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Abstract: The paper considers a Bayesian approach to the cointegrated VAR model with a uniform prior on
the cointegration space. Building on earlier work by Villani (2005b), where the posterior probability of the
cointegration rank can be calculated conditional on the lag order, the current paper also makes it possible to
compute the joint posterior probability of these two parameters as well as the marginal posterior probabilities
under the assumption of a known upper bound for the lag order. When the marginal likelihood identity is used
for calculating these probabilities, a point estimator of the cointegration space and the weights is required.
Analytical expressions are therefore derived of the mode of the joint posterior of these parameter matrices.
The procedure is applied to a money demand system for the euro area and the results are compared to those
obtained from a maximum likelihood analysis.

Keywords: Bayesian inference, cointegration, lag order, money demand, vector autoregression.

JEL Classification Numbers: C11, C15, C32, E41.

4
ECB
Working Paper Series No 692
November 2006



Non-Technical Summary

A non-stationary time series vector process for which there exists linear combinations that are stationary

is said to be cointegrating. This concept was first considered by Granger (1983), who used it for mod-

elling long-run economic relations. To date, the most frequently used method for cointegration analysis

is probably the maximum likelihood approach first suggested by Johansen (1988); see also Johansen

(1991, 1996) and Johansen and Juselius (1990, 1992). This procedure starts from a vector autoregres-

sive (VAR) model for a set of variables in levels with normally distributed residuals. Without imposing

any restrictions on its parameters, the VAR be can rewritten on error correction form with the long-run

impact matrix of the VAR appearing as the coefficient matrix on the lagged levels, while the variables

are otherwise expressed in first differences. If the variables are cointegrated, then the long-run impact

matrix of the VAR has reduced rank, and its rank is equal to the number of cointegration relations. This

general relationship between the concept of cointegration and the vector error correction or cointegrated

VAR model was first established in the seminal paper by Engle and Granger (1987). The cointegration

rank testing procedure developed by Johansen and co-authors therefore attempts to determine the rank

of the long-run impact matrix.

During the last decade a number of Bayesian approaches to cointegration have also appeared in the

literature. These include work by Kleibergen and van Dijk (1994), Bauwens and Lubrano (1996), Geweke

(1996), Bauwens and Giot (1998), Kleibergen and Paap (2002), Strachan (2003), Strachan and Inder

(2004), and Villani (2005b); see Koop, Strachan, van Dijk, and Villani (2006) for a review of Bayesian

approaches to cointegration. All these studies share the assumption that the possibly cointegrated VAR

model has normally distributed residuals and, hence, they have the same likelihood function as the

classical Johansen method. Given that the posterior distribution of the cointegration rank exists, one

Bayesian approach to cointegration rank determination is to select the rank whose posterior probability

is the largest.

From a practical perspective, a Bayesian approach to cointegration is advantageous relative to a classi-

cal for several reasons. For example, it produces whole probability distributions for each parameter that

are valid for any sample size. It also makes it possible to deal with inferences on the cointegration rank

and other restrictions on the model parameters. However, the question of identification becomes more

delicate within a Bayesian framework. Since the long-run impact matrix of the VAR has reduced rank

under the assumption of cointegration it can be rewritten as a product of two matrices, where the first

has fewer columns than rows and the second has fewer rows than columns. The second of these matri-

ces represents the cointegration relations, while the first represents the weights on these relations. It is

possible to premultiply the cointegration relations with a full rank matrix and postmultiply the weights

by the inverse of this matrix without affecting the product of the two matrices. Since the full rank ma-

trix used in these operations is arbitrary, the individual parameters of the cointegration relations and

the weights are not uniquely determined without making some further assumptions. This identification

problem also appears in the classical literature, where the Johansen procedure provides a beautiful treat-

ment for ensuring that all the parameters of the cointegrated VAR are identified. However, the Johansen

identification procedure makes use the observed data and can therefore not be applied under a pure

Bayesian scheme.
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The procedure suggested by Villani (2005b) considers a prior for the cointegration space rather than

a prior for the exactly identified cointegration relations. Villani then shows that a uniform prior on the

cointegration space implies that the prior for the exactly identified cointegration relations is Cauchy. The

general idea of specifying the prior for the cointegration space rather then for the cointegration relations

is also examined in papers by Strachan and Inder (2004), Strachan and van Dijk (2003, 2004, 2005),

and Koop, Leon-Gonzalez, and Strachan (2006).

The study by Villani lists four properties that a reference prior for empirical cointegration analysis

should meet. First, it should have relatively few “hyperparameters”, each with a clear interpretation.

Second, it should be transparent in the sense that a practioner can understand the type of information

it conveys. Third, posterior calculations should be straightforward and it should be possible to perform

them on a routine basis without the need for fine tuning in each application. Fourth, the computation of

the posterior distribution of the cointegration rank should be feasible.

The current paper extends the Bayesian approach suggested by Villani (2005b) in two important

dimensions. First, by allowing for a proper prior distribution on the parameters on lagged endogenous

variables it is not necessary (as in Villani, 2005b) to determine the lag order of the VAR model prior to

the cointegration rank analysis. Instead, the marginal posterior distributions of both the cointegration

rank and the lag order (subject to an upper bound for the latter parameter) can be computed. Second,

the method for estimating the posterior rank probabilities that Villani (2005b) advocates is based on the

so called marginal likelihood identify; cf. Chib (1995). This identity states that the marginal likelihood

is equal to the density of the data conditional on the parameters times the prior density divided by the

posterior density, where these three densities need to be evaluated at a point in the support for the

parameters. The identity holds for any such point, but a point where the posterior density is high is

typically preferable. An analytical expression of the posterior mode is therefore derived in the paper.

As an application the euro area money demand system in Bruggeman, Donati, and Warne (2003)

is re-examined using the Bayesian approach presented in the paper. The money demand model has

6 endogenous variables: real M3, real GDP, annualized quarterly GDP deflator inflation, a short-term

interest rate, a long-term rate, and an own rate of return on M3, as well as an unrestricted constant.

For this model Bruggeman, Donati, and Warne find evidence of two long-run relations. They interpret

these as a long-run money demand and a long-run pricing relation for the own rate of return on M3.

The data set in Bruggeman, Donati, and Warne is extended from 2001:Q4 to 2004:Q4, and the number

of cointegration relations based on Bayesian methods are compared with the outcome of classical tests.

Moreover, Bayesian posterior confidence bands of the income and interest rate semi-elasticities of long-

run money demand are compared with both asymptotic and bootstrapped error bands.
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1. Introduction

The general link between the concept of cointegration (Granger, 1983) and the error correction model —

or cointegrated vector autoregressive (VAR) model — was first established in the highly influential paper

by Engle and Granger (1987). In the wake of this study, an extensive literature has emerged within

the classical domain on estimation and inference in such models. The most frequently used method

in practise is probably the Gaussian maximum likelihood based approach advocated by Johansen and

co-authors in a series of articles; see, e.g., Johansen (1988, 1991) and Johansen and Juselius (1990,

1992), or more recently Johansen (1996) for a comprehensive treatment of the cointegrated VAR. Other

classical approaches, such as reduced rank regression (Ahn and Reinsel, 1990, and Reinsel and Ahn,

1992), quasi maximum likelihood (Pesaran and Shin, 2002), fully modified least squares (Phillips and

Hansen, 1990), canonical cointegrating regression (Park, 1992), and dynamic least squares (Phillips and

Loretan, 1991, Saikkonen, 1991, and Stock and Watson, 1993) have also been considered in empirical

analyses of macroeconomic and financial time series.

During the last decade a number of Bayesian cointegration approaches have also appeared. These

include work by Kleibergen and van Dijk (1994), Bauwens and Lubrano (1996), Geweke (1996), Bauwens

and Giot (1998), Kleibergen and Paap (2002), Strachan (2003), Strachan and Inder (2004), and Villani

(2005b). From a practical perspective, a Bayesian approach to cointegration is advantageous for several

reasons. For example, it produces whole probability distributions for each parameter that are valid

for any sample size. It also makes it possible to deal with inferences on the cointegration rank and

other restrictions on the model parameters; see, e.g., Bauwens, Lubrano, and Richard (1999) and Koop,

Strachan, van Dijk, and Villani (2006) and references therein.

A crucial step in a Bayesian analysis is the choice of prior distribution and in the literature on cointe-

gration several priors have been suggested. The degree of motivation has varied, but most suggestions

focus on vague priors that add only a small amount of information into the analysis. The study by Villani

(2005b) is less concerned with whether or not the prior is “non-informative” and instead considers a

sound prior which is intended to appeal to practitioners. Villani lists four properties that such a prior

should have. First, the prior should have relatively few “hyperparameters”, each with a clear interpre-

tation. Second, it should be transparent in the sense that a practitioner can understand the type of

information it conveys. Third, posterior calculations should be straightforward and be performed on a

routine basis without the need for fine tuning in each application. And, finally, the computation of the

posterior distribution of the cointegration rank should be feasible.

The main purpose of this paper is to extend the Bayesian approach suggested by Villani (2005b) in

two important dimensions. First, I will allow for an informative prior distribution of the parameters

on lagged endogenous variables, i.e., the parameters representing the short-run dynamics. Although

the computation of posterior cointegration rank probabilities does not require an informative prior on

these parameters given that the lag order is treated as known, this is a limitation in practise. One may,

of course, condition on a long lag order, but then the number of degrees of freedom may be sharply

reduced. By instead letting the prior on the short-run dynamics be informative this loss of degrees

of freedom can be avoided. Moreover, it is then possible to calculate conditional, joint, and marginal

posterior probabilities of the cointegration rank and of the lag order. Hence, the extension allows for a

richer analysis of these parameters.
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Second, the approach for computing the posterior rank probabilities that Villani (2005b) advocates

is based on the so called basic marginal likelihood identity; cf. Chib (1995). This identity (Bayes rule)

simply states that the marginal likelihood is equal to the density of the data conditional on the parameters

times the prior density divided by the posterior density, where all densities need to be evaluated at a

point in the support of these parameters. Within the current context, this approach requires the user to

select a point for the free parameters in the identified cointegration vectors and for the parameters on

these vectors. Such a point should preferably have high posterior density and the posterior mode of the

joint density of these parameters is therefore the most natural candidate. Below, I will present a simple

analytical procedure for determining this point for the reference prior in Villani (2005b) as well as for

the extension to an informative prior on the short-run dynamics.

As an application I will re-examine the euro area money demand system in Bruggeman, Donati, and

Warne (2003) — henceforth, BDW — using the Bayesian approach. The BDW model has 6 endogenous

variables: real M3, real GDP, annualized quarterly GDP deflator inflation, a short-term interest rate, a

long-term rate, and an own rate of return on M3, as well as an unrestricted constant. For this model they

find evidence of two long-run relations that they interpret as money demand and a pricing relation for

the own rate of return on M3.

The data set in BDW is extended from 2001:Q4 to 2004:Q4, and the number of cointegration relations

based on Bayesian methods will be compared with the outcome of classical tests. Moreover, Bayesian

posterior confidence bands of the income and interest rate semi-elasticities of long-run money demand

will be compared with both asymptotic and bootstrapped error bands.

The remainder of the paper is organized as follows. The cointegrated VAR model is introduced in

Section 2. The following Section gives a brief background to issues regarding the selection of a prior for

the cointegrated VAR model before defining the priors used in this paper. Section 4 presents the full and

marginal conditional posteriors needed for Gibbs sampling. In addition, expressions for computing the

marginal likelihoods and the posterior probabilities of the possible cointegration ranks are given, along

with analytic expressions for the posterior mode, as well as results on lag order determination. Section 5

turns to the empirical analyses of the euro area money demand system, while Section 6 summarizes the

main conclusions. Proofs of some Propositions are collected in the Appendices.

2. The Cointegrated VAR Model

Let xt be a p-dimensional process represented by a cointegrated VAR model with r stationary long-run

relations

∆xt = ΦDt +
k−1∑
i=1

Γi∆xt−i + αβ′xt−1 + εt, t = 1, . . . , T. (1)

The errors εt are assumed to be i.i.d. Np(0,Ω), where Ω is positive definite. The remaining parameters

are α (p × r), β (p × r), Γ1, . . . , Γk−1 (p × p), and Φ (p × d) for some r ∈ {0, 1, . . . , p}. It is assumed

that α and β are full rank matrices with r being the cointegration rank. The Γi matrices govern the

short-run dynamics of the process, and Dt (d × 1) is a vector of constant, trend, seasonal dummies, or

other deterministic or exogenous variables; see, e.g., Johansen (1996) for a thorough treatment of the

cointegrated VAR model. The lag order, k, is for now assumed to be known or at least determined before

the Bayesian assessment of the cointegrated VAR, but I will relax this assumption in Section 4.4.

8
ECB
Working Paper Series No 692
November 2006



The representation in (1) can be reformulated as

Z0t = ΦDt + ΓZ2t + αβ′Z1t + εt, (2)

where Γ = [Γ1 · · · Γk−1], Z0t = ∆xt, Z1t = xt−1, and Z2t = [∆x′t−1 · · · ∆x′
t−k+1]′. A more compact form

of the model is often useful. Specifically, let

Z0 = ΦD + ΓZ2 + αβ′Z1 + ε. (3)

Here, Z0 = [Z01 · · · Z0T ] is a p × T matrix, while D, Z1, Z2, and ε are defined in a similar manner with

all matrices having T columns. I shall also use the expression � = {Z0, Z1, Z2, D} for all available data.

3. Prior Distributions

3.1. Background

A crucial step in a Bayesian analysis is the choice of prior distribution of the parameters. Several priors

have been suggested in the literature on the cointegrated VAR model; see, e.g., Koop et al. (2006) for

a survey. Building on priors used for linear models, such as the VAR model, early work includes the

studies by Kleibergen and van Dijk (1994), Geweke (1996), Bauwens and Lubrano (1996), and Bauwens

and Giot (1998). In these studies both standard informative and non-informative priors are examined.

By standard it should be understood that either a Gaussian or a flat prior is assumed for the parameters

(α, β,Φ, Γ), and an inverted Wishart or flat prior for Ω; see, e.g., Zellner (1971) for a treatment of the

multivariate regression model.

However, there are two important features of the cointegrated VAR which make the standard priors

unsuitable for cointegration analysis. First, the reduced rank restrictions on Π = αβ′ in (1) introduces a

non-linearity in the otherwise linear model. Second, this non-linearity results in the (α, β) parameters

being non-identified in the sense that, e.g., only the space spanned by the columns of β can be uniquely

determined. This is termed the global non-identification issue by Koop et al. (2006). Accordingly, the

cointegration vectors must be restricted for all parameters to be identified.

Let c be a known p × r matrix of rank r with c̄ = c(c′c)−1. Linear identifying restrictions on β may

then either be expressed as βc = β(c̄′β)−1 or, equivalently, as

βc = c + c⊥Ψ, (4)

where Ψ = c̄′⊥β(c̄
′β)−1. For example, we may let c be given by the first r columns of Ip. When β is just

identified as in (4), αc = αβ′c̄ so that αcβ
′
c = αβ′ = Π.

Notice that the linear restrictions in (4) involve the assumption that c′β has full rank r. If this assump-

tion is false, then the restrictions are not valid. However, even when the restrictions are valid, this does

not settle the issue of selecting a prior for the cointegration vectors. As shown by Strachan and van Dijk

(2004), a flat prior on the just identified parameters of β (Ψ) favors the cointegration spaces near the

region where the linear normalization of β is invalid.

When α has reduced rank, such as α = 0, the posterior distribution for the free parameters of β

conditional on α is equal to its prior. This follows directly from noting that the free parameters of β do

not enter the data density at α = 0, thus, yielding a local non-identification issue; see Kleibergen and
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van Dijk (1994). Imposing weak exogeneity restrictions on α may, as shown by Strachan and van Dijk

(2004), also lead to problems by resulting in an improper posterior.

To deal with (some of) these issues, three approaches have recently been suggested; see Koop et al.

(2006) for a discussion. The most promising and natural of these considers a prior on the cointegration

space. This approach has been used by, e.g., Villani (2000, 2005b), Strachan and Inder (2004), Strachan

and van Dijk (2003, 2004, 2005), and Koop, Leon-Gonzalez, and Strachan (2006).

The support for the cointegration space is based on the set of all p × r orthonormal matrices. This

set is called the Stiefel manifold and is a compact space which admits a uniform distribution. Since β

can always be transformed into a p× r orthonormal matrix through βo = β(β′β)−1/2 and αo = α(β′β)1/2

without affecting Π, it follows that βo is an element of the Stiefel manifold. The Grassman manifold is

an analytic manifold of dimension (p − r)r of all possible r-dimensional subspaces of R
p and it defines

the support for the cointegration space. A uniform prior on the cointegration space is therefore given by

a uniform distribution on the Grassman manifold.

The linear normalization in (4) may be viewed as convenient, but as mentioned above, it also has

a number of drawbacks. The papers by Strachan and Inder (2004) and Strachan and van Dijk (2003,

2004) analyse an alternative strategy that avoids linear identifying restrictions on β. Their idea makes

use of the relationship between the Stiefel and the Grassman manifold. As originally shown by James

(1954), a uniform distribution on the Stiefel manifold induces a uniform distribution of the Grassman

manifold. It is therefore possible to consider orthonormal matrices β in the Stiefel manifold and adjust

all integrals by dividing by the volume of the r-dimensional orthonormal group to account for the fact

that the Stiefel manifold is a larger space than the Grassman manifold.

Despite the drawbacks with a linear normalization of β, I will use it in this paper both for the analysis

of the cointegration rank and for the analysis of the money demand relation. The main reason for using

such a parameterization relative to the parameterization considered by Strachan and Inder (2004) and

Strachan and van Dijk (2003, 2004) is simplicity. Specifically, a linear normalization of β with a uniform

distribution on the cointegration space admits the use of Gibbs sampling from the marginal and full

conditional posteriors for α and Ψ (and thus for βc). This is not the case for βo, where the marginal

density for β conditional on (�, r) is not of a standard form; see, e.g., Strachan and Inder (2004) for

details.

Regarding inference on the cointegration rank, Bartlett’s (or Lindley’s) paradox should be kept in

mind.1 Hence, the prior distribution of (α, β) should be proper in order for posterior probabilities on

sharp nulls to be well defined.

Before I present the prior, the following definitions of the matrix t and inverted Wishart distributions

are useful. Let Γb(a) =
∏b
i=1 Γ([a − i + 1]/2) for positive integers a and b, with a ≥ b, and Γ(·) is the

Gamma function. If b = 0, then Γ0(a) = 1 for a ≥ 0.

Definition 1: Anm×s random matrix B has a matrix t distribution with parameters µ ∈ R
m×s, P (m×m)

and Q (s × s) being positive definite, and n ≥ 0, denoted by B ∼ tm×s(µ, P,Q, n), if its density function is

1 Since Bartlett (1957) it has generally been accepted that improper priors on all of the parameters result in ill-defined Bayes
factors and posterior probabilities that prefer a smaller to a larger model regardless of the information in the data; see also Lindley
(1957). In the recent article by Strachan and van Dijk (2005) it is shown that the class of priors that may be used to obtain
posterior probabilities includes some improper priors. See also the survey by Bernardo and Ramón (1998).
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given by:

p(B) =
Γs(n+m+ s)|P |s/2

Γs(n + s)πms/2|Q|m/2

∣∣∣Is +Q−1
(
B − µ)′P(B − µ)∣∣∣−(n+m+s)/2

.

Definition 2: An m × m random positive definite matrix Σ has an inverted Wishart distribution with

parameters S, being positive definite, and n ≥ m, denoted by Σ ∼ IWm(S, n) if its density function is given

by:

p(Σ) =
|S|n/2

2nm/2πm(m−1)/4Γm(n)
|Σ|−(n+m+1)/2 exp

(
−1

2
tr
[
Σ−1S

])
.

Properties of the matrix t and inverted Wishart distributions can be found in, e.g., Bauwens et al.

(1999, pp. 305–309), Box and Tiao (1973, Chapter 8), and Zellner (1971, pp. 395–399). For example,

when B has a matrix t distribution the mode is equal to µ, and E[B] = µ if n ≥ 1, while E[(vec(B −
µ))(vec(B − µ))′] = (1/(n − 1))[Q ⊗ P−1] if n ≥ 2. Furthermore, if B ∼ tm×s(µ, P,Q, n) then B′ ∼
ts×m(µ′, P∗, Q∗, n), where P∗ = Q−1 and Q∗ = P−1.2

The distribution of individual elements of B can also be determined directly from the parameters of the

matrix t distribution. Let Bij and µij denote the element in row i and column j of B and µ, respectively.

Furthermore, let qj denote the j:th diagonal element of Q, while pi is the i:th diagonal element of P−1.

It can now be shown that if B is distributed as matrix t, then Bij ∼ t1×1(µij , 1/pi, qj , n), i.e., a univariate

Student t distribution.

Similarly, if Σ has an inverted Wishart distribution, then E[Σ] = (1/(n−m− 1))S if n ≥ m+ 2, while

the mode is given by (1/(n +m + 1))S. Letting Σii and Sii denote the i:th diagonal element of Σ and S,

respectively, it can be shown that when Σ has an inverted Wishart distribution, then Σii ∼ IW1(Sii, n),

i.e., an inverted Gamma-2 distribution with n degrees of freedom.

3.2. The Prior

The prior distribution I shall use for the cointegration rank analysis is based on the reference prior

developed by Villani (2005b). The joint distribution is decomposed as:

p(α, β,Φ, Γ,Ω, r) = p(α, β,Φ, Γ,Ω|r)p(r), (5)

where a uniform prior for the cointegration rank may be used, i.e., p(r) = 1/(p + 1) for all r ∈
{0, 1, . . . , p}. The prior density of (α, β,Φ, Γ,Ω) conditional on the cointegration rank is given by

p(α, β,Φ, Γ,Ω|r) = cr |Ω|−(p+q+r+1)/2 exp
(
−1

2
tr
[
Ω−1

(
A+ (1/λ2

α)αβ
′βα′

)])
p
(
Γ|Ω), (6)

where λα > 0, q ≥ p, and A, a p × p positive definite matrix, are three hyperparameters to be specified

by the investigator. The normalizing constant cr is given by

cr = vr |A|q/2 Γr(p)
Γp(q)Γr(r)

2−qp/2π−p(p−1)/4(
2πλ2

α

)pr/2
π(p−r)r/2

,

where vr depends on the chosen normalization of β when r ∈ {1, . . . , p − 1}, while v0 = vp = 1.

Specifically, for β = βc I let vr = |c′⊥c⊥|r/2|c′c|r/2.

2 This follows from a well known result for the determinant; see, e.g., Magnus and Neudecker (1988), Chap. 1, Sect. 12, Eq. 13.
That is, if A and B are m× s matrices, then |Im +AB′| = |Is +B′A|. Furthermore, from properties of the Gamma function we know
that Γs(n+m+ s)/Γs(n+ s) = Γm(n+m+ s)/Γm(n+m) for all m, s ≥ 1 and n ≥ 0; see, e.g., Phillips (1989).

11
ECB

Working Paper Series No 692
November 2006



If d > 0 then the density in (6) is improper since it is constant regardless of the value taken on

by Φ. Accordingly, it is not suitable for determining posterior probabilities of models with different Φ

matrices. If we assume that p(Γ|Ω) = 1, then the same is true for the Γ matrix, thereby making the

model unsuitable for, e.g., lag order determination. Under this assumption about Γ|Ω, Villani (2005b)

shows that the density in (6) implies that the marginal distribution of Ω is inverted Wishart, i.e.,

Ω ∼ IWp
(
A, q

)
,

when c = [Ir 0]′ and β = βc. For these linear identifying restriction on β, Villani also shows that:

vec(α)|β,Ω, r ∼ Npr
(
0, [(β′β)−1 ⊗ λ2

αΩ]
)
,

while the marginal distribution of Ψ for fixed r ∈ {1, . . . , p − 1} is matrix t, i.e.,

Ψ ∼ t(p−r)×r
(
0, Ip−r , Ir , 0

)
.

It is straightforward to show that the results for Ω and α|β,Ω, r hold also for general choices of c,

while the third result is slightly modified as:

Ψ ∼ t(p−r)×r
(
0, c′⊥c⊥, c

′c, 0
)
.

In fact, by multiplying the inverted Wishart density of Ω by the matrix t of Ψ and the multivariate

normal of vec(α)|β,Ω we obtain the expression on the right hand side of (6). Conditional on (Φ, Γ), the

density of (α,Ψ,Ω) is therefore proper and this is all we need in order to compute meaningful posterior

probabilities of r given that we are willing to condition on a certain k.

Regarding the cointegration space, sp(β), Lemma 3.4 in Villani (2005b) states that if β̃ = [Ir Ψ̃′]′ and

Ψ̃ ∼ t(p−r)×r(0, Ip−r , Ir , 0), then sp(β̃) is uniformly distributed over the (p − r)r dimensional Grassman

manifold. The first assumption in this Lemma need not worry us as it only concerns an ordering of

variables. The second assumption is fulfilled by βc if c is orthonormal. The orthonormality requirement is

always fulfilled when c contains r unique columns of Ip. More generally, since we can always postmultiply

βc by a known r × r matrix, (c′c)−1/2, without changing sp(βc) we can redefine Ψ such that the second

assumption is satisfied. Hence, we may regard sp(βc) to be marginally uniformly distributed over the

Grassman manifold also when Ψ ∼ t(p−r)×r(0, c′⊥c⊥, c
′c, 0).

The hyperparameters A and q determine the prior distribution of Ω. If we are not concerned with

cointegration rank determination, we may let both these parameters be equal to 0. This corresponds to

applying the usual improper prior p(Ω) ∝ |Ω|−(p+1)/2.

The values of A and q also have implications for the prior of α. Letting β = βo and α = αo the

distribution of αo|βo,Ω is matricvariate normal and independent of βo. By multiplying its density by the

density of Ω and integrating with respect to Ω, it follows that

αo ∼ tp×r
(
0, A−1, λ2

αIr , q − p
)
;

see, e.g., Bauwens et al. (1999, Theorem A.19). Hence, E[αo] = 0 if q ≥ p + 1, while the covariance

matrix is E[vec(αo)vec(αo)′] = (1/(q − p− 1))[Ir ⊗ λ2
αA] if q ≥ p+ 2. Since E(Ω) = (1/(q − p− 1))A

if q ≥ p + 2, the covariance matrix for αo can also be expressed as [Ir ⊗ λ2
αE[Ω]].

The marginal uncertainty of Ω is, by definition, increasing in q, while the marginal uncertainty of αo

is decreasing in this hyperparameter for given A and λα. Furthermore, the columns of αo have the same
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prior covariance matrix, λ2
αE[Ω], where a larger absolute value for the shrinkage hyperparameter λα

implies larger uncertainty for αo. For a uniform distribution on the cointegration space, it is natural that

the columns of αo have the same prior distribution as the ordering of the columns of βo does not matter.

The discussion thus far concerns the case when p(Γ|Ω) = 1, resulting essentially in the reference prior

suggested by Villani (2005b). When p(Γ|Ω) is proper, a structured shrinkage prior of these parameters

will be employed. Specifically, I assume that Γ|Ω is matricvariate normal:

p
(
Γ|Ω) = (2π)−p

2(k−1)/2|ΣΓ|−p/2|Ω|−p(k−1)/2 exp
(
−1

2
tr
[
Ω−1ΓΣ−1

Γ Γ′]). (7)

The p(k−1)×p(k−1) matrix ΣΓ is positive definite and in the empirical analyses I restrict it to be block

diagonal with (k − 1) blocks consisting of the p × p matrices

ΣΓi =
λ2
b

i2λl
Ip, i = 1, . . . , k − 1. (8)

The hyperparameter λb > 0 measures the baseline shrinkage (overall tightness around zero), while

λl > 0 quantifies the lag order shrinkage.

The prior distribution of Γ|Ω has zero mean and covariance matrix [ΣΓ ⊗ Ω] and is thus in the same

spirit as the prior of α|β,Ω, r. Since p(Γ|α, β,Φ,Ω, r) = p(Γ|Ω) we have, by assumption, that Γ is

independent of α, β,Φ and the cointegration rank r when we condition on Ω. This assumption not only

facilitates the derivation of posterior distributions, but also means that the properties of the prior for

(α, β,Ω) conditional on Φ, Γ and r are not affected by the choice of prior of Γ.

With the marginal distribution of Ω being IWp(A, q), it follows by the same arguments as above for

αo that the marginal distribution of Γ is matrix t, i.e.,

Γ ∼ tp×p(k−1)
(
0, A−1,ΣΓ, q − p

)
.

Hence, for q ≥ p + 1 we find that E[Γ] = 0, while for q ≥ p + 2 it holds that E[vec(Γ)vec(Γ)′] =

(1/(q − p − 1))[ΣΓ ⊗ A] = [ΣΓ ⊗ E(Ω)].

The matrix Ω is included in (7), as well as in p(α|β,Ω, r), to handle differences in variability of the

endogenous variables. Hence, this prior shares some features with the so called Minnesota prior (see,

e.g., Litterman, 1986), but instead of assuming that the variability parameters are known the dependence

on the covariance matrix of the residuals is explicitly taken into account through conditioning and with

a marginal prior of Ω; see, e.g., Kadiyala and Karlsson (1997), Sims and Zha (1998), and Robertson and

Tallman (1999) for further discussions.

Notice that while ΣΓ is assumed to be block diagonal such that Γi|Ω and Γj |Ω are independent for

i �= j, the properties for Γ|Ω discussed above do not rely on this assumption. Rather, the independence

assumption is made in order to have a prior that can be viewed as consistent with the first two properties

listed by Villani (2005b) and reiterated in Section 1 above. In particular, the number of hyperparameters

is only increased by two and both parameters are straightforward to interpret. Furthermore, the theoret-

ical results presented in the next section do not depend on how ΣΓ is parameterized. Hence, alternative

parameterizations that allow for dependence among the elements of Γi|Ω as well as dependence be-

tween Γi|Ω and Γj |Ω may therefore be used instead of (8). Such parameterizations will typically involve

a greater number of hyperparameters and are therefore less likely to be transparent.
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I shall also consider models with over-identifying linear restrictions on β. For that purpose let

vec(β) = h+Hψ, (9)

where h (pr × 1) and H (pr × s) are known. The prior density of ψ is here assumed to be proportional

to |β′β|−p/2, where β satisfies (9). In the event that β is exactly identified, s = r(p− r), h = vec(c), while

H = [Ir ⊗ c⊥] and ψ = vec(Ψ).

The prior on ψ is similar to the prior used by Villani and Warne (2003). Moreover, it is proportional

to the prior on Ψ when s = r(p − r), i.e., a matrix t distribution with zero degrees of freedom. For the

over-identification case, I let vec(α)|β,Ω, r ∼ Npr(0, [(β′β)−1 ⊗Ω]), Ω ∼ IWp(A, q), while the two priors

on Γ|Ω discussed above as well as the non-informative and improper prior on Φ will be applied. For the

over-identifying cases, the assumption that p(ψ|r) ∝ |β′β|−p/2 means that the prior is not suitable if we

wish to discriminate between different ψ models. Such models will have different integration constants

and these constants are ignored when this prior is applied. Rather, the assumption is made out of

convenience since the impact that β has on the conditional prior density of α is fully offset by the prior

on ψ; see Villani (2005a) for a prior that allows for the posterior evaluation of different ψ models.

4. Posterior Distributions

4.1. Gibbs Samplers

The joint posterior distribution of the parameters of the cointegrated VAR is intractable. In this section,

the necessary results for a numerical evaluation of the posterior distribution via the Gibbs sampler are

provided. This sampler simulates from the joint posterior distribution of the model parameters by iter-

atively generating draws from the full conditional posterior distributions; see, e.g., Casella and George

(1992), Tierney (1994), and Geweke (1999).

The full conditional posterior distribution is the posterior distribution for a group of parameters con-

ditional on the data and the remaining parameters. Let θ denote the full set of model parameters, while

θj is the j:th group of parameters with θ = (θ1, . . . , θg), where g is the number of groups. The full condi-

tional posterior for θj is denoted by p(θj |θ1, . . . , θj−1, θj+1, . . . , θg,�,Mm), with Mm representing model

m. The Gibbs sampler begins with θ(0), some value in the support of the joint posterior distribution,

while θ(i) is the i:th draw from the Gibbs sampler. The i:th draw of θ is obtained by collecting the draws

from the full conditional posteriors for θj , j = 1, . . . , g, where

θ
(i)
j ∼ p(θj |θ(i)

1 , . . . , θ
(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
g ,�,Mm), j = 1, . . . , g, i = 1, . . . , G,

so that θ(i) = (θ(i)
1 , . . . , θ

(i)
g ). If θ(i−1) is a draw from the joint posterior it follows that

(θ(i)
1 , . . . , θ

(i)
j−1, θ

(i)
j , θ

(i−1)
j+1 , . . . , θ

(i−1)
g ) ∼ p(θ|�,Mm),

at each step j by definition of the conditional density. Hence, θ(i) is also a draw from the joint posterior

distribution.

The outcome of the Gibbs sampler is a sequence of draws θ(1), θ(2), . . . , θ(G) from the joint posterior

distribution of θ. Due to the Markov chain property of the Gibbs sampler, the draws are not independent,

but under certain conditions (Tierney, 1994), which are satisfied here, the following can be shown to
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hold:

f
(
θ(i)
) d→ p[f(θ)|�,Mm],

and
1
G

G∑
i=1

f
(
θ(i)
) a.s.→ E

[
f
(
θ
)|�,Mm],

where
d→ denotes convergence in distribution,

a.s.→ convergence almost surely, and f(·) is any well-behaved

real valued function. Hence, given the draws from the posterior of θ, the posterior distribution of any

function of the model parameters, such as impulse responses, are immediately available by applying the

appropriate f-function to each posterior draw and using some density estimator.

With θ = (α, ψ,Φ, Γ,Ω), the following Proposition gives the full conditional posteriors of the 5 groups

of parameters in θ given r.

Proposition 1: The full conditional posterior distributions are:

Ω|α, β,Φ, Γ,�, r ∼ IWp(εε′ +A+ (1/λ2
α)αβ

′βα′ + ΓΣ−1
Γ Γ′, T + q + r +m), (10)

where ε = Z0 −ΦD−ΓZ2 −αβ′Z1. If p(Γ|Ω) = 1, thenm = 0 and Σ−1
Γ = 0. If p(Γ|Ω) is given by equation

(7), then m = p(k − 1).

vec(Φ)|α, β, Γ,Ω,�, r ∼ Npd(µ̄Φ, Σ̄Φ), (11)

where µ̄Φ = vec([Z0 − ΓZ2 − αβ′Z1]D′(DD′)−1), and Σ̄Φ = [(DD′)−1 ⊗ Ω].

vec(Γ)|α, β,Φ,Ω,�, r ∼ Np2(k−1)(µ̄Γ, Σ̄Γ), (12)

where µ̄Γ = vec([Z0 − ΦD − αβ′Z1]Z′
2[Z2Z

′
2 + Σ−1

Γ ]−1), and Σ̄Γ = [(Z2Z
′
2 + Σ−1

Γ )−1 ⊗ Ω].

vec(α)|β,Φ, Γ,Ω,�, r ∼ Npr(µ̄α, Σ̄α), (13)

where µ̄α = vec([Z0 −ΦD−ΓZ2]Z′
1β[β

′(Z1Z
′
1 + (1/λ2

α)Ip)β]
−1), and Σ̄α = [[β′(Z1Z

′
1 + (1/λ2

α)Ip)β]
−1 ⊗

Ω].

ψ|α,Φ, Γ,Ω,�, r ∼ Ns(µ̄ψ, Σ̄ψ), (14)

where µ̄ψ = Σ̄ψH ′Σ̄−1
β (µ̄β−h), and Σ̄ψ = (H ′Σ̄−1

β H)−1. Furthermore, µ̄β = Σ̄βvec(Z1[Z0−ΦD−ΓZ2]′Ω−1α)

whereas Σ̄−1
β

= [α′Ω−1α⊗ (Z1Z
′
1 + (1/λ2

α)Ip)].

Proof: The full conditional posteriors under p(Γ|Ω) = 1 are proved by Villani (2005b, Theorem 4.6) for

β = [Ir Ψ′]′. The extensions to β satisfying (9) and to p(Γ|Ω) satisfying (7) are straightforward. �

When analysing the cointegration rank, the parameters of interest are α and β. Since the dimension of

Φ, Γ,Ω can be substantial in practise and thus greatly affect the computation time of the Gibbs sampler,

it is useful to have the marginal posteriors of α conditional on β and the rank, and of Ψ conditional on

α and the rank.

The results for the non-informative prior p(Γ|Ω) = 1 were originally given by Villani (2005b, Theo-

rem 4.6) for c = [Ir 0]′, but are below extended to general choices of c. Moreover, the next Proposition

also provides the marginal conditional posteriors under the informative prior in (7):

Proposition 2: Suppose β = βc, and α = αc, then

α|β,�, r ∼ tp×r
[
α̂,
(
A + Z0N[Z0 − α̂β′Z1]′

)−1
,
(
β′C1β

)−1
, T + q − (pn+ d)

]
, (15)
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where

α̂ = Z0NZ
′
1β
(
β′C1β

)−1
, C1 = Z1NZ

′
1 + (1/λ2

α)Ip.

Furthermore,

Ψ|α,�, r ∼ t(p−r)×r
[
Ψ̂,
(
G3 − G′

2G
−1
1 G2

)−1
, C3, T + q + r − (pn+ d)

]
, (16)

where
Ψ̂ = β̂2 + G′

2G
−1
1

(
Ir − β̂1

)
, C3 =

(
Ir − β̂1

)′
G−1

1

(
Ir − β̂1

)
+
(
α′S−1α

)−1
,

β̂ = KΠ̂′S−1α
(
α′S−1α

)−1
, Π̂ = Z0NZ

′
1C

−1
1 ,

K =
[
c̄ c̄⊥

]′
, S = A+ Z0NZ

′
0 − Z0NZ

′
1C

−1
1 Z1NZ

′
0,

and

KC−1
1 K

′ + KΠ̂′S−1Π̂K′ − β̂α′S−1αβ̂′ =



G1
r×r

G2
r×(p−r)

G′
2

(p−r)×r
G3

(p−r)×(p−r)


 ,

while β̂1 is r× r and β̂2 is (p− r)× r such that β̂ = [β̂′1 β̂
′
2]′. The T ×T integration matrix N (with respect

to Φ and Γ) and the integer n depends on the prior distribution of Γ.

(i) If p(Γ|Ω) = 1, then

N =Mz, Mz = IT − Z′(ZZ′)−1
Z, Z =

[
D′ Z′

2

]′
, n = k.

(ii) If p(Γ|Ω) is given by equation (7), then

N =MD −MDZ′
2

(
Z2MDZ

′
2 + Σ−1

Γ

)−1
Z2MD, MD = IT − D′(DD′)−1

D, n = 1.

Proof: See Appendix A. �

It may also be of interest to consider sampling directly from the marginal posterior distribution of β.

Villani (2005b, Theorem 4.3) provides the kernel of its density for the case when p(Γ|Ω) = 1. This kernel

is a ratio of two matrix t kernels and the resulting kernel of the marginal posterior of β is therefore a

1-1 poly-matrix-t density; see Bauwens and van Dijk (1990) for further details on this distribution.

In contrast with multivariate poly-t densities (see, e.g., Drèze, 1977, and Bauwens et al., 1999) poly-

matrix-t densities have remained largely unexplored. However, as shown by Bauwens and Lubrano

(1996, Corollary 3.2) and Villani (2005b, Theorem 4.4), the marginal posterior of Ψ is integrable but

does not have any finite integer moments. The nonexistence of such moments is not due to the choice

of prior but rather to the linear normalization of β in (4); see also Phillips (1994) for similar properties

of the maximum likelihood estimator.3 These results can directly be extended to the case when the

informative Γ|Ω prior in (7) is used, but this distribution is of minor interest for the current study since

it is not needed for the computation of the cointegration rank posterior. Moreover, it is based on exactly

identifying restrictions on β and cannot be extended to the over-identifying cases.

3 Bauwens and Giot (1998) implement a version of the Gibbs sampler called the Griddy-Gibbs sampler for poly-matrix-t distribu-
tions. It is based on computing the density for each cointegration vector conditional on all the others. This density is a vector 1-1
poly-t density and can be sampled from using the algorithm in Bauwens and Richard (1985).
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4.2. Posterior Cointegration Rank Probabilities

The posterior probability of the cointegration rank can be determined from Bayes rule

p
(
r|�) =

p
(�|r)p(r)∑p

i=0 p
(�|i)p(i)

. (17)

Hence, given that the marginal likelihoods, p(�|r), are available, the posterior probability of the cointe-

gration rank follows directly from (17).4

The marginal likelihoods for r = 0 and r = p when p(Γ|Ω) = 1 are given in Villani (2005b, The-

orem 5.1). For convenience his results are presented in the next Proposition along with the marginal

likelihoods for these cointegration rank values when the prior density of Γ|Ω is given by equation (7):

Proposition 3: The marginal likelihoods for r = 0 and r = p are given by:

p
(�|r = 0

)
= k1Γp

(
T + q − p(n− 1) − d)∣∣∣A+ Z0NZ

′
0

∣∣∣−(T+q−p(n−1)−d)/2

, (18)

while

p
(�|r = p

)
= k1Γp

(
T + q − p(n− 1) − d)λ−p2

α |C1|−p/2|S|−(T+q−p(n−1)−d)/2
, (19)

where C1, S, N, and n are defined in Proposition 2. The multiplicative constant is:

k1 =
|A|q/2

π(T−p(n−1)−d)p/2zp/2Γp(q)
,

where z = |ZZ′| if p(Γ|Ω) = 1, while z = |ΣΓ||DD′||Z2MDZ
′
2 + Σ−1

Γ | if p(Γ|Ω) is given by equation (7).

Proof: See Appendix B. �

The marginal likelihood for cointegration rank r ∈ {1, . . . , p − 1} can also be computed using the

reference prior in (6) for p(Γ|Ω) = 1, and for p(Γ|Ω) given by equation (7). Villani (2005b) suggests

three methods for determining p(�|r): Monte Carlo integration, importance sampling, and from what

Chib (1995) has termed the basic marginal likelihood identity; see also Geweke (1999). Among these

approaches Villani advocates the marginal likelihood identity since it strongly outperforms the others in

his Monte Carlo study.

The marginal likelihood identity can in the current context be represented by:

p
(�|r) =

p
(�|α,Ψ, r)p(α,Ψ|r)
p
(
Ψ|α,�, r)p(α|�, r) . (20)

Chib (1995) suggests using this identity in combination with a Gibbs sampler to calculate the marginal

likelihood. Although the identity holds for any α and Ψ, Chib explains that the point (α̃, Ψ̃) should

preferably have high posterior density, such as the mode or the median.

The numerator in equation (20) can, as shown in Villani (2005b, Lemma 5.3), be determined analyt-

ically. In our two cases,

p
(�|α,Ψ, r)p(α,Ψ|r) = k1vr

Γp
(
T + q + r − p(n − 1) − d)Γr(p)

Γr(r)π(2p−r)r/2λ
pr
α

×
∣∣∣A+ (1/λ2

α)αβ
′βα′ +WNW ′

∣∣∣−(T+q+r−p(n−1)−d)/2

,

(21)

4 The fact that the analysis is conditioned on the initial conditions of the VAR model is, for notational convenience, not explicitly
written out.
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whereW = Z0 −αβ′Z1, while N and n are defined in Proposition 2. Since the multiplicative constant k1

appears in all marginal likelihoods it can be dispensed with.

For the denominator we note that p(Ψ|α,�, r) is given in Proposition 2, equation (16), and, hence,

only the term p(α|�, r) in (20) is not available in closed form. Its value at a point α = α̃ can, however,

be computed from a posterior sample Ψ(1), . . . ,Ψ(G) of Ψ by

p̂
(
α̃|�, r) =

1
G

G∑
i=1

p
(
α̃|Ψ(i),�, r),

where p(α|Ψ,�, r) is given in Proposition 2, equation (15). From the ergodic theorem (Tierney, 1994),

p̂(α̃|�, r) a.s.→ p(α̃|�, r) as G → ∞. A posterior sample Ψ(1), . . . ,Ψ(G) can be drawn from either the full

conditional distribution of ψ in Proposition 1 using the proper h and H matrices for βc, or from the

marginal conditional distribution of Ψ in Proposition 2. The precision of p̂(α̃|�, r) can be evaluated

through its numerical standard error; see Section 4.6 and Chib (1995) for details.

4.3. Posterior Mode Estimation

The determination the marginal likelihood for cointegration rank r ∈ {1, . . . , p − 1} requires a point

estimate of (α,Ψ). Since the selected point should preferably be one that has high posterior density a

natural candidate is the posterior mode. Within the current framework it turns out to be straightforward

to find an analytic expression of the posterior mode estimator of these parameters as well as of all the

other model parameters conditional on r.

Let us first examine the case when β is exactly identified so that β = βc. Define the matrices Sij as

follows:

S00 = (T + p + q + r +m+ 1)−1
(
Z0NZ

′
0 +A

)
,

S01 = (T + p + q + r +m+ 1)−1Z0NZ
′
1,

S10 = S′01,

S11 = (T + p + q + r +m+ 1)−1C1,

(22)

where N and C1 are given in Proposition 2, while m = 0 under p(Γ|Ω) = 1 and m = p(k − 1) under the

informative Γ|Ω prior. The next Proposition gives the procedure for computing the posterior mode.

Proposition 4: Suppose β = βc, and α = αc. The posterior mode estimator of the parameters of the

joint posterior p(α,Ψ,Φ, Γ,Ω|�, r) and of the posterior p(α,Ψ|�, r) is found by the following procedure.

Solve the equation ∣∣∣λS11 − S10S
−1
00S01

∣∣∣ = 0, (23)

for the eigenvalues 1 > λ̂1 > . . . > λ̂p > 0 and eigenvectors V̂ = [v̂1 · · · v̂p] which are normalized by

V̂ ′S11V̂ = Ip. The posterior mode cointegration space estimator is:

β̄PM =
[
v̂1 · · · v̂r

]
, (24)
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and the maximized posterior density is proportional to |S00|
∏r
i=1(1 − λ̂i). The posterior mode estimator

of (αc,Ψ, βc,Ω) is obtained by replacing β by β̄PM in the following equations:

αc(β) = S01ββ
′c̄, (25)

Ψ(β) = c̄′⊥β
(
c̄′β
)−1
, (26)

βc(β) = c + c⊥Ψ(β), (27)

Ω(β) = S00 − S01β
(
β′S11β

)−1
β′S10. (28)

The posterior mode estimator of (Φ, Γ) is obtained by replacing (αc, βc) by their posterior mode estima-

tors in the following equations:

Φ(αc, βc) =
(
Z0 − αcβ′cZ1

)
MZ2
D′(DMZ2

D′)−1
, (29)

Γ(αc, βc) =
(
Z0 − αcβ′cZ1

)
MDZ

′
2

(
Z2MDZ

′
2 + Σ−1

Γ

)−1
, (30)

whereMZ2 = IT − Z′
2(Z2Z

′
2 + Σ−1

Γ )−1Z2, and Σ−1
Γ = 0 if p(Γ|Ω) = 1.

Proof: See Appendix C. �

A direct consequence of Proposition 4 is that we can compute the posterior mode of the parame-

ters without having made any draws from the relevant posterior distribution for all r ∈ {0, 1, . . . , p}.

Moreover, the approach for computing the posterior mode is the same as the maximum likelihood ap-

proach of Johansen (1996), but with the changes to the definitions of the product moment matrices

Sij given in equation (22). Hence, software that allow the user to compute the maximum likelihood

estimator of β based on inputs of the Sij matrices in Johansen can be used to calculate the posterior

mode cointegration space estimator of β, as given by equation (24). For a given cointegration rank,

the posterior mode estimator is identical to the maximum likelihood estimator for α, β,Φ, Γ when the

improper prior p(α, β,Φ, Γ,Ω|r) ∝ |Ω|−(p+1)/2 is applied. This corresponds to selecting A = 0, Σ−1
Γ = 0,

and q = λ−1
α = 0. In that case the posterior mode estimator of Ω is equal to the maximum likelihood

estimator times T/(T + p + 1).

The posterior mode estimator of (α,Ψ) in Proposition 4 is a good candidate when evaluating the

marginal likelihood for cointegration rank r in (20) since it maximizes both the value of the numerator

and the denominator in this expression. Although this point is the posterior mode of p(α,Ψ|�, r) it

does not give us the posterior mode of the marginal posteriors p(α|�, r) and p(Ψ|�, r), respectively. For

example, the log posterior of β can, apart from a constant, be expressed as

lnp
(
β|�, r) = −T + q − p(n− 1) − d

2
ln
∣∣∣S00 − S01β

(
β′S11β

)−1
β′S10

∣∣∣ − p
2

ln
∣∣∣β′S11β

∣∣∣. (31)

The first term on the right hand side is proportional to the factor being maximized by β̄PM once the log

posteriors in Proposition 4 have been concentrated around β, i.e., the log of the determinant of Ω(β)

in equation (28). The second term on the right hand side, evaluated at β̄PM, is equal to zero since

β̄′PMS11β̄PM = Ir . The value of the log marginal posterior of β, evaluated at β̄PM, is therefore proportional

to, e.g., the value of the log of the posterior p(α,Ψ|�, r) when it is evaluated at its posterior mode.

Furthermore, the second term in (31) vanishes relative to the first as T → ∞ and, consequently, the

estimator Ψ̄ = c̄′⊥β̄PM(c̄′β̄PM)−1 is asymptotically the posterior mode of p(Ψ|�, r).
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The analysis in Johansen (1996) can also be used for computing the posterior mode of ψ for the full

posterior under the over-identifying restrictions in equation (9). Specifically, if

βi = hi +Hiψi, i = 1, . . . , r,

then the switching algorithm in Johansen (1996, Chap. 7.2.3) can be applied, but with the Sij matrices

in (22) and the β̄PM estimator to initialize the algorithm. As mentioned by Johansen, there is no proof

that the algorithm converges to the correct value, but it has the property that the posterior density is

maximized in each step. If the algorithms converges, we may calculate the posterior mode of α from:

α(β) = S01β
(
β′S11β

)−1
,

by replacing β with its the posterior mode estimate under the over-identifying restrictions. Similarly,

the posterior mode of Ω, Φ, and Γ can be determined by replacing β by its posterior mode estimate in

equations (28)–(30).

4.4. Lag Order Determination

The analysis thus far has been conducted under the assumption that the lag order k is known or at

least determined before the cointegration rank analysis. Under the assumption that p(Γ|Ω) is given by

equation (7), however, the results in Section 4.2 can be applied both for the determination of the lag

order conditional on, e.g., a full cointegration rank, and for the joint determination of the rank and the

lag order posterior probabilities as well as for their marginal probabilities. In this Section I shall briefly

discuss these extensions, while the case p(Γ|Ω) = 1 is not considered due to Bartlett’s paradox.

Suppose first that we wish to determine a proper choice for k under the assumption that r = p. Let

k∗ be the maximum lag order under consideration and let T∗ be the largest possible sample size, subject

to T∗ ≤ T , under this choice for k. The data matrices Zi and D now have T∗ columns for all k, while the

number of rows of Z2 depends on k. Specifically, p rows of one additional lag of ∆xt are appended to

the bottom of Z2 when k increases by one unit.

We are now in a position to state the following result:

Corollary 1: Suppose that p(Γ|Ω) is given by equation (7) and r = p. The marginal likelihood for lag

order k is then:

p
(�|k) = k∗1Γp

(
T∗ + q − d)|ΣΓ|−p/2|Z2MDZ

′
2 + Σ−1

Γ |−p/2
λ
−p2

α |C1|−p/2|S|−(T∗+q−d)/2
, (32)

for k = 1, . . . , k∗. For k = 1, the two determinants involving ΣΓ are replaced with unity. The multiplica-

tive constant is:

k∗1 =
|A|q/2

π(T∗−d)p/2|DD′|p/2Γp(q)
.

Proof: This follows directly from Proposition 3. �

Notice that k∗1 , Γp(T∗ + q − d), and λ−p
2

α appear in all marginal likelihoods. These three constants

may therefore be dispensed with. Moreover, the marginal likelihood for any k is given as an analytic

expression and can therefore be calculated without first having made any draws from the posterior

distributions. Hence, the posterior probability of lag order k (conditional on r = p) can quickly be

determined in practise using (32), Bayes rule, and a prior on k. In particular, the posterior lag order
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probability is:

p
(
k|�)= p

(�|k)p(k)∑k∗
i=1 p

(�|i)p(i)
, k = 1, . . . , k∗, (33)

where, e.g., a uniform prior on k may be used, i.e., p(k) = 1/k∗ for all k ∈ {1, . . . , k∗}.

It should be emphasized that this approach to lag order determination uses the same prior distribution

in both the lag order and cointegration rank steps and may therefore be preferable to relying on, e.g.,

fractional marginal likelihoods, as in Villani (2001b), given that cointegration rank analysis will follow

lag order determination.

While the above approach to selecting k has the advantage of being computationally convenient, it

neither allows for a determination of the joint posterior probability of a particular pair (r, k), nor for a

determination of the marginal posterior probabilities of r and k. By properly using the results on the

computation of the posterior rank probabilities (conditional on k) and the above setup for the posterior

lag order probabilities, it is possible to calculate p(r, k|�) through the marginal likelihood expressions

in Section 4.2 for the informative Γ|Ω prior. It should be kept in mind that the multiplicative constant

is given by k∗1 and not by k1 as the determinants involving ΣΓ depend on the choice of k. Furthermore,

a uniform prior on (r, k) implies that p(r, k) = 1/(k∗(p + 1)), with p(r|k) = p(r) = 1/(p + 1), and

p(k|r) = p(k) = 1/k∗. The calculation of marginal posterior probabilities of r and k is straightforward

once we have calculated the marginal likelihood for each possible pair (r, k).

4.5. Over-Identified β when Φ and Γ are Nuisance Parameters

Let me now consider Gibbs sampling from the posterior distribution of (α, ψ,Ω) when β may involve

over-identifying restrictions and Φ and Γ are considered nuisance parameters. Most model parameters

are typically located in these two matrices and the Gibbs updating steps for them usually dominate the

total computing time. This can also have an impact on the time to convergence for the Gibbs sampler.

The next Proposition therefore gives the conditional posteriors necessary to perform a (marginal)

Gibbs sampler to generate draws from p(α, ψ,Ω|�, r).

Proposition 5: Suppose β satisfies equation (9) when r ∈ {1, . . . , p − 1} and s ≤ (p − r)r, then

Ω|α, β,�, r ∼ IWp
(
WNW ′ +A+ (1/λ2

α)αβ
′βα′, T + q + r − p(n − 1) − d), (34)

whereW = Z0 − αβ′Z1, while N and n are defined in Proposition 2.

vec(α)|β,Ω,�, r ∼ Npr
(
µ̃α, Σ̃α

)
, (35)

where µ̃α = vec(α̂), Σ̃α = [(β′C1β)−1 ⊗ Ω], while α̂ and C1 are defined in Proposition 2.

ψ|α,Ω,�, r ∼ Ns(µ̃ψ, Σ̃ψ), (36)

where µ̃ψ = Σ̃ψH ′Σ̃−1
β (µ̃β − h), and Σ̃ψ = (H ′Σ̃−1

β H)−1. Furthermore, µ̃β = Σ̃βvec(Z1NZ
′
0Ω−1α) whereas

Σ̃−1
β

= [α′Ω−1α⊗ C1].

Proof: See Appendix D. �

Notice that integration of the full conditional posterior distribution of Ω with respect to Φ and Γ

results in a loss of degrees of freedom equal to d + p(k − 1). This is one cost for the lower computation

time when Gibbs sampling is based on Proposition 5 rather than on Proposition 1. Another cost is that
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the covariance matrices of the conditional distributions of α and ψ in Proposition 5 are greater than or

equal to the covariances matrices of the conditionals distributions of these parameters in Proposition 1.

The posterior mode estimator of (α, β,Ω) under the exactly identifying restrictions in (4) can be

computed using similar techniques as in Proposition 4. In this case we would replace (T+p+q+r+m+1)

in the definitions of the Sij matrices with (T + p + q + r +m + 1 − d − p(k − 1)). This means that the

posterior mode estimators of (α, β) are identical for the full posterior density p(α, ψ,Φ, Γ,Ω|�, r) and

the marginal posterior density p(α, ψ,Ω|�, r), while the posterior mode estimators of Ω for the density

p(α, ψ,Ω|�, r) is proportional to the posterior mode estimator of Ω for p(α, ψ,Φ, Γ,Ω|�, r). Since the

constant of proportionality converges to unity as T → ∞, these two posterior mode estimators of Ω are

asymptotically equivalent. Moreover, under over-identifying restrictions on β, we can apply the switching

algorithm discussed in Section 4.3 for the full posterior density. Again, the posterior mode estimator of

(α, ψ) is identical to the posterior estimator of these parameters for the full posterior, while the posterior

mode estimators of Ω are proportional and asymptotically equivalent.

4.6. Marginal Posterior Distributions

The marginal posterior distributions of Φ, Γ, and Ω are available by first marginalizing their densities

conditional on α and β, and, second, by using posterior draws of α and β. The distribution of Ω condi-

tional on α and β is given above in Proposition 5 and belongs to the inverted Wishart family, while the

distributions of Γ and Φ conditional on α and β are matrix t. In fact, from the proof of Proposition 2 it

can be deduced that

Γ|α, β,�, r ∼ tp×p(k−1)
[
Γ̂,
(
A+(1/λ2

α)αβ
′βα′ +WNW ′)−1

,
(
Z2MDZ

′
2 +Σ−1

Γ

)−1
, T +q+r−pn−d], (37)

where Γ̂ =WMDZ′
2[Z2MDZ

′
2+Σ−1

Γ ]−1,W = Z0−αβ′Z1, while N,MD, and n are defined in Proposition 2.

Similarly, for Φ it can be shown that

Φ|α, β,�, r ∼ tp×d
[
Φ̂,
(
A+ (1/λ2

α)αβ
′βα′ +WNW ′)−1

,
(
DMZ2D

′)−1
, T + q + r − pn− d], (38)

where Φ̂ = WMZ2D
′(DMZ2D

′)−1 and MZ2 = IT − Z′
2(Z2Z

′
2 + Σ−1

Γ )−1Z2. It should be noted that these

partially marginalized conditional distributions do not depend on the choice β = βc. Alternatively, we can

compute partially marginalized posteriors of Φ, Γ, and Ω by first marginalizing their densities conditional

on β, and then using posterior draws of β. These conditional posteriors are still matrix t for Φ and Γ

conditional on β, respectively, and inverted Wishart for Ω conditional on β.

The marginal distribution of the individual α parameters can be calculated as follows. Let αij denote

the element in row i and column j of α. From the relationship between the matrix t and the distribution

of an individual element (cf. Section 3.1, or Box and Tiao, 1973, Section 8.4.3), and from Proposition 2

we know that

αij |β,�, r ∼ t1×1
[
α̂ij , 1/e

(p)′
i

(
A+ Z0N[Z0 − α̂β′Z1]′

)
e

(p)
i , e

(r)′
j

(
β′C1β

)−1
e

(r)
j , T + q − (pn+ d)

]
,

where e(s)i is the i:th column of Is.

The value of the marginal posterior of αij can now be approximated at a point α̃ij by evaluating the

marginal conditional density of αij at this point for a draw of β from its posterior and averaging over all
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such β draws. That is, we compute

p̂
(
α̃ij |�, r

)
=

1
G

G∑
g=1
p
(
α̃ij |β(g),�, r).

From the ergodic theorem (cf. Tierney, 1994) p̂(α̃ij |�, r) a.s.→ p(α̃ij |�, r) as G → ∞. This calculation can

be performed over a grid of α̃ij values providing us with a sequence of pairs of (α̃ij , p̂(α̃ij |�, r)) that can

be used to approximate the marginal posterior of αij , where a finer grid improves the approximation. We

can compute integer moments as well as other properties of the marginal posterior from this sequence.

Moments of the marginal posterior of αij can also be estimated from the marginal conditional distri-

bution. The marginal posterior mean, for example, can be estimated by

E
[
αij |�, r

]
=

1
G

G∑
g=1
E
[
αij |β(g),�, r],

where the expectation on the right hand side is given by α̂ij and the sample average of this term is an

estimate of its expectation with respect to β|�, r. This estimator is unbiased, consistent, and converges

in distribution to a Gaussian at the rate
√
G; see Tierney (1994) for details.

Regarding precision, note that the numerical standard error of the estimated marginal posterior mean

is not equal to the square root of Var(α̂ij)/G since the Gibbs output β(1), . . . , β(G) is dependent. Letting γs

denote the sth order autocovariance of α̂ij , then the numerical standard error of the estimated posterior

mean can be calculated as the square root of

1
G

(
γ0 + 2

Ḡ∑
s=1
γs
Ḡ + 1 − s
Ḡ+ 1

)
,

where Ḡ ≤ G is an integer such that the autocorrelation function tappers off; cf. Newey and West (1987).

Similarly, and as suggested by Chib (1995), we can calculate the numerical standard error of p̂(α̃|�, r),

needed for the marginal likelihood of cointegration rank r in equation (20), using the above sample

variance estimator but with

γs =
1
G

G∑
g=s+1

(
p
(
α̃|β(g),�, r) − p̂(α̃|�, r))(p(α̃|β(g−s),�, r)− p̂(α̃|�, r)).

An estimator of the marginal posterior variance of αij can be determined from the well known identity

Var[αij |�, r] = E[Var(αij |β,�, r)] + Var[E(αij |β,�, r)]. That is,

Var
[
αij |�, r

]
=

1
G

G∑
g=1

Var
[
αij |β(g),�, r] +

1
G

G∑
g=1

(
E
[
αij |β(g),�, r] − E[αij |�, r])2

,

where the second term on the right hand side is an estimate of the variance (with respect to β|�, r) of

α̂ij , while the first term is an estimate of the expected value (with respect to β|�, r) of the conditional

variance of αij . The latter variance is given by

Var
[
αij |β(g),�, r] =

e
(r)′
j

(
β(g)′C1β

(g)
)−1
e

(r)
j e

(p)′
i

(
A+ Z0N[Z0 − α̂β(g)′Z1]′

)
e

(p)
i

T + q − (pn+ d) − 1
.

The marginal posteriors of the other parameters can be numerically determined in a similar way.

If β = βc, then the Student t distribution can be used for the marginal conditional posterior of the

individual Ψ parameters. In this case a posterior sample of α is required. On the other hand, if β is
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subject to over-identifying restrictions, then the normal distribution can be employed as the marginal

conditional posterior of the individual ψ parameters, while a posterior sample of α and Ω is needed for

the approximation of its marginal posterior. It should be kept in mind that the marginal posterior of Ψ

does not have any finite integer moments, while ψ is likely to have finite integer moments up to the order

of the number of over-identifying restrictions; see, e.g., Bauwens and Lubrano (1996).

For Γ and Φ we can likewise make use of equations (37)–(38), respectively, and a sample of posterior

draws of α and β when we wish to calculate the marginal posteriors of their individual elements. As

mentioned above, the posteriors of these parameters conditional on β are also matrix t and, hence, can

alternatively be used given a posterior sample of β.

5. The Demand for Euro Area M3

A number of studies have recently attempted to estimate the long-run demand for M3 in the euro area;

see, e.g., Brand and Cassola (2000), Calza, Gerdesmeier, and Levy (2001), Coenen and Vega (2001),

Kontolemis (2002), BDW (2003), Carstensen (2003, 2004), and references therein. A common finding in

these studies is that the estimated income elasticity of long-run money demand tends to exceed unity and

is sometimes closer to 1.5 than to 1. In addition, the interest rate semi-elasticities are often imprecisely

estimated in the sense that the error bands are very wide.

All these studies apply classical methods for estimating the parameters of interest and investigating

the uncertainty of the point estimates. With the exception of BDW, who also make use of bootstrap-

ping, inference is solely conducted on the basis of asymptotic theory. This means that, e.g., the income

elasticity is biased in small samples and the size and the direction of the bias is unknown.5

Since the trace test for determining the number of long-run relations in the Gaussian maximum like-

lihood setting often has low power in small samples and thus leads to under-estimating the number of

such relations, below I will consider two Bayesian approaches to this issue. Furthermore, I compare

the results on income elasticities and interest rate semi-elasticities for long-run money demand from the

Bayesian analysis to results obtained using maximum likelihood. Before I consider these issues, the BDW

model is briefly presented along with hypotheses about the cointegration relations.

5.1. The Data and Hypotheses about β

The benchmark money demand system for the euro area in BDW consists of 6 variables: real M3, mt,

inflation measured by annualized quarterly changes of the GDP deflator, ∆pt, real GDP, yt, the short-term

(3-month) market interest rate, is,t, the long-term (10-year) market interest rate, ilt, and the own rate of

return of M3, io,t. The interest rates are all measured in annual percentage rates, while the remaining

variables are measured in natural logarithms of seasonally adjusted data multiplied by 100. Hence, I use

a different scale for the variables than BDW do. Finally, the money stock, GDP, and the GDP deflator have

been aggregated using the irrevocably fixed exchange rates, while M3 weights have been used for the

aggregation of the interest rate. For the cointegrated VAR model the authors set the deterministic vector

Dt = 1 without imposing any restrictions on Φ. Hence, as long as there is one unit root the endogenous

variables are allowed to be dominated by a linear deterministic trend.

5 Alternative factors that may explain not just a small sample bias of the income elasticity estimate as well as of the interest rate
(semi-)elasticities, but a measurement related bias are discussed in depth by Reynard (2004, 2005).
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The sample considered by BDW is 1980:Q2–2001:Q4. Since additional and especially interesting data

are now available I will examine data until 2004:Q4. It thus includes the period of exceptional liquidity

preference between 2001 and mid-2003. The portfolio shifts into liquidity has resulted in the annual

growth rate of nominal M3 to rise far above the reference value of 4.5 percent with a peak above 8

percent. As a consequence, the ECB has attempted to construct portfolio shift corrected measures of M3;

see European Central Bank (2004) for details. In this paper I use the M3 series based on the index of

notional stocks which thus incorporates the effects of portfolio shifts into money.

With xt = [mt ∆pt yt is,t il,t io,t]′, BDW finds evidence of two cointegration relations in their study

and considered a range of potential cointegration vectors. In this paper I will focus on one of their β

models for r = 2. Namely,

mt − βyyt − βo
(
is,t − io,t

) ∼ I(0),

io,t − βπ∆pt − βsis,t − βlil,t ∼ I(0).
(39)

The first relation is interpreted as a long-run money demand relation, while the second may be regarded

as a pricing relation for the own rate of return on M3. The parameters of interest are βy, the income

elasticity, and βo, the opportunity cost semi-elasticity. Given such an interpretation for the long-run

parameters we expect βy > 0 and βo < 0.

Given the set of variables in the model we may also consider other candidates for stationary relations.

Such candidates include stationary interest rates and inflation, as well as stationary interest rate spreads

and stationary real interest rates.

In Figure 1 the long-run money demand relation has been plotted based on the maximum likelihood

estimates for data until 2001:Q4 and a cointegration rank of 2. In this case the point estimates of

βy = 1.37 and βo = −0.44 and the sample mean has been extracted from the series. It is striking that

from some point in late 2001 or early 2002, the deviation from steady state is positive and trending

upwards. Hence, it seems unlikely that a model which neglects this behavior can be considered well

specified. Rather, this graph suggests that there is a missing variable and such a variable may need to

reflect the increased preference for liquidity towards the end of the sample.

In this paper I will therefore change the definition of the deterministic term for the BDW model.

Specifically, I will include a broken linear trend from t0 = 2001:Q4 until 2004:Q4. The main reason for

picking such a break date is the increased geopolitical and economic uncertainty that followed in the

aftermath of September, 11, 2001. Hence, I will use Dt = [1 dt]′, where

dt =



t− t0 + 1 if t0 ≤ t ≤ T,

0 otherwise.

From a time series model point of view, the dt variable introduces the possibility of a quadratic trend

influencing the endogenous variables after t0; see, e.g., Johansen (1996, pp. 80–83). To avoid this we can

restrict the parameters on dt, denoted by Φd, such that they satisfy the restrictions Φd = αµd. This yields

exactly p − r restrictions on Φd. In this paper I will not impose such restrictions since it is inconsistent

with an informative prior for α and a non-informative prior for Φ. The general issue of including such

restrictions for the parameters on deterministic variables in a Bayesian cointegrated VAR is examined by
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Villani (2005c) for an informative prior of Φ. This is an important issue since Φ is directly related to the

steady state of the system.

5.2. Hyperparameters of the Prior Distribution

Before we consider the determination of a proper lag order and cointegration rank benchmark values

of the hyperparameters of the prior need to be established. Since the interest rates, inflation, and the

first differences of real money and income are measured in percentage rates, the elements of Ω can be

expected to take on values between −1 and 1. In this paper I let the matrix A = λAIp, where λA = 1/5

while q = p + 2. This choice for q minimizes the effect of A on the posterior subject to a finite expected

value of Ω. An alternative is to let A be equal to the maximum likelihood estimate of Ω for the largest

cointegration rank and the largest lag order, denoted by Ω̂(p,k∗):

A = Ω̂(6,6) =




0.084

−0.097 0.326

0.007 −0.013 0.095

−0.019 0.006 0.013 0.087

0.006 −0.002 0.002 0.036 0.046

−0.002 0.000 0.001 0.022 0.009 0.008




.

Such a choice for A is not a proper Bayesian solution since the prior here depends on the data. Still, from

Ω̂(6,6) it can be seen that my choice for A approximately has the same scale as the maximum likelihood

estimate of Ω.

The hyperparameter λα = 0.7 and its value depends on the chosen scale for the endogenous variables.

As λα → 0 it is very likely that p(r|�) → p(r) and, hence, that data is completely uninformative above

the rank. Furthermore, as λα becomes very large we expect p(r = 0|�) → 1 since the joint prior becomes

non-informative about r and Bartlett’s paradox then applies.

Under the informative prior on Γ|Ω, the hyperparameter λb = 1.5 while λl = 1. As λb becomes very

large, the prior approaches the non-informative prior on Γ|Ω. Finally, the maximum lag order k∗ = 6,

while the priors on the cointegration rank and lag order are uniform with p(r) = p(r|k) = 1/7 and

p(k) = p(k|r) = 1/6.

5.3. Cointegration Rank and Lag Order Analysis

The results on lag order determination based on Corollary 1 are presented in Table 1.6 Almost all the

posterior probability mass is given to k = 2, the lag order selected by BDW. This choice is also preferred

in models where λl ∈ [0.5, 1.5], while λl = 2 gives roughly equal probabilities for k ≥ 2. Increasing the

value of λb has the expected effect of increasing the posterior probability for, in particular, k = 1. For

instance, λb = 2 results in a 99 percent posterior probability that k = 1. Smaller values for λb similarly

result in higher posterior probabilities for longer lag orders, where, e.g., λb = 0.7 leads to a posterior

probability of k = 2 equal to 56 percent while the rest of the probability mass is found for k ≥ 3.

6 All computation in this paper have been carried out with Structural VAR. This software is available for downloaded from my
website at: http://www.texlips.net/svar/.
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Furthermore, the λα parameter has only minor effects on the posterior lag order probabilities for

the full rank models. For very small values the probability that k = 3 dominates, while values above

1.5 give 83 percent probability on k = 2 and the remaining 17 percent on k = 1. The results are

also relatively robust with respect to the Ω prior hyperparameters. Once λA is above 3/5 the largest

posterior probability is assigned to k = 1, while values of q in excess of 40 leads to k = 6 having the

highest posterior probability.

For comparison, we may also examine if standard information criteria are consistent with k = 2. The

SBC (Schwarz, 1978) and the FML (Fractional Marginal Likelihood; see Villani, 2001b) criteria suggest

k = 1, while HQ (Quinn, 1980) and AIC (Akaike, 1974) prefer k = 2 when a maximum of 6 lags is

considered. Moreover, based on the FML, which is asymptotically similar to the SBC, p(k = 1|�) = 0.78,

p(k = 2|�) = 0.19, p(k = 3|�) = 0.02, and almost 0 for higher k.

Let us therefore turn to the analysis of the cointegration rank conditional on k = 2. An approxima-

tion formula for the marginal likelihood p(�|r) was suggested by Corander and Villani (2004). As in

Villani (2001b) for the lag order, the fractional Bayes approach proposed by O’Hagan (1995, 1997) is

used. This yields a simple expression that only requires the maximum likelihood estimates of Ω for the

various cointegration ranks, denoted by Ω̂(r). The fractional marginal likelihood for rank r can then be

approximated by:

pb
(�|r) ∝ Γp(T − fr)

Γp(fm − fr)

[
|Ω̂(r)|
|Ω̂(0)|

]−(T−fm)/2

, (40)

where fr = d + p(k − 1) + r + (p − r)r/p (the number of free parameter in each equation), fm =

d + p(k + 1), and b = fm/T is the minimal fraction of the data used to “train” the improper prior

p(α, β,Φ, Γ,Ω|r) ∝ |Ω|−(p+1)/2 into a proper distribution for the largest model (r = p). Notice that the

term within brackets is the likelihood ratio for cointegration rank 0 versus r. As shown by Corander and

Villani (2004, Theorem 1), the log of the approximate fractional marginal likelihood in (40) is an Op(1)

approximation of the log marginal likelihood given our choice for fr .

In Table 2 the classical LR trace tests (Johansen, 1996) are given, along with bootstrapped p-values,

as well as logs of the fractional marginal likelihoods and the rank probabilities based on these. If we

consider a nominal size of 5 (10) percent, then the trace tests suggest a cointegration rank of 2 (3),

while the fractional marginal likelihoods give roughly 95 percent probability to rank 4, and 5 percent to

rank 2.

To calculate the posterior rank probabilities from the marginal likelihoods in Section 4.2 we need to

select a Gibbs sampler for obtaining posterior draws of β. In this paper I have opted for the sampler

in Proposition 5. Implementation of the sampler requires initial values for the parameters. Since any

parameter values from their support are valid, I use the posterior mode estimator in Proposition 4.

After 2,500 burn-in draws, an additional 5,000 draws were simulated from the posterior distribution of

the model parameters. Convergence of the sampler has been checked through visual inspection of the

relative constancy of the recursive posterior median point estimates of the parameters. More elaborate

approaches to study convergence of the Gibbs sampler (and other MCMC methods) are discussed by,

e.g., Bauwens et al. (1999) and Geweke (1999).

The posterior cointegration rank probabilities under the Bayesian approach conditional on k = 2 as

well as the log marginal likelihood values and their numerical standard errors are given in the last six

columns of Table 2. Under the non-informative Γ|Ω prior, the preferred rank is 1, with roughly 20 percent
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probability given to r = 2 and 15 percent to r = 0. For the informative Γ|Ω prior we find more support

for r > 1 with approximately the same posterior probabilities for r = 1 and r = 2. Hence, decreasing the

value for the λb parameter tends to increase the posterior probabilities for models with a higher rank.

Once λb = 0.5, the posterior probabilities of r = 2 and r = 3 are roughly equal and dominate the others.

Regarding robustness with respect to the other hyperparameters, the posterior probabilities of r = 0

and r = 1 tend to rise when λα increases, while the probabilities of higher cointegration ranks tend

to increase when this hyperparameter decreases. However, as λα becomes sufficiently low, the low

cointegration rank models again seem to dominate. These results are obtained for both models with an

informative and a non-informative Γ|Ω prior. Similarly, higher (lower) values of λA leads to posterior

probabilities that favor lower (higher) cointegration rank models, while higher values of q increases the

support for models with a higher cointegration rank.

In Section 4.4 I discussed a procedure for computing joint and marginal posterior probabilities of the

cointegration rank and the lag order. This procedure requires that the informative Γ|Ω prior is used. The

results from this analysis is summarized in Table 3. Concerning joint posterior probabilities, the highest

probability is obtained for the pair (r = 2, k = 2), with the pair (r = 1, k = 2) obtaining a probability

just below this maximum. For the marginal lag order probabilities we find that k = 2 is the preferred

choice with roughly 94 percent of the probability, while k = 3 obtains about 6 percent. The marginal

cointegration rank probabilities give roughly the same probability to r = 1 and r = 2. Given that k = 2

dominates so strongly in the lag order dimension, it is not surprising that the marginal rank probabilities

are very similar to those found when we conditioned on k = 2 in Table 2.

To summarize our results thus far, the lag order appears to be quite well determined and in what

follows I will condition the analysis on k = 2. The different Bayesian methods I have considered give

very different suggestions for the choice of a proper cointegration rank. The fractional pseudo-Bayesian

approach strongly suggests that r = 4 is the best choice, while the two more elaborate Bayesian ap-

proaches, with either a non-informative or an informative Γ|Ω prior, point towards a lower rank. The

precise choice for these approaches is, however, less evident. If we, e.g., prefer having a prior with a

large λb value, then r = 1 obtains most support, while moderate to small λb values give greater support

to r = 2 (or larger). Given that the BDW model specifies that r = 2 we will condition on this value

below. It should be emphasized that the choice of cointegration rank for the current data is not clear-cut.

In particular, the choices of certain prior hyperparameters tend to greatly influence the posterior results.

Hence, the data itself is not as informative about the cointegration rank as one would hope for or as, for

instance, the classical analysis may suggest.

5.4. Long-Run Money Demand

Table 4 provides point estimates and 95 percent error bands for the income elasticity and the opportunity

cost semi-elasticity. The two long-run relations in (39) imply 3 over-identifying restrictions on β. When

evaluating these with a LR-test we obtain a value of 5.23, corresponding to a p-value of 16 (41) percent

when compared with the asymptotic (bootstrap) distribution.

From a Bayesian perspective we can again examine the posterior probability of the model for β. For

the two competing β models used for the LR-test, i.e., the restricted and the unrestricted β models, we

can compute their posterior probabilities through an approximation of the marginal likelihood suggested

by Draper (1995). Let Mr,i denote the model with cointegration rank r and β satisfying (9) for a given

28
ECB
Working Paper Series No 692
November 2006



pair (hi,Hi) of linear restrictions matrices. The following approximation of the marginal likelihood for

Mr,i can then be considered:

lnp
(�|Mr,i

) ≈ nr,i
2

ln
(
2π
)

+ lnp
(�|θ̂r,i

)− nr,i
2

ln T. (41)

The number of free parameters for model Mr,i is given by nr,i, while p(�|θ̂r,i) is the maximum of the

likelihood function under Mr,i. Given equal prior probabilities (1/2) of the models, the posterior prob-

ability of the restricted β model is 82 percent. Hence, both the classical and the Bayesian assessments

about these models favor the restricted β model.

The marginal distributions of the income elasticity and the opportunity cost semi-elasticity are plotted

in Figure 2 along with the bounds of the 95 percent confidence bands and the posterior mode estimates.

From these graphs it can be seen that the choice of prior has only minor influence on the marginal

posteriors. While the mode shifts to the right under the informative priors, this shift is small. Moreover,

the densities are unimodal and are approximately symmetric.

From Table 4 we find that the maximum likelihood estimate of the income elasticity is close to the

point estimates from the marginal posterior distributions of both the non-informative and the informative

Γ|Ω prior. All these estimates are in line with the point estimate provided by BDW for the sample

1980:Q2–2001:Q4. Furthermore, the 95 percent classical error bands are very similar for this parameter

and have lower and upper bounds that come close to the 95 percent confidence bands of the marginal

posterior distributions.

Regarding the opportunity cost semi-elasticity the maximum likelihood estimate is bigger (smaller)

than the point estimates from the marginal posterior distributions under the non-informative (informa-

tive) Γ|Ω prior. The 95 percent classical error bands differ greatly, with the asymptotic unconditional

band being the largest. Nevertheless, the empirical evidence from both the classical and the Bayesian

assessment confirms BDW’s finding that there is very little information in the data about the interest rate

semi-elasticity of long-run money demand.

6. Concluding Comments

Building on recent work by Villani (2005b), I have presented an approach to Bayesian inference in coin-

tegrated VAR models with Gaussian errors. Relative to other Bayesian cointegration approaches, Villani’s

setup is particularly interesting since it uses a natural uniform prior on the cointegration space. The cur-

rent study extends Villani’s framework in two important dimensions. First, the prior distribution of the

parameters on lagged endogenous variables can be proper, thereby making it possible to determine the

lag order of the VAR as well as the cointegration rank jointly. In addition, marginal posterior probabilities

of these two parameters can be calculated.

Second, to compute the posterior rank and lag order probabilities we require the marginal likelihoods

of the various models we wish to compare. Analytical expressions of these data density value measures

are available for the full and zero cointegration rank models conditional on any finite lag order, but

not for the reduced rank cases where numerical methods are needed. Villani (2005b) considered three

simulation based methods to handle this issue and in his Monte Carlo study the so called marginal

likelihood identity (MLI) approach consistently outperformed the other two algorithms. The MLI, due to

Chib (1995), requires a point estimator of the parameters and this estimator should preferably have high

posterior density. A natural candidate is therefore the posterior mode and an analytical expression of this
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point estimator is provided for the just identified case, thus greatly facilitating the numerical evaluation

of the marginal likelihoods.

The Bayesian procedures based on a proper (informative) and an improper (non-informative) prior

on the short-run dynamics are applied to the Bruggeman, Donati, and Warne (2003) money demand

system for the euro area. The preferred specification in BDW has two cointegration relations and two

lags in a system comprising real money, real income, inflation, a short and long term rate as well as

the own rate of return of M3, and the data set used by BDW is extended from 2001:Q4 to 2004:Q4. In

addition to applying the two Bayesian procedures, a fractional pseudo-Bayesian approach, suggested by

Corander and Villani (2004), and the classical maximum likelihood approach, due to Johansen (1988,

1991), extended with bootstrapping, are used for comparisons. Given a fixed lag order, the classical

trace tests for the cointegration rank suggests two long-run relations, while the pseudo-Bayesian prefers

four. In contrast, the two Bayesian approaches I have presented tend to prefer a lower cointegration rank

(given the selected prior) than the pseudo-Bayesian procedure. When the improper prior is used for the

short-run dynamics, the preferred rank is one, while the informative prior gives roughly equal weight to

the models with rank one and with rank two.

The cointegration rank and the lag order have also been studied based on their marginal posterior

probabilities given a maximum lag order of six. This requires an informative prior on the short-run

dynamics and the results strongly support the use of two lags and the finding that the models with one

and two cointegration relations have approximately the same posterior probabilities and are preferred

over the other models. It should be emphasized, however, that the empirical results on cointegration

rank are sensitive to the selected values of certain parameters of the prior distribution.

The parameters of long-run money demand have been studied within the cointegrated VAR model

with rank two. For the income elasticity the Bayesian approaches yield similar point estimates as the

maximum likelihood estimator. Furthermore, the 2.5 and 97.5 percent quantiles of its marginal posterior

distribution are roughly equal to the lower and upper limits of the 95 percent error bands from the

classical analysis. The point estimates of the opportunity cost semi-elasticity, however, are more sensitive

to the choice of prior and the maximum likelihood estimate lies between the estimates from the marginal

posteriors of the two Bayesian approaches. Still, the Bayesian analysis confirms the finding in BDW that

the data has little information about this parameter.
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Table 1: Lag order determination based on full rank models with an informative prior on Γ|Ω with a
maximum lag order equal to 6.

k lnp(�|k, r = 6) p(k|�, r = 6)

1 −330.03 0.02

2 −326.12 0.98

3 −337.37 0.00

4 −344.44 0.00

5 −344.26 0.00

6 −348.04 0.00

Note: The log marginal likelihood values are calculated using Corollary 1 without removing multiplicative con-
stants and with λα = 0.7, λb = 1.5, λl = 1, A = (1/5)I6, and q = 8. The sample is given by 1981:Q4–2004:Q4
for all k.

Table 2: Cointegration rank determination using classical trace tests with bootstrapped p-values, the
fractional marginal likelihood, and the marginal likelihood conditional on k = 2 lags.

Classical Fractional Non-informative Γ|Ω Informative Γ|Ω
r LRtr p-value ln pb(�|r) p(r|�) lnp(�|r) st. err. p(r|�) ln p(�|r) st. err. p(r|�)

0 156.13 0.00 694.94 0.00 −327.25 — 0.15 −344.55 — 0.01

1 100.19 0.00 702.45 0.00 −325.79 0.03 0.63 −340.44 0.02 0.37

2 57.74 0.08 711.30 0.05 −326.99 0.08 0.19 −340.30 0.13 0.42

3 30.14 0.22 704.38 0.00 −328.84 0.10 0.03 −341.18 0.17 0.17

4 5.13 0.93 714.30 0.95 −332.01 0.04 0.00 −342.93 0.04 0.03

5 0.01 0.94 705.90 0.00 −337.81 0.04 0.00 −348.33 0.04 0.00

6 — — 705.90 0.00 −344.77 — 0.00 −355.04 — 0.00

Note: Numerical standard errors are computed for the log marginal likelihood values for cointegration rank 1–5
using the Newey and West (1987) correction as discussed in Section 4.6 and the delta method. The sample is
1980:Q4–2004:Q4
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Table 3: Joint and marginal posterior probabilities of the cointegration rank and the lag order.

k

r 1 2 3 4 5 6 p(r|�)

0 0.00 0.02 0.05 0.00 0.00 0.00 0.07

1 0.00 0.37 0.01 0.00 0.00 0.00 0.38

2 0.00 0.41 0.00 0.00 0.00 0.00 0.41

3 0.00 0.13 0.00 0.00 0.00 0.00 0.13

4 0.00 0.01 0.00 0.00 0.00 0.00 0.01

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p(k|�) 0.00 0.94 0.06 0.00 0.00 0.00 1.00

Note: See Table 1 for details.

Table 4: Point estimates of the income elasticity and the interest rate semi-elasticity of long-run money
demand along with 95 percent bands for classical and Bayesian methods.

Method Statistic βy βo

Classical ML estimate 1.38 −0.26

Asymptotic conditional error band [1.34, 1.42] [−0.63, 0.11]

Asymptotic unconditional error band [1.31, 1.44] [−1.08, 0.54]

Bootstrap percentile-t error band [1.32, 1.45] [−0.91, 0.45]

Bayesian Posterior mode 1.37 −0.29

non-informative Posterior median 1.37 −0.31

p(Γ|Ω) Posterior mean 1.37 −0.31

95 percent confidence bands [1.30, 1.44] [−1.13, 0.56]

Bayesian Posterior mode 1.38 −0.17

informative Posterior median 1.38 −0.17

p(Γ|Ω) Posterior mean 1.39 −0.18

95 percent confidence bands [1.32, 1.45] [−1.05, 0.67]

Note: Bayesian point estimators are taken from the marginal posterior distribution of βy and βo, respectively.
The asymptotic conditional error band is constructed from an estimate of the conditional standard error. The
asymptotic unconditional error band is calculated by selecting the parameter of interest from a range of values.
Conditional on each such value, the other free parameters are re-estimated by maximum likelihood and the
log-likelihood value is recorded. A 95 percent bound for the log-likelihood value is constructed by subtracting
χ2

0.95(1)/2 from the largest log-likelihood value. The 95 percent unconditional error band for the parameter of
interest are then constructed based on the parameter values that have log-likelihood values equal to this bound.
For the bootstrap percentile-t error band I have used 999 bootstrap replications.
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Figure 1: Long-run money demand relation 1980:Q4–2004:Q4 based on maximum likelihood estimates
for data until 2001:Q4.
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Figure 2: Marginal posterior densities of the income elasticity (βy) and the opportunity cost semi-
elasticity (βo) under the non-informative and the informative priors with posterior mode and
95 percent confidence bands.
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Appendix A: Proof of Proposition 2

(i) Premultiplying β = βc by K we get Kβ = [Ir Ψ′]′, i.e., the linear normalization of β used by Villani
(2005b). The results follow directly from the proof of Theorem 4.6 in Villani (2005b) and the use of
Definition 1 above, where the proof of that Theorem is located in Villani (2001a, Theorem 4.5).

(ii) An analytic expression for p(α, β,�|r) can be derived from p(α, β,Φ, Γ,Ω,�|r) by integrating the
latter with respect to Ω, Φ, and Γ. Multiplying the data density by the prior density we have that

p
(
α, β,Φ, Γ,Ω,�|r) =

(
2π
)−Tp/2(

2π
)−mp/2

cr |ΣΓ|−p/2|Ω|−(T+p+q+r+m+1)/2

× exp
(
−1

2
tr
[
Ω−1

(
εε′ + A+ λ−2

α αβ
′βα′ + ΓΣ−1

Γ Γ′)]), (A.1)

where m = p(k − 1). Integrating (A.1) with respect to Ω is directly achieved by using Definition 2 for
the inverted Wishart distribution. After some manipulations this provides us with:

p
(
α, β,Φ, Γ,�|r) = vrπ−Tp/2π−mp/2π(2p−r)r/2λ

−pr
α |A|q/2|ΣΓ|−p/2 Γp(T + q + r +m)Γr(p)

Γp(q)Γr(r)

×
∣∣∣εε′ + A+ λ−2

α αβ
′βα′ + ΓΣ−1

Γ Γ′
∣∣∣−(T+q+r+m)/2

.

(A.2)

Next, for X = Z0 − ΓZ2 − αβ′Z1, we have that

εε′ = XMDX′ +
(
Φ′ − Φ̂′)′DD′(Φ′ − Φ̂′),

where Φ̂ = XD′(DD′)−1 and MD is defined in Proposition 2. Integration of (A.2) with respect to Φ′ can
be performed by using Definition 1 for the matrix t distribution. After some algebra this gives us:

p
(
α, β, Γ,�|r) = vrπ−(T−d)p/2π−mp/2π−(2p−r)r/2λ

−pr
α |A|q/2|ΣΓ|−p/2 Γp(T + q + r +m − d)Γr(p)

Γp(q)Γr(r)

× |DD′|−p/2
∣∣∣A+ λ−2

α αβ
′βα′ + ΓΣ−1

Γ Γ′ +XMDX′
∣∣∣−(T+q+r+m−d)/2

.

(A.3)

Now, forW = Z0 − αβ′Z1 we have that

ΓΣ−1
Γ Γ′ +XMDX′ =WNW ′ +

(
Γ′ − Γ̂′)′[Z2MDZ

′
2 + Σ−1

Γ

](
Γ′ − Γ̂′),

where Γ̂ =WMDZ′
2[Z2MDZ

′
2 + Σ−1

Γ ]−1 and N is defined in Proposition 2. Integrating (A.3) with respect
to Γ′ is again achieved through the definition of the matrix t distribution. This eventually gives us:

p
(
α, β,�|r) = vrπ−(T−d)p/2π−(2p−r)r/2λ

−pr
α |A|q/2|ΣΓ|−p/2 Γp(T + q + r − d)Γr(p)

Γp(q)Γr(r)

× |DD′|−p/2|Z2MDZ
′
2 + Σ−1

Γ |−p/2
∣∣∣A+ λ−2

α αβ
′βα′ +WNW ′

∣∣∣−(T+q+r−d)/2

.

(A.4)

Finally, by construction p(α|β,�, r) ∝ p(α, β,�|r) and p(Ψ|α,�, r) ∝ p(α, β,�|r). Using the same
procedures as for part (i), the marginal conditional distributions of α and Ψ are obtained. �

Appendix B: Proof of Proposition 3

The proof for p(Γ|Ω) = 1 is presented in the appendix of Villani (2001a, Theorem 5.2). When p(Γ|Ω) is
given by equation (7), the case r = 0 is determined directly from (A.4) by letting Γr(p) = Γr(r) = vr = 1
and α = β = 0.

For the case r = p, we start from (A.4) with Π = αβ′ and vp = 1. Hence,

p(Π,�|r = p) = π−(T−d)p/2π−p
2/2λ

−p2

α |A|q/2|ΣΓ|−p/2 Γp(T + q + p − d)

Γp(q)

× |DD′|−p/2|Z2MDZ
′
2 + Σ−1

Γ |−p/2
∣∣∣A+ λ−2

α ΠΠ′ +WNW ′
∣∣∣−(T+q+p−d)/2

,

(B.1)

whereW = Z0 − ΠZ1. It is straightforward to show that

A+ λ−2
α ΠΠ′ +WNW ′ = S+

(
Π′ − Π̂′)′C1

(
Π′ − Π̂′),

where S, C1, and Π̂ are defined in Proposition 2. Integration of (B.1) with respect to Π′ can again be
achieved by utilizing the properties of the matrix t density. This gives the claimed result. �
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Appendix C: Proof of Proposition 4

The full posterior density under the Γ|Ω prior in (7) is proportional to (A.1). The log posterior density
can therefore, apart from a constant, be expressed as:

lnp
(
α, β,Φ, Γ,Ω|�, r) = −T + p + q + r +m + 1

2
ln
(|Ω|)

− 1
2

tr
[
Ω−1

(
εε′ +A + λ−2

α αβ
′βα′ + ΓΣ−1

Γ Γ′)]. (C.1)

The posterior mode is obtained by maximizing (C.1) with respect to α, β,Φ, Γ,Ω. The partial derivatives
of (C.1) with respect to vec(Φ) and vec(Γ) are given by (see, e.g., Magnus and Neudecker, 1988, for
results on matrix differentials and partial derivatives):

∂ ln p
(
α, β,Φ, Γ,Ω|�, r)
∂vec(Φ)′

= vec
(
εD′)′[Id ⊗ Ω−1

]
,

∂ ln p
(
α, β,Φ, Γ,Ω|�, r)
∂vec(Γ)′

= vec
(
εZ′

2 − ΓΣ−1
Γ

)′[
Im ⊗ Ω−1

]
.

Setting these two equations to zero and solving for Φ and Γ as functions of (α, β) we get equations
(29)–(30). Substituting these functions back into the expression for ε we find that:

Z0 − Φ(α, β)D − Γ(α, β)Z2 − αβ′Z1 = Z0N − αβ′Z1N,

where the T × T matrix N is defined in Proposition 2. Moreover, substituting Γ(α, β) for Γ in ΓΣ−1
Γ Γ′ we

get (Z0 − αβ′Z1)Q(Z0 − αβ′Z1)′, where

Q =MDZ
′
2

(
Z2MDZ

′
2 + Σ−1

Γ

)−1
Σ−1

Γ

(
Z2MDZ

′
2 + Σ−1

Γ

)−1
Z2MD.

After some algebra it follows thatNN′+Q = N. Hence, the concentrated log posterior density can, apart
from a constant, be expressed as:

lnp
(
α, β,Ω|�, r) = −T + p + q + r +m+ 1

2
ln
(|Ω|)

− 1
2

tr
[
Ω−1

(
(Z0 − αβ′Z1)N(Z0 − αβ′Z1)′ + A+ λ−2

α αβ
′βα′

)]
.

(C.2)

The partial derivatives with respect to α and Ω are now:

∂ ln p
(
α, β,Ω|�, r)
∂vec(α)′

= vec
(
(Z0 − αβ′Z1)NZ′

1β − λ−2
α αβ

′β
)′[
Ir ⊗ Ω−1

]
,

∂ ln p
(
α, β,Ω|�, r)
∂vec(Ω)′

=
1
2

vec
(
A + λ−2

α αβ
′βα′ + (Z0 − αβ′Z1)N(Z0 − αβ′Z1)′

− (T + p + q + r +m+ 1)Ω
)′[

Ω−1 ⊗ Ω−1
]
.

Setting these two equations to zero and solving for α and Ω as functions of β we get

α(β) = S01β
(
β′S11β

)−1
, (C.3)

while Ω(β) is given by (28). Substituting these expression back into (C.2) we find that the concentrated
log posterior density, apart from a constant, is:

lnp
(
β|�, r) = −T + p + q + r +m + 1

2
ln
∣∣∣S00 − S01β

(
β′S11β

)−1
β′S10

∣∣∣. (C.4)

The choice of β which maximizes this function, denoted by β̄PM, is given by Johansen (1996, Theo-
rem 6.1). The posterior mode cointegration space estimator in (24) implicitly uses the r(r + 1)/2
identifying restrictions β̄′PMS11β̄PM = Ir and the further r(r − 1)/2 restrictions β̄′PMS10S

−1
00 S01β̄PM = Λ =

diag(λ1, . . . , λr). We therefore find that

lnp
(
β̄PM|�, r

)
= −T + p + q + r +m+ 1

2
ln |S00||Ip − S−1

00 S01β̄PMβ̄
′
PMS10|

= −T + p + q + r +m+ 1
2

ln |S00||Ir − β̄′PMS10S
−1
00 S01β̄PM|

= −T + p + q + r +m+ 1
2

ln |S00||Ir − Λ|.
The posterior mode estimators of αc and Ψ follow directly from their relations to β.
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The posterior density p(α,Ψ|�, r) is proportional to equation (A.4). Hence, apart from a constant the
log posterior density can be expressed as:

ln p
(
α, β|�, r) = −T + q + r − p(n − 1) − d

2
ln
∣∣∣(Z0 − αβ′Z1)N(Z0 − αβ′Z1)′ + λ−2

α αβ
′βα′ +A

∣∣∣, (C.5)

where the integer n is defined in Proposition 2. The partial derivative with respect to α is here given by

∂ ln p
(
α, β|�, r)

∂vec(α)′
= [T + q + r − p(n− 1) − d]vec

(
(Z0 − αβ′Z1)NZ′

1β − λ−2
α αβ

′β
)′

× [Ir ⊗ ((Z0 − αβ′Z1)N(Z0 − αβ′Z1)′ + λ−2
α αβ

′βα′ +A
)−1]

.

Setting this equation to zero and solving for α as a function of β we obtain (C.3). Substituting this back
into (C.5) we get, apart from a constant,

ln p
(
β|�, r) = −T + q + r − p(n− 1) − d

2
ln
∣∣∣S00 − S01β

(
β′S11β

)−1
β′S10

∣∣∣. (C.6)

This function is maximized for the same choice of β as the function in (C.4). Hence, the posterior mode
estimators of αc and Ψ are identical to those for the full posterior density. �

Appendix D: Proof of Proposition 5

Consider the case when p(Γ|Ω) is given by equation (7). From equation (A.1) we know that

p
(
α, β,Φ, Γ,Ω|�, r) ∝ |Ω|−(T+p+q+r+m+1)/2

× exp
(
−1

2
tr
[
Ω−1

(
εε′ + A+ λ−2

α αβ
′βα′ + ΓΣ−1

Γ Γ′)]), (D.1)

where m = p(k − 1). For X = Z0 − ΓZ2 − αβ′Z1 we have that

εε′ = XMDX′ +
(
Φ − Φ̂

)
DD′(Φ − Φ̂

)′
,

where Φ̂ = XD′(DD′)−1 and MD is defined in Proposition 2. Integrating the right hand side of (D.1)
with respect to Φ can be achieved by utilizing the definition of the density for the matricvariate normal
distribution and the relationship between the trace and the vec operator. This yields

p
(
α, β, Γ,Ω|�, r) ∝ |Ω|−(T+p+q+r+m+1−d)/2

× exp
(
−1

2
tr
[
Ω−1

(
XMDX

′ +A + λ−2
α αβ

′βα′ + ΓΣ−1
Γ Γ′)]). (D.2)

Next we note that for W = Z0 − αβ′Z1

ΓΣ−1
Γ Γ′ +XMDX′ =WNW ′ +

(
Γ − Γ̂

)[
Z2MDZ

′
2 + Σ−1

Γ

](
Γ − Γ̂

)′
,

where Γ̂ = WMDZ′
2[Z2MDZ

′
2 + Σ−1

Γ ]−1 and N is defined in Proposition 2. Integrating the right hand
side of (D.2) with respect to Γ is again made simple by using the definition of the matricvariate normal
density. This provides us with

p
(
α, β,Ω|�, r) ∝ |Ω|−(T+p+q+r+m+1−d−p(k−1))/2

× exp
(
−1

2
tr
[
Ω−1

(
WNW ′ + A+ λ−2

α αβ
′βα′

)])
.

(D.3)

Since p(Ω|α, β,�, r) ∝ p(α, β,Ω|�, r) and we recognise the kernel of the inverted Wishart density, the
result (34) follows directly. Similarly, p(α|β,Ω,�, r) and p(ψ|α,Ω,�, r) are proportional to the second
term on the right hand side of (D.3). By similar matrix manipulations on quadratic forms to those above
and recognizing the kernel of the matricvariate normal density, the results (35) and (36) can be shown
to hold. When p(Γ|Ω) = 1 we can simply set m = Σ−1

Γ = 0 and perform similar derivations to those
above for Z = [D′ Z′

2]′. �
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