaced by Ht in (3.1), the filtering, updating, and smoothing
equations are otherwise unaffected as long as Ht is treated as known. YADA is well equipped to
deal with a time-varying measurement matrix; see Sections 3.9 and 6.2 for details.

3.7. Multistep Forecasting

The calculation of h-steps ahead forecasts of y is now straightforward. From the state equation
(3.2) we know that for any h ≥ 1

ξt+h|t = Fξt+h−1|t. (3.19)
The h-steps ahead forecast of y is therefore:

yt+h|t = A′xt+h +H′ξt+h|t. (3.20)
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The mean squared error matrix for the ξt+h|t forecast is simply:

Pt+h|t =FhPt|t(F′)h +
h−1∑
i=0

FiQ(F′)i

=FPt+h−1|tF′ + Q.

(3.21)

Finally, the mean squared error matrix for the yt+h|t forecast is:

E
[
(yt+h − yt+h|t)(yt+h − yt+h|t)′|
t

]
= H′Pt+h|tH + R. (3.22)

The h-steps ahead forecasts of y and the mean squared error matrix can thus be built iteratively
from the forecasts of the state variables and their mean squared error matrix.

3.8. Covariance Properties of the Observed and the State Variables

It is sometimes of interest to compare the covariances of the observed variables based on the
model to the actual data or some other model. It is straightforward to determine these moments
provided that the state vector is stationary, i.e., that the eigenvalues of F are inside the unit
circle. The unconditional covariance matrix for the state vector is then given by Σ, which
satisfies equation (3.5).

From the state equation (3.2) we can rewrite the first order VAR as follows for any non-
negative integer h:

ξt = Fhξt−h +
h−1∑
i=0

Fivt−i. (3.23)

From this it immediately follows that the autocovariance function of the state variables, given
the parameter values, based on the state-space model is:

E
[
ξtξ

′
t−h
]

= FhΣ. (3.24)

The autocovariance function of the observed variables can now be calculated from the mea-
surement equation (3.1). With E[yt] = A′xt, it follows that for any non-negative integer

E
[(
yt −A′xt

)(
yt−h −A′xt−h

)′]
=

⎧⎨
⎩H

′ΣH + R, if h = 0,

H′FhΣH, otherwise.
(3.25)

From equations (3.24) and (3.25) it can be seen that the autocovariances tend to zero as h
increases. For given parameter values we may, e.g., compare these autocovariances to those
obtained directly from the data.

3.9. YADA Code

3.9.1. KalmanFilter & KalmanFilterHt

The function KalmanFilter in YADA computes the value of the log-likelihood function in (3.13)
for a given set of parameter values. It requires a n× T matrix Y = [y1 · · ·yT] with the observed
variables, a k × T matrix X = [x1 · · ·xT] with exogenous variables, and parameter matrices A,
H, F, Q, and R. The F and Q matrices are constructed based on the output from the solution to
the DSGE model, while the A, H, and R matrices are specified in a user-defined function that
determines the measurement equation; cf. Section 6.2. Moreover, the vector with initial state
values ξ1|0 is needed. This input is denoted by KsiInit and is by default the zero vector.

Furthermore, KalmanFilter requires input on the variable initP. If this variable is 1, then
the function calculates an initial value for the matrix P1|0 as described in equation (3.5). If
this variable is set to 2, then the doubling algorithm is used to calculate an approximation of
Σ (see DoublingAlgorithmLyapunov below). Next, the input variables MaxIter and Tolerance
are accepted and are used by the doubling algorithm function. The input variable StartPeriod
is used to start the sample at period tm ≥ 1. The default value of this parameter is 1, i.e., not to
skip any observations. Moreover, the boolean variable AllowUnitRoot is needed to determine
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if undefined unit roots are accepted in the state equation or not. Finally, if initP is 3, then
P1|0 = cIr , where c > 0 needs to be specified; its default value is 100.

The function KalmanFilterHt takes exactly the same input variables as KalmanFilter. While
the input variable H is r × n for the latter function, it is now r × n × T for the former function.
This means that KalmanFilterHt allows for a time-varying measurement matrix.

As output, KalmanFilter (KalmanFilterHt) provides lnL, the value of the log-likelihood
function in (3.13), where the summation is taken from tm until T . Furthermore, output is
optionally provided for yt|t−1, H′Pt|t−1H + R (or H′

tPt|t−1Ht + R when the measurement matrix
is time-varying), ξt|t−1, Pt|t−1, lnp(yt|xt,
t−1; θ) from tm until T , etc. The dimensions of the
outputs are:

lnL: scalar containing the value of the log-likelihood function in (3.13).
status: boolean variable being 0 if all the eigenvalues of F are inside the unit circle, and

1 otherwise. In the latter case, KalmanFilter (KalmanFilterHt) sets initP to 3.
lnLt: 1 × (T − tm + 1) vector [lnp(ytm |xtm,
tm−1; θ) · · · lnp(yT |xT ,
T−1; θ)]. [Optional]
Yhat: n× (T − tm + 1) matrix [ytm|tm−1 · · ·yT |T−1]. [Optional]
MSEY: n×n×(T−tm+1) 3 dimensional matrix where MSEY(:, :, t−tm+1) = H′Pt|t−1H+R.

[Optional]
Ksitt1: r × (T − tm + 1) matrix [ξtm|tm−1 · · · ξT |T−1]. [Optional]
Ptt1: r × r × (T − tm + 1) 3 dimensional matrix where Ptt1(:, :, t − tm + 1) = Pt|t−1.

[Optional]
The inputs are given by Y, X, A, H, F, Q, R, KsiInit, initP, MaxIter, Tolerance, StartPeriod,

and c. All inputs are required by the function. The integer MaxIter is the maximum number
of iterations that the doubling algorithm can use when initP is 2. In this case, the parameter
Tolerance, i.e., the tolerance value for the algorithm, is also used.

3.9.2. UnitRootKalmanFilter & UnitRootKalmanFilterHt

The function UnitRootKalmanFilter (UnitRootKalmanFilterHt) takes all the input variables
that KalmanFilter (KalmanFilterHt) accepts. In addition, this unit-root consistent version of
the Kalman filter needs to know the location of the stationary state variables. This input vector
is given by StationaryPos. Using this information the function sets up an initial value for the
rows and columns of P1|0 using the algorithm determined through initP. If this integer is 1 or 2,
then the rows and columns of F and Q determined by StationaryPos are used. The remaining
entries of the P1|0 are set to zero if off-diagonal and to c if diagonal.

The output variables from UnitRootKalmanFilter (UnitRootKalmanFilterHt) are identical
to those from KalmanFilter (KalmanFilterHt).

3.9.3. StateSmoother & StateSmootherHt

The function StateSmoother (StateSmootherHt) computes ξt|t, ξt|T , Pt|t, Pt|T , and ξt−1|t using yt,
yt|t−1, ξt|t−1 and Pt|t−1 as well as the parameter matrices H, F, and R as input. The dimensions
of the outputs are:

Ksitt: r × (T − tm + 1) matrix [ξtm|tm · · · ξT |T].
Ptt: r × r × (T − tm + 1) 3 dimensional matrix where Ptt(:, :, t − tm + 1) = Pt|t.
KsitT: r × (T − tm + 1) matrix [ξtm|T · · · ξT |T].
PtT: r × r × (T − tm + 1) 3 dimensional matrix where PtT(:, :, t − tm + 1) = Pt|T .
Ksit1t: r × (T − tm + 1) matrix with the 1-step smoothed predictions ξt−1|t.

The required inputs are given by Y, Yhat, Ksitt1, Ptt1, H, F, and R. For the StateSmoother
version, the H matrix has dimension r×n, while for StateSmootherHt is has dimension r×n×T .

3.9.4. DoublingAlgorithmLyapunov

The function DoublingAlgorithmLyapunov computes Σ, the unconditional covariance matrix of
the state vector ξ, using S (m × m), W (m × m and positive semi-definite) as inputs as well
as the positive integer MaxIter, reflecting the maximum number of iterations to perform, and
the positive real ConvValue, measuring the value when the convergence criterion is satisfied.
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The convergence criterion is simply the largest singular value of |γk+1 − γk|; see Matlab’s norm
function. The dimensions of the outputs are:

M: m×m positive semi-definite matrix.
status: Boolean variable which is 0 if the algorithm converged and 1 otherwise.

When called from KalmanFilter, the first two inputs are given by F and Q, while the maximum
number of iterations and the tolerance value for the function can be determined by the user.3

4. Solving a DSGE Model with AiM

4.1. The DSGE Model Specification and Solution

To make use of the Kalman filter for evaluating the log-likelihood function we need to have a
mapping from the structural parameters of the DSGE model to the “reduced form” parameters
in the state-space representation. This objective can be achieved by attempting to solve the
DSGE model for a given set of parameter values. Given that there exists a unique convergent
solution, we can express the solution as a reduced form VAR(1) representation of the form given
by the state equation in (3.2).

In this section I will present the general setup for solving linearized rational expectations
models with the Anderson-Moore algorithm. This algorithm is implemented in YADA via AiM.
Similar to Zagaglia (2005) the DSGE model is expressed as:

τL∑
i=1

H−izt−i +H0zt +
τU∑
i=1

HiEt[zt+i] = Dηt, (4.1)

where τL > 0 is the number of lags and τU > 0 the number of leads. The zt (p × 1) vector are
here the endogenous variables, while ηt (q × 1) are pure innovations, with zero mean and unit
variance conditional on the time t − 1 information. The Hi matrices are of dimension p × p
while D is p × q. When p > q the covariance matrix of εt = Dηt, DD′, has reduced rank since
the number of shocks is less than the number of endogenous variables.4

Adolfson, Laséen, Lindé, and Svensson (2008) shows in some detail how the AiM algorithm
can be used to solve the model in equation (4.1) when τU = τL = 1. As pointed out in that
paper, all linear systems can be reduced to this case by replacing a variable with a long lead or a
long lag with a new variable. Consider therefore the system of stochastic difference equations:

H−1zt−1 +H0zt +H1Et[zt+1] = Dηt. (4.2)

The AiM algorithm takes the Hi matrices as input and returns B1, called the convergent au-
toregressive matrix, and S0, such that the solution to (4.2) can be expressed as an autoregressive
process

zt = B1zt−1 + B0ηt, (4.3)
where

B0 = S−1
0 D, (4.4)

S0 = H0 +H1B1. (4.5)

Moreover, the matrix B1 satisfies the identity

H−1 +H0B1 +H1B
2
1 = 0. (4.6)

This can be seen by leading the system in (4.2) one period and taking the expectation with
respect to time t information. Evaluating the expectation through (4.3) yields the identity.
From equations (4.5) and (4.6) it can be seen that B1 and S0 only depend on the Hi matrices,
but not on D. This is consistent with the certainty equivalence of the system.

3 The settings tab in YADA contains options for selecting the doubling algorithm rather than the vectorized solution
technique, and for selecting the maximum number of iterations and the tolerance level for the algorithm. The default
values are 100 and 1.0e-8.
4 The specification of i.i.d. shocks and the matrix D is only used here for expositional purposes. AiM does not make
any distinction between endogenous variables and shocks. In fact, zt would include ηt and, thus, H0 would include
D.
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More generally, the conditions for the existence of a unique convergent solution (Anderson
and Moore, 1983, 1985) can be summarized as follows:

• Rank condition:

rank

(
τU∑

i=−τL
Hi

)
= dim(z).

• Boundedness condition: For all {zi}−1
i=−τL there exists {zt}∞

t=0 that solves (4.1) such that

lim
T→∞Et+j

[
zt+j+T

]
= 0, ∀j ≥ 0.

The rank condition is equivalent to require that the model has a unique non-stochastic steady
state, while the boundedness condition requires that the endogenous variables eventually con-
verge to their steady state values. Given that a unique convergent solution exists, AiM provides
an autoregressive solution path

zt =
τL∑
i=1

Bizt−i + B0ηt, (4.7)

where B0 = S−1
0 D. The VAR(1) companion form of (4.7) is given by⎡

⎢⎢⎢⎢⎢⎣
zt

zt−1
...

zt−τL+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
B1 B2 · · · BτL

I 0 · · · 0
...

. . .
...

0 · · · I 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
zt−1

zt−2
...

zt−τL

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣
B0ηt

0
...

0

⎤
⎥⎥⎥⎥⎥⎦ . (4.8)

With ξt = [zt · · · zt−τL+1]′ the F matrix is immediately retrieved from (4.8), while the state
shocks, vt, are given by the second term on the right hand side. The Q matrix is equal to the
zero matrix, except for the upper left corner which is given by B0B

′
0. If τL = 1, then Q = B0B

′
0,

while F = B1.

4.2. YADA Code

YADA uses only Matlab functions for running the AiM procedures, whereas most Matlab im-
plementations include script files. The main reason for this change is that the construction of
various outputs can more easily be traced to a particular Matlab file when functions are used,
while script files tend to hide a lot of variables, most of which are only needed locally. Moreover,
inputs are also easier to keep track of, since they can be given local names in a function.

The main functions in YADA for solving the DSGE model and setting up the output as required
by the Kalman filter are: AiMInitialize, AiMSolver, and AiMtoStateSpace. A number of
other functions are also included for utilizing AiM, but these are not discussed here.5 It should
be noted that the computationally slowest function, AiMInitialize, needs only be run once
for a given model specification. The other two main functions need to be run for each set of
parameter values to be analysed by the code.

4.2.1. AiMInitialize

The function AiMInitialize runs the AiM parser on ModelFile, a text file that sets up the DSGE
model in a syntax that the AiM parser can interpret. YADA refers to this file as the AiM model
file. If parsing is successful (the ModelFile is correctly written and the model is otherwise
properly specified), the AiM parser writes two Matlab files to disk. The first is a Matlab function
called compute_aim_data.m, and the second is a script file called compute_aim_matrices.m.
The latter file is then internally parsed by AiMInitialize, rewriting it as a function that accepts
a structure ModelParameters as input, where the fields of the structure are simply the parameter
names as they have been baptized in the AiM model file, and provides the necessary output. For

5 Most, if not all, of these Matlab functions originate from the AiM implementation at the Federal Reserve System;
see, e.g., Zagaglia (2005).
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example, if the model file has a parameter called omega, then the structure ModelParameters
has a field with the same name, i.e., ModelParameters.omega.

The functions compute_aim_data.m and compute_aim_matrices.m are stored on disk in a
sub-directory to the directory where the model file is located. By default, the name of this
directory depends only on the name of the model specification (which can be different from the
AiM model file, since the latter can be shared by many model specifications). AiMInitialize
therefore also takes the input arguments NameOfModel and (optionally) OutputDirectory.

AiMInitialize also runs the function compute_aim_data.m and stores the relevant output
from this function in a mat-file located in the same directory as the compute_aim_data.m file.
Finally, AiMInitialize provides as output the status of the AiM parsing, and the output given
by the compute_aim_data.m function. The status variable is 0 when everything went OK; it
is 1 if the parsing did not provide the required output; and 2 if the number of data variables
did not match the number of stochastic equations. All output variables from AiMInitialize
are required, while the required input variables are given by ModelFile, being a string vector
containing the full path plus name and extension of the model file, and NameOfModel, a string
vector containing the name of the model specification and OutputDirectory, the directory
where the AiM output is stored. The NameOfModel determines the name of the mat-file that is
created when running the function compute_aim_data.m.

4.2.2. AiMSolver

The function AiMSolver attempts to solve the DSGE model. To this end it requires as inputs the
ModelParameters structure (containing values for all model parameters), the number of AiM
equations (NumEq, often being at least p + q + 1), the number of lags (NumLag being τL), the
number of leads (NumLead being τU), and the numerical tolerance for AiM (AIMTolerance).

As output the function provides a scalar mcode with information about the solvability prop-
erties of the DSGE model for the parameter values found in the ModelParameters structure.
If mcode returns 1, then a unique convergent solution exists, while other values reflect various
problems with the selected parameters (see the AiMSolver file for details).

Given that a unique convergent solution exists, the solution matrices as well as the maxi-
mum absolute error (MaxAbsError) when computing the solution are calculated. The solution
matrices are given by all the Bi’s, provided in BMatrix ([BτL · · ·B1]), and all the Sj ’s, returned
as the matrix SMatrix ([SτL · · ·S1 S0]). These matrices have dimensions NumEq × τLNumEq and
NumEq× (τL + 1)NumEq, respectively.

4.2.3. AiMtoStateSpace

The function AiMtoStateSpace creates the F matrix for the state equation (3.2) based on the
input matrix BMatrix. When τL > 1, the function reverses the ordering of the individual Bi
matrices in BMatrix to reflect the ordering in (4.8) and concatenates the necessary identity and
zero matrices. Furthermore, the function creates B0 from SMatrix, extended with zero matrices
below if τL > 1 such that BMatrix and SMatrix have the same number of rows.

Since the output from AiMSolver treats all equations in a similar fashion, the vectors zt and
ηt are both often included as separate equations. Hence, NumEq ≥ p + q. The additional input
variables StateVariablePositions and StateShockPositions are therefore needed to locate
which rows and columns of BMatrix and SMatrix contain the coefficients on the z and η vari-
ables. These input vectors are created with the YADA GUI. Finally, since the ordering of the lags
in BMatrix is from the largest lag (τL) to the lowest (1), the function AiMReverseCoeffMatrix
is applied to obtain an ordering from the lowest to the largest whenever τL > 1.

5. Analysing the Properties of a DSGE Model

There are several ways that you can evaluate an estimated DSGE model in YADA through the be-
havior of its economic shocks. In this section I will consider a number of tools that are designed
for this purpose. Namely, the estimated economic shocks (the ηt’s), historical forecast error de-
compositions, impulse response functions, forecast error variance decompositions, conditional
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variance decompositions, conditional correlations, historical observed variable decompositions,
and parameter scenarios. Finally, we turn to the issue if a VAR model can uncover the economic
shocks and measurement errors of the DSGE model.

5.1. Estimation of the Economic Shocks

In Section 3.6 the smooth estimates of the state shocks for the state equation of the Kalman
filter were given in equation (3.17). For expositional reasons, let us assume here that τL = 1
such that Q = B0B

′
0 with B0 having full column rank. This latter assumption simply means that

we assume that there are no redundant shocks in the DSGE model.
For a given sequence of smoothly estimated state shocks, vt|T , smooth estimates of the eco-

nomic shocks are now given by:

ηt|T =
(
B′

0B0
)−1

B′
0vt|T . (5.1)

One indication that the DSGE model is well behaved at the underlying parameter estimates
is that the economic shocks have close to zero mean and identity covariance matrix. If some
estimated economic shocks at, say, the posterior mode of θ are highly correlated this is an
indication that the estimated DSGE model is misspecified. What we mean by highly correlated
is not crystal clear here, but by assumption the economic shocks should be uncorrelated.

5.2. Historical Forecast Error Decomposition

A common tool in the analysis of the structural VAR model is the decomposition of the forecast
errors for the observed variables into the underlying structural shocks. For such models, the
forecast errors are linear combinations of the structural shocks. In state-space models a forecast
error decomposition becomes more delicate since the forecast errors not only depend on the
structural, economic shocks, but also on measurement errors and prediction errors of the un-
observed state variables. Since the prediction errors of these variables depend on the economic
shocks and on the measurement errors, one cannot really speak about a unique decomposition
since one may further decompose the variable prediction errors.

Let εt+h = yt+h − yt+h|t denote the h-steps ahead forecast error of the observed variables
when we condition on the parameters. Furthermore, notice that yt+h = yt+h|T provided that
t+h ≤ T . From the measurement error estimation equation (3.18) and the multistep forecasting
equation (3.20) we thus have that for any h such that t+ h ≤ T :

εt+h = H′(ξt+h|T − ξt+h|t
)

+wt+h|T , t = 1, . . . , T − h. (5.2)

By making use of equation (3.23) we can rewrite the difference between the smoothed and
the h-steps forecasted state vector on the right hand side of (5.2) as

ξt+h|T − ξt+h|t = Fh
(
ξt|T − ξt|t

)
+

h−1∑
i=0

Fivt+h−i|T .

Substituting this expression into (5.2) and noticing that vt+h−i|T = B0ηt+h−i|T , we obtain the
following candidate of a historical forecast error decomposition

εt+h = H′Fh
(
ξt|T − ξt|t

)
+H′

h−1∑
i=0

FiB0ηt+h−i|T +wt+h|T , t = 1, . . . , T − h. (5.3)

Unless the state vector can be uniquely recovered from the observed variables6 the first term
on the right hand side is non-zero. It measures the improvement in the prediction of the state
vector when the full sample is observed relative to the partial sample. As the forecast horizon
h increases, this term converges towards zero. It may be argued that the choice of time period
t for the state vector is here somewhat arbitrary. We could, in principle, decompose this term
further until we reach period 1. However, the choice of state variable period t for the forecast
error is reasonable since this is the point in time when the forecasts are made. Moreover,

6 This would be the case if the state vector could be expressed as a linear function of the observed variables (and
the deterministic) by inverting the measurement equation.
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shifting it back to, say, period 1 would mean that the historical forecast error decomposition
would include estimates of the economic shocks that are based not only on the full sample, but
also on the 
t information set and, furthermore, the timing of those shocks would be for time
periods τ = 2, . . . , t, and would therefore be shocks with time period prior to t + 1, the first
time period of the forecast period.

Apart from the timing of the terms, the decomposition in (5.3) also has the advantage that
the dynamics of the state variables enter the second moving average term that involves only
the economic shocks, while the measurement errors in the third term do not display any serial
correlation. We may regard this as a “model consistent” decomposition in the sense that only
the state variables display dynamics and the measurement errors are independent of the state
variables. Hence, serial correlation in the forecast errors should stem from the shocks that affect
the dynamics, i.e., the economic shocks.

5.3. Impulse Response Functions

The responses of the observed variables yt from shocks to ηt can easily be calculated through
the state-space representation and the relationship between the state shocks and the economic
shocks. Suppose that ηt = ej and zero thereafter, with ej being the j:th column of Iq. Hence,
we consider the case of a one standard deviation impulse for the j:th economic shock. From
the state equation (3.2) the responses in ξt+h for h ≥ 0 are:

resp
(
ξt+h|ηt = ej

)
= FhB0ej , h ≥ 0. (5.4)

If the model is stationary, then the responses in the state variables tend to zero as h increases.
From the measurement equation (3.1) we can immediately determine the responses in the

observed variables from changes to the state variables. These changes are here given by equa-
tion (5.4) and, hence, the responses of the observed variables are:

resp
(
yt+h|ηt = ej

)
= H′FhB0ej , h ≥ 0. (5.5)

Again, the assumption that the state variables are stationary implies that the responses of the
observed variables tend to zero as the response horizon h increases.

5.4. Forecast Error Variance Decompositions

The conditional forecast error covariance matrix for the h-steps ahead forecast of the observed
vector y is given in equation (3.22). It can be seen from this equation that this covariance
matrix is time-varying. Although this is of interest when we wish to analyse the forecast errors
at a particular point in time, the time-variation that the state-space model has introduced is
somewhat artificial since it depends only on the choice of t = 1. For this reason we may wish
to consider “unconditional” forecast error variances, i.e., the expected value of (3.22).7

Assume that a unique asymptote of the forecast error covariance matrix Pt+h|t exists and let
it be denoted by Ph for h = 0,1, . . .. By equation (3.21) it follows that

Ph = FPh−1F
′ + Q, h ≥ 1. (5.6)

Similarly, from the expression for Pt|t below equation (3.15) we have that

P0 = P1 − P1H
[
H′P1H + R

]−1
H′P1. (5.7)

Let h = 1 in equation (5.6) and substitute for P0 from (5.7). We then find that the asymptote
P1 must satisfy

P1 = FP1F
′ − FP1H

[
H′P1H + R

]−1
H′P1F

′ + Q. (5.8)
Given that we can solve for a unique asymptote P1, all other Ph matrices can be calculated using
(5.6) and (5.7).

The assumptions that (i) F has all eigenvalues inside the unit circle, and (ii) Q and R are
positive semi-definite, are sufficient for the existence of an asymptote, P1, that satisfies (5.8);

7 The expected value we shall examine is strictly speaking not unconditional since it depends on the choice of
parameter values.
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see, e.g., Proposition 13.1 in Hamilton (1994). Let the asymptote for the Kalman gain matrix in
(3.10) be denoted by K, where

K = FP1H
[
H′P1H + R

]−1
.

The assumptions (i) and (ii) also imply that all the eigenvalues of (F−KH′) lie on or inside the
unit circle.

In fact, if we replace (ii) with the stronger assumption that either Q or R is positive definite,
then the asymptote P1 is also unique; see Proposition 13.2 in Hamilton (1994). This stronger
assumption is in the case of DSGE models often not satisfied since the number of economic
shocks tends to be lower than the number of state variables (Q singular) and not all observed
variables are measured with error (R singular). Nevertheless, from the proof of Proposition
13.2 in Hamilton it can be seen that the stronger assumption about Q,R can be replaced with
the assumption that all the eigenvalues of (F −KH′) lie inside the unit circle. From a practical
perspective this eigenvalue condition can easily be checked once an asymptote P1 has been
found.

The expression in (5.8) is a discrete algebraic Riccati equation and we can therefore try to
solve for P1 using well known tools from control theory. The matrix Q is typically singular for
DSGE models since there are usually fewer economic shocks than state variables. Moreover,
the matrix R is not required to be of full rank. For these reason, YADA cannot directly make
use of the function dare from the Control System Toolbox in Matlab or the procedures discussed
by Anderson, Hansen, McGrattan, and Sargent (1996). Instead, YADA uses a combination of
iterations (with Σ as an initial value) and Schur decompositions, where a solution to (5.8) is
attempted in each iteration using the dare function for a reduction of P1. The details on this
algorithm are presented below in Section 5.11.

Prior to making use of such potentially time consuming algorithms it makes sense to first
consider a very simple test. From equation (5.6) is can be seen that if P0 = 0 then P1 = Q.
This case seems most likely to be relevant when R = 0 since we know from (5.7) that P0 is
idempotent under this condition. Nevertheless, the test P0 = 0 for P1 = Q can be performed
very quickly and when successful save considerable computing time.

The forecast error covariance matrix for yt+h can now be calculated by taking the expectation
of both sides of equation (3.22) (for a given value of the parameters). This gives us:

E
[(
yt+h − yt+h|t

)(
yt+h − yt+h|t

)′]
= H′PhH + R, h ≥ 1. (5.9)

It is now relatively straightforward to calculate forecast error variance decompositions for
y based on (5.9). The total h-steps ahead forecast error variances are simply the diagonal
elements of this matrix. To compute the variance due to all the measurement errors, we let
Q = 0 and, therefore, Ph = 0 for all h ≥ 0. The forecast error covariance matrix of yt+h is now
R for all h when the economic shocks are “shut down”. The share of the forecast error variance
due to each one of the measurement errors is now the inverse of the diagonal of the right hand
side of (5.9) times R. The share explained by all measurement errors is now the sum over the
columns of this n× n matrix.

Similarly, to compute the variance due to economic shock j we let R = 0 and Q = B0jB
′
0j ,

where B0j is the j:the column of B0. Given these new error covariance matrices we first check
if P0 = 0 when we let P1 = Q. If the condition is not satisfied we attempt to solve for P1
using (5.8). Since the n × n matrix H′P1H is singular when rank(Q) < n, the inverse of this
matrix is replaced by S(S′[H′P1H]S)−1S′, where the n × s matrix S is computed from a Schur
decomposition of H′P1H.8 Furthermore, Σ is no longer the “best” initial value. Instead we may
calculate a new Σ using the new Q, i.e., B0jB

′
0j .

If the Riccati equation has a unique asymptote, P1, under the newQ, we can compute the new
Ph matrices. Next, the shares of the forecast error variance of the observed variables at horizon

8 Let Λ be a s × s diagonal matrix whose diagonal elements are the non-zero eigenvalues of H ′P1H. The Schur
decomposition in YADA is then SΛS′ = H ′P1H, where S′S = Is. The inverse of H ′P1H is therefore replaced with
SΛ−1S′. Moreover, since rank(Q) = 1 here we expect that s = 1.
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h for economic shock j can be determined by premultiplying the vector of diagonal elements
of the newly computed H′PhH matrix with the inverse of the diagonal elements of the original
forecast error variance matrix of the observed variables at horizon h.

When the model has measurement errors, then the sum of the share due to the measurement
errors and the share due to the economic shocks is less than one for finite h. Let PR

h
denote the

forecast error covariance matrix of the state variables for any positive semi-definite R, while P0
h

denotes this covariance matrix when R = 0. The right hand side of (5.9) can be written as

H′PR
h
H + R = H′P0

h
H + R +H′(PR

h
− P0

h
)H. (5.10)

The first term on the right hand side of (5.10) is the share explained by the economic shocks,
while the second term is the share explained by the measurement errors. The share of the
forecast error variances of the observed variables that cannot directly be attributed to these two
sources of uncertainty is given by the third term. This additional covariance term is due to
the inherent signal extraction problem when trying to separate the influence on the observed
variables from measurement errors and from the state variables. Alternatively, the presence of
measurement errors makes the information signal in the observed variables for predicting the
state variables noisier; cf. the Kalman gain matrix in equation (3.10). Hence, the forecast error
variance term H′(PR

h
− P0

h
)H can be interpreted as a signal extraction error variance.

The long-run forecast error variance decomposition can also be calculated using the above
relations. First, we note that if the unique asymptote P1 exists, then all Ph exist and are unique.
Moreover, limh→∞ Ph = Σ so that the long-run forecast error covariance of the observed vari-
ables is simply the unconditional covariance matrix H′ΣH + R. The long-run forecast error
variance decomposition can now be calculated in analogy with the above procedure. The long-
run forecast error covariance matrix due to the measurement errors is therefore simply R, while
the covariance matrix due to economic shock j is given by H′ΣjH, where Σj is the solution to
the Lyapunov equation:

Σj = FΣjF′ + B0jB
′
0j .

Since limh→∞ PR
h

= Σ for any finite R, the signal extraction error variance discussed in the
previous paragraph converges to 0 and the long-run forecast error variances can therefore be
fully explained by the measurement and the economic shocks.

The h-steps ahead forecast error for the observed variables when the forecasts are performed
based on the observations in period T can be expressed as:

εT+h = H′(ξT+h − ξT+h|T
)

+wT+h, h = 1,2, . . . . (5.11)

The covariance matrix of the forecast error is therefore as shown in equation (5.9), with

Σεh = E
[
εT+hε

′
T+h

]
= H′PhH + R.

(5.12)

If we assume that all observed variables are expressed as first differences, the levels are given
by the accumulation (and an initial condition). This means that the forecast error of the levels
is the accumulation of the forecast errors for the observed variables. Letting ε̄T+h denote the
h-steps ahead forecast error of the levels variables, it is given by

ε̄T+h =
h∑
j=1

εT+j ,

=
h∑
j=1

H′(ξT+j − ξt+j |T
)

+
h∑
j=1

wT+j .

(5.13)

The covariance matrix of the levels h-steps ahead forecast error is denoted by Σε̄h . For h = 1 we
find that Σε̄1 = Σε1 , while a bit of algebra reveals that

Σε̄h = Σεh + Σε̄h−1 +
h−1∑
i=1

H′
(
FiPh−i + Ph−i

(
F′)i)H, (5.14)
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where the third term on the right hand side is due to the covariance between the state variable
errors in period T + h and periods T + 1 until T + h − 1, i.e., the covariance between εT+h and
ε̄T+h−1.

5.5. Conditional Variance Decompositions

An alternative variance decomposition approach to the forecast error variance decomposition in
Section 5.4 is suggested through the historical forecast error decomposition in equation (5.3).
Rather than relying on the smooth estimates, the h-steps ahead forecast error using data until
period T can be expressed as:

εT+h = H′Fh
(
ξT − ξT |T

)
+H′

h−1∑
i=0

FiB0ηT+h−i +wT+h, h = 1,2, . . . , H. (5.15)

If we condition the forecast error εT+h on the state projection error (first term) and the mea-
surement error (third term), the conditional h-steps ahead forecast error variance is given by
the variance of the second term on the right hand side. That is,

Vh =
h−1∑
i=0

H′FiB0B
′
0(F′)iH. (5.16)

This forecast error variance is identical to the forecast error variance that we obtain when a VAR
model is written on state-space form. It is therefore analogous to a “variance decomposition”
that is calculated from the impulse response functions in (5.5).

Letting Ri = H′FiB0, the conditional forecast error variance decomposition can be expressed
as the n × q matrix

vh =

[
h−1∑
i=0

(
RiR

′
i � In

)]−1 [h−1∑
i=0

(
Ri � Ri

)]
, (5.17)

where � is the Hadamard (element-by-element) product. With e(n)
i being the i:th column of In,

the share of the h-steps ahead conditional forecast error variance of the i:th observed variable
that is explained by the j:th economic shock is given by e(n)′

i vhe
(q)
j .

YADA can also handle conditional variance decompositions for levels variables. To illustrate
how this is achieved assume for simplicity that all observed variables are expressed as first
differences so that the levels are obtained by accumulating the variables. This means that the
h-steps ahead forecast error for the levels is the accumulation of the error in (5.15), i.e.,

ε̄T+h = H′
h∑
j=1

Fj
(
ξT − ξT |T

)
+H′

h∑
j=1

j−1∑
i=0

FiB0ηT+j−i +
h∑
j=1

wT+j , h = 1,2, . . . , H. (5.18)

The conditional h-steps ahead forecast error for the levels variables is the second term on the
right hand side of (5.18). This can be expressed as

ε̄
(c)
T+h =

h∑
j=1

j−1∑
i=0

RiηT+j−i

=
h−1∑
j=0

R∗
j ηT+h−j ,

(5.19)

where R∗
j =

∑j

i=0Ri. It therefore follows that the conditional forecast error variance for the
levels of the observed variables is

V ∗
h

=
h−1∑
j=0

R∗
j R

∗′
j . (5.20)

We can then define the levels variance decomposition as in equation (5.17) with R∗
j instead of

Ri (and summing over j = 0,1, . . . , h − 1).
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By collecting the products RiR
′
i into one group and all other product into a second group and

dividing both sides of equation (5.20) by h, it can be rewritten as:

V̄h = V ∗
h /h

=
h−1∑
i=0

(
h− i

h

)
RiR

′
i +

h−1∑
m=1

m−1∑
i=0

(
h −m

h

)(
RiR

′
m + RmR

′
i

)
.

(5.21)

Taking the limit of V̄h as the forecast horizon approaches infinity we obtain an finite expression
of the long-run forecast error covariance. We here find that

lim
h→∞

V̄h =
∞∑
i=0

RiR
′
i +

∞∑
m=1

m−1∑
i=0

(
RiR

′
m + RmR

′
i

)

=

( ∞∑
i=0

Ri

)( ∞∑
i=0

Ri

)′
.

(5.22)

Hence, if we divide the h-steps ahead forecast error covariance matrix by h and take the limit
of this expression, we find that the resulting long-run covariance matrix is equal to the cross
product of the accumulated impulse responses.

These results allow us to evaluate how close the forecast error covariance matrix at the h-
steps horizon is to the long-run forecast error covariance matrix. The ratio between the l:th
diagonal element in (5.21) and in (5.22) is an indicator of such convergence. A value close to
unity can be viewed as long-run convergence at forecast horizon h, while a very large or very
small value indicates a lack of convergence.

We can also use the result in (5.22) to estimate the long-run conditional forecast error vari-
ance decomposition. Letting Rlr =

∑∞
i=0 Ri, we find that

vlr =
[
RlrR

′
lr � In

]−1[
Rlr � Rlr

]
, (5.23)

provides such a decomposition. To approximate the infinite summation in Rlr we may simply
use a large finite number. YADA here uses the maximum of {h,200}.

5.6. Conditional Correlations

The basic idea behind conditional correlations is to examine the correlation pattern between
a set of variable conditional on one source of fluctuation at a time, e.g., technology shocks.
Following the work by Kydland and Prescott (1982) the literature on real business cycle mod-
els tended to focus on matching unconditional second moments. This was critized by several
economists since a model’s ability to match unconditional second moments well did not imply
that it could also match conditional moments satisfactorily; see, e.g., Galí (1999).

We can compute conditional correlations directly from the state-space representation. Let
column j of B0 be denoted by B0,j , while the j:th economic shock is ηj,t. The covariance matrix
for the state variables conditional on only shock j is therefore given by

Σ(j)
ξ

= FΣ(j)
ξ
F′ + B0,jB

′
0,j , (5.24)

where Σ(j)
ξ

= E[ξtξ
′
t|ηj,t]. We can estimate Σ(j)

ξ
at θ by either solving (5.24) analytically through

the vec operator, or numerically using the doubling algorithm discussed in Section 3.4. The con-
ditional correlation for the observed variables can thereafter be calculated from the conditional
covariance matrix

Σ(j)
y = H′Σ(j)

ξ
H. (5.25)

As an alternative to conditional population moments we can also consider simulation meth-
ods to obtain estimates of conditional sample moments. In that case we can simulate a path for
the state variables conditional on only shock j being nonzero, by drawing T values for ηj,t and
letting

ξ
(s)
t = Fξ

(s)
t−1 + B0,jηj,t, t = 1, . . . , T. (5.26)
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where ξ(s)
0 is drawn from N(0,Σ(j)

ξ
). The conditional sample correlations for simulation s can

now be computed as:

Σ̂(j,s)
y =

1
T

T∑
t=1

H′ξ(s)
t ξ

(s)′
t H, s = 1, . . . , S. (5.27)

By repeating the simulations S times we can estimate the distribution of the conditional sample
correlations for a given θ.

5.7. Historical Observed Variable Decomposition

Given the smooth estimates of the economic shocks (5.1) and the measurement errors (3.18) we
can also calculate a historical decomposition of the observed variables. Specifically, we know
that

yt = A′xt +H′ξt|T +wt|T .
The estimated share of yt due to measurement errors is therefore simply wt|T , while the shares
due to the various economic shocks need to be computed from the smoothed state variables
and the state equation. Specifically, we have that

ξt|T = Ftξ0|T +
t−1∑
i=0

FiB0ηt−i|T , (5.28)

where ξ0|T = 0 when the observed data begins in period t = 1, while η1|T = (B′
0B0)−1B′

0(ξ1|T −
Fξ0|T). From (5.28) we can decompose the smooth estimates of the state variables into terms
due to the q economic shocks. Substituting this expression into the measurement equation
based on smoothed estimates, we obtain

yt = A′xt +H′Ftξ0|T +
t−1∑
i=0

H′FiB0ηt−i|T +wt|T , t = 1, . . . , T. (5.29)

Accordingly, it is straightforward to decompose the observed variables into terms determined by
(i) the deterministic variables, (ii) the initial state estimate (ξ0|T), (iii) the q economic shocks,
and (iv) the measurement errors.

The decomposition in (5.29) can also be generalized into decompositions for all possible
subsamples {t0 + 1, . . . , T}, where t0 = 0,1, . . . T − 1. In the decomposition above the choice is
t0 = 0. The generalization into an arbitrary t0 gives us:

yt = A′xt +H′Ft−t0ξt0|T +
t−t0−1∑
i=0

H′FiB0ηt−i|T +wt|T , t = t0 + 1, . . . , T. (5.30)

This provides a decomposition of the observed variables yt into (i) deterministic variables, (ii)
the estimated history of the state until t0 (ξt0|T), (iii) the q economic shocks over the period
after t0 and up until t, and (iv) the measurement error.

5.8. Parameter Scenarios

Parameter scenarios are used to examine the impact that changing some parameters has on
the behavior of the variables or on the economic shocks. Let θb be the baseline value of the
parameter vector and θa the alternative value. The baseline value can, for example, be the
posterior mode estimate of θ.

Assuming that the model has a unique and convergent solution at both θb and at θa, YADA
provides two approaches for parameter scenario analysis. The first is to calculate smooth es-
timates of the economic shocks under the two parameter vectors. The path for the observed
variables are, in this situation, the same for both parameter vectors.9

The second approach takes the economic shocks and measurement errors based on θb as
given and calculates the implied observed variables from the state-space representation with

9 Alternatively, one may wish to compare smooth estimates of the state variables under the two parameter vectors.
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the parameter matrices A, H, F and B0 determined by the alternative θa vector.10 This path can
then be compared with the actual data for the observed variables.

5.9. Linking the State-Space Representation to a VAR

To address the issue if the economic shocks and measurement errors of the state-space repre-
sentation can be uncovered from a VAR representation of the observed variables, Fernández-
Villaverde, Rubio-Ramírez, Sargent, and Watson (2007) provide a simple condition for checking
this.

To cast equations (3.1) and (3.2) into their framework we first rewrite the measurement error
as:

wt = Φωt,
where R = ΦΦ′ while ωt ∼ N(0, I). The matrix Φ is of dimension n × m, with m = rank(R).
The random vector ωt thus gives the unique measurement errors.

Substituting for ξt from the state equation into the measurement equation we get:

yt = A′xt +H′Fξt−1 +H′B0ηt + Φωt
= A′xt +H′Fξt−1 + Dϕt,

(5.31)

where the residual vector ϕt = [η′t ω′
t]

′ while D = [H′B0 Φ] is of dimension n × (q +m).
The state equation can likewise be expressed as:

ξt = Fξt−1 + Bϕt, (5.32)

where B = [B0 0] is an r × (q +m) matrix.
The state-space representation has a VAR representation when ϕt can be retrieved from the

history of the observed variables. The first condition for this is that D has rank q + m such
that a Moore-Penrose inverse D+ = (D′D)−1D′ exists. A necessary condition for the existence
of this inverse is clearly that n ≥ q + m, i.e., that we have at least as many observed variables
as economic shocks and unique measurement errors.

Assuming D+ exists we can write ϕt in (5.31) as a function of yt, xt, and ξt−1. Substituting
the corresponding expression into the state equation and rearranging terms yields

ξt =
(
F − BD+H′F

)
ξt−1 +

(
yt −A′xt

)
. (5.33)

If the matrix F − BD+H′F has all eigenvalues inside the unit circle, then the state variables
are uniquely determined by the history of the observed (and the exogenous) variables. The
state vector ξt can therefore be regarded as known, and, moreover, this allows us to express the
measurement equation as an infinite order VAR model. Accordingly, the economic shocks and
the measurement errors are uniquely determined by the history of the observed data (and the
parameters of the DSGE model). The eigenvalue condition is called a “poor man’s invertibility
condition” by Fernández-Villaverde et al. (2007).

5.10. Fisher’s Information Matrix

If the vector of parameters θ is estimated with maximum likelihood, then the inverse of Fisher’s
information matrix is the asymptotic covariance matrix for the parameters. If this matrix has
full rank when evaluated at the true parameter values, the parameters are said to be locally
identified; cf. Rothenberg (1971).

Since DSGE models are typically estimated with Bayesian methods, identification problems
can likewise be viewed through the behavior of the Hessian of the log-posterior distribution.
However, such problems can be dealt with by changing the prior such that the log-posterior has
more curvature. Still, use of prior information to deal with identification problems is unsatisfac-
tory. One way to examine how much information there is in the data about a certain parameter

10 One alternative to the second approach is to simulate the model under θa by drawing the economic shocks and
the measurement errors from their assumed distribution a large number of times, compute the implied path for the
observed variables, and then compare, say, the average of these paths to the actual data for the observed variables.
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is to compare the plots of the prior and the posterior distributions. If these distributions are
very similar, then it is unlikely that the data is very informative about this particular parameter.

The comparison between prior and posterior distributions require that we have access to
draws from the posterior. Since drawing from the posterior may be very time consuming, it
may be useful to consider an alternative approach. In this respect, Fisher’s information matrix
may also be useful when considering identification issues from a Bayesian perspective. This
approach has been investigated in a series of articles by Nikolay Iskrev; see Iskrev (2006, 2007a,
2007b).11

Let ỹt = yt − yt|t−1 and Bt = H′Pt|t−1H + R. Using standard results from matrix differential
algebra (see Magnus and Neudecker, 1988) it has been shown by Klein and Neudecker (2000)
that the second differential of the log-likelihood function in (3.13) can be written as:

d2 lnL
(
T ; θ

)
=

1
2

T∑
t=1

tr
{
B−1
t

(
dBt
)
B−1
t

(
dBt
)}−

T∑
t=1

(
dỹt
)′
B−1
t

(
dỹt
)
+

−
T∑
t=1

tr
{
B−1
t

(
dBt
)
B−1
t

(
dBt
)
B−1
t ỹtỹ

′
t

}
+

+ 2
T∑
t=1

tr
{
B−1
t

(
dBt
)
B−1
t

(
dỹt
)
ỹ′
t

}
−

T∑
t=1

tr
{
B−1
t

(
d2ỹt

)
ỹ′
t

}
.

Taking the expectation of both sides with respect to θ, the Lemma in Klein and Neudecker
implies that the last two terms on the right hand side are zero. Moreover, with E[ỹtỹ

′
t; θ] =

E[Bt; θ], the above simplifies to

Eθ

[
d2 lnL

(
T ; θ
)]

= −1
2

T∑
t=1

Eθ

[(
dvec

(
Bt
))′[

B−1
t ⊗ B−1

t

]
dvec

(
Bt
)]

+

−
T∑
t=1

Eθ

[(
dỹt
)′
B−1
t dỹt

]
The matrix Bt is a differentiable function of the parameters θ such that

dvec
(
Bt
)

=
∂vec

(
Bt
)

∂θ′
dθ.

Similarly, we let

dỹt =
∂ỹt

∂θ′
dθ.

Collecting these results, the Fisher’s information matrix may be expressed as:

−Eθ
[
∂2 lnL

(
T ; θ
)

∂θ∂θ′

]
=

T∑
t=1

Eθ

[(∂ỹt
∂θ′
)′
B−1
t

∂ỹt

∂θ′

]
+

+
1
2

T∑
t=1

Eθ

[(∂vec
(
Bt
)

∂θ′
)′[

B−1
t ⊗ B−1

t

]∂vec
(
Bt
)

∂θ′

]
.

(5.34)

The partial derivatives of ỹt and Bt with respect to the reduced form parameters (A,H,R, F,Q)
can be determined analytically. The form depends on how the initial conditions for the state
variables relate to the parameters; see Zadrozny (1989, 1992) for details. The step from reduced
form parameters to θ is explained by Iskrev (2007a). Instead of making use of these analytic
results, YADA currently computes numerical derivatives of ỹt and Bt with respect to θ.

5.11. The Riccati Equation Solver Algorithm in YADA

The algorithm used by YADA to (try to) solve the Riccati equation (5.8) for the forecast error
variances uses a combination of iterative and non-iterative techniques. Let the Riccati equation

11 See also Beyer and Farmer (2004) and Canova and Sala (2006) for discussions of identifiability issues in DSGE
models.
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be given by
P = FPF′ − FPH

[
H′PH + R

]−1
H′PF′ + Q, (5.35)

where Q and R are positive semi-definite and P is used instead of P1. Below I will discuss the
main ingredients of the algorithm, where each iteration follows the same steps.

First, a positive semi-definite value of P is required. This value is used to evaluate the right
hand side of (5.35), yielding a new value for P that we shall explore.12 Since the new value of
P may have reduced rank, we first use a Schur decomposition such that for the r × r positive
semi-definite matrix P

P = NΛN′,
where N is r × s such that N′N = Is, while Λ is an s × s diagonal matrix with the non-zero
eigenvalues of P . Substituting this expression for P into (5.35), premultiplying both sides by N′
and postmultiplying by N, we obtain the new Riccati equation

Λ = AΛA′ −AΛB
[
B′ΛB + R

]−1
B′ΛA′ + C, (5.36)

where A = N′FN, B = N′H, and C = N′QN.
Next, if the matrix B′ΛB + R in (5.36) has reduced rank, YADA performs a second Schur

decomposition. Specifically,
B′ΛB + R = DΓD′,

where D is n × d such that D′D = Id, while Γ is a d × d diagonal matrix with the non-zero
eigenvalues of B′ΛB + R. Replacing the inverse of this matrix with D(B∗′ΛB∗ + R∗)−1D, with
B∗ = BD and R∗ = D′RD, the Riccati equation (5.36) can be rewritten as

Λ = AΛA′ −AΛB∗[B∗′ΛB∗ + R∗]−1
B∗′ΛA′ + C. (5.37)

When the matrix B′ΛB + R in (5.36) has full rank, YADA sets D = In.
YADA now tries to solve for Λ in (5.37) using dare from the Control System Toolbox; see

Arnold and Laub (1984) for details on the algorithm used by dare. If dare flags that a unique
solution to this Riccati equation exists, Λ∗, then YADA lets P = NΛ∗N′. When the call to dare
does not yield a unique solution, YADA instead compares the current P to the previous P . If the
difference is sufficiently small it lets the current P be the solution. Otherwise, YADA uses the
current P as input for the next iteration.

5.12. YADA Code

The impulse responses are handled by the function DSGEImpulseResponseFcn, historical fore-
cast error decompositions by DSGEHistDecompFcn, while the variance decompositions are cal-
culated by the function DSGEVarianceDecompFcn for the original data and for the levels by
DSGEVarianceDecompLevelsFcn. Since the latter depends on solving Riccati equations, the
code also includes the function RiccatiSolver. The conditional correlations are performed
by the function DSGEConditionalCorrsTheta that can deal with both population-based and
sample-based correlations.

The conditional variance decompositions are handled by DSGECondVarianceDecompFcn, while
output on estimates of unobserved variables and observed variable decompositions is pro-
vided by the function CalculateDSGEStateVariables. The levels of the conditional variance
decompositions are handled by DSGECondLevVarianceDecompFcn, while the levels of the im-
pulse response functions are taken care of by DSGELevImpulseResponseFcn. The function
DSGEtoVARModel checks the “poor man’s invertibility condition” of Fernández-Villaverde et al.
(2007), i.e., if all the eigenvalues of the matrix on lagged states in equation (5.33) lie inside
the unit circle. Annualizations of the conditional variance decompositions are computed by
DSGECondAnnVarianceDecompFcn, while impulse responses for annualized data is calculated di-
rectly from the output of DSGEImpulseResponseFcn. With s being the data frequency, this typi-
cally involves summing s consecutive impulse responses provided that the variable is annualized

12 In the event that H ′PH + R has reduced rank, its “inverse” is replaced by S(S′[H ′PH + R]S)−1S′ where S is
obtained from the Schur decomposition H ′PH + R = SΓS′.
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by summing s consecutive observations. For response horizons prior to period s−1 all responses
from period 0 until the response horizon are summed. Finally, we shall return to Fisher’s infor-
mation matrix from Section 5.10. The function used for this purpose is DSGEInformationMatrix
which can estimate the information matrix for any selected value of θ.

5.12.1. DSGEImpulseResponseFcn

The function DSGEImpulseResponseFcn is used to calculate the responses in the state variables
and the observed variables from the economic shocks. It provides as output the structure
IRStructure using the inputs H, F, B0, and h. The r × n matrix H is given by the measure-
ment equations, while F and B0 are obtained from the DSGE model solution as determined by
the function AiMtoStateSpace. The last input h is a positive integer denoting the maximum
horizon for the impulse responses.

The output structure IRStructure has two fields Ksi and Y. The fields contain the responses
of the state variables and of the observed variables, respectively. These are provided as 3D
matrices. The first dimension is the number of states (r) for the field Ksi and observed variables
(n) for Y, the second dimension is the number of shocks (q), and the third is the number
of responses plus one (h + 1). First instance, IRStructure.Y(:,:,i+1) hold the results for
response horizon i.

5.12.2. DSGELevImpulseResponseFcn

The function DSGELevImpulseResponseFcn is used to calculate the accumulated responses in the
state variables and the levels responses of the observed variables from the economic shocks. It
provides as output the structure IRStructure using the inputs H, F, B0, AccMat, and h. The r×n
matrix H is given by the measurement equations, while F and B0 are obtained from the DSGE
model solution as determined by the function AiMtoStateSpace. The matrix AccMat is an n× n
diagonal 0-1 matrix. It is used to accumulate the responses in the observed variables provided
that they are viewed as being in first differences. The last input h is a positive integer denoting
the maximum horizon for the impulse responses.

The output structure IRStructure has the same dimensions as for the original data function
DSGEImpulseResponseFcn. The fields contain the responses of the state variables (Ksi) and of
the observed variables (Y), respectively. While the responses in the state variables are pure ac-
cumulations of the response function in (5.4), the levels response for the observed variables are
only accumulated for those variables which are viewed as being in first differences. Specifically,
with A being the 0-1 diagonal matrix AccMat, the levels responses for the observed variables
are given by

resp
(
yL
t+h|ηt = ej

)
= A · resp

(
yL
t+h−1|ηt = ej

)
+H′FhB0ej , h ≥ 1,

where resp(yLt |ηt = ej) = H′B0ej . Observed variables are viewed by YADA as being in first
differences based on the user defined input in the Data Construction File; cf. Section 6.1.

5.12.3. CalculateDSGEStateVariables

The function CalculateDSGEStateVariables provides output on estimates of various unob-
served variables. To achieve this it needs 5 inputs: theta, thetaPositions, ModelParameters,
DSGEModel, and ObsVarDec. The first three inputs are discussed in some detail in connection
with the prior file handling function VerifyPriorData, while the structure DSGEModel is dis-
cussed in connection with the posterior mode estimation function PosteriorModeEstimation;
cf. Section 8.2. The last input, ObsVarDec, is a boolean variable that determines if the func-
tion should compute the observed variable decompositions or not. This input is optional and
defaults to 0 if not supplied.

The only required output from the function is the structure StateVarStructure. In addi-
tion, the function can provide output on status, the mcode output from the AiMSolver func-
tion, and kalmanstatus, the status output from the KalmanFilter function. The latter two
outputs are only taken into account by YADA when initial parameter estimates are given to
CalculateDSGEStateVariables.
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The structure StateVarStructure has at most 26 fields. First of all, the fields Y and X hold
the data matrices for the observed variables and the exogenous variables for the actual sample
used by the Kalman filter. Furthermore, the field TrainSample hold a boolean variable which
reports if a training sample was used or not when computing the log-likelihood through the
Kalman filter. Furthermore, the output on the state variable estimates are given through the
fields Ksitt1 (forecast), Ksitt (update), and KsitT (smooth), while the forecasted observed
variables are held in the field Yhat. Next, the field lnLt stores the vector with sequential log-
likelihood values, i.e., the left hand side of equation (3.14).

The smooth estimates of the economic shocks are located in the field etatT. The matrix
stored in this field has the same number of rows as there are shocks with a non-zero impact on
at least one variable. This latter issue is determined by examining the estimated B0 matrix by
removing the columns that are zero. The columns that are non-zero are stored as a vector in
the field KeepVar. Update estimates of the economic shocks are located in etatt. If the model
contains measurement errors, then the smoothed estimates of the non-zero measurement errors
are located in the field wtT, while names of equations for these non-zero measurement errors
are stored as a string matrix in the field wtNames. At the same time, all estimated measurement
errors are kept in a matrix in the field wthT. Similarly, update estimates of the measurement
errors are found in wtt and wtht.

Given that the boolean input ObsVarDec is unity, the historical observed variable decompo-
sitions are calculated. The field XiInit contains a matrix with typical column element given
by H′Ftξ0|T . Similarly, the field etaDecomp holds a 3D matrix with the contributions to the
observed variables of the non-zero economic shocks. For instance, the contribution of shock
i for observed variable j can be obtained for the full sample as etaDecomp(j,:,i), a 1 × T
vector. The historical decompositions for the state variables are similarly handled by the fields
XietaInit and XietaDecomp.

The structure StateVarStructure also has 5 fields with parameter matrices A, H, and R from
the measurement equation, and F and B0 from the state equation. The last field is given by
MaxEigenvalue, which, as the name suggests, holds the largest eigenvalue (modulus) of the
state transition matrix F.

5.12.4. DSGEHistDecompFcn

The function DSGEHistDecompFcn calculates the historical forecast error decomposition of the
h-steps ahead forecast errors as described in equation (5.3). The inputs for the function are
given by Y, X, A, H, F, B0, Ksitt, KsitT, etatT, wtT, and h. As before, Y and X are the data on the
observed variables and the exogenous variables, respectively, A and H are given by the measure-
ment equation, while F and B0 are obtained from the AiMtoStateSpace function regarding the
state equation. Furthermore, Ksitt and KsitT are the updated and smoothed state variables
that are prepared by the StateSmoother function. The input etatT is the smoothed estimate of
the economic shocks in equation (5.1), wtT is the smoothed estimate of the measurement error
in (3.18), while h is the forecast horizon h.

The function supplies the structure HistDecompStructure as output. This structure has 5
fields: epstth, an n×(T −h) matrix with the forecast errors for the observed variables; KsiErr,
an n × (T − h) matrix with the state projection error in the first term of the right hand side of
equation (5.3); etathT, n× (T − h) × q matrix with the shares of the q economic shocks in the
second term of the equation;13 wthT, an n × (T − h) matrix with the smoothed measurement
errors; and KeepVar, a vector with index values of the columns of B0 that are non-zero.

5.12.5. DSGEConditionalCorrsTheta

The function DSGEConditionalCorrsTheta can calulate either population-based or sample-
based conditional correlations as described in Section 5.6. It takes 10 input variables: theta,
thetaPositions, ModelParameters, NumPaths, EstType, DSGEModel, CurrINI, SimulateData,

13 This means that the part of the h-steps ahead forecast error that is due to economic shock j is obtained from
etathT(:,:,j), an n × (T − h) matrix.
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FirstPeriod, LastPeriod. The structures thetaPositions, ModelParameters, DSGEModel, and
CurrINI have all been discussed above. The vector theta holds the values for the parame-
ters as usual. The integer NumPaths is equal to the number of simulations and is used only if
sample-based conditional correlation should be calculated. The text string EstType indicates
if posterior mode or initial parameter values are used. The boolean variable SimulateData
is 1 (0) if sample-based (population-based) conditional correlations should be computed. Fi-
nally, the integers FirstPeriod and LastPeriod marks the sample start and end point when
teh sample-based approach should be used.

The function provides one required and one optional output. The required output variable is
CondCorr, a structure with fields Mean, Quantiles, and ShockNames. When the field Quantiles
is not empty, then it has length equal to the number of quantiles, and each sub-entry has fields
percent and Mean. The former stores the percentile value of the distribution, while th latter
stores the conditional correlations at that percentile. The optional output variable is status
that indicates if the solution to the DSGE model is unique or not. The value is equal to the
variable mcode given by the function AiMSolver.

5.12.6. DSGEParameterScenariosTheta

The function DSGEParameterScenariosTheta calculates the parameter scenario for two values
of the parameter vector, the baseline value and the alternative value. It takes 10 input vari-
ables: DSGEModel, theta, thetaScenario, thetaPositions, ModelParameters, FirstPeriod,
LastPeriod, BreakPeriod, CopyFilesToTmpDir, and finally CurrINI. The structures DSGEModel,
ModelParameters, thetaPositions and CurrINI have all been discussed above. The vector
theta holds the baseline values of the parameters, while thetaScenario holds the alternative
(scenario) values of the parameters. The integers FirstPeriod and LastPeriod simply indi-
cate the first and the last observation in the estimation sample (not taking a possible training
sample for the state variables into account). The integer BreakPeriod indicates the position in
the sample (taking the training sample into account) where the parameters change, while the
boolean CopyFilesToTmpDir indicates if certain files should be copied to the tmp directory of
YADA or not.

The function provides 8 required output variables. These are: Status, a boolean that indi-
cates if all calculations were completed successfully or not. Next, the function gives the actual
path for the observed variables in the matrix Y, as well as the matrix YScenario, holding the
alternative paths. As mentioned in Section 5.8, these paths are based on feeding the smooth
estimates of the economic shocks (and measurement errors) based on the baseline parameters
into the state-space model for the alternative parameters. Next, the function gives two matrices
with smooth estimates of the economic shocks: OriginalShocks and ScenarioShocks. The
former holds the values of the economic shocks under the baseline parameter values, while the
latter gives the values of the economic shocks under the alternative parameter values. Similarly,
two matrices with state variable estimates are provided: OriginalStates and ScenarioStates,
where the former holds the smooth estimates of the state variables for the baseline parameter
values, while the latter matrix holds the implied state variables for the alternative parameter
values. That is, when the state equation is applied to the combination of the smoothly esti-
mated economic shocks under the baseline parameter values along and the F and B0 matrices
for the alternative parameter values. Finally, the function provides a vector with positive inte-
gers, KeepShocks, signalling which of the economic shocks have a non-zero influence on the
variables of the DSGE model.

5.12.7. DSGEtoVARModel

The function DSGEtoVARModel is used to check if the state-space representation of the DSGE
model satisfies the “poor man’s invertibility condition” of Fernández-Villaverde et al. (2007).
The function takes 4 inputs: H, R, F, and B0. These are, as before, the matrices H and R from
the measurement equation, and the matrices F and B0 of the state equations; see, e.g., the
details on DSGEImpulseResponseFcn.
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As output the function provides status and EigenValues. The integer status is unity if the
state-space model can be rewritten as a VAR model, and 0 if some eigenvalues is on or outside
the unit circle. In the event that the number of economic shocks and unique measurement errors
exceeds the number of observed variables, status is equal to −1. The vector EigenValues
provides the modulus of the eigenvalues from the invertibility condition when status is non-
negative.

5.12.8. DSGEInformationMatrix

The function DSGEInformationMatrix is used to estimate Fisher’s information matrix as it is
given in equation (5.34). To achieve this 6 input variables are required: theta, thetaPositions,
ModelParameters, ParameterNames, DSGEModel, and CurrINI. The first 3 variables are identi-
cal to the input variables with the same names in the CalculateDSGEStateVariables function.
The 4th input is a string matrix with the names of the estimated parameters. The last two input
variables are structures that have been mentioned above; see e.g. Section 8.2.

The function provides the output variable InformationMatrix which is an estimate of the
right hand side in (5.34) with the partial derivatives ∂ỹt/∂θ′ and ∂vec(Bt)/∂θ′ replaced by
numerical partials. By default, each parameter change is equal to 0.1 percent of its given value.
If the model cannot be solved at the new value of θ, YADA tries a parameter change of 0.01
percent. Should YADA also be unsuccessful at the second new value of θ, estimation of the
information matrix is aborted.

5.12.9. DSGECondVarianceDecompFcn

The function DSGECondVarianceDecompFcn computes the conditional forecast error variance
decomposition in (5.17). The function needs 4 inputs: H, F, B0, and h. These are exactly the
same as those needed by DSGEImpulseResponseFcn.

As output the function provides the 3D matrix FEVDs. This matrix has dimension n × q × h,
with n being the number of observed variables, q the number of economic shocks, and h the
forecast horizon.

5.12.10. DSGECondLevVarianceDecompFcn

The function DSGECondLevVarianceDecompFcn computes the conditional forecast error variance
decomposition in (5.17), but where Ri is partly an accumulation of Ri−1. Specifically, let A
denote a diagonal 0-1 matrix. The Ri matrices are here calculated according to

Ri = ARi−1 +H′FiB0, i = 1,2, . . . ,

while R0 = H′B0. This allows YADA to compute levels effects of observed variables that only
appear in first differences in the yt vector, e.g., GDP growth. At the same time, variables
that already appear in levels, e.g., the nominal interest rate, are not accumulated. The func-
tion needs 5 inputs: H, F, B0, AccMat, and h. These are identical to the inputs accepted by
DSGELevImpulseResponseFcn.

As output the function provides the 3D matrix FEVDs. This matrix has dimension n × q × h,
with n being the number of observed variables, q the number of economic shocks, and h the
forecast horizon.

5.12.11. DSGECondAnnVarianceDecompFcn

The function DSGECondAnnVarianceDecompFcn calculates the conditional variance decomposi-
tion in (5.17), but where is partly and accumulation of lagged Ri’s. In particular, let A denote
a diagonal 0-1 matrix, while s is the frequency of the data, e.g., s = 4 (s = 12) for quarterly
(monthly) data. The Ri matrices are now computed from as:

Ri = A

(
min{i,s}−1∑

j=1
H′Fi−jB0

)
+H′FiB0, i = 0,1,2, . . . .
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A diagonal element of A is unity if the corresponding observed variable should be annualized
by adding the current and previous s− 1 observations, and zero otherwise.

The function needs 6 inputs: H, F, B0, AccMat, h, and AccHorizon. The first five are identical
to the inputs accepted by DSGECondLevVarianceDecompFcn, with the exception of AccMat which
is now given by the matrix A from the equation above. The final input is AccHorizon which
corresponds to the integer s above.

As output the function provides the 3D matrix FEVDs. This matrix has dimension n × q × h,
with n being the number of observed variables, q the number of economic shocks, and h the
forecast horizon.

5.12.12. DSGEVarianceDecompFcn & DSGEVarianceDecompLevelsFcn

The function DSGEVarianceDecompFcn computes all the forecast error variance decompositions
for the original variables, while DSGEVarianceDecompLevelsFcn takes care of the levels. Both
functions accept the same input variables and return the same output variables.

They require the 9 input variables, H, F, B0, R, h, DAMaxIter, DAConvValue, RicMaxIter,
and RicConvValue. The first three and the fifth inputs are the same as those required by
DSGEImpulseResponseFcn, while the input R is simply the covariance matrix of the measure-
ment errors. The last four inputs concern the maximum number of iterations (DAMaxIter,
RicMaxIter) and the tolerance level (DAConvValue, RicConvValue) when calling the functions
DoublingAlgorithmLyapunov and RiccatiSolver, respectively. The values for these inputs can
be determined by the user on the Settings tab for the doubling algorithm and on the Miscella-
neous tab for the Riccati solver.

As output the functions give FEVDs, LRVD, status, RiccatiResults, and UniquenessCheck.
Provided that all potential calls to RiccatiSolver gave valid results, the matrix FEVDs is n ×
(n + q + 1) × h, while LRVD is n × (n + q). The first 3D matrix has the n × (n + q + 1) variance
decomposition matrix for horizon i in FEVDs(:,:,i). The first n columns contain the shares
due to the n potential measurement errors, while the following q columns have the shares due
to the economic shocks. The last column contains the shares due to the signal extraction error.
The matrix LRVD is structured in the same way, except that there are no signal extraction errors.
Note that if one single call to RiccatiSolver gives an invalid result, then both outputs from
DSGEVarianceDecompFcn are empty.

The status variable is obtained from the same named output variable of the RiccatiSolver
function, while RiccatiResults is a 1×2 vector with information about from the Riccati solver
for the overall forecast error variance calculation. The first value gives the number of iterations
used by the algorithm, while the second gives the value of the convergence measure. Finally, the
UniquenessCheck scalar records the largest eigenvalue of (F −KH′), where K is the asymptote
of the Kalman gain matrix for the overall forecast error variance calculation.

5.12.13. RiccatiSolver

The function RiccatiSolver tries to solve the Riccati equation (5.8) iteratively and through the
use of the Matlab function dare from the Control System Toolbox. It requires 7 inputs. They
are F, H, Q, R, P1, MaxIter, and ConvValue. As before F is the state transition matrix, H the
mapping from the state variables to the observed, Q is the covariance matrix of the state shocks,
and R the covariance matrix of the measurement errors. The matrix P1 is the initial value for
the covariance matrix P1. YADA always sets this value equal to the covariance matrix of the
state variables, given the assumptions made about the shocks. Finally, MaxIter is the maximum
number of iterations that can be used when attempting to solve the Riccati equation, while
ConvValue is the tolerance level. As in the case of the function DoublingAlgorithmLyapunov,
the convergence criterion is given by the Matlab norm function applied to the change in P1,
unless the call to dare indicates a solution of the Riccati equation. The details of the algorithm
are given below.

The Riccati solver function gives three required output variables P1, status, and NumIter, as
well as one optional variable, TestValue. The first required variable is the solution candidate
for P1. The solution is considered as valid by YADA if the iterations have converged within the
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maximum number of iterations. If so, the variable status is assigned the value 0, otherwise it
is 1 unless infinite values or NaN’s were located. This last case results in a value of 2 for status.
The third output NumIter is simply the number of iterations used, while the fourth (optional)
variable gives the value of the convergence criterion for the last iteration.

6. Required Input for YADA

In order to estimate a DSGE model YADA needs input from the user on the observed data, the
measurement equation, the prior distribution, parameters that are defined from other param-
eters (such as the steady state), and the DSGE model. This section discusses all these topics
through an example from the literature. Specifically, a log-linearized DSGE model from An and
Schorfheide (2007) is used to show how the inputs should be specified.

Let x̂t = ln(xt/x) denote the natural logarithm of some variable xt relative to its steady state
value x. The log-linearized version of the An and Schorfheide (2007) model we shall consider
has 6 equations describing the behavior of (detrended) output (yt), (detrended) consumption
(ct), (detrended) government spending (gt), (detrended) technology (zt), inflation πt, and a
short term nominal interest rate Rt. The equations are given by

ŷt =Etŷt+1 + ĝt − Etĝt+1 − 1
τ

(
R̂t − Etπ̂t+1 − Etẑt+1

)
,

π̂t =βEtπ̂t+1 + κ
(
ŷt − ĝt

)
,

ĉt =ŷt − ĝt,

R̂t =ρRR̂t−1 + (1 − ρR)ψ1π̂t + (1 − ρR)ψ2
(
ŷt − ĝt

)
+ σRηR,t,

ĝt =ρGĝt−1 + σGηG,t,

ẑt =ρZẑt−1 + σZηZ,t.

(6.1)

The shocks ηi,t ∼ iidN(0,1) for i = R,G,Z. The steady state for this model is given by r = γ/β,
R = rπ∗, π = π∗, y = g(1 − ν)1/τ , and c = (1 − ν)1/τ .

The measurement equation linking the data on quarter-to-quarter per capita GDP growth
(∆Yt), annualized quarter-to-quarter inflation rates (Πt), and annualized nominal interest rates
(It) to the model variables are given by:

∆Yt =γ (Q) + 100
(
ŷt − ŷt−1 + ẑt

)
,

Πt =π(A) + 400π̂t,

It =π(A) + r(A) + 4γ (Q) + 400R̂t.

(6.2)

Additional parameter definitions are:

β =
1

1 +
r(A)

400

, γ = 1 +
γ (Q)

100
, π = 1 +

π(A)

400
, (6.3)

where only the β parameter is of real interest since it appears in (6.1), while γ and π are related
to the steady state only. The parameters to estimate for this model are therefore given by

θ = [τ κ ψ1 ψ2 ρR ρG ρZ r
(A) π(A) γ (Q) σR σG σZ]′. (6.4)

The DSGE Data tab in YADA is shown in Figure 1 indicating the various input files that are
used to estimate the parameters of the An and Schorfheide model.

6.1. Reading Observed Data into YADA

To estimate θ with YADA the data on yt = [∆Yt Πt It]′ and xt = 1 needs to be read from a
file. Since the user may wish to transform the raw data prior to defining yt by, e.g., taking logs,
YADA requires that the construction of data is handled in a Matlab m-file.

As an example, consider the data construction file DataConstFile.m that is located in the
sub-directory example\AnSchorfheide. It assumes that there are no inputs for the function.
The requirements on its setup concerns the structuring of the output. Specifically, the data
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Figure 1. The DSGE Data tab on the YADA window.

construction file should return a structure, named e.g., StructureForData. The actual name of
the structure is not important as it is a local variable to the function. The fields of this structure,
however, have required names and setup. The matrix with observed data should appear as
StructureForData.Y.data. It should preferably be of dimension n × T with n < T ; if not,
YADA will take its transpose.

If you need to transform your data prior to using them for estimation, you can always do
so in your data construction file. For instance, you may want to take natural logarithms of
some of the variables in your data input file, you may wish to rescale some variables, take first
differences, remove a linear trend, etc. All matlab functions located on the matlabpath can be
used for this purpose. It is important to note, however, that any files you instruct YADA to read
data from should be specified in the data construction file with their full path. The reason is
that YADA copies all the matlab m-files that you specify on the DSGE Data tab (see Figure 1)
to the directory tmp and executes them from there. That way, YADA avoids having to deal with
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temporary changes to the path. At the same time, a data file located in, e.g., the same directory
as your data construction file will not be copied to the tmp directory. Hence, a command like

wk1read([’data\AnSchorfheideData.wk1’]),
will not work unless you manually create a directory data below YADA’s working directory and
copy the file AnSchorfheideData.wk1 to this directory.

The working directory for YADA is always given by pwd, i.e., the directory where YADA.m is
located. Hence, if you store your data file in a sub-directory to YADA’s working directory, e.g.,
example\AnSchorfheide\data you can use the command pwd to set the root for the path where
your data file is located. In this case,

wk1read([pwd ’\example\AnSchorfheide\data\AnSchorfheideData.wk1’]).
When you exit YADA, all files found in the tmp directory are automatically deleted.

The names of the observed variables should appear in the field StructureForData.Y.names.
It should be given as a cell array with n string elements. In DataConstFile.m, n = 3 while

StructureForData.Y.names = {’YGR’ ’INFL’ ’INT’}.
The data for any exogenous variables should be given by StructureForData.X.data, a ma-

trix of dimension k × T , e.g., a vector with ones for a constant term. Similarly, the cell ar-
ray StructureForData.X.names provides the names of these variables, e.g., being given by
{’const’}. If the model has no exogenous variables, then these two fields should be empty.

Given that the model has exogenous variables, it is possible to add extra data on these vari-
ables to the entry StructureForData.X.extradata. This is an optional entry that if used should
either be an empty matrix or a k× Th matrix. YADA views this data on the exogenous variables
as having been observed after the data in StructureForData.X.data. Hence, the extra data
can be used in, for instance, out-of-sample forecasting exercises where it will be regarded as
observations T + 1 until T + Th.

Next, the field StructureForData.sample should contain a 4 dimensional vector with entries
giving the start year, start period, end year and end period. For instance,

StructureForData.sample = [1980 1 2004 4].
This sample data refers to the data in the matrix StructureForData.Y.data for the observed
variables and the matrix StructureForData.X.data for the exogenous variables. The sample
used for estimation can be changed on the Settings tab in YADA.

YADA requires that the data frequency is specified as a string. Valid string entries are
quarterly, monthly, and annual. The first letter of these strings are also permitted. The
name of the field for the data frequency is simply StructureForData.frequency.

6.1.1. Transformations of the Data

It is possible to transform the data on the observed variables (StructureForData.Y.data)
through YADA. Such transformations, however, will not be applied to the data for estimation
purposes. Rather, in certain situations, such as forecasting, it may be interesting to trans-
form the data based on user defined functions. The information YADA needs for such data
transformations is assumed to be provided via the data construction file, through the sub-field
StructureForData.Y.transformation. This field is not mandatory, but if it is missing then
YADA will not be able to transform the observed variables.

The transformations are performed on a variable-by-variable basis. For this reason YADA as-
sumes that the name of an observed variable provides a sub-field in the structure. For instance,
in the DataConstFile.m there is a field StructureForData.Y.transformation.YGR for GDP
growth. For each variable specific sub-field there are 6 sub-sub-fields that are needed. These
are: fcn, partial, annualizefcn, annualizepartial, initial, and x. In addition, there are
3 sub-sub-fields for inverting the transformation. These are: invertfcn, invertinitial, and
invertx. Finally, YADA also has 5 sub-sub-fields for dealing with exporting of data: exportfcn,
exportinitial, exportx, exporttitle, and exportname.

The fields fcn and annualizefcn hold string vectors for transforming the data. The inline
function is used by YADA and for the string vector to be operational it is therefore required
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that it holds valid Matlab syntax. The field fcn holds the general transformation function,
while annualizefcn, as the name suggests, holds a particular function that is used when the
transformation is assumed to provide an annualization of the data.

The fields partial and annualizepartial hold the first order partial derivatives of the func-
tions in the fcn and annualizefcn string vectors with respect to the variable that should be
transformed times a part of the variable in question. That is, this string vector should include
the full first order Taylor expansion term for the variable to be transformed ((∂f(x)/∂x)xj ,
where x = x1 + . . . + xn and j = 1, . . . , n). Since the partial and the variable are both vec-
tors, the element-by-element product operator (.*) should be used. If the partial is a constant,
then the partial should take into account that x is the variable to be transformed and xj is a
part of this variable. The partial string vector must have exactly as many variables as the
fcn string vector plus one additional variable, which must be the last variable in the string
vector. Apart from the last term all other variables in fcn and partial must appear in the
same order. This means that if the fcn string is ’4*(S-MeanS)’, then partial should be, e.g.,
’(4-(0*(S-MeanS))).*PartS’. The same rule holds for the annualizepartial string vector.

The field initial holds a vector of initial values for the variable that is to be transformed.
These values will be prepended to the vector of data on the variable prior to it being trans-
formed. The dating of the initial values is assumed to be the periods just before to the start of
the full sample for the observed variables.

The field x holds a matrix with data on any additional variables required by the transforma-
tion. The dimension of this matrix should be dx × Tx, where dx is the number of additional
variables. Since it is possible that certain transformation functions require different dimensions
of the various additional variables, YADA will look for NaN entries at the beginning of each row
of x and remove such entries on a variable-by-variable basis before executing the transforma-
tion.

To illustrate these features, suppose that the transformation function for a variable YGR is:

cumsum(YGR)+0.2*TREND

and that one initial value is given for YGR. Data for the variable TREND is stored in x. Since one
observation is prepended to the vector of data for YGR, the dimension of the data for TREND must
match the dimension for YGR, i.e., Tx = T + 1. This means that x is a 1 × (T + 1) vector with
data on TREND. For instance, this may be the vector [0 1 · · · T].

Suppose we instead consider the following transformation function:

YGR-diff(N)+0.2*TREND

and that the variable N is located in the first row of x and TREND in the second row. In this case,
N needs to have one more element than YGR once initial values for latter have been taken into
account. At the same time TREND should have the same number of elements as YGR. By letting
the first element in the second row of x be NaN (while the first element of the first row is a real
number), this transformation can be achieved.

Since the inline function in Matlab, when executed with one input argument, creates a func-
tion with an input ordering of the variables that follows the order in which the variables appear
in the string vector provided to inline, YADA requires that the variable to be transformed ap-
pears first in the function string, and all the additional variables thereafter. The ordering of the
additional variables is assumed to match the ordering of these variables in the matrix x.

Assuming that the transformation has been performed successfully, YADA checks if the di-
mension of the transformed variable is greater than that of the original variable. Should this be
the case, data at the beginning of the variable created by the transformation are removed such
that the dimensions match. In the event that the dimension of the variable created is smaller
than the original, then YADA assumes that the transformation used up data at the beginning
from a time perspective. This would, for example, be the case if the transformation uses the
diff function and no initial values are made available.

The field invertfcn holds a string that describes how the function in the field fcn should
be inverted. In analogy with the fcn field, the fields invertinitial and invertx hold initial
values and data on all additional variables that are needed by the inversion function. Similarly,
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the function for exporting data is stored in the field exportfcn. Likewise, the information about
initial values and additional variables required for the export transformation are located in the
fields exportinitial and exportx. Finally, the fields exporttitle and exportname hold string
vectors that makes it possible to use a different name of the variable in the file with exported
data. The exporttitle string is written to the line above the exportname string.

The following example for GDP growth is found in the file DataConstFile.m:

StructureForData.Y.transformation.YGR.fcn = ’100*(exp(YGR/100)-1)’;
StructureForData.Y.transformation.YGR.partial = ’exp(YGR/100).*PartYGR’;
StructureForData.Y.transformation.YGR.annualizefcn = ...

’100*(exp((1/100)*(YGR(4:length(YGR))+YGR(3:length(YGR)-1)+...
YGR(2:length(YGR)-2)+YGR(1:length(YGR)-3)))-1)’;

StructureForData.Y.transformation.YGR.annualizepartial = ...
’exp((1/100)*(YGR(4:length(YGR))+YGR(3:length(YGR)-1)+...
YGR(2:length(YGR)-2)+YGR(1:length(YGR)-3))).*...
(PartYGR(4:length(PartYGR))+PartYGR(3:length(PartYGR)-1)+...
PartYGR(2:length(PartYGR)-2)+PartYGR(1:length(PartYGR)-3))’;

StructureForData.Y.transformation.YGR.initial = [];
StructureForData.Y.transformation.YGR.x = [];
StructureForData.Y.transformation.YGR.invertfcn = ...

’100*log(1+(YGR/100))’;
StructureForData.Y.transformation.YGR.invertinitial = [];
StructureForData.Y.transformation.YGR.invertx = [];
StructureForData.Y.transformation.YGR.exportfcn = ...

’100*(exp(cumsum(YGR)/100))’;
StructureForData.Y.transformation.YGR.exportinitial = 0;
StructureForData.Y.transformation.YGR.exportx = [];
StructureForData.Y.transformation.YGR.exporttitle = ’Real GDP’;
StructureForData.Y.transformation.YGR.exportname = ’DY’;

Since YGR is the log first difference of GDP, the general function in the fcn field calculates the
(quarterly) growth rate of GDP. The annualization function similarly provides the annual growth
rate of GDP, while no initial data are supplied and the computations do not need any additional
variables. The field partial (annualizepartial) is the first order partial derivative of the fcn
(annualizefcn) function times a part of the variable that is transformed. The function is used
when the transformation of the variable is applied to a linear decomposition of the variable,
such as the observed variable decomposition in Section 5.7.

The field invertfcn inverts the calculation in fcn, while the field exportfcn gives the ex-
pression for calculating the levels data for YGR based on a constant initial value for the variable.
The variables INFL and INT have their own transformation functions; see DataConstFile.m for
details.

6.1.2. Levels or First Differences

To inform YADA about which variables appear in levels (like the interest rate) and which ap-
pear in first differences (output and inflation), the field levels should contain a vector whose
elements are either 0 (first difference) or 1 (level). In our example this means that

StructureForData.Y.levels = [0 0 1].

This information makes it possible for YADA to compute, e.g., the levels responses in all ob-
served variables of a certain economic shock. If the levels field is missing from the data con-
struction file, then YADA displays a message box to remind you. The file is, however, regarded
as valid, with all observed variables in levels. Once you add the field to the data construction
file, YADA will stop nagging you about the missing information.
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6.1.3. Simple Annualization

Furthermore, to tell YADA how to “annualize” observed variables, the field annual should con-
tain a vector whose elements are either 0 (do not annualize/is already annualized) or 1 (an-
nualize). YADA annualizes a variable by adding to the current value the previous 3 (11) obser-
vations for quarterly (monthly) data. For instance, the YGR variable measures quarterly logged
GDP (per capita) growth. Summing this variable over 4 consecutive quarters thus gives the
annual logged GDP (per capita) growth. The inflation and interest rate variable are already
assumed to be measured in annual terms. This means that we set:

StructureForData.Y.annual = [1 0 0].
How the data frequency is specified is provided below. It may be noted that the annual field
is optional, with the default being a zero vector, and that YADA does not display a nag screen
when this field is missing.

In some situations you may wish that the annualized data should be multiplied by a con-
stant. For example, the inflation equation in (6.2) “annualizes” quarter-to-quarter inflation by
multiplying the quarterly price changes with 4. The annualized inflation series can therefore be
calculated by adding four consecutive quarters of Πt and dividing the sum with 4. For YADA to
compute such an annualized inflation series field annualscale should be specified. Here, we
may set

StructureForData.Y.annualscale = [1 0.25 1].
Notice that YADA will only use elements of this vector on the variables that you allow YADA
to annualize. This means that the second element of the vector StructureForData.Y.annual
must be unity before YADA will apply the scaling constant 0.25 to inflation. Moreover, the
scaling vector is optional and is by default equal to a unit vector.

6.1.4. Bayesian VAR

If you wish to estimate a Bayesian VAR model with YADA you may include one additional field
in the StructureForData.Y structure. This field, denoted by BVAR, should provide the variable
positions in the matrix StructureForData.Y.data. These variable numbers may be ordered
in any way you wish and all observed variables need not appear. In the An and Schorfheide
example we let:

StructureForData.Y.BVAR = [1 2 3].
If the field BVAR is missing, then YADA automatically assumes that all observed variables are to
be included in any Bayesian VAR analysis you wish to perform. Hence, the field BVAR is also
optional and YADA does not display any nag screen to inform you about this. Please note that
Section 12 discussed in some detail the Bayesian VAR models that you can estimate with YADA.

For Bayesian VAR analysis you may also wish to specify which exogenous variables should
be included. You do this in an analogous way to how observed variables are made available as
endogenous variables in the VAR model. That is, you let StructureForData.X.BVAR be equal to
a vector with integer values corresponding to the variable position in the matrix with exogenous
variables, i.e., StructureForData.X.data. Also, you need not include all exogenous variables
that the estimated DSGE model has. This feature is optional and by default YADA will include
all exogenous variables in the Bayesian VAR model when you decide to estimate such a model.

6.1.5. Conditional Forecasting Data

If you wish to perform conditional forecasting you need to set up the entries needed for condi-
tioning. All fields discussed below for conditional forecasting are optional, but all are required
if you wish to perform such projections. The mathematics behind conditional forecasting is
explained in Section 13.2. Here I shall focus on definitions that can be made in the data con-
struction file.

First, the variables that you wish to condition on are located in the field Z in the structure
StructureForData. As in the case of the observed variables and the exogenous variables, the
subfields data and names holds the data and the names of the conditioning information. It is
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important to note that the data subfield should contain an m × Tz matrix with Tz being the
number of available observations of the conditioning information. It is assumed that the first
row in this matrix is measured at the same point in time as the first row in the matrix with the
observed variables. Since the latter has T observation, the value of Tz should be greater than T
if you plan to use all the observed data for estimation and then perform conditional forecasting
for periods T + 1 and onwards until Tz. The subfield names should hold a cell array with length
equal to m, the number of variables to condition on. Note that you may select a subset of these
variables through the YADA GUI.

Second, the field Z has two subfields that contain matrices K1 and K2 that are needed to map
the observed variables into the conditioning information; cf. equation (13.7). The first matrix is
required to be of full rank m, while the second can be a zero matrix. Their common dimension
should be n×m, where n as before is the number of observed variables and m is the number of
conditioning variables in StructureForData.Z.data.

Since the mapping from the observed variables to the conditioning variables may require
an initial value, YADA also needs data in the field U in the structure StructureForData. This
field should contain the subfield data that provides an m × Tu matrix with initial conditions
in the mapping; cf. (13.7) for details. Again, YADA assumes that the first observation in this
matrix comes from the same time period as the first observation in the matrix with observed
variables. This initial conditions data can be used provided that Tu is at least equal to the last
period used for estimation of the parameters in the DSGE model. Finally, the conditioning
data can also be linked with transformation function and the logic is the same as in the case
of the transformation functions for the observed variable scenario data, i.e., through the field
StructureForData.Z.transformation.

6.1.6. Percentiles for Distributions

It is possible to control the percentiles that are used for plotting confidence bands for certain
distributions. This is currently handled by StructureForData.percentiles. This optional
entry should be a vector with integer values greater than 0 and less than 100. If there are
at least 2 valid entries YADA will make use of them. For instance, we may write

StructureForData.percentiles = [85 50 15 5 95].
Unless the values are already expressed in ascending order YADA will sort them. Moreover, if
the vector has an odd number of entries then the middle entry is ignored. In the above example
we thus have that YADA would treat the 5 dimensional vector as equal to

StructureForData.percentiles = [5 15 85 95].
YADA then assumes that the first and the last element may be used to construct the outer
confidence band, while the second and the third are used for an inner confidence band.

6.2. Setting up the Measurement Equation

The measurement equation is specified as a function in a Matlab m-file. This file takes 7 input
arguments. The first is the structure ModelParameters, whose fields have names given by the
parameter names. Hence, if the model has a parameter called rA, then the ModelParameters
structure has a field ModelParameters.rA. If rA is specified in the prior distribution file, then
this field is automatically generated by YADA. If you need to refer to this parameter in the mea-
surement equation file, then the syntax should follow this example. Note, that ModelParameters
can take any name you wish in the measurement equation file since the name of the structure
is local to the function.

A second input argument for this function is the string matrix called, e.g., StateVarNames.
This matrix contains a name in each row that is equal to the name obtained from parsing the
AiM model file. That is, it is equal to the endog_ output from the compute_aim_data function
that the AiM parser creates.

The third and fourth input variables for the measurement equation function are the string
matrices VariableNames and XVariableNames. The rows of these matrices provide the names
of the observed and the exogenous variables, respectively.
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The last three input arguments for the measurement equation function are n, r, and k. These
are equal to the dimension variables n, r, and k in (3.1).

The output from this function should be the three matrices A, H, and R; see, equation (3.1).
The dimensions of these matrices should be exactly as they are specified in Section 3. That is,
A is k × n if k > 0 and an empty matrix otherwise, H is typically an r × n matrix, while R is an
n × n matrix with measurement error covariances. If there are no measurement errors in your
model then R = 0.

The measurement equation from the An and Schorfheide model (cf. equation (6.2)), is spec-
ified in the file MeasurementEqFile in the sub-directory example\AnSchorfheide. This file
shows how these matrices can be determined from the 7 input arguments to the function as
well as using the loc function for locating the position of variables within the StateVarNames,
VariableNames, and XVariableNames string matrices. It may be noted that of the 7 input argu-
ments only the first is always likely to be useful since it includes all the parameter values. The
other 6 inputs are provided primarily for convenience. When you write your own measurement
equation m-file, you have to make sure that all the 7 inputs are accepted. Whether you then
make use of them or not in the function is, of course, up to you.

It is possible to let the measurement matrix H be time-varying. YADA handles this case
by letting the H matrix exported from the measurement equation file be 3-dimensional, i.e.,
an r × n × TH matrix, where TH is large enough for the estimation sample to be covered.
YADA assumes that H(:,:,t) measures the same time period t as column t in the n × T matrix
StructureForData.Y.data; cf. Section 6.1.

It is important to note that if there are many calls to, say, the loc function for setting values
to the correct entries of the A, H, and R matrices, this may slow down both the posterior mode
estimation phase and when draws are taken from the posterior distribution via the random walk
Metropolis algorithm. For smaller models, the additional time occupied by these calls may be
negligible, but in larger models this may affect the computation time considerably. Hence, I
would suggest that the loc function is used only for testing purposes in such cases, and that the
entry numbers are hand-coded into the measurement equation file later on.

The measurement equation file is always checked for internal consistency before commencing
with, e.g., posterior mode estimation.

6.3. Specification of the Prior Distribution

The file with the prior distribution data must be given by either a Lotus 1-2-3 spreadsheet (file
extension .wk1) or an Excel spreadsheet (extension .xls). The An and Schorfheide example
comes with a number of such prior distribution files, e.g., AnSchorfheidePrior.wk1.

The prior distribution file should list all the parameters that are going to be estimated. It
may also list parameters that are calibrated.14 The 7 required column headers in this file are
given by model parameter, status, initial value, prior type, prior parameter 1, prior
parameter 2, and lower bound. The entries under the lower bound header are in fact ignored
unless the prior distribution is gamma, inverse gamma, or left truncated normal. Furthermore,
all the headers are case insensitive in YADA.

YADA also supports an optional header Upper bound. This header is used for the beta distri-
bution only. When YADA locates this header it will also take the lower bound for beta distributed
parameters into account. If the header is missing YADA assumes that any beta distributed pa-
rameters have lower bound 0 and upper bound 1.

6.3.1. The Model Parameter Header

The names of all the parameters that need to be estimated should be specified under this header.
It is important that the names are exactly the same as in other input files, e.g., the AiM model
file (see, Section 6.5). Since Matlab is case sensitive regarding variable and field names, the
parameter names are case sensitive.

14 In Section 6.4, we discuss alternative and more flexible ways of specifying additional parameters that YADA needs
to know about in order to solve the model using AiM.
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Table 1. An example of the required and optional data for the prior distribution file.

Model parameter Status Initial value Prior type Prior parameter 1 Prior parameter 2 Lower bound Upper bound

tau estimated 1.87500 gamma 2.000 0.50 1.000

kappa estimated 0.15000 gamma 0.200 0.10 0.000

psi1 estimated 1.45830 gamma 1.500 0.25 0.000

psi2 estimated 0.37500 gamma 0.500 0.25 0.000

rhoR estimated 0.50000 beta 0.500 0.20 0 1

rhoG estimated 0.84620 beta 0.800 0.10 0 1

rhoZ estimated 0.70590 beta 0.660 0.15 0 1

rA estimated 0.50000 gamma 0.500 0.50 0.000

piA estimated 6.42860 gamma 7.000 2.00 0.000

gammaQ estimated 0.40000 normal 0.400 0.20

sigmaR estimated 0.00358 invgamma 0.004 4.00 0.000

sigmaG estimated 0.00859 invgamma 0.010 4.00 0.000

sigmaZ estimated 0.00447 invgamma 0.005 4.00 0.000

6.3.2. The Status Header

The status header reports if a parameter should be estimated or is to be viewed as calibrated.
The valid entries are thus es(timated) and calibrated. In fact, as long as the status string is
not empty, the parameter will be regarded as calibrated unless the first two letters of the status
string are es. This entry is case insensitive.

6.3.3. The Initial Value Header

The initial value must be a scalar and it should be in the support of the prior distribution
assigned to the parameter. Natural candidates as an initial value is either the mean or the mode
of the prior distribution (if they exist).

6.3.4. The Prior Type Header

The prior type header determines the prior distribution of the parameter. The entry should be
one of the following: gamma, beta, invgamma, normal, truncnormal, or uniform. This entry is
case insensitive.

6.3.5. The Prior Parameter 1 Header

The prior parameter 1 header reports the first parameter for the prior distribution. This param-
eter is assumed to be the mean of the gamma, beta and normal distributions, the s parameter
for the inverse gamma distribution (see equation (2.9)), the µ parameter for the left truncated
normal distribution (see equation (2.16)), and the lower bound of the uniform distribution.

6.3.6. The Prior Parameter 2 Header

The prior parameter 2 header reports the second parameters for the prior distribution. This
parameter is assumed to be the standard deviation of the gamma, beta, and normal distribu-
tions. For the inverse gamma distribution it is the q (degrees of freedom) parameter, for the left
truncated normal the σ parameter, and the upper bound for the uniform distribution.

6.3.7. The Lower Bound Header

The lower bound header is primarily used if the distribution is gamma, inverse gamma, or left
truncated normal. For the left truncated normal the lower bound is, as in Section 2.2.6, the c
parameter. The entries can for the other prior distributions be either empty or real numbers.
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6.3.8. The Upper Bound Header

The upper bound header is optional and, when present, is only used by the beta distribution.
If the upper bound header is missing or the lower bound is not specified, then the beta prior
is assumed to have lower bound 0 and upper bound 1. When the header is present it will be
ignored for parameters that do not have a beta prior.

6.4. Defining Additional Parameters

Additional parameters can optionally be included as input for YADA. These can be parameters
that are calibrated but not specified in the prior distribution file. They can also be parameters,
such as β in (6.1), that are defined from other parameters, e.g., steady state parameters. YADA
allows for input of two different types of additional parameters. The first is a function that only
specifies parameters that should be initialized, while the second is a function with parameters
that should be updated along with the estimated parameters. The β example concerns the latter
type of additional parameters function.

For both types of additional parameters functions, YADA requires that the function takes as
input the structure with model parameters, e.g., ModelParameters whose fields have the same
names as the names specified in the prior distribution file and the AiM model file. As output,
the function must also give the structure with model parameters. In the β example, the AiM
code uses a parameter beta. Since this is a parameter updated when rA receives a new value,
the function with parameters to update should include a line such as:

ModelParameters.beta = 1/(1+(ModelParameters.rA/400)).
See the file MoreAsParameters.m in the sub-directory example\AnSchorfheide for more details.

There are three names that may not be used for the parameters. They are: YADAg, YADAh,
and UserVariables. The first two are used internally to allow for parameters with the names
g and h, respectively. The last is a reserved name that allows the user to pass on information
from the parameter function. That information can be reused by the function itself, such as
holding initial values for some numerical problem that the function solves (e.g., steady-state
calculations). The field ModelParameters.UserVariables is viewed as a structure where the
user can select his or her own field names. YADA, for its part, simply ignores the UserVariables
field when dealing with parameters. YADA stores ModelParameters, along with a number of
other variables, in a mat-file when it has finished the posterior mode estimation routine. The
user can therefore access data in ModelParameters.UserVariables via that file. To find it,
simply look in the mode directory that the posterior mode estimation routine creates.

Any additional parameters files that you have specified are always checked for internal con-
sistency before executing, e.g., the actual posterior mode estimation functions.

In Section 2.2 a number of prior distributions were discussed where the function with pa-
rameters that need to be updated can be utilized to support additional priors. For example,
suppose that we have a parameter α whose prior should be a Weibull distribution with scale pa-
rameter a = 3 and shape parameter b = 2; cf. Section 2.2.2. We may then define the auxiliary
parameter αG with prior distribution G(1,1). The code

ModelParameters.alpha = 3*ModelParameters.alphaG^(1/2)
in the file with parameters to update ensures that the parameter α has a W(3,2) prior distribu-
tion.

6.5. Construction of the AiM Model File

The AiM model file is simply a text file that is written using a syntax that the AiM parser
can interpret. The code used for the An and Schorfheide model is listed in Table 2. In this
case, the model has 6 state variables (cf. equation (6.1)), but an additional state variable has
been included to account for the need of ŷt−1 in the measurement equation for ∆Yt in (6.2).
Hence, p = r = 7. The model also has q = 3 shocks (the ηi,t variables) which are listed
below among the variables, and one constant. The total number of variables (and equation) is
therefore NumEq = 11. The names of the variables given in Table 2 will also appear in the string
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matrix that will be sent as input to the measurement equation function, i.e., the string matrix
StateVarNames.

Table 2. The AiM model file code for the An and Schorfheide example in equa-
tion (6.1).

MODEL> ASmodel
ENDOG>

yhat _NOTD
pihat _NOTD
chat _NOTD
rhat _NOTD
ghat _NOTD
zhat _NOTD
yhatlag _NOTD
one _DTRM
etaR _NOTD
etaG _NOTD
etaZ _NOTD

EQUATION> EQ1
EQTYPE> IMPOSED
EQ> yhat = LEAD(yhat,1) + ghat - LEAD(ghat,1) - (1/tau)*rhat

+ (1/tau)*LEAD(pihat,1) + (1/tau)*LEAD(zhat,1)
EQUATION> EQ2
EQTYPE> IMPOSED
EQ> pihat = beta*LEAD(pihat,1) + kappa*yhat

- kappa*ghat
EQUATION> EQ3
EQTYPE> IMPOSED
EQ> chat = yhat - ghat
EQUATION> EQ4
EQTYPE> IMPOSED
EQ> rhat = rhoR*LAG(rhat,1) + (1-rhoR)*psi1*pihat + (1-rhoR)*psi2*yhat

- (1-rhoR)*psi2*ghat + sigmaR*etaR
EQUATION> EQ5
EQTYPE> IMPOSED
EQ> ghat = rhoG*LAG(ghat,1) + sigmaG*etaG
EQUATION> EQ6
EQTYPE> IMPOSED
EQ> zhat = rhoZ*LAG(zhat,1) + sigmaZ*etaZ
EQUATION> EQ7
EQTYPE> IMPOSED
EQ> yhatlag = LAG(yhat,1)
EQUATION> EQ8
EQTYPE> IMPOSED
EQ> one = 0*LAG(one,1)
EQUATION> EQ9
EQTYPE> IMPOSED
EQ> etaR = 0*one
EQUATION> EQ10
EQTYPE> IMPOSED
EQ> etaG = 0*one
EQUATION> EQ11
EQTYPE> IMPOSED
EQ> etaZ = 0*one
END

The AiM code in Table 2 is also found in the file AnSchorfheideModel.aim located in the sub-
directory example\AnSchorfheide. The file can be parsed by AiM and, as mentioned above, this
is handled by the function AiMInitialize.

6.6. YADA Code

YADA has a function that checks if the data in the prior distribution file appears to be correct.
This function is called VerifyPriorData. Apart from checking the validity of the data in this
file, it also returns the information it has obtained from the 7 required headers. Table 1 shows
how the prior distributions can be setup for the An and Schorfheide model example. The
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initial values have all been set to the mode for the beta, gamma, inverse gamma and normal
distributions. An exception is the rA parameter, whose mean and standard deviation from the
gamma distribution are both set to 0.5. This means that the a parameter in equation (2.6) is
unity and hence that there does not exist a single mode. In this case, the mean is used as initial
value.

7. Parameter Transformations

If some of the parameters in θ have a gamma, inverse gamma, or left truncated normal prior
distribution, then the support for these parameters is bounded from below. Similarly, if some of
the θ parameters have a (standardized) beta or uniform prior distribution, then the support is
bounded from below and above. Rather than maximizing the log posterior of θ subject to these
bounds on the support, it is common practise to transform the parameters of θ such that the
support of the transformed parameters is unbounded.

For the p1 parameters with a gamma, inverse gamma, or left truncated normal prior dis-
tribution, denoted by θ1, the transformation function that is typically applied is the natural
logarithm

φi,1 = ln
(
θi,1 − ci,1

)
, i = 1, . . . , p1, (7.1)

where ci,1 is the lower bound. Letting θ2 denote the p2 parameters of θ with a beta or uniform
prior distribution, the transformation function is the logit

φi,2 = ln
(
θi,2 − ai

bi − θi,2

)
, i = 1, . . . , p2, (7.2)

where bi > ai gives the upper and the lower bounds. The remaining, p0 untransformed parame-
ters are given by φ0 = θ0 while φ = [φ′

0 φ
′
1 φ

′
2]′ and θ = [θ′0 θ

′
1 θ

′
2]′. The overall transformation

of θ into φ may be expressed as φ = f(θ).15

We can likewise define a transformation from φ into θ by inverting the above relations. That
is,

θi,1 = exp
(
φi,1
)

+ ci,1, i = 1, . . . , p1, (7.3)
and

θi,2 =
ai + bi exp

(
φi,2
)

1 + exp
(
φi,2
) , i = 1, . . . , p2, (7.4)

while θ0 = φ0. The full transformation can be expressed as θ = g(φ).
When the φ parameters are used for computing the posterior mode, it should be noted that

the log-likelihood function is not numerically affected by the transformation. This is the usual
invariance property of this function. Similarly, the value of the joint prior density p(θ) =
p(g(φ)) is also equivalent. Hence, the value of the log posterior is also not affected by the
choices φ or θ = g(φ). However, the slope of the log posterior depends on whether we consider
the θ or the φ parameters. In particular, when computing the posterior mode, θ̃ = g(φ̃), we
need to take the Jacobian in the transformation from φ back to the θ parameters into account.

For the parameters that have a gamma, inverse gamma, or left truncated normal distribution,
the log of the Jacobian is simply

ln
(
dθi,1

dφi,1

)
= φi,1, i = 1, . . . , p1. (7.5)

For the parameters with a beta or a uniform prior, the log of the Jacobian is

ln
(
dθi,2

dφi,2

)
= ln

(
ai − bi

)
+ φi,2 − 2 ln

(
1 + exp(φi,2)

)
, i = 1, . . . , p2. (7.6)

In order to properly account for the slope effect when using the transformation φ = f(θ), the
sum of all these log Jacobians need to be added to the log posterior of θ for the posterior mode

15 There is no need to order the parameters according to their prior distribution. YADA knows from reading the prior
distribution input which parameters have a beta, a gamma, etc, prior distribution.
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calculation. At the same time, all the inequality restrictions that θ1, and θ2 must obey, can be
dropped from the optimization problem for φ.

7.1. YADA Code

YADA has four functions that handle the parameter transformations discussed above. The
φ = f(θ) mapping is handled by ThetaToPhi, the θ = g(φ) mapping by PhiToTheta, while
logJacobian takes care of calculating the log of the Jacobian. In addition, there is a function
(PartialThetaPartialPhi) that computes the matrix with partial derivatives of θ with respect
to φ.

7.1.1. ThetaToPhi

The function ThetaToPhi calculates the mapping φ = f(θ). It requires the inputs theta, the
θ vector; thetaIndex, a vector with the same length as θ with unit entries for all parameters
that have a gamma, and inverse gamma, or a left truncated normal prior distribution, with
zero entries for all parameters with a normal prior, with 2 for the beta prior, and 3 for the
uniform prior; UniformBounds a matrix with lower and upper bounds of any uniformly and beta
distributed parameters (for all other parameters the elements are 0 and 1); and LowerBound,
a vector of the same length as θ with the lower bound parameters ci,1; see also Section 8.2
regarding the function VerifyPriorData. The output is given by phi.

7.1.2. PhiToTheta

The function PhiToTheta calculates the mapping θ = g(φ). It requires the inputs phi, the φ
vector; thetaIndex; UniformBounds; and LowerBound. The output is given by theta.

7.1.3. logJacobian

The function logJacobian calculates the sum of the log of the Jacobian for the mapping θ =
g(φ). It requires the inputs phi, the φ vector; thetaIndex; and UniformBounds. The output is
given by lnjac.

7.1.4. PartialThetaPartialPhi

The function PartialThetaPartialPhi calculates the partial derivatives of θ with respect to φ.
The required input is phi, thetaIndex, and UniformBounds. The output is given by the diagonal
matrix ThetaPhiPartial. This function is used when approximating the inverse Hessian at the
posterior mode of θ with the inverse Hessian at the posterior mode of φ.16

8. Computing the Posterior Mode

The estimation of the posterior mode of θ is always performed using the transformed parameters
φ. Letting m be the dimension of φ, the posterior mode of φ can be expressed as:

φ̃ = arg max
φ∈Rm

(
lnL
(
Y ; g(φ)

)
+ lnp

(
g(φ)

)
+ ln J

(
φ
))

. (8.1)

The matrix Y represents the observed data, L(·) is the likelihood function, θ = g(φ), while
J(φ) is the determinant of the (diagonal) Jacobian. The posterior mode of θ is then given by
θ̃ = g(φ̃).

The actual optimization is performed numerically. The user can choose between Christopher
Sims’ csminwel routine, and Matlab’s fminunc. Both these routines provide an estimate of the
inverse Hessian at the mode, denoted by Σ̃.17 This inverse Hessian is one candidate for the

16 The reason why we compute the derivative of θ with respect to φ is related to the fact that it is equal to the
inverse of the derivative of φ with respect to θ. Specifically, the inverse Hessian with respect to θ is approximated
by pre- and postmultiplying the inverse Hessian with respect to φ by the inverse of the diagonal matrix with partial
derivatives of φ with respect to θ. The latter is equal to the diagonal matrix with partial derivatives of θ with respect
to φ.
17 The Matlab function fminunc actually produces an estimate of the Hessian at the mode.
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covariance matrix of the proposal density that the Metropolis algorithm discussed in Section 9
needs for generating candidate draws from the posterior distribution of φ.

Note that the YADA specific version of fminunc is not supplied with the public version
of YADA. Moreover, the original matlab version of fminunc is not supported by the poste-
rior mode estimation routine in YADA since it uses an edited version of the function (named
YADAfminuncx, where x should be replaced with 5 or 7). The YADA specific version has some
additional output fields and also supports a progress dialog. To make it possible for users that
have matlab’s Optimization Toolbox installed to use fminunc for posterior mode estimation in
YADA, I plan to release diff-file type of specifications that instruct users how to edit their own
copies of fminunc and related files.

8.1. Checking the Optimum

In order to check if the value φ̃ is a local optimum, YADA makes use of some tools suggested
and originally coded by Mattias Villani. For each element φi of the vector φ a suitable grid with
d elements is constructed from the lower and upper bounds (φ̃i − cΣ̃1/2

i,i , φ̃i + cΣ̃1/2
i,i ), where

c > 0 and Σ̃i,i is element (i, i) of Σ̃, the inverse Hessian of the log posterior at the mode. Let φ−i
be a vector with all elements of φ except element i. For each φi in the grid, the log posterior is
evaluated at (φi, φ̃−i). For parameter φi this provides us with d values of the log posterior of φi
conditional on φ̃−i.

One proposal density that YADA can use for posterior sampling is N(φ, Σ̃), where the value
of φ is determined from the previous draw from the posterior. Since the computed values of the
log posterior of φi are conditional on all parameters being equal to their values at the posterior
mode, it is natural to compare them to a conditional proposal density for φi. For the grid values
of φi that were used to calculate the conditional log posterior values of the parameter, one such
density is the log of the normal density with mean φ̃i and variance Ω̃i|−i = Σ̃i,i − Σ̃i,−iΣ̃−1

−i,−iΣ̃−i,i.
The vector Σ̃i,−i is equal to the i:th row of Σ̃ with element i removed. Similarly, the matrix Σ̃−i,−i
is obtained by removing row and column i from Σ̃.

We can also estimate the variance of a conditional proposal density by running a regression
of the log posterior values on a constant, φi, and φ2

i . The estimated variance is now given by
the inverse of the absolute value of two times the coefficient on φ2

i . A modified proposal density
can now be evaluated for each φi by using the log of the normal density with mean φ̃i and
variance given by the estimate in question.18

Using these ideas, Figure 2 provides graphs of the conditional log posterior density (blue
solid line) of the parameters σR, σG, and σZ from the An and Schorfheide model in Section 6.
The transformed (φ) space for the parameters is used here, i.e., the log of the parameters.
Since the support for φ is the Euclidean space, it is seems a priori more likely that a normal
distribution can serve well as a proposal density for φ than for θ, where, for instance, the σ
parameters are restricted to be positive; cf. Section 7. The red dotted line shows the log normal
approximation of the log posterior using the posterior mode as mean and conditional variance
based on the inverse Hessian at the mode. The green dashed line is similarly based on the
log normal approximation with the same mean, but with the conditional variance estimated as
discussed in the previous paragraph.

It is worth noticing from the Figure that the normal approximation based on the modification
is close to the log posterior for all these parameters, while the normal approximation based on
the inverse Hessian typically lies inside the log posterior. In the case of σG, these differences

18 Such an estimated conditional variance can also be transformed into a marginal variance if, e.g., we are willing
to use the correlation structure from the inverse Hessian at the posterior mode. Let C = Σ � ςς′, where � denotes
element-by-element division, and ς is the square root of the diagonal of Σ. Let Ωi|−i be the conditional variance, while
Σi,i is the marginal variance. For a normal distribution we know that Ωi|−i = Σi,i − Σi,−iΣ−1

−i,−iΣ−i,i. This relationship
can also be expressed through the correlation structure as Ωi|−i = (1 − Ci,−iC−1

−i,−iC−i,i)Σi,i. Hence, if we have an
estimate of the conditional variance Ωi|−i and the correlation structure C, we can compute the marginal variance Σi,i
by inverting this expression.
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Figure 2. Plot of the conditional log posterior density around the estimated pos-
terior mode along with two conditional proposal densities for the pa-
rameters σR, σG, and σZ.
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seem to be particularly severe and indicates that if the proposal density has Σ̃ as its covariance
matrix, then it may take a long time before the support of σG is sufficiently covered.

8.2. YADA Code

The posterior mode is computed in YADA by the function PosteriorModeEstimation. The main
inputs for this function are the structures DSGEModel, CurrINI, and controls. The first contains
paths to the user files that specify the log-linearized DSGE model, the prior distribution of its
parameters, the data, the measurement equations, and any parameter functions that should
be dealt with. It also contains information about options for the Kalman filter, the sample to
use, names of observed variables, of exogenous variables, of state variables, and names of the
state shocks, your choice of optimization routine, the tolerance value, the maximum number of
iterations to consider, as well as some other useful features.

The CurrINI structure contains data on initialization information needed by YADA. This
structure contains non-model related information, while the DSGEModel structure contains the
model related information. Finally, the controls structure holds handles to all the controls on
the main GUI of YADA.

8.2.1. VerifyPriorData

Based on the input that PosteriorModeEstimation receives, the first task it performs is to
check the data in the prior distribution file. This is handled by the function VerifyPriorData.
Given that the prior distribution data is complete (cf. Section 6.3), this function returns the
prior distribution data in various variables. These variables are given by theta, thetaIndex,
thetaDist, LowerBound, ModelParameters, thetaPositions, PriorDist, ParameterNames, and
UniformBounds.
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The vector theta contains the initial values of the parameters to be estimated, i.e., θ. The
vectors thetaIndex and thetaDist have the same length as theta with integer entries indicat-
ing the type of prior distribution that is assumed for each element of theta. The difference
between these two vectors is that thetaIndex indicates the type of transformation that should
be applied to obtain φ, while thetaDist gives the prior distribution. The vector LowerBound
gives the lower bound specified for the parameters in the prior distribution file. This bound is,
for example, used by the parameter transformation function discussed in Section 7.1.

The structure ModelParameters has fields given by the parameter names assigned in the
prior distribution file; see, e.g., Table 1. Each field is assigned a value equal to the initial
value for that parameter. Both estimated and calibrated parameters are given a field in the
ModelParameters structure. Similarly, the vector structure thetaPositions has dimension
given by m, the dimension of θ. Each element in the vector structure has a field parameter
that contains a string with the name of the parameter. The vector structure is constructed such
that thetaPositions(i).parameter gives the name of the parameter in position i of θ.

The structure PriorDist has 6 fields: beta, gamma, normal, invgamma, truncnormal, and
uniform. Each such field contains a matrix whose number of rows depends on the num-
ber of parameters assigned a given prior distribution. The number of columns is 2 for the
normal and the uniform, for the gamma, the inverse gamma, and the left truncated nor-
mal the matrix has 3 columns; the third column holds the lower bound. For the beta dis-
tribution, finally, it has 4 columns, where the last two hold the lower and upper bounds.
Columns 1 and 2 have the values of prior parameter 1 and 2 that were given in the prior
distribution file. The PosteriorModeEstimation function later creates two new fields in the
PriorDist structure. These fields are beta_ab and gamma_ab, containing the (a, b) parame-
ters for the beta (eq. (2.11)) and gamma (eq. (2.6)) distributions, respectively. The functions
MomentToParamStdbetaPDF and MomentToParamGammaPDF, mentioned at the end of Section 2.3,
deal with this transformation.

The structure ParameterNames has fields all, calibrated, beta, gamma, normal, invgamma,
truncnormal, uniform, and estimated. Each field returns a string matrix with the parameter
names. And, finally, the matrix UniformBounds has dimension m× 2. For all prior distributions
but the uniform and the beta each row has 0 and 1, while for the uniform and beta the rows
have the lower and the upper bounds.

8.2.2. logPosteriorPhiDSGE

Since both csminwel and fminunc are minimization routines, the function to minimize is given
by minus the expression within parenthesis on the right hand side of (8.1). In YADA, this func-
tion is called logPosteriorPhiDSGE. Before this function is minimized, YADA runs a number of
checks on the user defined functions. First of all, all user defined Matlab functions are copied
to the tmp directory to make sure they are visible to Matlab.

Second, YADA attempts to run the user defined Matlab functions. The first group contains
any functions with additional parameters that the user has included in the model setup; cf.
Section 6.4. Given that such functions exist, the order in which they are executed depends
on the user input on the DSGE Data tab on the YADA GUI; see Figure 1. If both types of
additional parameter files exist, the order is determined by the data in the checkbox “Run file
with parameters to initialize before file with parameters to update”. The execution of additional
parameters updates the ModelParameters structure with fields and values.

Given that these files are executed without errors (or that they do not exist), the following
step is to check the validity of the measurement equation function; cf. Section 6.2. Assuming
this function takes the necessary input and provides the necessary output (without errors),
YADA then tries to solve the DSGE model with AiM by executing the function AiMSolver; see
Section 4.2. If the model has a unique convergent solution at the initial values (see Section 4.1),
YADA proceeds with the final preparations for running the optimization routine. If not, YADA
returns an error message, reporting which problem AiM discovered.

The final preparations first involves collecting additional parameters into the ParameterNames
structure in the field additional. Next, the initial values of the additional parameters as
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well as the initial values of the calibrated parameters are located and stored in the vectors
thetaAdditional and thetaCalibrated, respectively. These two tasks are handled by the
functions ReadAdditionalParameterNames and ReadAdditionalParameterValues. Next, the
actual sample to use is determined by running the function CreateSubSample. This sub-sample
does not take into account that the user may have selected a value for the StartPeriod variable
different from tm = 1; see Section 3.9. The choice of StartPeriod is determined by the choice
of “First observation after Kalman filter training sample” on the Settings tab of the YADA dialog.

The last task before the chosen minimization routine is called is to check if the function
that calculates the log posterior returns a valid value at the initial parameter values. The
logPosteriorPhiDSGE function takes 10 input arguments. The first is phi, the transformed
parameters φ. Next, 6 inputs originally created by VerifyPriorData are required. They
are: thetaIndex, UniformBounds, LowerBound, thetaPositions, thetaDist, and the structure
PriorDist. Finally, the structure with model parameters ModelParameters, the DSGE model
structure DSGEModel, and the AIMData structure are needed. The latter structure is created
when the DSGE model is parsed through the AiMInitialize function. That function saves to
a mat-file the outputs from the compute_aim_data function. When this mat-file is loaded into
YADA it creates the AIMData structure with fields having names equal to the output variables of
compute_aim_data.

Based on this input the log posterior evaluation function logPosteriorPhiDSGE first trans-
forms φ into θ by calling PhiToTheta. Next, it makes sure that ModelParameters is cor-
rectly updated for the parameters that are estimated. This is achieved through the function
ThetaToModelParameters. Apart from ModelParameters it needs theta and thetaPositions
to fulfill its task. With ModelParameters being updated for the estimated parameters, any re-
maining parameters are reevaluated next, i.e., the user defined function with parameters to
update.

With the parameter point determined, the log-likelihood function is examined and evalu-
ated if the parameter point implies a unique convergent solution for the DSGE model and
the state vector is stationary (the largest eigenvalue of F is inside the unit circle). The func-
tion logLikelihoodDSGE deals with the calculation. The inputs for the function are the three
structures ModelParameters, DSGEModel, and AIMData. The function returns three variables:
logLikeValue, the value of the log-likelihood; mcode, indicating if the DSGE model has a
unique convergent solution or not; and status, a boolean variable, indicating if the F ma-
trix in the state equation (3.2) has all eigenvalues inside the unit circle or not. Given that mcode
is 1 and that status is 0, the value of the log-likelihood is considered valid. If either of these
variables returns a different value, the function returns 1000000, otherwise it proceeds with the
evaluation of the log of the prior density at θ = g(φ) through logPriorDSGE and, if the prior
density value is not a NaN, the log of the Jacobian. The latter function is given by logJacobian,
presented in Section 7.1. If the log prior density value is NaN, then logPosteriorPhiDSGE again
returns 1000000. Otherwise, the function returns minus the sum of the log-likelihood, the log
prior density, and the log Jacobian.

8.2.3. logLikelihoodDSGE

The function logLikelihoodDSGE directs the main tasks when using the DSGE model for com-
puting the log-likelihood via the Kalman filter. The inputs are, as already mentioned, the three
structures ModelParameters, DSGEModel, and AIMData.

First, logLikelihoodDSGE runs the AiMSolver function. Given that it returns an mcode equal
to unity, the AiMtoStateSpace function is executed. This provides us with the data to determine
F and Q that the Kalman filter needs. Next, the measurement equation function is executed to
obtain the A, H, and R matrices for the current value of the parameters. Once this task is
completed, the KalmanFilter function is executed, yielding the outputs logLikeValue, and
status.
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8.2.4. logPriorDSGE

The function logPriorDSGE computes the log height of the joint prior density function at a
given value of θ. It requires the four inputs theta, thetaDist, PriorDist, and LowerBound. If
the value of log prior density is not a real number, logPriorDSGE returns NaN.

8.2.5. YADAcsminwel

Given that the user has chosen to use Christopher Sims’ csminwel function, the YADA im-
plementation YADAcsminwel is utilized to minimize the function logPosteriorPhiDSGE. If the
optimization algorithm converges within the maximum number of iterations that the user has
selected, YADA makes use of the main output variables from this function. First of all, the
vector phiMode, with φ̃, is collected. Furthermore, the value of (minus) the log posterior at
the mode is saved into LogPostDensity, while the inverse Hessian is located in the variable
InverseHessian. The mode of θ, denoted by θ̃, is obtained from the parameter transformation
function PhiToTheta.

If, for some reason, csminwel is unable to locate the mode, YADA presents the return code
message of csminwel indicating what the problem may be.

8.2.6. YADAfminunc*

YADA has three versions of Matlab’s fminunc at its disposal. For Matlab versions prior to ver-
sion 7, an older fminunc function is called: it is named YADAfminunc5 and its original version
is dated October 12, 1999. For version 7 and later, YADAfminunc7 is used, and for Matlab ver-
sions prior to 7.5 it is originally dated April 18, 2005, while for Matlab version 7.5 and later
it is dated December 15, 2006. The YADAfminunc* function attempts to minimize the function
logPosteriorPhiDSGE, and if it is successful the vector phiMode, φ̃, minus the value of the log
posterior at the mode, and the Hessian at the mode are provided. This Hessian is inverted by
YADA and the results is stored in the variable InverseHessian. The mode of θ, denoted by θ̃, is
obtained from the parameter transformation function PhiToTheta.

Again, if YADAfminunc* fails to locate the posterior mode within the maximum number of
iterations, the return code message of fminunc is presented.

YADAfminunc* is only available in the version of YADA that is exclusive to the New Area-Wide
Model team at the European Central Bank. As mentioned in Section 8, the publicly available
version of YADA does not include these functions.

9. The Random Walk Metropolis Algorithm

The Random Walk Metropolis (RWM) algorithm is a special case of the class of Markov Chain
Monte Carlo (MCMC) algorithms popularly called Metropolis-Hastings algorithms; see, Hast-
ings (1970) and Chib and Greenberg (1995) for an overview.

The Metropolis version of this MCMC algorithm is based on a symmetric proposal density,
i.e., q(θ∗, θ|Y) = q(θ, θ∗|Y), while the random walk part follows when the proposal density is
symmetric around zero, q(θ∗, θ|Y) = q(θ∗ − θ,0|Y). The random walk version of the algorithm
was originally suggested by Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller (1953) and
was first used to generate draws from the posterior distribution of DSGE model parameters by
Schorfheide (2000) and Otrok (2001).

The description of the RWM algorithm below follows An and Schorfheide (2007) closely.

(1) Compute the posterior mode of φ; cf. (8.1). The mode is denoted by φ̃.
(2) Let Σ̃ be the inverse of the Hessian evaluated at the posterior mode φ̃. YADA actually

allows this matrix to be estimated in three different ways and, when used for the RWM
algorithm, that its correlations are scaled in a joint fashion towards zero.

(3) Draw φ(0) from Nm(φ̃, c2
0Σ̃), where m is the dimension of φ, and c0 is a non-negative

constant. Alternatively, a certain starting value φ(0) can be specified.
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(4) For s = 1, . . . , N, draw ϕ from the proposal distribution Nm(φ(s−1), c2Σ̃), where c
is a positive constant. The jump from φ(s−1) is accepted (φ(s) = ϕ) with proba-
bility min{1, r(φ(s−1), ϕ|Y)} and rejected (φ(s) = φ(s−1)) otherwise. The probability
r(φ,ϕ|Y) is determined by

r
(
φ,ϕ|Y) =

L
(
Y ;ϕ

)
p
(
ϕ
)
J
(
ϕ
)

L
(
Y ;φ

)
p
(
φ
)
J
(
φ
) , (9.1)

where J(φ) is the determinant of the Jacobian of θ = g(φ); cf. Section 7. Hence, when
the value of the numerator in (9.1) is greater than the denominator, then the jump from
φ(s−1) to φ(s) = ϕ is always accepted.

The expected value of any real valued function h(φ) is approximated by N−1
∑N

s=1 h(φ(s)).
Hence, the posterior mean and covariance can be calculated directly from the RWM output.
Furthermore, the numerical standard error of the posterior mean can be calculated using the
Newey and West (1987) estimator.

The numerical standard error of the posterior mean φ̄ is computed as follows. Let N̄ ≤ N
be an integer such that the autocorrelation function for the posterior draws of φ tapers off.
Consider the matrix

Σ̂φ =
1
N

N̄∑
s=−N̄

N̄ + 1 − |s|
N̄ + 1

Γ(s), (9.2)

where

Γ(s) =
1
N

N∑
n=s+1

(
φ(n) − φ̄

) (
φ(n−s) − φ̄

)′
, if s ≥ 0,

and Γ(s) = Γ(|s|)′ when s ≤ −1. The numerical standard error of φ̄ is given by the square root
of the diagonal elements of Σ̂φ. The matrix Σ̂φ has the usual property that it converges to 0 in
probability as N → ∞ when the Markov chain that has generated the φ(s) sequence is ergodic;
see, e.g. Tierney (1994).

9.1. YADA Code

9.1.1. NeweyWestCovMat

The function NeweyWestCovMat computes the numerical standard error of any sampled real
valued vector using the Newey and West (1987) corrected covariance matrix. The only required
input argument is PostSample, a matrix of dimensionN×m, withN being the number of sample
points and m the dimension of the vector. The function also accepts the input BarN, representing
N̄ in (9.2). If this input is either missing or assigned an empty value, the function sets N̄ =
[N(1/2.01)], unless [N(1/2.01)] < 100 and N > 200 when N̄ = 100 is selected. This ensures that
limN→∞ N̄ = +∞, while limN→∞ N̄2/N = 0; see, e.g., Geweke (2005, Theorem 4.7.3). The
output is given by StdErr, an m×m covariance matrix such that the numerical standard errors
are available as the square root of the diagonal elements.

9.1.2. DSGEPosteriorSampling

The function DSGEPosteriorSampling handles the actual run of the random walk Metropolis
algorithm. It uses the same inputs as PosteriorModeEstimation, i.e., DSGEModel, CurrINI,
controls. One important difference relative to the posterior mode estimation function is that
some fields in the DSGEModel structure are ignored in favor of values saved to disk while running
the posterior mode estimation routine. In particular, YADA stores data about the prior distri-
bution and sample dates information to disk and DSGEPosteriorSampling makes sure that the
same prior and dates are used when sampling from the posterior as when estimating the poste-
rior mode.

Before starting up the RWM algorithm, the function performs a number of tests. First, it
attempts to execute the additional parameter functions that are present. If they run without
giving any errors, the measurement equation function is executed next and, thereafter, YADA
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Figure 3. The Posterior Sampling frame on the Options tab in YADA.

attempts to solve the DSGE model at the posterior mode estimate. Given that all checks return
positive results, the log posterior function logPosteriorPhiDSGE is executed for the posterior
mode estimate of φ.

The RWM algorithm in YADA has been designed to be flexible and to avoid computing things
more often than necessary. The Posterior Sampling frame on the Options tab in displayed in
Figure 3. The total number of draws from the posterior per sampling chain can be selected as
well as the number of sample batches per chain. YADA always stores the data to disk when a
sample batch has been completed. The number of draws in each batch depends on the total
number of draws per chain and the number of sample batches per chain. This allows the user
to abort a run and later on restart the posterior sampler from the last saved position.

Furthermore, the number of sampling chains can be selected as well as the length of the
burn-in period for the sampler. The draws obtained during the burn-in period are later on
discarded from the total number of posterior draws per chain, although they will still be saved
to disk.

The selections thereafter turns to the proposal density. First, the method for estimating the
inverse Hessian at the posterior mode can be selected. YADA makes use of the output from the
selected optimization routine by default. Alternatively, YADA can fit a quadratic to the evaluated
log posterior to estimate the diagonal of the inverse Hessian; cf. Section 8.1. In addition, when
the option “Transform conditional standard deviations for modified Hessian to marginal using
correlations from Hessian” on the Miscellaneous tab is check marked, then these estimates are
scaled up accordingly. For both possibilities, the correlation structure is thereafter taken from
the inverse Hessian that the optimization routine provides. Third, a finite difference estimator
can be applied. Here, the step length is determined by the user and this selection is located on
the Miscellaneous tab. Finally, a user specified parametere covariance matrix for the proposal
density is also supported. Such a matrix may, for instance, be estimated using old draws from
the posterior distribution. YADA supports this feature from the View menu, but any user defined
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matrix is also allowed provided that it is stored in a mat-file and that the matrix has the name
ParameterCovarianceMatrix.

The estimator of the inverse Hessian can be influenced through a parameter that determines
its maximum absolute correlation. This parameter is by default set to 1 (no restriction), but
values between 0.95 and 0 can also be selected. This parameter interacts with the largest
absolute correlation for the inverse Hessian such that the off-diagonal elements of the new
inverse Hessian are given by the old off-diagonal elements times the minimum of 1 and the
ratio between the desired maximum absolute correlation and the estimated maximum absolute
correlation. Hence, if the desired maximum absolute correlation is greater than the estimated
maximum absolute correlation then the inverse Hessian is not affected. On the other hand, if
the ratio between these correlations is less than unity, then all correlations are scaled towards
zero by with the ratio. At the extreme, all correlations can be set to zero by selecting a maximum
absolute correlation of zero.

The following two selections concern the c0 and c scale parameters for the initial density
and for the proposal density, respectively. The selection of the c parameter influences greatly
the sample acceptance probability. If you consider this probability to be too low or high, then
changing c will often help; see, e.g., Adolfson, Lindé, and Villani (2007a). The c0 parameter
gives the user a possibility to influence the initial value φ(0). For instance, if c0 = 0, then
φ(0) = φ̃, i.e., the posterior mode.

The next parameter in the Posterior Sampling frame is only used under multiple sampling
chains. The weight on randomization refers to the weight given to a randomly drawn φ, deter-
mined as in the case of the single chain but with c0 = 4, relative to the posterior mode when
setting up φ(0). Hence, if the weight on randomization is 1, then each sampling chain uses
φ(0) from Nm(φ̃,16Σ̃) and if the weight on randomization is 0, then each sampling chain starts
from the posterior mode. Hence, the weight on randomization is identical to c0 except that it is
restricted to the 0-4 interval. Since multiple chains are used to check, for instance, convergence
related issues, it is not recommended to start all chains from the posterior mode.

The following parameter on this frame determines the maximum number of draws from the
posterior that will be used in prediction exercises. When comparing the number of posterior
draws minus the length of the burn-in period to the desired maximum number of draws to use
in such exercises YADA selects the smallest of these two numbers. Among the stored posterior
draws the parameter values used in prediction are obtained by either using a fixed interval (de-
fault) or by drawing randomly from the available draws using a uniform distribution. The length
of the fixed interval is the maximum possible to ensure desired number of parameter draws is
possible. The option “Randomize draws from posterior distributions” on the Miscellaneous tab
determines which option is used.

The final parameter on the Posterior Sampling frame is the percentage use of posterior draws
for impulse responses, variance decompositions, etc. It allows the user to consider only a share
of the available posterior draws when computing the posterior distributions of such functions. It
may be useful to make use of a small share of the number of available draws when preliminary
results are desired or when the user is mainly concerned with point estimates, such as the
posterior mean. As above for the prediction case, if fewer than 100 percent are used, the user
can choose between the largest fixed interval between draws (default) or uniform draws from
the posterior draws.

One additional user determined parameter influences how the RWM algorithm is executed.
This parameter in located on the DSGE Posterior Sampling frame on the Settings tab; see Fig-
ure 4. If the checkbox Overwrite old draws is check marked, then previous draws will be over-
written. Conversely, when this box is not checked, then old draws will be used. This allows the
user to recover from a previously aborted run of the RWM algorithm provided that the number
of sample batches is greater than 1 and that at least one batch was saved to disk.
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Figure 4. The DSGE Posterior Sampling frame on the Settings tab in YADA.

There is also another case when YADA can recover previously saved posterior draws. Given
that the checkbox Overwrite old draws is check marked and the posterior draws are only ob-
tained from one sampling chain, YADA will check if, for your current selection about the num-
ber of sample batches, posterior draws exist on disk such that the number of posterior draws is
lower than what you have currently selected. For instance, suppose you have selected to save
10 sample batches per chain and that you currently consider 100,000 posterior draws. YADA
will then check if you have previous run the posterior sampler with less than 100,000 draws for
10 sample batches. The highest such number of posterior draws will then be considered as a
candidate. Supposing that you have already run the posterior sampler for 75,000 draws with
10 sample batches, YADA will ask you if you would like to make use of these 75,000 draws.

When the RWM algorithm has finished, YADA first allows for (but does not force) estima-
tion of the marginal likelihood. The alternative estimators are discussed in Section 11 below.
The choice of algorithm is stated on the DSGE Posterior Sampling frame, where certain other
parameters that are needed by the marginal likelihood estimation function can also be selected.

Before DSGEPosteriorSampling has completed its mission it sends the results to a function
that writes a summary of them to file. This file is finally displayed for the user.

10. Markov Chain Monte Carlo Convergence

This section is concerned with assessing the convergence of the MCMC sampler. A fundamental
problem of inference from Markov chain simulation is that there will always be areas of the
posterior (target) distribution that have not been covered by the finite chain. As the simulation
progresses the ergodic property of the Markov chain causes it eventually to cover all the target
distribution but, in the short run, the simulations cannot, generally, tell us about areas where
they have not been. As pointed out by, e.g., Gelman (1996), this is a general problem whenever
convergence is slow, even in a distribution that has a single mode; see, also, Gelman and Rubin
(1992).

This section is divided into two parts. The first deals with tools for evaluating convergence
using a single chain, while the following is concerned with multiple chains. For a review of
various tools for evaluating MCMC convergence see, e.g., Cowles and Carlin (1996).

10.1. Single Chain Convergence Statistics

The simplest tool for assessing if a MCMC chain has converged or not is to view graphs of the
raw draws; see, e.g., Adolfson, Laséen, Lindé, and Villani (2007b). If the draws are trending this
is a strong indication that the sampler has not converged. In fact, the reason for the trending
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may be that the DSGE model is misspecified. The raw draws may also be graphed directly from
multiple chains to check if they cover the same region of the parameter space.

Next, sequential estimates of various location parameters may be examined. YADA allows
for sequential estimation of the posterior mean and the posterior median. If the sequential
estimates are trending this is indicative of poor convergence. Furthermore, sequential estimates
of the marginal likelihood may also be studied; see Section 11.

A common tool in time series analysis for studying parameter stability is the partial sum or
cusum. Yu and Mykland (1998) proposed to use this tool for evaluating convergence. Like
the sequential estimates of the posterior mean, median, and marginal likelihood, the cusum
estimates depend a first determining a burn-in period. Let S(X) be a chosen summary statistic
of the N post burn-in posterior draws. With µ̂ being the average of S(X) for all N draws, the
observed cusum is

Ĉi =
i∑

j=1

(
S(Xj) − µ̂

)
, i = 1, . . . , N. (10.1)

The cusum path plot is obtained by plotting {Ĉi} against i = 1, . . . , N. If N is very large it may
be practical to plot the statistic against, say, i = N0,2N0, . . . , N instead for some suitable integer
N0.

The cusum statistic in (10.1) is zero for i = N. In YADA the value of µ̂ is added to Ĉi and
the summary statistics are either the log posterior (lnL(Y ; g(φ)) + lnp(g(φ)) + lnJ(φ)), the
original parameters (θ), or the transformed parameters (φ). Moreover, YADA calculates moving
window cusum paths for a fixed window size of N1 = N/10, i.e.,

C̄i =
i∑

j=i+1−N1

(
S(Xj) − µ̂

)
, i = N1, . . . , N, (10.2)

where, again, µ̂ is added to C̄i.
A separated partial means test for a single MCMC chain has been suggested by Geweke;

see, e.g., Geweke (2005, Theorem 4.7.4). Let N be the number of draws and suppose that
Np = N/2p and p are positive integers. For instance, with N = 10,000 and p = 5 we have that
N5 = 1,000. Define the p separated partial means:

Ŝ
(N)
j,p =

1
Np

Np∑
m=1

S
(
φ(m+Np(2j−1))

)
, j = 1, . . . , p, (10.3)

where S is some summary statistic of the transformed parameters φ (such as the original pa-
rameters θ). Let τ̂j,p be the Newey and West (1987) numerical standard error for j = 1, . . . , p.
Define the (p − 1) vector Ŝ(N)

p with typical element Ŝ(N)
j+1,p − Ŝ

(N)
j,p and the (p − 1) × (p − 1)

tridiagonal matrix V̂ (N)
p where

V̂
(N)
j,j = τ̂2

j,p + τ̂2
j+1,p, j = 1, . . . , p − 1

and
V̂

(N)
j,j+1 = V̂

(N)
j+1,j = τ̂2

j+1,p, j = 1, . . . , p − 1.

The statistic
G

(N)
p = Ŝ

(N)′
p

[
V̂

(N)
p

]−1
Ŝ

(N)
p

d→ χ2(p − 1), (10.4)
as N → ∞ under the hypothesis that the MCMC chain has converged with the separated partial
means being equal.

10.2. Multiple Chain Convergence Statistics

One approach for monitoring convergence using draws from multiple MCMC chains is to use
analysis of variance. The approach outlined below is based on Brooks and Gelman (1998),
which generalizes the ideas in Gelman and Rubin (1992); see also Gelman (1996) and Gelman
et al. (2004).
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For a univariate scalar summary S we may assume that we have N draws from M chains.
Let Sij denote draw i from chain j. We may then define the average of S for chain j as S̄j =
(1/N)

∑N
i=1 Sij , while the overall average is S̄ = (1/M)

∑M
j=1 S̄j . The between-chain variance

B and the within-chain variance W are now given by

B =
N

M − 1

M∑
j=1

(
S̄j − S̄

)2
, (10.5)

and

W =
1

M(N − 1)

M∑
j=1

N∑
i=1

(
Sij − S̄j

)2
. (10.6)

The between-chain variance B contains a factor of N because it is based on the variance of the
within-chain means, S̄j , each of which is an average of N draws Sij .

From the two variance components two estimates of the variance of S in the target distribu-
tion, ΣS, can be constructed. First

Σ̂S =
N − 1
N

W +
1
N
B, (10.7)

is an unbiased estimate of the variance under the assumption of stationarity, i.e., when the
starting points of the posterior draws are actually draws from the target distribution. Under the
more realistic assumption that the starting points are overdispersed, then (10.7) is an overesti-
mate of the variance of S.

Second, for any finite N, the within-chain variance W in (10.6) should underestimate the
variance of S. In the limit as N → ∞, both Σ̂S and W approach ΣS, but from opposite direc-
tions. Accounting for sampling variability of the estimator S̄ yields a pooled posterior variance
estimate of V̂ = Σ̂S + B/(MN).

To monitor convergence of the posterior simulation Gelman and Rubin (1992) therefore sug-
gest estimating the ratio of the upper and the lower bounds of the variance of S through:

R̂ =

√
V̂

W
=

√
N − 1
N

+
(M + 1)B
MNW

. (10.8)

As the simulation converges, the potential scale reduction factor in (10.8) declines to 1. This
means that the M parallel Markov chains are essentially overlapping.

The scalar summary S can here be individual parameters of the DSGE model. A multivariate
version of the potential scale reduction factor is suggested by Brooks and Gelman (1998). Now
S is, e.g., a vector of all the model parameters, with B andW being covariance matrix estimators
of the between-chain and within-chain covariance. The multivariate potential scale reduction
factor (MPSRF) is now:

R̂ =

√
N − 1
N

+
M + 1
M

λ1, (10.9)

where λ1 is the largest eigenvalue of the positive definite matrix (1/N)W−1B; see Brooks and
Gelman (1998, Lemma 2). The multivariate potential scale reduction factor in (10.9) declines
towards 1 as the simulation converges. Gelman et al. (2004) suggests that values for R̂ less
than 1.1 may be regarded as an indication that the MCMC sampler has converged.

In addition to monitoring the MPSRF in (10.9) Gelman et al. (2004) also suggest to monitor
the determinants of W and B. This allows the user to also check if both the within-chain
covariance matrix W and the between-chain covariance matrix B stabilize as functions of N.

10.3. YADA Code

10.3.1. CUSUM

The function CUSUM computes the cusum paths in equation (10.1) and (10.2) for the values of
the log posterior from the MCMC output, the draws of the original parameters (θ), or of the
transformed parameters (φ). The function takes 4 input variables: X, NumBurnin, PlotType, and
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CurrINI. The matrix X has dimension NumIter × NumStat, where NumIter is the total number
of draws from the posterior, and NumStat is the number of summary statistics. The integer
NumBurnin gives the number of burn-in draws from the MCMC chain, while the string vector
PlotType can be either log posterior, original parameters, or transformed parameters.
Finally, the structure CurrINI contains initialization information.

The function provides 2 output arguments: CUSUMPost and CUSUMAverage. The former has
dimension (NumIter − NumBurnin) × NumStat and holds the cusum statistic in (10.1) plus the
mean of the input statistics over the post-burn-in sample. The second output variables has
dimension (0.9NumIter − NumBurnin) × NumStat with the moving window cusum statistic in
(10.2).

10.3.2. SeparatedPartialMeansTest

The function SeparatedPartialMeansTest calculates the separated partial means test in (10.4).
The function needs 4 input variables: PostSample, p, PlotType, and CurrINI. The matrix
PostSample has dimension NumIter × NumParam, where NumIter is now the number of post-
burn-in period draws from the posterior while NumParam is the number of summary statistics.
The integer p gives the number of separated partial means to evaluate. The last two input
arguments are the same as in the case of the CUSUM function.

As output the function gives a matrix GewekeStat that has dimension NumParam × 2. The
first column holds the values for the separated partial means test for the NumParam summary
statistics, and the second column the asymptotic p-values based on applying the χ2(p − 1)
distribution.

10.3.3. MultiANOVA

The function MultiANOVA computes the multivariate potential scale reduction factor in (10.9)
as well as the determinants of V̂ and W sequentially. The function takes 5 input variables:
NumChains, ComputeSequential, DSGEModel, CurrINI, and controls. The last three input vari-
ables are also used by the functions for estimating the posterior mode and running the random
walk Metropolis algorithm. The first input simply gives the number of parallel MCMC chains to
examine (M in Section 10.2), while the second variables is boolean and takes on the value 1 if
the output should be calculated sequentially and 0 otherwise. The output statistics are calcu-
lated from posterior draws of the original parameters θ, which are loaded from disk, one chain
at a time.

As output the function gives two variables: DoneCalc and MPSRF. The first is a boolean vari-
able which indicates if the calculations were finished (1) or not (0). The matrix MPSRF has 4
columns, where the first holds the number of draws used in the calculation, the second the R̂
value, the third the determinant of V̂ , while the fourth holds the determinant of W . The rows
correspond to the sample sizes used for the sequential estimates, as can be read from the first
column.

11. Computing the Marginal Likelihood

11.1. The Laplace Approximation

The Laplace (or, more precisely, the Laplace-Metropolis) approximation of the log marginal
likelihood, lnp(Y), was originally suggested by Tierney and Kadane (1986); see, also, Raftery
(1996) for discussions. It requires an estimate of the posterior mode of the parameters and of
the inverse Hessian at the mode. The Laplace estimator of the marginal likelihood makes use
of a normal approximation and YADA considers only the transformed parameters φ. With the
inverse Hessian evaluated at the mode being given by Σ̃ and φ̃ being the posterior mode of the
transformed parameters, the Laplace approximation of the log marginal likelihood is given by:

ln p̂L(Y) = lnL
(
Y ; g(φ̃)

)
+ lnp

(
g(φ̃)

)
+ lnJ

(
φ̃
)

+
m ln(2π) + ln

∣∣Σ̃∣∣
2

, (11.1)
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where m is the dimension of φ. Notice that since YADA calculates the posterior mode by min-
imizing minus the log of the posterior, the inverse Hessian does not need to be multiplied by
minus 1 in (11.1). For the Bayes factor, i.e., the ratio of the marginal likelihoods of two models,
the relative error in (11.1) was shown by Tierney and Kadane (1986) to be O(T−1) for regular
statistical models.

It is also interesting to note that if the inverse Hessian of the log posterior for the θ parameter
is approximated through the delta method, then the Laplace approximation of the log marginal
likelihood using θ̃ is identical to the expression on the right hand side of (11.1). This follows
directly from noting that the determinant of the inverse Hessian is now J(φ̃)2|Σ̃|, while the log
posterior is lnL(Y ; θ̃) + lnp(θ̃).

11.2. The Modified Harmonic Mean Estimator

Harmonic mean estimators are based on the identity:

p(Y) =
[∫

f(θ)
p(Y |θ)p(θ)

p(θ|Y)dθ
]−1

, (11.2)

where f(θ) is such that
∫
f(θ)dθ = 1; see Gelfand and Dey (1994). Given a choice for f(θ),

the marginal likelihood p(Y) can then be estimated using:

p̂H(Y) =

[
1
N

N∑
s=1

f
(
θ(s)
)

L
(
Y ; θ(s)

)
p
(
θ(s)
)
]−1

, (11.3)

where θ(s) is a draw from the posterior distribution and N is the number of draws. As noted
by, e.g., An and Schorfheide (2007), the numerical approximation is efficient if f(θ) is selected
such that the summands are of equal magnitude.

Geweke (1999) suggested to use the density of a truncated multivariate normal distribution
in (11.3). That is, for 0 < p < 1

f(θ) =
exp
[−(1/2)(θ − θ̄)′Σ−1

θ
(θ − θ̄)

]
p(2π)m/2|Σθ|1/2

{
(θ − θ̄)′Σ−1

θ
(θ − θ̄) ≤ χ2

p(m)
}
, (11.4)

where θ̄ is the mean and Σθ the covariance matrix from the output of the posterior simulator,
i.e., θ̄ = N−1

∑N
s=1 θ

(s) and Σθ = N−1
∑N

s=1 θ
(s)θ(s)′ − θ̄θ̄′. The expression {a ≤ b} is 1 if true

and 0 otherwise, while χ2
p(m) is the 100p percent quantile value of the χ2 distribution with m

degrees of freedom.
Since YADA works internally with the transformed φ parameters, the expression for the mod-

ified harmonic mean estimator of the marginal likelihood is slightly different. Specifically,

p̂MH(Y) =

[
1
N

N∑
s=1

f
(
φ(s)
)

L
(
Y ; g(φ(s))

)
p
(
g(φ(s))

)
J
(
φ(s)
)
]−1

, (11.5)

where f(φ) is the same as in equation (11.4) but with θ̄ and Σθ replaced with the posterior
mean and covariance of φ, i.e., φ̄ and Σφ.

11.3. The Chib and Jeliazkov Estimator

The Chib and Jeliazkov (2001) estimator of the marginal likelihood starts from the so called
marginal likelihood identity

p
(
Y
)

=
L
(
Y ; θ
)
p
(
θ
)

p
(
θ|Y) =

L
(
Y ; g(φ)

)
p
(
g(φ)

)
J
(
φ
)

p
(
φ|Y) . (11.6)

This relation holds for any value of φ (and θ), but a point with high posterior density should
preferably be selected, e.g., the posterior mode φ̃.
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The numerator of (11.6) can be determined directly once the posterior mode has been found.
The denominator, however, requires a numerical approximation. Hence,

p̂CJ
(
Y
)

=
L
(
Y ; g(φ̃)

)
p
(
g(φ̃)

)
J
(
φ̃
)

p̂
(
φ̃|Y) , (11.7)

where p̂(φ̃|Y) remains to be calculated.
Based on the definition of r(φ,ϕ|Y) in equation (9.1), let

α
(
φ,ϕ|Y) = min

{
1, r
(
φ,ϕ|Y)} . (11.8)

Let q(φ, φ̃|Y) be the proposal density for the transition from φ to φ̃. For the random walk
Metropolis algorithm we have used the multivariate normal density as the proposal, i.e.,

q
(
φ, φ̃|Y)= (2π)−m/2 ∣∣c2Σ̃

∣∣−1/2
exp
{
− 1

2c2

(
φ̃ − φ

)′
Σ̃−1
(
φ̃ − φ

)}
. (11.9)

This density is symmetric, i.e., q(φ, φ̃|Y) = q(φ̃, φ|Y).19 The posterior density at the mode can
now be approximated by

p̂
(
φ̃|Y) =

N−1
∑N

s=1 α
(
φ(s), φ̃|Y)q(φ(s), φ̃|Y)

J−1
∑J

j=1 α
(
φ̃, φ(j)|Y)

=
N−1

∑N
s=1 q

(
φ(s), φ̃|Y)

J−1
∑J

j=1 α
(
φ̃, φ(j)|Y) ,

(11.10)

where φ(s), s = 1, . . . , N are sampled draws from the posterior distribution with the RWM
algorithm, while φ(j), j = 1, . . . , J, are draws from the proposal density (11.9). The second
equality stems from the fact that α(φ(s), φ̃|Y) = 1 for all φ(s) when φ̃ is the posterior mode,
i.e., the transition from φ(s) to φ̃ is always accepted by the algorithm. Hence, the Chib and
Jeliazkov estimator of p(φ̃|Y) is simply the sample average of the proposal density height for the
accepted draws relative to the posterior mode, divided by the sample average of the acceptance
probability, evaluated at the posterior mode.

The parameter J is always equal to N in YADA. In contrast with the modified harmonic mean
estimator of the marginal likelihood, the Chib and Jeliazkov estimator requires J additional
draws. When J is large and the parameter space is high dimensional, the Chib and Jeliazkov
estimator will be considerably slower to compute since the log posterior function on the right
hand side of equation (8.1) needs to be evaluated an additional J times.

The numerical standard error of the log of the marginal likelihood estimate p̂(φ̃|Y) in (11.10)
can be computed from the vectors

h(s,j) =

[
h

(s,j)
1

h
(s,j)
2

]
=

[
q
(
φ(s), φ̃|Y)

α
(
φ̃, φ(j)|Y)

]
.

The average of h(s,j) is denoted by ĥ. This means that

ln p̂
(
φ̃|Y) = ln ĥ1 − ln ĥ2,

and the numerical standard error of the log marginal likelihood estimate can be calculated
from the sample variance of h(s,j) via the delta method. The sample variance of the latter can
be computed using the Newey and West (1987) estimator.

11.4. YADA Code

Geweke’s (1999) modified harmonic mean estimator of the marginal likelihood is computed
in YADA with the function MargLikeModifiedHarmonic. This function can also be used to
estimate the marginal likelihood sequentially. The nature of the sequential estimation is quite

19 Notice that α(φ, ϕ|Y) = min{1, r(φ,ϕ|Y)q(ϕ, φ|Y)/q(φ, ϕ|Y)} in Chib and Jeliazkov (2001); see, e.g., Section
2.1, above equation (7).
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flexible, where a starting value and an incremental value for the sequence can be selected on
the Settings tab. By default, YADA sets the starting value to 100 and the increment value to 100.
For a posterior sample with 10000 draws, this means that the marginal likelihood is estimated
for the sample sizes 100,200, . . . ,9900,10000. The selection of sequential estimation sample is
determined on the DSGE Posterior Sampling frame on the Settings tab; cf. Figure 4.

Similarly, the function MargLikeChibJeliazkov calculates the Chib and Jeliazkov (2001) es-
timator of the marginal likelihood as well as its numerical standard error. Like the modified
harmonic mean estimator function, MargLikeModifiedHarmonic, the calculations can be per-
formed sequentially using the same sample grid.

The Laplace approximation is calculated by MargLikeLaplace. It is only run towards the
end of the posterior mode estimation routine and should only be viewed as a quick first order
approximation when comparing models.

11.4.1. MargLikeLaplace

The function MargLikeLaplace takes 2 inputs. First, it requires the value of the log posterior at
the mode of φ, LogPost, and second minus the inverse of the Hessian at the mode, InvHessian.
Based on equation (11.1) the log marginal likelihood is calculated and provides as the output
LogMarg.

11.4.2. MargLikeModifiedHarmonic

The function MargLikeModifiedHarmonic takes 5 inputs. First of all, PostSample, an N × m
matrix with N posterior draws of the parameters. Next, the values of the log of the pos-
terior are needed. These are assumed to be given by the N dimensional vector LogPost.
Third, the function accepts a boolean variable ComputeSequential that is 1 if the marginal
likelihood should be estimated sequentially and 0 otherwise. Fourth, a vector with coverage
probabilities are needed. This vector, denoted by CovProb, can be empty or contain numbers
between 0 and 1. Finally, the function requires the structure DSGEModel with model related
information. This structure should contain the fields SequentialStartIterationValue and
SequentialStepLengthValue, where the former gives the starting value of the sequential esti-
mates and the latter gives the increment value. In case CovProb is empty, the structure should
also include the fields CovStartValue, CovIncValue, and CovEndValue. These fields determine
the starting probability value, the increment and the upper bound of the coverage probability p
in (11.4); cf. the DSGE Posterior Sampling frame on the Settings tab in Figure 4.

The output of MargLikeModifiedHarmonic is given by the matrix LogMargs and the vector
CovProb. The dimension of the former is given by the number of successful computations
of the marginal likelihood for the given coverage probabilities times the number of coverage
probabilities plus 1. The first column of this matrix contains the number of draws used for the
computations, while the remaining columns contains the marginal likelihood values for each
given coverage probability. The second output argument is simply the vector with coverage
probabilities that was used by the function.

11.4.3. MargLikeChibJeliazkov

The function MargLikeChibJeliazkov needs 17 input arguments. The first two are the matrix
PostSample and the vector LogPost that are also used by MargLikeModifiedHarmonic. Next,
the posterior mode φ̃ and the inverse Hessian at the posterior mode Σ̃ are needed, along with
the scale factor c that is used by the proposal density. These inputs are denoted by phiMode,
SigmaMode, and c, respectively. Furthermore, the function takes the inputs logPostMode (the
value of the log posterior at the mode), NumBurnin (number of burn-in draws), and the boolean
variable ComputeSequential that is also used by MargLikeModifiedHarmonic.

The remaining 9 input arguments are the last 9 inputs for the logPosteriorPhiDSGE function,
used to compute the α(φ̃, φ(j)|Y) term in the denominator of equation (11.10). The function
MargLikeChibJeliazkov always sets J = N in (11.10).
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The output matrix is given by LogMargs. The first column gives the number of draws used for
estimating the marginal likelihood, the second column the estimated value of the log marginal
likelihood, while the numerical standard error of the log marginal likelihood is provided in the
third column. The standard error is computed using the Newey and West (1987) estimator, with
N̄ = N(1/2.01).

12. Bayesian VAR Analysis

Bayesian VAR models can be analysed with YADA. Their main purpose is to provide a competitor
when performing multistep out-of-sample forecasts with a DSGE model. Let xt be a p dimen-
sional covariance stationary vector stochastic process which satisfies the dynamic relation:

xt = Ψdt +
k∑
l=1

Πl

(
xt−l − Ψdt−l

)
+ εt, t = 1, . . . , T. (12.1)

The vector dt is deterministic and assumed to be of dimension q. The residuals εt are assumed
to be i.i.d. Gaussian with zero mean and positive definite covariance matrix Ω. The Πl matrix is
p× p for all lags, while Ψ is p× q and measures the expected value of xt conditional on the pa-
rameters and other information available at t = 0. All Bayesian VAR models that are supported
by YADA have an informative prior on the Ψ parameters, the steady state of xt. Moreover, the
elements of the vector xt (dt) are all elements of the vector yt (xt) in the measurement equation
of the DSGE model. It is hoped that this notational overlap will not be confusing for you.

12.1. The Prior

The setup of the VAR model in (12.1) is identical to the stationary VAR process in mean-adjusted
form that Villani (2007) examines. The prior on the steady state Ψ is also the same as that
considered in his paper and used by, e.g., Adolfson, Anderson, Lindé, Villani, and Vredin (2005).
That is, with ψ = vec(Ψ) I assume that the marginal prior is given by

ψ ∼ Npq

(
θψ,Σψ

)
, (12.2)

where Σψ is positive definite. YADA allows the user to select any values for θψ and for the
diagonal of Σψ . The off-diagonal elements of the prior covariance matrix are assumed to be
zero.

Let Π = [Π1 · · · Πk] be the p × pk matrix with parameters on lagged x. The prior distribu-
tions for these parameters that YADA supports are as follows:

(i) a Minnesota-style prior similar to the one considered by Villani (2007);
(ii) a normal conditional on the covariance matrix of the residuals (see, e.g., Kadiyala and

Karlsson, 1997); and
(iii) a diffuse prior.

Below I will address the details about each prior distribution.
First, for the Minnesota-style prior the marginal prior distribution of Π is given by:

vec(Π) ∼ Np2k

(
θπ ,Σπ

)
, (12.3)

where the prior mean θπ need not be unity for the first own lagged parameters and zero for the
remaining. In fact, the general setup considers xt to be stationary with steady state determined
by the prior mean of Ψ and dt.

Let θπ = vec(µπ), where µπ = [µΠ1 · · · µΠk] is a p × pk matrix with the prior mean of Π.
The assumption in YADA is that µΠl = 0 for l ≥ 2, while µΠ1 is diagonal. The diagonal entries
are determined by two hyperparameters, γd and γl. With Πii,1 being the i:th diagonal element
of Π1, the prior mean of this parameter, denoted by µii,Π1 , is equal to γd if variable i in the xt
vector is regarded as being first differenced (e.g., output growth), and γl if variable i is in levels
(e.g., the nominal interest rate).

The Minnesota feature of this prior refers to the covariance matrix Σπ . Let Πij,l denote the
element in row (equation) i and column (on variable) j for lag l. The matrix Σπ is here assumed
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to be diagonal with

Var
(
Πij,l

)
=

⎧⎪⎪⎨
⎪⎪⎩
λo

lλh
, if i = j,

λoλcΩii

lλhΩjj
, otherwise.

(12.4)

The parameter Ωii is simply the variance of the residual in equation i and, hence, the ratio
Ωii/Ωjj takes into account that variable i and variable j may have different scales.

Formally, this parameterization is inconsistent with the prior being a marginal distribution
since it depends on Ω. YADA tackles this in the standard way by replacing the Ωii parameters
with the maximum likelihood estimate. The hyperparameter λo > 0 gives the overall tightness
of the prior around the mean, while 0 < λc < 1 is the cross-equation tightness hyperparameter.
Finally, the hyperparameter λh > 0 measures the harmonic lag decay.

Second, when the prior of Π is no longer marginal but condition on the covariance matrix of
the residuals we use the following:

vec(Π)|Ω ∼ Np2k

(
θπ ,Ωπ ⊗ Ω

)
, (12.5)

where Ωπ is a positive definite pk × pk matrix, while θπ is determined in exactly the same way
as for the Minnesota-style prior above. A prior of this generic form is, for instance, examined
by Kadiyala and Karlsson (1997), where it is also discussed relative to, e.g., the Minnesota
prior. The matrix Ωπ is assumed to be block diagonal in YADA, where block l = 1, . . . , k
(corresponding to Πl) is given by

Ωπl =
λo

lλh
Ip. (12.6)

Hence, the overall tightness as well as the harmonic lag decay hyperparameter enter this prior,
while the cross-equation hyperparameter cannot be included. This is the price for using the
Kronecker structure of the prior covariance matrix. At the same time, different scales of the
variables are now handled by conditioning on Ω instead of using sample information.

Finally, in the case of the diffuse prior we simply assume that the prior density p(Π) = 1.
The marginal prior distribution for Ω is either assumed to be diffuse or inverse Wishart. Let

the marginal prior density of Ω be denoted by p(Ω). In the former case, we simply make use of
the standard formula (see, e.g., Zellner, 1971)

p(Ω) ∝ |Ω|−(p+1)/2
. (12.7)

When Ω is assumed to be inverse Wishart, denoted by Ω ∼ IWp(A, v), the density of Ω is
given by

p(Ω) =
|A|v/2

2vp/2πp(p−1)/4Γp(v)
|Ω|−(v+p+1)/2 exp

(
−1

2
tr
[
Ω−1A

])
, (12.8)

where Γb(a) =
∏b

i=1 Γ([a−i+1]/2) for positive integers a and b, with a ≥ b, and Γ(·) being the
gamma function in (2.3). The hyperparameters of this prior are given by A and v, where v is the
number of degrees of freedom. The mode of the inverse Wishart is given by (1/(p + v + 1))A,
while the mean exist if v ≥ p + 2 and is then given by E[Ω] = (1/(v − p − 1))A. If v = 0
(and A = 0), then the density of Ω is proportional to that in equation (12.7); see, e.g., Zellner
(1971).

The hyperparameter A can be selected in two ways in YADA. The first route is to let A equal
the maximum likelihood estimate of Ω. This was suggested by, e.g., Villani (2005). The alter-
native is to let A = λAIp, where the hyperparameter λA gives the joint marginal prior residual
variance; see, e.g., Warne (2006). By selecting the degrees of freedom as small as possible
(given finite first moments) the impact of the parameterization for A is minimized, i.e., by
letting v = p + 2.20

20 Given that the inverse Wishart prior has been selected for Ω and the normal conditional on Ω prior for Π, it
follows by standard distribution theory that the marginal prior of Π is matricvariate t.
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Finally, it should be pointed out that the joint prior distribution of (Ψ,Π,Ω) satisfies certain
independence conditions. Specifically, Ψ is assumed to be independent of Π and Ω. Under the
Minnesota-style prior for Π it is also assumed that Π is a prior independent of Ω.

12.2. Posterior Mode

Before we turn to the estimation of the posterior mode we need to introduce some additional
notation. Let x be a p × T matrix with xt in column t, while ε is constructed in the same way.
Similarly, let d be a q × T matrix with dt in column t. Furthermore, let D be a q(k + 1) × T
matrix where column t is given by [d′t − d′t−1 · · · − d′

t−k]′. Also, let y = x − Ψd, while Y is a
pk × T matrix where column t is given by [y′

t−1 · · · y′
t−k]′ with yt = xt −Ψdt. Next, let X be a

pk × T matrix where column t is [x′t−1 · · · x′
t−k]′. From this we can define z = x − ΠX.

Hence, the stacked VAR may be expressed as either:

y = ΠY + ε, (12.9)

or
z = ΘD + ε, (12.10)

where Θ = [Ψ Π1Ψ · · · ΠkΨ]. Applying the vec operator on Θ gives us:

vec
(
Θ
)

=

⎡
⎢⎢⎢⎢⎢⎣

Ipq(
Iq ⊗ Π1

)
...(

Iq ⊗ Πk

)

⎤
⎥⎥⎥⎥⎥⎦ vec

(
Ψ
)
,

= Uvec
(
Ψ
)
.

(12.11)

The nonlinearity of the VAR model means that an analytical solution for the mode of the joint
posterior distribution of (Ψ,Π,Ω) is not available. However, from the first order conditions we
can express three systems of equations that the mode must satisfy, and by iterating on these
equations it is possible to quickly solve for the posterior mode. Naturally, the choice of prior
influences the three systems of equation.

First, the choice of prior for Π and Ω does not have any effect on the equations that Ψ has to
satisfy at the mode conditional on Π and Ω. Here we find that

ψ =
[
U′(DD′ ⊗ Ω−1

)
U + Σ−1

ψ

]−1 (
U′vec

(
Ω−1zD′) + Σ−1

ψ θψ

)
. (12.12)

Second, in case the Minnesota-style prior is applied to Π, the posterior mode estimate must
satisfy the system of equations

vec
(
Π
)

=
[(
YY ′ ⊗ Ω−1

)
+ Σ−1

π

]−1 (
vec
(
Ω−1yY ′) + Σ−1

π θπ
)
. (12.13)

Similarly, when a normal conditional on the residual covariance matrix prior is used for Π, then
the posterior mode must satisfy:

Π =
(
yY ′ + µπΩ−1

π

) [
YY ′ + Ω−1

π

]−1
. (12.14)

The system of equations that Π needs to satisfy when a diffuse prior is used on these parameters
is, for instance, obtained by letting Ω−1

π = 0 in (12.14), i.e., Π = yY ′(YY ′)−1.
Third, in case a Minnesota-style prior is used on Π, then the posterior mode of Ω must satisfy:

Ω =
1

T + p + v + 1

(
εε′ +A

)
. (12.15)

If the prior on Ω is diffuse, i.e., given by (12.7), we simply set v = 0 and A = 0 in (12.15).
Similarly, when the prior on Π is given by (12.5), then the posterior mode of Ω satisfies

Ω =
1

T + p(k + 1) + v + 1

(
εε′ +A +

(
Π − µπ

)
Ω−1
π

(
Π − µπ

)′)
. (12.16)
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If the prior on Ω is diffuse we again let v = 0 and A = 0. Similarly, if the prior on Π is diffuse,
we set k = 0 and Ω−1

π = 0 in (12.16).

12.3. Gibbs Samplers for a Bayesian VAR

The posterior samplers used by YADA for drawing from the posterior distribution of the param-
eters of the Bayesian VAR models that it supports are simple Gibbs samplers; see, e.g., Casella
and George (1992), Tierney (1994), or Geweke (1999, 2005). This means that the full condi-
tional posterior distributions are needed for (Ψ,Π,Ω).

The full conditional posterior distribution of Ψ is given by Villani (2007, Proposition 2.1). Let
�T = {x1−k, . . . , x0, x1 . . . , xT , d1−k, . . . , d0, d1 . . . , dT}. We can now express this distribution
as:

ψ|Π,Ω,�T ∼ Npq

(
θ̄ψ, Σ̄ψ

)
, (12.17)

where Σ̄−1
ψ = U′(DD′⊗Ω−1)U+Σ−1

ψ and θ̄ψ = Σ̄ψ(U′vec(Ω−1zD′)+Σ−1
ψ θψ). Notice that the mean

of this conditional distribution has the same general construction as the first order condition
expression for Ψ in (12.12).

The full conditional posterior distribution of Π when a Minnesota-style prior is used is also
given by Villani (2007, Proposition 2.1). Given our notation, this distribution can be expressed
as

vec
(
Π
)|Ψ,Ω,�T ∼ Np2k

(
θ̄π , Σ̄π

)
, (12.18)

where Σ̄−1
π = (YY ′ ⊗ Ω−1) + Σ−1

π , while θ̄π = Σ̄π(vec(Ω−1yY ′) + Σ−1
π θπ). In this case the full

conditional distribution of Ω is:

Ω|Ψ,Π,�T ∼ IWp

(
εε′ +A, T + v

)
. (12.19)

If the prior on Ω is assumed to be diffuse, then we simply let v = 0 and A = 0 in (12.18). This
results in the full conditional posterior of Ω in Villani (2007).

The case when the prior distribution of Π is normal conditional on Ω instead implies that the
full conditional posterior of the autoregressive parameters is given by:

vec
(
Π
)|Ψ,Ω,�T ∼ Np2k

(
vec
(
µ̄π
)
,
[
Ω̄π ⊗ Ω

])
, (12.20)

where Ω̄−1
π = YY ′ + Ω−1

π and µ̄π = (yY ′ + µπΩ−1
π )Ω̄π . For this case we find that the full

conditional posterior of Ω is:

Ω|Ψ,Π,�T ∼ IWp

(
εε′ +A +

(
Π − µπ

)
Ω−1
π

(
Π − µπ

)′
, T + pk + v

)
. (12.21)

If the prior on Ω is assumed to be diffuse, then we simply let v = 0 and A = 0 in (12.21).
Finally, in case a diffuse prior is assumed for Π, then the full conditional distribution of Π is

given by (12.20), with Ω−1
π = 0. Similarly, the full conditional distribution of Ω is now given

by (12.21), with k = 0 and Ω−1
π = 0. Again, if the prior on Ω is assumed to be diffuse, then we

simply let v = 0 and A = 0 in (12.21).

12.4. Marginal Likelihood

The marginal likelihood for the Bayesian VAR model can be computed using the ideas in Chib
(1995); see, also, Geweke (1999, 2005). That is, we first note that

p
(�T

)
=
p
(�T |Ψ,Π,Ω

)
p
(
Ψ,Π,Ω

)
p
(
Ψ,Π,Ω|�T

) , (12.22)

by applying Bayes rule. Chib (1995) refers to this expression as the basic marginal likelihood
identity and it holds for any parameter point (Ψ,Π,Ω) in the support.

The numerator in (12.22) is simply the likelihood times the joint prior density, while the
denominator is the joint posterior density. The numerator can be directly evaluated at any valid
parameter point, such as the posterior mode. The density of the joint posterior is, however,
unknown, but can be estimated.

The obtain such an estimate we first factorize the joint posterior density as follows:

p
(
Ψ,Π,Ω|�T

)
= p
(
Ω|Ψ,Π,�T

)
p
(
Ψ|Π,�T

)
p
(
Π|�T

)
. (12.23)
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The first term on the right hand side of (12.23) is the density of the inverse Wishart and can
therefore be evaluated directly at the selected parameter point (Ψ,Π,Ω) = (Ψ̃, Π̃, Ω̃); cf. equa-
tion (12.19) or (12.21).

Let (Ψ(i),Π(i),Ω(i)) be N posterior draws using the relevant Gibbs sampler in Section 12.3
for the full conditional posterior. The third term on the right hand side of (12.23) can now be
estimated as

p̂
(
Π̃|�T

)
= N−1

N∑
i=1

p
(
Π̃|Ψ(i),Ω(i),�T

)
. (12.24)

The density on the right hand side of (12.24) is normal and parameterized as shown in equation
(12.18) or (12.20).

There remains to estimate the conditional posterior density p(Ψ|Π,�T ) at the selected pa-
rameter point. In this case we cannot, as Chib (1995) explains, use the posterior draws from the
Gibbs sampler using the full conditional posteriors above. Instead, we can use Gibbs samplers
for (Ψ,Ω) for the fixed value of Π = Π̃. That is, we draw Ψ(j) from (12.17) with Π = Π̃. Sim-
ilarly, we draw Ω(j) from either (12.19) or from (12.21) with Π = Π̃. The gives us N posterior
draws (Ψ(j),Ω(j)) that are all based on a fixed value of Π. We can now estimate p(Ψ|Π,�T ) at
(Ψ̃, Π̃) using

p̂
(
Ψ̃|Π̃,�T

)
= N−1

N∑
j=1

p
(
Ψ̃|Ω(j), Π̃,�T

)
. (12.25)

The density on the right hand side is normal with parameters given by equation (12.17).
There are, of course, alternative ways of estimating the marginal likelihood p(�T ) for the

Bayesian VAR model; see, e.g., Geweke (1999). The approach advocated by Chib (1995) is
generally viewed as reliable when a parameter point with a high posterior density is used.
The posterior mode, discussed in Section 12.2, is one such point, but one may also consider
an estimate of the joint posterior mean. YADA always makes use of the posterior mode, thus
explaining why the posterior mode must be estimated prior to running the posterior sampler for
the Bayesian VAR. Moreover, when the Gibbs sampler based on the full conditional posteriors
are applied, then the point of initialization is given by the posterior mode.

The chosen order of factorization influences how the Chib estimator of the marginal likeli-
hood is carried out. Since Π generally has (a lot) more parameters than Ψ or Ω is useful to fix
Π first. The additional Gibbs steps for Ψ and Ω can be carried out much more quickly than the
more time consuming Π step. The choice between using the full condition posterior for Ψ or
Ω is not so important. From a computational perspective it should generally not matter much
if we estimate p(Ψ|Π,�T ) or p(Ω|Π,�T ) since the dimensions of Ψ and Ω are generally fairly
low.

12.5. YADA Code

YADA contains a wide range of functions for the Bayesian VAR analysis. In this section I will
limit the discussion to the four main topics above, i.e., the prior, the posterior mode estimation,
the Gibbs sampler, and the marginal likelihood calculation.

12.5.1. Functions for Computing the Prior

This section concerns two functions, MinnesotaPrior and NormalConditionPrior. These func-
tions both compute elements needed for the prior covariance matrix of the Π parameters. The
first functions is used when the Minnesota-style prior is assumed for these parameters, i.e.,
when Σπ in (12.3) is determined as in equation (12.4). Similarly, the second function is applied
when the normal condition on Ω prior is assumed. In this case, the matrix Ωπ in (12.5) is
determined as in equation (12.6).
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12.5.1.1. MinnesotaPrior

The function MinnesotaPrior requires 5 inputs: OverallTightness (λo), CrossEqTightness
(λc), HarmonicLagDecay (λh), OmegaVec, and k. While the first three inputs are hyperparam-
eters, the fourth is a vector with the diagonal elements of Ω, i.e., with the residual variances.
YADA always uses the maximum likelihood estimate of Ω to generate these residual variances.
Finally, the fifth input is the lag order of the Bayesian VAR. The function provides the p2k×p2k
matrix SigmaPi (Σπ) as output.

12.5.1.2. NormalConditionPrior

The function NormalConditionPrior takes 4 inputs: OverallTightness, HarmonicLagDecay, p,
and k. The first two are the same hyperparameters as the MinnesotaPrior function uses, while
the third input is the number of endogenous variables, and the fourth the lag order. As output
the function provides the pk × pk matrix OmegaPi (Ωπ).

12.5.2. Functions for Estimating the Mode of the Joint Posterior

The function BVARPosteriorModeEstimation is used to estimate the posterior mode of the
Bayesian VAR parameters. It handles all the types of priors discussed in Section 12.1. The
main inputs for this function are the structures DSGEModel and CurrINI; see Section 8.2.

From the perspective of analysing a Bayesian VAR model, the DSGEModel structure contains
information about the type of prior to use for VAR parameters, their hyperparameters, the lag
order, as well as which endogenous and exogenous variables to use, for which sample, the data,
the maximum number of iterations to consider, and the tolerance value of the convergence
criterion. This information allows the function to compute the maximum likelihood estimates
of Ψ, Π, and Ω and fully set up the prior. The maximum likelihood estimates are used as initial
values for the posterior mode estimation algorithm. The maximum likelihood estimate of Ω is
adjusted to take the prior into account. For example, if a diffuse prior is used for Ω and for
Π, then the maximum likelihood estimate of Ω is multiplied by T/(T + p + 1). Similarly, if
the inverse Wishart prior in (12.8) is assumed with v ≥ p + 2, then the maximum likelihood
estimate is multiplied by T , A is added to this, and everything is divided by T + p + v + 1.

As discussed in Section 12.2, it is not possible to solve for the posterior mode analytically.
Instead, it is possible to iterate on the first order conditions until a set of values that satisfy
these conditions can be found. The posterior mode estimation routine in YADA first evaluates
the log posterior at the initial values. For each iteration i YADA computes:

• Π(i) given Ψ(i−1) and Ω(i−1) as shown in equation (12.13) or (12.14);
• Ψ(i) given Π(i) and Ω(i−1) as shown in equation (12.12); and
• Ω(i) given Ψ(i) and Π(i) as shown in equation (12.15) or (12.16).

With a new set of parameter values, the log posterior is recalculated and if then absolute change
is not sufficiently small, the algorithm computes iteration i + 1. Otherwise it exits.

YADA has three functions for calculating the log posterior. First, if a diffuse prior on Π
is assumed, then BVARLogPosteriorDiffuse is called. Second, if the prior on Π is of the
Minnesota-style, then the function BVARLogPosteriorMinnesota is used. Finally, the function
BVARLogPosteriorNormalCond is considered when a normal conditional on the residual covari-
ance matrix prior on Π is assumed.

Furthermore, YADA has 5 functions for dealing with the computations in (12.12)–(12.16).
These functions are: BVARPsiMean (equation 12.12) for Ψ, BVARPiMeanMinnesota (equation
12.13) or BVARPiMeanNormalCond (equation 12.14) for Π, and BVAROmegaMinnesota (equation
12.15) or BVAROmegaNormal (equation 12.16) for Ω. The functions are also used by the Gibbs
sampling routine for the Bayesian VAR; cf. Section 12.5.3.

12.5.2.1. BVARLogPosteriorDiffuse

The function BVARLogPosteriorDiffuse needs 11 inputs. First of all it requires the parameter
values Omega (Ω), Pi (Π), and Psi (Ψ). Next, the hyperparameters of the prior of the residual
covariance matrix are needed as Amatrix (A) and qDF (v), and the hyperparameters of the
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steady state prior thetaPsi (θψ) and SigmaPsi (Σψ). Finally, the function needs information
about the endogenous and exogenous variables in terms of the matrices x (x), X (X), d (d), and
dLag. The latter matrix is given by d−1 in D = [d′ d′−1]′, i.e., the final qk rows of D.

The function provides the output scalar logPost which is the sum of the log-likelihood,
the log-prior of Ψ and the log-prior of Ω. All proper log-densities include their integration
constants. In case the Ω prior is diffuse (improper), it simply uses the log of the right hand side
of equation (12.7).

12.5.2.2. BVARLogPosteriorMinnesota

The function BVARLogPosteriorMinnesota requires 13 inputs. All the inputs that the function
BVARLogPosteriorDiffuse accepts are included as well as two additional inputs. These extra
inputs appear as argument eight and nine and are called thetaPi (θπ) and SigmaPi (Σπ).

As output the function provides the scalar logPost which is the sum of the log-likelihood,
the log-prior of Ψ, the log-prior of Π, and the log-prior of Ω.

12.5.2.3. BVARLogPosteriorNormalCond

The function BVARLogPosteriorNormalCond requires 13 inputs. All the inputs that the function
BVARLogPosteriorDiffuse accepts are included as well as two additional inputs. These extra
inputs appear as argument eight and nine and are called muPi (µπ) and OmegaPi (Ωπ).

As output the function provides the scalar logPost which is the sum of the log-likelihood,
the log-prior of Ψ, the log-prior of Π, and the log-prior of Ω.

12.5.2.4. BVARPsiMean

The function BVARPsiMean is used to compute the value of θ̄ψ is equation (12.17). Optionally,
it can also calculate the pq × pq matrix Σ̄ψ as well. A total of 8 inputs are needed by the
function. These are given by: Omega, Pi, thetaPsi, invSigmaPsi, x, X, d, and dLag. Apart from
invSigmaPsi all these inputs are discussed for the BVARLogPosteriorDiffuse function. The
matrix invSigmaPsi is simply the inverse of Σψ .

The required output from the function is ThetaBarPsi, a p × q matrix. If we apply the vec
operator on this matrix we obtain θ̄ψ . The optional output is called SigmaBarPsi. While only
the required output is needed by the posterior mode estimation routine, the optional output is
needed by the Gibbs sampler for drawing from the posterior distribution.

12.5.2.5. BVARPiMeanMinnesota

The function BVARPiMeanMinnesota accepts 8 inputs: Omega, Psi, thetaPi, invOmegaPi, x, X,
d, and dLag. Apart from invOmegaPi all these inputs are described above for the log posterior
function BVARLogPosteriorMinnesota. The input invOmegaPi is simply the inverse of Σπ .

The output ThetaBarPi is required and is a p×pk matrix. The vector θ̄π in (12.18) is obtained
by applying the vec operator to this output. Optionally, the matrix SigmaBarPi is provided. This
output is equal to Σ̄π in the same equation.

12.5.2.6. BVARPiMeanNormalCond

The function BVARPiMeanNormalCond needs 7 inputs: Psi, muPi, invOmegaPi, x, X, d, and
dLag. All these inputs apart from invOmegaPi are discussed above for the log posterior function
BVARLogPosteriorNormalCond. The input invOmegaPi is, of course, the inverse of Ωπ .

The output muBarPi is required and is the p×pk matrix µ̄π in (12.20). Optionally, the matrix
OmegaBarPi is provided. This output is equal to Ω̄π in the same equation.

12.5.2.7. BVAROmegaMinnesota

The function BVAROmegaMinnesota needs 8 inputs: Pi, Psi, A, qDF, x, X, d, and dLag. These in-
puts are also required by BVARLogPosteriorMinnesota. As output the function provides Omega,
the p × p matrix in equation (12.15).
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12.5.2.8. BVAROmegaNormal

The function BVAROmegaNormal accepts 10 inputs: Pi, Psi, A, qDF, muPi, invOmegaPi, x, X, d,
and dLag. These inputs are discussed above; see the BVARLogPosteriorNormalCond and the
BVARPiMeanNormalCond functions. As output the function provides Omega, the p × p matrix in
equation (12.16).

12.5.3. Gibbs Sampling

The function BVARPosteriorSampling controls the events regarding the posterior sampling al-
gorithm. The function takes exactly the same inputs as the posterior mode estimation function
BVARPosteriorModeEstimation. The Bayesian VAR estimation routines follow the same type
of logic as the DSGE model estimation routines. This means that you have to run the posterior
mode estimation before the posterior sampling function can be run. The reason is simply that
the posterior sampling routine for the Bayesian VAR uses the posterior mode estimates of the
parameters to initialize the Gibbs sampler.

As in the case of posterior sampling for the DSGE model, the sampling function for the
Bayesian VAR model reads a number of variable entries from the posterior mode estimation
output file. These data are read from file to ensure that exactly the same data is used for
posterior sampling as was used for posterior mode estimation. Hence, if you have changed
some hyperparameter after running the posterior mode estimation part, the new value will not
be used by YADA. Similarly, changes to the sample will be ignored as well as any other changes
to the data.

The posterior sampling function can look for sampling data that you have already gener-
ated and can load this data. These features operate in exactly the same way for the posterior
sampling function for the DSGE and the Bayesian VAR model.

The precise Gibbs sampler for the Bayesian VAR depends on the prior you are using for the
Ψ, Π, and Ω parameters. The posterior mode estimates are always used as initial values for
the sampler. To generate draw number i of the parameters YADA first draws Ω(i) conditional
on Ψ(i−1) and Π(i−1) with the function InvWishartRndFcn. Since the marginal likelihood is
also estimated as described in Section 12.4 YADA also draws a value for Ω conditional on
Π fixed at the posterior mode and a theoretically consistent previous value of Ψ, i.e., one
that is also conditioned on Π at the posterior mode. Next, YADA draws Π(i) conditional on
Ψ(i−1) and Ω(i). Here it utilizes the function MultiNormalRndFcn. To finish the i:th draw, a
value of Ψ(i) conditional on Π(i) and Ω(i) is obtained. Again, YADA makes use of the function
MultiNormalRndFcn.

As in the case of Ω YADA also draws a value of Ψ conditional on Π fixed at the posterior mode
and the draw obtained for Ω when Π is fixed at the mode. This value of Ψ is used for the next
draw of Ω conditional on Π fixed at the posterior mode. In this fashion YADA generates two
sets of Gibbs sampler draws. The first full set (Ψ(i),Π(i),Ω(i)) are draws from the joint posterior
and are also used to estimate the density p(Π̃|�T) in equation (12.24). The second partial set
(Ψ(j),Ω(j)) is only used to estimate the conditional density p(Ψ̃|Π̃,�T ) in equation (12.25).

12.5.3.1. InvWishartRndFcn

The function InvWishartRndFcn requires two inputs to generate a draw from the inverse Wishart
distribution. These inputs are A and df, representing the location parameter and the degrees of
freedom parameter respectively. As output the function provides Omega.

12.5.3.2. MultiNormalRndFcn

The function MultiNormalRndFcn generates a desired number of draws from the multivariate
normal distribution. As input the function needs mu, Sigma, and NumDraws. These inputs provide
the mean, the covariance matrix and the number of desired draws, respectively. The last input
is optional and defaults to 1.

As output the function gives z, a matrix with as the same number of rows as the dimension
of the mean and number of columns gives by NumDraws.
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12.5.4. Marginal Likelihood of the Bayesian VAR

Estimation of the marginal likelihood is handled by the function MargLikeChib in YADA. Before
discussing this function in more detail it is worthwhile to keep Bartlett’s or (Lindley’s) paradox
in mind; see Bartlett (1957) and Lindley (1957). That is, as a rule of thumb we should only
compare the marginal likelihood value across two models if the prior is proper in the dimensions
where they differ. By proper we mean that the prior density should integrate to unity (a finite
constant) over these parameters. For instance, if the Minnesota-style prior is assumed for Π,
then we can compare the marginal likelihood for models that differ in terms of the lag order
given that the same sample dates and variables are covered by xt. If, instead, the diffuse prior
p(Π) ∝ 1 is used for these parameters, then the marginal likelihoods should not be compared
in this dimension. The paradox here states that the model with fewer lags will have a greater
marginal likelihood value regardless of the information in the data.

12.5.4.1. MargLikeChib

The function MargLikeChib computes the log marginal likelihood using Chib’s marginal like-
lihood identity. As input the function requires 9 inputs (and accepts a 10th). First of all
it takes two vectors with NumIter elements of values of the log densities p(Π̃|Ψ(i),Ω(i),�T)
(LogPiDensity) and p(Ψ̃|Π̃,Ω(j),�T ) (LogPsiDensity). Next, the scalars LogPosterior and
LogOmegaDensity are accepted, where the first measures the sum of the log-likelihood and the
log-prior, while the second measures the log of p(Ω̃|Ψ̃, Π̃,�T ). The fifth input is q, giving the
number of exogenous variables.

The following and sixth input is the integer NumBurnin which provides the number of burn-in
draws to be removed from the top of the log density vector. Next, MargLikeChib accepts the
boolean input ComputeSequential. The function will compute sequential estimates of the log
marginal likelihood is this input is unity, and only the final estimate if it is zero. The first of
the remaining inputs is SequentialStartIterationValue. This integer determines after how
many draws the first sequential estimate shall be performed. Similarly, the last required input
SequentialStepLengthValue determines how many draws to use as increment.

The function provides the matrix LogMargs as output. The number of rows of this matrix is
equal to the number of sequential estimates. The first column contains the number of draws
used for a particular estimate, the second column the estimated log marginal likelihood, and
the third column the numerical standard error of the estimate based on the Newey and West
(1987) correction for autocorrelation.

13. A Bayesian Approach to Forecasting

13.1. Unconditional Forecasting

13.1.1. The State-Space Model

To analyse the predictions of a set of future observations yT+1, . . . , yT+h conditional on the
data that can be observed at time T and a path for future values of the exogenous vari-
ables, we need to determine its predictive distribution. Letting this distribution be denoted
by p(yT+1, . . . , yT+h|xT+1, . . . , xT+h,
T), we note that it can be described in terms of the dis-
tribution for the future observations conditional on the data and the parameters and the full
posterior distribution. That is,

p
(
yT+1, . . . , yT+h|xT+1, . . . , xT+h,
T

)
=
∫
θ∈Θ

p
(
yT+1, . . . , yT+h|xT+1, . . . , xT+h,
T ; θ

)
× p
(
θ|
T

)
dθ,

(13.1)

where Θ is the support of θ. The problem of numerically determining the predictive distribution
is examined in the context of a cointegrated VAR by Villani (2001). Although the full predictive
distribution cannot be obtained analytically, a procedure suggested by Thompson and Miller
(1986) may be applied. This procedure may be used both for the state-space representation of
the DSGE model and for the Bayesian VAR model.

– 73 –



The procedure is based on a double simulation scheme, where S draws of θ from its full pos-
terior are first obtained. In the second stage, prediction paths are simulated for xT+1, . . . , xT+h
conditional on the data and θ. From the conditional predictive distribution we have that

p
(
yT+1, . . . , yT+h|xT+1, . . . , xT+h,
T ; θ

)
=

h∏
i=1

p
(
yT+i|xT+i,
T+i−1; θ

)
. (13.2)

The right hand side of equation (13.2) is obtained by the usual conditioning formula and by
noting that yT+i conditional on xT+i,
T+i−1 and the parameters is independent of xt+j for all
j > i. Moreover, the density for this conditional expression is for the state-space model given
by a multivariate normal with mean yT+i|T+i−1 and covariance (H′PT+i|T+i−1H + R).

The approach suggested by Thompson and Miller (1986) may be implemented for the state-
space model as follows. For a given draw of θ from the posterior distribution, the DSGE model is
solved and the matrices A, H, R, F, and Q are calculated. A value for yT+1 is now generated by
drawing from the normal distribution with mean yT+1|T and covariance matrix (H′PT+1|TH+R)
using the expressions in Section 3.

For period T + 2 we treat the draw yT+1 as given. This allows us to compute yT+2|T+1 and
(H′PT+2|T+1H+R) and draw a value of yT+2 from the multivariate normal using these values as
the mean and the covariance. Proceeding in the same way until we have drawn yT+h we have
obtained one possible future path for yT+1, . . . , yT+h conditional on xT+1, . . . , xT+h, 
T and the
given draw θ from the posterior distribution.

We may now continue and draw a total of P paths for yT+1, . . . , yT+h conditional on this
information. Once all these paths have been drawn, we pick a new value of θ from its posterior
and recalculate everything until a total of PS draws from the density in (13.2) have been drawn.

Alternatively, and as suggested by Adolfson, Lindé, and Villani (2007b), we can directly
utilize the state-space form. Specifically, for a given draw of θ from its posterior distribution,
the period T state vector can be drawn from N(ξT |T , PT |T), where ξT |T and PT |T are obtained
from the final step of the Kalman filter computations; cf. Section 3. Next, a sequence of future
states ξT+1, . . . , ξT+h can be simulated from the state equation (3.2) given draws of the state
shocks vT+1, . . . , vT+h. The latter are drawn from the normal distribution with mean zero and
covariance matrix Q = B0B

′
0. Next, vectors of measurement errors wT+1, . . . , wT+h are drawn

from a normal distribution with mean zero and covariance matrix R. Adding the sequence
of state variables and the measurement errors a path for yT+1, . . . , yT+h is obtained via the
measurement equation (3.1). For the given value of θ, we can now generate P paths of the
observed variables and by repeating this for S draws from the posterior distribution of θ and
total of PS paths from the predictive density of yT+1, . . . , yT+h may be obtained.

The Adolfson, Lindé, and Villani (2007b) approach is faster than the first approach since
the underlying computations are more direct. For this reason, the Adolfson, Lindé, and Villani
approach has been implemented in YADA. Moreover, this procedure highlights the fact that the
uncertainty in the forecasts stems from four sources: parameter uncertainty (θ), uncertainty
about the current state (ξT), uncertainty about future shocks (v), and measurement errors (w).

For instance, the forecast uncertainty for yT+i can be decomposed as follows:

Cov
(
yT+i|
T

)
= ET

[
Cov
(
yT+i|
T ; θ

)]
+ CovT

[
E
(
yT+i|
T ; θ

)]
, (13.3)

where ET and CovT denotes the expectation and covariance with respect to the posterior of θ at
time T and where, for notational simplicity, the sequence of exogenous variables xT+1, . . . , xT+h
have been suppressed from the expressions. Adolfson, Lindé, and Villani (2007b) show that the
first term on the right hand side of (13.3) is given by

ET
[
Cov
(
yT+i|
T ; θ

)]
= ET

[
H′FiPT |T

(
Fi
)′
H
]

+ ET

[
H′
(

i∑
j=1

Fj−1Q
(
Fj−1

)′)
H

]
+ ET

[
R
]
,

providing the uncertainties regarding the current state, the future shocks, and the measurement
errors. Similarly, for the second term in (13.3) we have that

CovT
[
E
(
yT+i|
T ; θ

)]
= CovT

[
A′xT+i +H′FiξT |T

]
,
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which thus reflects the influence of parameter uncertainty on forecast uncertainty.

13.1.2. The VAR Model

The Thompson and Miller (1986) procedure may also be applied to the Bayesian VAR in Sec-
tion 12. In this case we let θ = (Ψ,Π,Ω) where the draws are obtained using the Gibbs
samplers discussed in Section 12.3. For a given draw θ from its posterior distribution we may
first draw residuals εT+1, . . . , εT+h from a normal distribution with mean zero and covariance
matrix Ω. Next, we simulate the xT+1, . . . , xT+h by feeding the residual draws into the VAR
system in (12.1). Repeating this P times for the given θ gives us P sample paths conditional on
θ. By using S draws of θ from its posterior we end up with PS paths of xT+1, . . . , xT+h from its
predictive density.

For the Bayesian VAR we may decompose the prediction uncertainty into two components,
the error uncertainty and the parameter uncertainty. That is,

Cov
(
xT+i|�T

)
= ET

[
Cov
(
xT+i|�T ; θ

)]
+ CovT

[
E
(
xT+i|�T ; θ

)]
, (13.4)

where the deterministic process dT+1, . . . , dT+h has been suppressed from the expressions to
simplify notation. The first term on the right hand side measures the error uncertainty, while
the second measures parameter uncertainty. To parameterize these two terms, we first rewrite
the VAR model in (12.1) in first order form:

YT+i = BYT+i−1 + JkεT+i, i = 1, . . . , h, (13.5)

where Jk is a pk × p matrix with Ip on top and a zero matrix below. This means that yT+i =
J ′
k
YT+i. Furthermore, the pk × pk matrix B is given by

B =

⎡
⎢⎢⎢⎢⎢⎣

Π1 · · · Πk−1 Πk

Ip 0 0
. . .

0 Ip 0

⎤
⎥⎥⎥⎥⎥⎦ . (13.6)

Using these well known expressions we first find that the error uncertainty term is:

ET
[
Cov
(
xT+i|�T ; θ

)]
= ET

[
i−1∑
j=0

J ′kB
jJkΩJ ′k

(
Bj
)′
Jk

]
,

while the parameter uncertainty term is given by:

CovT
[
E
(
xT+i|�T ; θ

)]
= CovT

[
ΨdT+i + J ′

k
BiYT

]
.

13.2. Conditional Forecasting with the State-Space Model

Conditional forecasting concerns forecasts of endogenous variables conditional on a certain
path and length of path for some other endogenous variables; see, e.g., Waggoner and Zha
(1999). In this section I will discuss conditional forecasting as it has been implemented in
YADA for a DSGE model. Specifically, it is assumed that the conditioning information satisfies
hard conditions, i.e., a particular path, rather than soft conditions (a range for the path).

Let K1 and K2 be known n×qm matrices with n > qm such that rank(K1) = qm. Furthermore,
consider the following relation:

zT+i = K′
1yT+i +

i−1∑
j=1

K′
2yT+i−j + uT, i = 1, . . . , g. (13.7)

The specification in equation (13.7) is general enough to satisfy our purposes. In the special
case where K2 = 0 and uT = 0 the vector zT+i is determined directly from yT+i, e.g., one
particular observed variable. Although such a specification covers many interesting cases it does
not allow us to handle the case when y includes the real exchange rate and the first differences
of the domestic and foreign prices, but where z is the nominal exchange rate. Let pt and p∗t
denote the domestic and foreign prices, respectively, while st denotes the nominal exchange
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rate. We may then let K1 be defined such that K′
1yT+i = (sT+i + p∗T+i − pT+i) + ∆pT+i − ∆p∗T+i,

whereas K′
2yT+i−j = ∆pT+i−j − ∆p∗T+i−j and uT = pT − p∗T .

To keep the values in zT+i fixed over the given horizon, the method we consider requires that
a subset of the economic shocks are adjusted to take on certain values. The selection of shocks
is defined by the user while the values are calculated by taking equation (13.7) into account.
The selection of economic shocks is determined by the q × qm matrix M where q > qm and
rank(M) = qm. Let M⊥ be the q × (q − qm) orthogonal matrix, i.e., M′

⊥M = 0. It now follows
that N = [M⊥ M] is a full rank q × q matrix while

N′ηt =

[
M′

⊥
M′

]
ηt =

[
η

(q−qm)
t

η
(qm)
t

]
. (13.8)

The shocks η(qm)
t will be adjusted over the time interval t = T+1, . . . , T+g to ensure that (13.7)

is met for all forecast paths of the observed variables over this time interval.
Let M̄ = M(M′M)−1 while M̄⊥ = M⊥(M′

⊥M⊥)−1.21 We can now express the state equation
(3.2) as

ξt = Fξt−1 + B0M̄⊥η
(q−qm)
t + B0M̄η

(qm)
t . (13.9)

Turning first to period T + 1 we know that if we substitute for yT+1 using the measurement
equation (3.1) and the rewritten state equation (13.9), the conditioning on the vector zT+1 in
(13.7) implies that:

zT+1 = K′
1A

′xT+1 +K′
1wT+1 +K′

1H
′FξT +K′

1H
′B0M̄⊥η

(q−qm)
T+1 +K′

1H
′B0M̄η

(qm)
T+1 + uT . (13.10)

Provided that the qm × qm matrix K′
1H

′B0M̄ has full rank, the economic shocks η(qm)
T+1 can be

uniquely specified such that a fixed value for zT+1 is obtained.
With η(qm)

T+1 being computed such that (13.10) holds, it follows from the state equation (13.9)
that the state vector at T + 1 conditional on the path for zT+i is determined by

ξ
(qm)
T+1 = FξT + B0M̄⊥η

(q−qm)
T+1 + B0M̄η

(qm)
T+1 ,

while the measurement equation implies that yT+1 is given by:

y
(qm)
T+1 = A′xT+1 +H′ξ(qm)

T+1 +wT+1.

We may now continue with period T + 2 where the shocks η(qm)
T+2 can, for given parameter

values, be determined from zT+2, xT+2, wT+2, ξ(qm)
T+1 , η(q−qm)

T+2 , y(qm)
T+1 , and uT . In fact, it is now

straightforward to show that the values for the economic shocks which guarantee that the
conditioning path zT+1, . . . , zT+g is always met are:

η
(qm)
T+i =

(
K′

1H
′B0M̄

)−1
[
zT+i −K′

1A
′xT+i −K′

1wT+i −K′
1H

′Fξ(qm)
T+i−1

−K′
1H

′B0M̄⊥η
(q−qm)
T+i −K′

2

i−1∑
j=1

y
(qm)
T+i−j − uT

]
, i = 1, . . . , g,

(13.11)

while the states and the observed variables evolve according to:

ξ
(qm)
T+i = Fξ

(qm)
T+i−1 + B0M̄⊥η

(q−qm)
T+i + B0M̄η

(qm)
T+i , i = 1, . . . , g, (13.12)

and
y

(qm)
T+i = A′xT+i +H′ξ(qm)

T+i +wT+i, i = 1, . . . , g, (13.13)

while ξ(qm)
T = ξT .

For i > g there are not any direct restrictions on the possible paths for the observed variables
other than that the state vector at T + g needs to be taken into account.

21 In many situations we will have that M̄ = M since M is typically a 0-1 matrix with only one unit element per
column. Similarly, we can always select M⊥ such that M̄⊥ = M⊥.
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The procedure described here makes it straightforward to calculate conditional predictive
distributions. For a given draw of θ from its posterior distribution, the period T state vector ξT
is drawn from N(ξ(z)

T |T+g, P
(z)
T |T+g). YADA sets ξ(z)

T |T+g = ξT |T and P (z)
T |T+g = PT |T and, hence, ignores

the conditioning assumptions.
Next, the economic shocks η(q−qm)

T+i are drawn from N(0,M′
⊥M⊥) and wT+i from N(0, R).

Given the conditioning information the economic shocks η(qm)
T+i are calculated from (13.11), the

state vector from (13.12), and the observed variables from (13.13) in a sequential manner until
i = g+1, when the economic shocks η(qm)

T+i are drawn from N(0,M′M) until i = h. This provides
one path for yT+1, . . . , yT+h. Given the value of θ we may next repeat this procedure yielding P
paths. By considering S draws of θ we can calculate a total of PS sample paths for the observed
variables that take the conditioning into account.

13.3. Modesty Statistics for the State-Space Model

Conditional forecasting experiments may be subject to the well known Lucas (1976) critique.
Leeper and Zha (2003) introduced the concept of modest policy interventions along with a
simple metric for evaluating how unusual a conditional forecast is relative to the unconditional
forecast. Their idea has been further developed by Adolfson, Laséen, Lindé, and Villani (2005).
Below I shall present three modesty statistics, two univariate and one multivariate.

The general idea behind the modesty statistics is to compare the conditional and the un-
conditional forecast. The forecasts are subject to uncertainty concerning which shocks will hit
the economy during the prediction period. For the conditional forecasts some shocks have to
take on certain values over the conditioning period to ensure that forecasts are consistent with
the conditioning information. If these restricted shocks behave as if they are drawn from their
distributions, then the conditioning information is regarded as modest. But if the behavior of
the shocks over the conditioning period is different from the assumed, then the agents in the
economy may be able to detect this change. In this case, the conditioning information need no
longer be modest and might even be subject to the famous Lucas (1976) critique.

Within the context of the state-space representation of the DSGE model, the univariate statis-
tic suggested by Leeper and Zha (2003) is based on setting η

(q−qm)
T+i = 0 and wT+i = 0 for

i = 1, . . . , g in equations (13.11)–(13.13). The alternative univariate statistic suggested by
Adolfson et al. (2005) does not force these shocks to be zero over the conditioning horizon.

For both approaches the difference between the conditional and the unconditional forecasts
at T + g for a given θ is:

ΦT,g(η̄) = yT+g(η̄; θ) − E
[
yT+g |
T ; θ

]
= H′Fg

(
ξT − ξT |T

)
+H′

g−1∑
j=0

FjB0
(
M̄η

(qm)
T+g−j + M̄⊥η

(q−qm)
T+g−j

)
+wT+g,

(13.14)

where η̄ = {η(qm)
t , η

(q−qm)
t }T+g

t=T+1. Under the Leeper and Zha approach the measurement errors

and the other shocks {η(q−qm)
t }T+g

t=T+1 are set to zero, while under the Adolfson et al. approach
these shocks and errors are drawn from their distributions.

For the latter approach we have that the forecast error variance at T + g is

ΩT+g = H′PT+g|TH + R, (13.15)

where as already shown in equation (3.21)

PT+i|T = FPT+i−1|TF′ + B0B
′
0, i = 1, . . . , g.

Under the hypothesis that ξT is can be observed at T , the matrix PT |T = 0. This assumption is
used by Adolfson et al. (2005) and is also imposed in YADA.

The assumption that the state vector in T can be observed at T in the modesty analysis is
imposed to make sure that it is consistent with the assumptions underlying the DSGE model.
That is, the agents know the structure of the model, all parameters, and all past and present
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shocks. Hence, there cannot be any state uncertainty when evaluating the current state. This
also has an implication for equation (13.14) where we set ξT = ξT |T .

The multivariate modesty statistic can now be defined as:

�T,g(η̄) = ΦT,g(η̄)′Ω−1
T+gΦT,g(η̄). (13.16)

Under the hypothesis that the conditioning shocks are modest, i.e., {η(qm)
t }T+g

t=T+1 can be viewed
as being drawn from a multivariate standard normal distribution, this statistic is χ2(n). Instead
of using the chi-square as a reference distribution for the multivariate modesty statistic, one may
calculate the statistic in (13.16) using the shocks η = {ηt}T+g

t=T+1 in (13.16) that are drawn from
the Nq(0, Iq) distribution and thereafter compute the tail probability Pr[�T,g(η) ≥ �T,g(η̄)] to
determine if the conditioning information is modest.

One univariate statistic suggested by Adolfson et al. is the following

�(i)
T,g(η̄) =

Φ(i)
T,g(η̄)√
Ω(i,i)
T+g

, i = 1, . . . , n, (13.17)

where ΦT,g(η̄) is calculated with the other shocks and the measurement errors drawn from a
normal distribution. This statistic has a standard normal distribution under the assumption of
modest conditioning shocks.

For the alternative Leeper-Zha related statistic we let ΦT,g(η̄) be computed for zero measure-
ment errors and other shocks, while

ΩT+g = H′PT+g|TH,
PT+i|T = FPT+i−1|TF′ + B0M̄M′B′

0.

The alternative Φ(i)
T,g(η̄) and Ω(i,i)

T+g values may now be used in equation (13.17).

13.4. Conditional Forecasting with the VAR Model

Conditional forecasting with a reduced form Bayesian VAR can be conducted in YADA using
the ideas from Waggoner and Zha (1999). That is, reduced form shocks εT+i are drawn over
the conditioning sample from a normal distribution with a mean and covariance matrix which
guarantees that the assumptions are satisfied. The approach of fixing certain shocks is not used
for the VAR since the individual reduced form shocks do not have any particular interpretation
other than being 1-step ahead forecast errors when the parameters are given.

The conditioning assumptions for the VAR model are expressed as

z̃T+i = K̃′
1xT+i +

i−1∑
j=1

K̃′
2xT+i−j + ũT , i = 1, . . . , g, (13.18)

where z̃T+i ism dimensional withm < p, and ũT is anm dimensional vector of known constants.
The matrices K̃1 and K̃2 are p ×m with rank(K̃1) = m.

To derive the moments of the distribution for the shocks over the conditioning sample it is
convenient to write the VAR model on state-space form. Hence, let the measurement equation
be given by

xt = Ψdt + J ′
k
Yt, (13.19)

while the state equation is
Yt = BYt−1 + Jkεt, (13.20)

where Jk, Yt, and B are defined in Section 13.1.2.
For convenience and, as we shall see below, without loss of generality, let

εt = Ω1/2η̃t, (13.21)

where Ω1/2 is any matrix such that Ω = Ω1/2Ω1/2′. The shocks η̃t are i.i.d. N(0, Ip). The first
step shall be to derive the mean and the covariance matrix for these normalized shocks which
guarantee that the conditioning assumptions in (13.18) are satisfied. We shall then translate
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these moments into the ones that apply for the reduced form shocks εt. Given that the moments
do not involve a specific choice for Ω1/2, the above claim is implied.

The state equation for period T + i can be expressed relative to YT and the normalized shocks
from periods T + 1, . . . , T + i by

YT+i = BiYT +
i−1∑
j=0

BjJkΩ1/2η̃T+i−j , i = 1, . . . , g.

Substituting this into the measurement equation for xT+i we obtain

xT+i = ΨdT+i + J ′
k
BiYT +

i−1∑
j=0

J ′
k
BjJ

k
Ω1/2η̃T+i−j , i = 1, . . . , g.

For periods T + 1, . . . , T + g we can stack these equations as⎡
⎢⎢⎢⎢⎢⎣
xT+g

xT+g−1
...

xT+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

ΨdT+g

ΨdT+g−1
...

ΨdT+1

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣
J ′
k
Bg

J ′
k
Bg−1

...

J ′
k
B

⎤
⎥⎥⎥⎥⎥⎦YT+

+

⎡
⎢⎢⎢⎢⎢⎣

Ω1/2 J ′
k
BJ

k
Ω1/2 · · · J ′

k
Bg−1J

k
Ω1/2

0 Ω1/2 J ′
k
Bg−2J

k
Ω1/2

...
. . .

...

0 0 Ω1/2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
η̃T+g

η̃T+g−1
...

η̃T+1

⎤
⎥⎥⎥⎥⎥⎦ ,

or
XT+g = ΨT+g + GYT + DÑT+g. (13.22)

The conditioning assumptions in (13.18) can be stacked as:⎡
⎢⎢⎢⎢⎢⎣
z̃T+g

z̃T+g−1
...

z̃T+1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
K̃′

1 K̃′
2 · · · K̃′

2

0 K̃′
1 K̃′

2
...

. . .

0 0 K̃′
1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
xT+g

xT+g−1
...

xT+1

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣
ũT

ũT
...

ũT

⎤
⎥⎥⎥⎥⎥⎦ ,

or
Z̃T+g = K̃′XT+g + ŨT . (13.23)

Substituting for XT+g from (13.22) in (13.23) and rearranging terms gives us the following
linear restrictions that the shocks ÑT+g must satisfy in order to meet the conditioning assump-
tions

K̃′DÑT+g = k̃T+g, (13.24)

where k̃T+g = Z̃T+g − ŨT − K̃′(ΨT+g + GYT ).
Like in Waggoner and Zha (1999), the distribution of the shocks ÑT+g conditional on the

restriction (13.24) is normal with mean µÑ,T+g and idempotent covariance matrix ΣÑ,T+g . We
here find that

µÑ,T+g = D′K̃
(
K̃′DD′K̃

)−1
k̃T+g,

ΣÑ,T+g = Ipg − D′K̃
(
K̃′DD′K̃

)−1
K̃′D.

(13.25)

This concludes the first step of deriving the mean and the covariance matrix that the standard-
ized shocks should be drawn from to ensure that the conditioning assumptions are satisfied.

For the second step, where we will show that the choice of Ω1/2 does not have any effect on
the reduced form shocks subject to the conditioning assumptions, let �T+g be the stacking of
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εT+g, . . . , εT+1. This means that

�T+g =
(
Ig ⊗ Ω1/2

)
ÑT+g. (13.26)

The restriction (13.24) can now be expressed in terms of �T+g as

K̃′D̃�T+g = k̃T+g. (13.27)

The matrix D̃ = D(Ig ⊗ Ω−1/2) and does not depend on Ω1/2. In fact

D̃ =

⎡
⎢⎢⎢⎢⎢⎣
Ip J ′

k
BJ

k
· · · J ′

k
Bg−1J

k

0 Ip J ′
k
Bg−2J

k
...

. . .
...

0 0 Ip

⎤
⎥⎥⎥⎥⎥⎦ .

Moreover, the definition in (13.26) also means that the distribution of the reduced form shocks
�T+g conditional on the restriction (13.27) is normal with mean µ�,T+g and covariance matrix
Σ�,T+g . These moments are equal to

µ�,T+g =
(
Ig ⊗ Ω

)
D̃′K̃
[
K̃′D̃
(
Ig ⊗ Ω

)
D̃′K̃
]−1

k̃T+g,

Σ�,T+g =
(
Ig ⊗ Ω

)− (Ig ⊗ Ω
)
D̃′K̃
[
K̃′D̃
(
Ig ⊗ Ω

)
D̃′K̃
]−1

K̃′D̃
(
Ig ⊗ Ω

)
.

(13.28)

From these expressions we find that the moments do not depend on a particular choice of Ω1/2

and the claim has therefore been established.
The computation of the conditional predictive distribution can now proceed as follow. For

a draw θ = (Ψ,Π,Ω) from the joint posterior distribution, we may first draw �T+g from
N(µ�,T+g,Σ�,T+g) thus yielding a sequence of shocks, εT+1, . . . , εT+g , which guarantees that
the conditioning assumptions (13.18) are met. Next, we draw εT+i for i = g + 1, . . . , h from
N(0,Ω). With these shocks we can simulate the path xT+1, . . . , xT+h by feeding the residuals
into the VAR system (12.1). Repeating this P times for the given θ gives us P sample paths from
the predictive distribution conditional on the historical data, the conditioning assumptions, and
θ. Repeating the above procedure for S draws of θ from its joint posterior distribution means
that we end up with PS paths of xT+1, . . . , xT+h from the conditional predictive distribution.

For each draw θ we can also estimate the population mean of xT+1, . . . , xT+h by letting
εT+1, . . . , εT+g be equal to µ�,T+g . The shocks εT+i are next set to zero for i = g + 1, . . . , h.
By feeding these shock values into the VAR system we obtain a path for E[xT+i|�T , Z̃T+g ; θ],
i = 1, . . . , h. Repeating this S times for the different θ draws we may estimate the population
mean of the conditional predictive distribution by taking the average of these S paths.

The modesty analysis can also be performed in the VAR setting. Like in the case of the state-
space model we can consider one multivariate and two univariate statistics. These are again
based on the ideas of Adolfson et al. (2005) and Leeper and Zha (2003). For a given draw �̄T+g
from N(µ�,T+g,Σ�,T+g) the difference between the period T + g simulated conditional forecast
value of the endogenous variables and the unconditional forecast (given θ) is

ΦT,g

(�̄T+g
)

= xT+g
(�̄T+g ; θ

)−E[xT+g |�T ; θ
]

=
g−1∑
j=0

J ′kB
jJkε̄T+g−j , (13.29)

where �̄T+g = [ε̄′T+g · · · ε̄′T+1]′. The forecast error covariance matrix for the unconditional
forecast of xT+g is

ΩT+g =
g−1∑
j=0

J ′kB
jJkΩ

(
J ′kB

jJk
)′
. (13.30)

From these expressions we can define a multivariate modesty statistic as

�T,g

(�̄T+g
)

= ΦT,g

(�̄T+g
)′

Ω−1
T+gΦT,g

(�̄T+g
)
. (13.31)
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Under the hypothesis that the conditioning shocks are modest this statistic is χ2(p). An
alternative reference distribution can be generated by computing the same statistic with �̄T+g
replaced with εT+i drawn from N(0,Ω) for i = 1, . . . , g and defining this reference statistic as
�T,g(�T+g). The event {�T,g(�T+g) ≥ �T,g(�̄T+g)} can then be tested for each one of the PS
conditional forecast paths that is computed, making it possible to estimate the probability of this
event. If the probability is sufficiently small we may say the hypothesis of modest conditioning
assumptions is rejected.

Univariate modesty statistics can now be specified by selecting elements from the vector in
(13.29) and the matrix in (13.30). Specifically, we let

�(i)
T,g

(�̄T+g
)

=
Φ(i)
T,g

(�̄T+g
)

√
Ω(i,i)
T+g

, i = 1, . . . , p. (13.32)

This statistic has a standard normal distribution under the assumption that the conditioning
information is modest and, like the multivariate statistic, it takes into account that there is
uncertainty about all shocks.

For a Leeper-Zha type of univariate modesty statistic we set the reduced form shocks equal
to the mean µ�,T+g = [µ̄′�,T+g · · · µ̄�,T+1]′ value. The covariance matrix for the forecast errors
thus becomes singular and is given by

Ω̄T+g =
g−1∑
j=0

J ′kB
jJkΣ̄�,T+g−j

(
J ′kB

jJk
)′
. (13.33)

where

Σ̄�,T+j = µ̄�,T+j

(
µ̄′�,T+j µ̄�,T+j

)−1
µ̄′�,T+jΩµ̄�,T+j

(
µ̄′�,T+j µ̄�,T+j

)−1
µ̄′�,T+j ,

for j = 1, . . . , g. The univariate Leeper-Zha type of modesty statistic is now given by

�(i)
T,g

(
µ�,T+g

)
=

Φ(i)
T,g

(
µ�,T+g

)
√

Ω̄(i,i)
T+g

, i = 1, . . . , p. (13.34)

This statistic can now be compared with a standard normal distribution.
The prediction uncertainty of the conditional forecasts can be decomposed into error (or

residual) uncertainty and parameter uncertainty. The equivalent to equation (13.4) is now

Cov
(
xT+i|�T , Z̃T+g

)
= ET

[
Cov
(
xT+i|�T , Z̃T+g ; θ

)]
+ CovT

[
E
(
xT+i|�T , Z̃T+g ; θ

)]
, (13.35)

for i = 1, . . . , h, where the ET and CovT as in Section 13.1 denotes the expectation and covari-
ance with respect to the posterior of θ at time T . Once again, the deterministic variables over
the prediction horizon have been suppressed from the expression.

To parameterize these terms we first note that

E
[
xT+i|�T , Z̃T+g ; θ

]
= ΨdT+i + J ′

k
BiYT +

i−1∑
j=0

J ′
k
BjJ

k
µ̄�,T+i−j ,

where µ̄�,T+i−j = 0 if i − j > g. These expected values satisfy the conditioning assumptions for
i = 1, . . . , g. Moreover, the forecast error for a given θ is

xT+i − E
[
xT+i|�T , Z̃T+g ; θ

]
=

i−1∑
j=0

J ′kB
jJk
(
εT+i−j − µ̄�,T+i−j

)
.

Next, the covariance matrix Σ�,T+g is invariant to T since D̃ and K̃ are both invariant to T .
Partitioning this gp × gp matrix as follows

Σ�,T+g =

⎡
⎢⎢⎣

Σ̄(g,g) · · · Σ̄(g,1)

...
. . .

...

Σ̄(1,g) · · · Σ̄(1,1)

⎤
⎥⎥⎦ ,
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where Σ̄(i,j) = Σ̄(j,i)′ is the p × p covariance matrix for the vector pair (εT+i, εT+j) for all i, j =
1, . . . , g. The forecast error covariance matrix of xT+i conditional on �T , Z̃T+g and θ is now
equal to

Cov
[
xT+i|�T , Z̃T+g ; θ

]
=

i−1∑
j=0

i−1∑
l=0

J ′kB
jJkΩ̄(i,j)J ′k

(
B′)lJk,

where

Ω̄(i,j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Σ̄(i,j), if i, j = 1, . . . , g,

Ω, if i = j, i = g + 1, . . . , h

0 otherwise.

These covariance matrices also satisfy the conditioning assumptions, meaning that, for instance,
K̃′

1Σ̄(1,1) = 0.

13.5. YADA Code

The main functions for computing unconditional prediction paths for the observed variables
of the DSGE model are called DSGEPredictionPathsTheta and DSGEPredictionPaths. The
former works with a fixed value for the model parameters θ, while the latter works for a set of
draws from the posterior distribution of θ. The calculation of the conditional prediction paths
for the observed variables of the DSGE model are handled by DSGECondPredictionPathsTheta
and DSGECondPredictionPaths.

Unconditional prediction paths can also be calculated for the Bayesian VAR models. The main
functions for this objective are BVARPredictionPathsPostMode and BVARPredictionPaths. The
former function uses a fixed value for the model parameters, while the latter uses draws from
the posterior distribution of (Ψ,Π,Ω). Hence, the latter function makes it possible to estimate
a predictive distribution of the Bayesian VAR that does not depend on the particular values of
the model parameters.

13.5.1. DSGEPredictionPathsTheta

The function DSGEPredictionPathsTheta needs 11 inputs. First of all, a set of values for the
parameters θ is supplied through the variable theta. To use the values properly the vector struc-
ture thetaPositions and the structure ModelParameter that were discussed in Section 8.2 are
also needed. Furthermore, the DSGE model information structure DSGEModel and the generic
initialization structure CurrINI must be supplied to the function. The following input is given
by the k × h matrix X with the values of the exogenous variables over the h period long pre-
diction sample. Next, the value of h is accepted since X is empty if k = 0. The 8th input is
called NumPaths and specifies how many prediction paths to compute, while the boolean vari-
able AnnualizeData indicates if the prediction paths should be annualized or not. Similarly, the
boolean variable TransData indicates if the data should be transformed or not. The final input
is given by NameStr which indicates the type of values that are used for θ, e.g., the posterior
mode estimate.

The main output from the function is the 3-dimensional matrix PredPaths and the matrices
PredEventData and YObsEventData. The dimensions of the PredPaths matrix are given by
the number of observed variables, the length of the prediction sample, and the number of
prediction paths. The matrix PredEventData has as many rows as number of observed variables
and two columns. The first column gives the number of times that a prediction event is true,
while the second column holds the number of times the event has been tested. A prediction
event can, for instance, be defined as non-negative inflation for h∗ consecutive periods over the
prediction period. The h∗ integer of always less than or equal to the length of the prediction
period. Similarly, the matrix YObsEventData has the same dimension as PredEventData and
holds prediction event data when the mean of the predictive distribution is equal to the realized
values for the observed data.
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13.5.2. DSGEPredictionPaths

The function DSGEPredictionPaths requires 12 inputs. Relative to the previous function,
DSGEPredictionPathsTheta, there is one additional input (the first) and the last input is dif-
ferent. Before the theta input the current function accepts the matrix thetaPostSample with
NumDraws rows and NumParam columns. The number of draws from the posterior that are used
can vary irrespective of how many draws from the posterior that are available. Typically, the
number of draws of θ from its posterior that are sent to this function is a small number, such as
500 or 1,000. The last input used by the function is CurrChain which is an integer that indicates
the MCMC chain number.

As output the function provides 6 variables. The first is the boolean DoneCalc that indicates
if all calculations were performed or not. The next is the matrix PredEventData with prediction
event results. The final 4 variables provides the data on the prediction variance decomposi-
tions for the observed variables over the whole prediction horizon. These variables are called
StateCov, ShockCov, MeasureCov, and ParameterCov, respectively. Apart from MeasureCov
these are all 3D matrices with dimensions n × n × h, where h is the length of the prediction
horizon, while MeasureCov is n × n.

The prediction paths are not directly sent as output from the function. These are instead
written to disk in mat-files, one for each parameter draw. In each file the 3D matrix PredPaths
is stored. Its dimensions are given by the number of observed variables, the length of the
prediction sample, and the number of prediction paths.

13.5.3. DSGECondPredictionPathsTheta

The function DSGECondPredictionPathsTheta needs 13 inputs. The first 6 and the last 5 are
the same inputs as the function DSGEPredictionPathsTheta takes. The 2 additional inputs
naturally refer to the conditioning information. Specifically, the 7th input is given by Z, an
qm×g matrix with the conditioning data [zT+1 · · · zT+g]. The 8th input is given by U, an qm×g
matrix with the initial values [uT−g+1 · · · uT] for the conditioning; cf. equation (13.7).

The main output from the function is the 3-dimensional matrix PredPaths, the matrices
with prediction event test results, PredEventData and YObsEventData, and the modesty results,
MultiModestyStat, UniModestyStat, and UniModestyStatLZ. The dimension of PredPaths is
given by the number of observed variables, the length of the prediction sample, and the number
of prediction paths. The matrix PredEventData (and YObsEventData) has as many rows as
number of observed variables and two columns. The first column gives the number of times
that a prediction event is true, while the second column holds the number of times the event
has been tested. A prediction event can, for instance, be defined as non-negative inflation for h∗
consecutive periods over the prediction period. The h∗ integer of always less than or equal to the
length of the prediction period. The difference between PredEventData and YObsEventData is
that the latter matrix holds prediction event results when the mean of the predictive distribution
has been set equal to the realized values of the observed variables.

The modesty statistics are only calculated when AnnualizeData is zero. When this con-
dition is met, MultiModestyStat is a matrix of dimension NumPaths times 2, where the first
columns holds the values of �T,g(η̄), while the second column gives �T,g(η). The matrix
UniModestyStat has dimension NumPaths times n and gives the univariate modesty statistics
in equation (13.17), while UniModestyStatLZ is a vector with the n values of the univariate
Leeper-Zha related modesty statistic.

13.5.4. DSGECondPredictionPaths

The function DSGECondPredictionPaths for computing the conditional predictive distribution
requires 14 inputs. The first 7 and the last 5 input variables are the same as those that the
function DSGEPredictionPaths takes. The two additional inputs refer to the same data that the
function DSGECondPredictionPathsTheta requires, i.e., to Z and U.

Moreover, as in the case of DSGEPredictionPaths for the unconditional predictive distribu-
tion, the majority of the output from this function is not sent through its output arguments, but
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are written to disk. For instance, the prediction paths are written to disk in mat-files, one for
each parameter draw. In each file the 3D matrix PredPaths is stored. Its dimensions are given
by the number of observed variables, the length of the prediction sample, and the number of
prediction paths. Moreover, the multivariate and univariate modesty statistics are calculated
and saved to disk provided that the AnnualizeData variable is zero (no annualization).

The function provides the same 6 output arguments as the DSGEPredictionPaths function.
Moreover, the prediction paths data is also written to disk in mat-files, one for each parameter
draw. In each file the 3D matrix PredPaths is stored. Its dimensions are given by the number
of observed variables, the length of the prediction sample, and the number of prediction paths.

13.5.5. BVARPredictionPathsPostMode

The function BVARPredictionPathsPostMode requires 9 inputs. The first group is Psi, Pi, and
Omega with fixed values for Ψ, Π, and Ω, respectively. Next, the function takes the structures
DSGEModel and CurrINI. Furthermore, the p × h matrix DPred with data on the exogenous
variables over the h periods in the prediction sample as well as h, the prediction sample length
are needed. Finally, the function requires the integer NumPaths and the boolean AnnualizaData.
The former determines the number of prediction paths to compute at the fixed parameter value,
while the latter indicates if the prediction paths should be annualized or not.

The number of output variables is equal to 5. The first is the 3-dimensional matrix PredPaths,
whose dimensions are given by the number of observed variables, the length of the prediction
sample, and the number of prediction paths. The second output variable is PredMean, a matrix
with the population mean predictions of the observed variables. The following output variable
is the matrix PredEventData, which stores the prediction event results. It has as many rows as
there are number of observed variables and two columns. The first column holds the number
of times that a prediction event is true, while the second column keeps the number of times
the event has been tested. The last two output variables are called KernelX and KernelY, 3-
dimensional matrices with kernel density estimates of the marginal predictive densities. The
dimensions of both matrices are equal to the number of observed variables, the number of grid
points, and the prediction sample length.

13.5.6. BVARPredictionPaths

The function BVARPredictionPaths also requires 9 inputs. The final 6 input variables are iden-
tical to the final 6 input variables for the BVARPredictionPathsPostMode function. The first 3,
however, are now given by the matrices PsiPostSample, PiPostSample, and OmegaPostSample.
The number of rows of these matrices is NumDraws, while the number of columns is equal to the
number of parameters of Ψ, Π, and Ω, respectively.

The function gives 4 variables as output. First, the boolean variable DoneCalc indicates if the
calculations were finished or not. The second output is PredEventData, a p × 2 matrix with
the prediction event results. Furthermore, the prediction uncertainty decomposition into the
error uncertainty and the parameter uncertainty is provided through the 3D matrices ShockCov
and ParameterCov. The dimensions of these matrices are p × p × h, where h is the length of
the prediction sample. This decomposition is only calculated when the boolean input variable
AnnualizeData is zero.
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