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1 Bootstrapping the GVAR and Tests of Struc-
tural Stability

To derive the empirical distribution of the structural stability tests and
impulse response functions we employ the sieve bootstrap. The sieve boot-
strap has been studied by Kreiss (1992), Bühlmann (1997) and Bickel and
Bühlmann (1999) among others and has now become a standard tool when
bootstrapping time series models.1 The method rests on the assumption that
the precise form of the parametric model generating the data is not known
and that the true model belongs to the class of linear processes having an
autoregressive representation of inÞnite order. Taking the estimated Þnite
order vector autoregressive process that describes in our case the GVAR
model to be an approximation to the underlying inÞnite order vector au-
toregressive process, we can use the sieve bootstrap for the basis of deriving
critical values for the structural stability tests and for constructing bootstrap
conÞdence regions.

In the case of stationary multivariate models, the sieve bootstrap has
been used successfully to handle parameter estimation (Paparoditis, 1996).
In the context of non-stationary time series, Park (2002) established an
invariance principle applicable for the asymptotic analysis of the sieve boot-
strap, which led Chang and Park (2003) to establish its asymptotic validity
in the case of ADF unit root tests. Subsequently, Chang, Park and Song
(2005) established the consistency of the sieve bootstrap for the OLS es-
timates of the cointegrating parameters assuming there exists one cointe-
grating relation amongst the variables under consideration. In what follows
we consider the sieve bootstrap approach by resampling the residuals of the
Þnite order global vector autoregressive process.

When bootstrapping unit root tests based on Þrst order autoregressions,
Basawa et al. (1991) show that the bootstrap samples need to be generated
with the unit root imposed in order to achieve consistency for the bootstrap
unit root tests. While our focus is not on bootstrapping unit root or coin-
tegration tests, it seems natural to impose the unit root and cointegrating
properties of the model when bootstrapping the statistics of interest. See
also Li and Maddala (1997) who study the bootstrap cointegrating regres-
sion by means of simulation.

We begin by estimating the individual country VARX∗(�pi, �qi) models
1Another popular method is the block bootstrap by Künsch (1989). Choi and Hall

(2000) discuss the substantial advantages of the sieve bootstrap over the block bootstrap
for linear time series.
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in their error correction form subject to reduced rank restrictions, for i =
0, 1, 2, ...,N and t = 1, 2, ..., T, where �pi and �qi are the estimated lag orders
of the endogenous and foreign variables respectively based on the AIC. The
estimated VARX∗(�pi, �qi) are given by

xit = �ai0 + �ai1t+ �Φi1xi,t−1 + ...+ �Φi�pixi,t−�pi (1)

+ �Ψi0x
∗
it + �Ψi1x

∗
i,t−1 + ...+ �Ψi�qix

∗
i,t−�qi + �uit,

where we denote by �ri the estimated number of cointegrating relations for
country i. In estimating the cointegrating rank we entertain the case of an
unrestriced intercept and restricted trend, the latter restsricted to lie in the
cointegrating space so as to avoid giving rise to quadratic trends in the level
of the process.

The country speciÞc models (1) are then combined via the link matrices
Wi as described in Section 2, giving rise to the GVAR(�p) model expressed
in terms of the global variables vector xt as

�Gxt = �a0 + �a1t+ �H1xt−1 + ...+ �H�pxt−�p + �ut (2)

with �p = max(�pi, �qi), or alternatively,

xt = �b0 + �b1t+ �F1xt−1 + ...+ �F�pxt−�p + �εt (3)

where �Fj = �G−1 �Hj, �bj = �G−1�aj , for j = 0, 1,...,�p, �εt = �G−1�ut and �Σε =PT
t=1 �εt�ε

0
t/T . The total number of variables in the model is given by k =XN

i=0
ki where ki is the number of endogenous regressors in country i, i =

0, 1, ...,N .
Using the estimates from the Þtted model (3) obtained from the observed

data for �p = 2, we generate B bootstrap samples denoted by x(b)t , b =
1, ..., B, from the process

x
(b)
t = �b0 + �b1t+ �F1x

(b)
t−1 + �F2x

(b)
t−2 + ε

(b)
t , t = 1, 2, ..., T, (4)

by resampling the residuals �εt of the Þtted model, with x
(b)
0 = x0, and

x
(b)
−1 = x−1, where x0 and x−1 are the the actual initial data vectors. Prior to
any resampling the residuals �εt are recentered to ensure that their bootstrap
population mean is zero. The sieve bootstrap effectively reinterprets the
familiar parametric ARmodel as a device for nonparametric estimation. The
errors ε(b)t could also be drawn by parametric methods. Both these methods
will be described in what follows. Simulating the GVAR model is clearly
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preferable to simulating the country speciÞc models separately. The latter
requires that the country speciÞc foreign variables, x∗it, and their lagged
values are treated as strictly exogeneous which might not be appropriate
and could lead to unstable outcomes for xt.

It should be noted that the GVAR model given in (4) contains among
others the inßation and real exchange rate variables. The choice of these
variables rather than the price level and the nominal exchange rate was dic-
tated by the results of the unit root tests. Once a set of x(b)t , b = 1, 2, ..., B
are generated, the price level and the nominal exchange rate are easily re-
covered, the foreign star variables are constructed using the weights in Table
2 and the inßation and real exchange rate variables are recreated.2 Alter-
natively, the foreign (star) counterparts of these variables could be directly
constructed, although it should be noted that this option is only valid in the
case of Þxed weights.

For each replication b, the individual country models are estimated in
their error correction form, where pi, qi and the number of the cointegrating
relations, ri, are Þxed over all replications at the estimated values �pi, �qi and
�ri obtained from the observed data, and a new set of VARX* estimates are
computed from

x
(b)
it = �a

(b)
i0 + �a

(b)
i1 t+

�Φ
(b)
i1 x

(b)
i,t−1 + ...+ �Φ

(b)
i�pi
x
(b)
i,t−�pi (5)

+ �Ψ
(b)
i0 x

∗(b)
it + �Ψ

(b)
i1 x

∗(b)
i,t−1 + ...+ �Ψ

(b)
i�qi
x
∗(b)
i,t−�qi + �u

(b)
it .

We denote by E �CM (r)
ij,t−1 the estimated error correction terms that corre-

spond to the �ri cointegrating relationships for country i, where i = 0, 1, ...,N
and j = 1, 2, ..., �ri.

1.1 Structural Stability Tests

For the structural stability tests consider the 7th equation of the estimated
ith country error correction model given by

∆xit,- = �µi-+
X�ri

j=1
�γij,-E �CMij,t−1+

X�pi

n=1
�ϕ0in,-∆xi,t−n+

X�qi

s=0
�ϑ0is,-∆x

∗
i,t−s+eit,-,
(6)

which can be written more compactly as

2As the maximum order of the GVAR model is 2 in the current application, the actual
data is used for the Þrst two observations following such a transformation.
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yit,- = �θ
0
it,-zit + eit,-, (7)

where yit,- = ∆xit,-, zit = (1, E �CM 0
ij,t−1,∆x

0
i,t−n,∆x

0∗
i,t−s)

0 for j = 1, ..., �ri,
n = 1, ..., �pi and s = 0, ..., �qi and �θit,- = (�µi-, �γij,-, �ϕ

0
in,-,

�ϑ0is,-)
0. Let eit,- be

the residuals from the estimated model (7) and �σ2i- = T−1
XT

t=1
e2it,- the

corresponding estimated error variance.
We consider a number of structural stability tests similar to those con-

sidered by Stock and Watson (1996). The null hypothesis for all the tests
is that of parameter constancy, that is θ-t = θ-. The alternative varies de-
pending on the test from non-stationarity, e.g random walks, to a one time
change at an unknown break point for the sequential Wald type statistics,
or some systematic movement in the parameters which we consider all to be
subject to change. For expositional purposes we abstract from the index i.

1.1.1 1. Tests Based on the Cumulative Sum of OLS Residuals

The maximal OLS CUSUM statistic proposed by Ploberger and Krämer
(1992) is similar to Brown, Durbin and Evans� (1975) CUSUM statistic al-
though it is computed using OLS rather than recursive residuals. The mean

square version of this test is also considered. Let ζT (δ) = �σ
−1
- T

−1/2X[Tδ]

s=1
e-s,

where [·] is the greatest integer function, then

PKsup = sup
δ∈[0,1]

|ζ-T (δ)| (8)

PKmsq =

Z 1

0
ζ-T (δ)

2dδ (9)

1.1.2 2. Random Walk Alternatives

Nyblom (1989) speciÞes as the alternative that θ-t follows a random walk,
that is, θ-t = θ-,t−1+η-t, where η-t is i.i.d. and uncorrelated with error term
corresponding to equation (7) and proposed the following statistic

N- = T
−2XT

t=1
S0-t �V

−1
- S-t, (10)

where S-t =
Xt

s=1
zse-s and �V- = (T−1

XT

t=1
ztz

0
t)�σ

2
- . The heteroskedasticity-

robust version of the N- statistic is obtained by replacing �V- in (10) with
�V- = T

−1XT

t=1
e2-tztz

0
t.
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1.1.3 3. Sequential Wald Statistics

(i) Quandt (1960) likelihood ratio (QLR) statistic, in Wald form

QLR = sup
δ∈(δ0,δ1)

F-T (δ)

(ii) The mean Wald statistic (Hansen (1992), Andrews and Ploberger
(1994))

MW =

Z δ1

δ0

F-T (δ)dδ

(iii) The exponential average Wald statistic by Andrews and Ploberger
(1994)

APW = ln{
Z δ1

δ0

exp(F-T (δ)/2)dδ}.

To obtain the Wald statistic F-T (δ) for a break at t = m, where δ = m/T or
m = [Tδ] in all the above tests, equation (7) is initially estimated under the
null of no structural change and the resulting sum of squares are deÞned as
R- = e0-e-, where e- = (e-1,e-2,..., e-T )

0. The model with a one time break
at t = m is given by

Subsample 1: y-t = θ01-zt + ε1-t, t = 1, 2, ...,m (11)

Subsample 2: y-t = θ
0
2-zt + ε2-t, t = m+ 1, ..., T. (12)

Let e1-t and e2-t be the residuals from the OLS estimation of (11) and (12)
respectively. DeÞne R1- = e01-e1- and R2- = e02-e2-.

Then,

F-T (δ) = (T − 2κ)R- −R-1 −R-2R-1 +R-2
where κ is the dimension of θit,-, and δ ∈ [δ0, δ1] with δ1 = 1− δ0. The value
for δ0 was set to 0.25 and was chosen based on the maximum number of
regressors over the individual VARX* models.

The heteroskedasticity-robust version of the sequential Wald tests is
given by

FT (δ) = (�b1 − �b2)0Q−1- (�b1 − �b2)
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where

�b1 = (Z
0
1Z1)

−1Z01Y1-
�b2 = (Z

0
2Z2)

−1Z02Y2-

and

Q- = (Z
0
1Z1)

−1(
Xm

t=1
e2-tztz

0
t)(Z

0
1Z1)

−1+

(Z02Z2)
−1[(

XT

t=1
e2-tztz

0
t)− (

Xm

t=1
e2-tztz

0
t)](Z

0
2Z2)

−1

with Z = (z01, ..., z
0
T )
0 and Y- = (y-1, ..., y-T )

0. Subscripts 1 and 2 refer to
equations (11) and (12), respectively.

For each replication b, we consider the 7th equation of the country-
speciÞc error correction models of x(b)it given in (13)

∆x
(b)
it,- = µ

(b)
i- +

X�ri

j=1
γ
(b)
ij,-ECM

(b)
ij,t−1+

X�pi

n=1
�ϕ
0(b)
in,-∆x

(b)
i,t−n+

X�qi

s=0
ϑ
0(b)
is,-∆x

∗(b)
i,t−s+e

(b)
it,-,

(13)
where ECM (b)

ij,t−1, j = 1, 2, ..., �ri are the estimated error correction terms
corresponding to the �ri cointegrating relations found for the ith country
based on the observed data and 7 = 1, ..., ki, and compute the above statistics
W
(b)
-s , WW

(b)
-s , PK

(b)
sup, PK

(b)
msq, N

(b)
- ,QLR

(b),MW (b) and APW (b). These
statistics are then sorted into ascending order and their value which exceeds
95% of the observed statistics represents the appropriate 95% critical value
for the structural stability tests.

1.2 Bootstraping of Impulse Response Functions

On the assumption that the error term ut associated with equation (2)
has a multivariate normal distribution, the k × 1 vector of the generalized
impulse response functions in the case of a one standard error shock to the
jth equation corresponding to a particular shock in a particular country on
xt+n is given by

GIj,n =
�FnG−1Σuejq

e0jΣuej
, n = 0, 1, 2, ... (14)

where ej is a k × 1 selection vector with unity as its jth element, Σu is
the covariance matrix of ut, and �F = E1FE

0
1,with F =

µ
F1 F2
Ik 0

¶
and
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E1 =
¡
Ik 0k×k

¢
, which follows from re-writing (3) in its companion

form.3 This result also holds in non-Gaussian but linear settings where the
conditional expectations can be assumed to be linear.

In the case of a structural shock the corresponding generalized impulse
response function is given by

SIj,n =
�Fn(P0GG)

−1Σuejq
e0jΣuej

, n = 0, 1, 2, ... (15)

where P0G is deÞned in Section 7.
For each bootstrap replication, having estimated the individual coun-

try models using the simulated data x(b)t , the GVAR is reconstructed as
described above and the impulse responses are calculated based on the for-
mulas (14) and (15) as GI(b)j,n, SI

(b)
j,n ∀n. These statistics are then sorted into

ascending order ∀n and the (1− γ)100% conÞdence interval is calculated by
using the γ/2 and (1− γ/2) quantiles, say sγ/2 and s(1−γ/2), respectively of
the bootstrap distribution of GIj,n and SIj,n.

1.3 Generating the Simulated Errors

1.3.1 Parametric Approach

Under the parametric approach the errors are generated from a multivari-
ate distribution with zero means and covariance matrix �Σε given by �Σε =
1
T

XT

t=1
�εt�ε

0
t. To obtain the simulated errors for the k variables in the GVAR

model we Þrst generate kT draws from an i.i.d distribution which we denote
by v(b)t , t = 1, 2, ..., T . In our application we generate v(b)t as IIN(0, Ik)
although other parametric distributions could also be entertained. Invoking
the spectral decomposition, the variance-covariance matrix of the estimated
GVAR residuals are decomposed as �Σε = �P�Λ�P

0
, where �Λ is a diagonal ma-

trix containing the eigenvalues of �Σε on its diagonal and �P is an orthogonal
matrix consisting of its eigenvectors. Note that the Choleski decomposition
of �Σε is not applicable in this case due to the semi-positive deÞnite nature of
this matrix that follows from the underlying common factor structure of the

GVAR. The errors ε(b)t , t = 1, 2, ..., T, are then computed as ε(b)t = �Av
(b)
t ,

where �A = �P�Λ
1/2
.

3See Pesaran and Shin (1998) for further details.
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1.3.2 Non-Parametric Approach

To obtain a bootstrap sample for the k variables in the GVAR model, we
initially pre-whiten the residuals �ηt by using the generalized inverse of �A
as given above, denoted �A−g , so that �ηt = �A−g �εt. The generalized inverse
of �A is required due to the semi-positive deÞnite nature of this matrix as
was pointed out earlier. We then resample with replacement from the kT
elements of the matrix obtained from stacking of the vectors �ηt, for t =
1, 2, ..., T . This is done in order to reduce the repetition of the bootstrap

samples. The bootstrap error vector is then obtained as ε(b)t = �A�η
(b)
t , where

�A is the same as above, and �η(b)t is the k × 1 vector of re-sampled values
from (�η1, �η2, ..., �ηT ) .
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