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Abstract

Monitoring and forecasting price developments in the euro area is essential
in the light of the second pillar of the ECB’s monetary policy strategy. This
study analyses whether the forecasting accuracy of forecasting aggregate
euro area inflation can be improved by aggregating forecasts of subindices
of the Harmonized Index of Consumer Prices (HICP) as opposed to fore-
casting the aggregate HICP directly. The analysis includes univariate and
multivariate linear time series models and distinguishes between different
forecast horizons, HICP components and inflation measures. Various model
selection procedures are employed to select models for the aggregate and the
disaggregate components. The results indicate that aggregating forecasts by
component does not necessarily help forecast year-on-year inflation twelve
months ahead.

JEL Codes: E31, E37, C53, C32
Keywords: euro area inflation, HICP subindex forecast aggregation, linear
time series models
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Non-Technical Summary

Monitoring and forecasting price developments in the euro area is essen-
tial in the light of the second pillar of the ECB’s monetary policy strat-
egy. This study analyses whether the forecasting accuracy of forecasting
aggregate euro area inflation can be improved by aggregating forecasts of
subindices of the Harmonized Index of Consumer Prices (HICP) as opposed
to forecasting the aggregate HICP directly. A simulated out-of-sample fore-
cast experiment is carried out to compare the relative forecast accuracy
of aggregating the forecasts of euro area subcomponent inflation (’indirect’
method) as opposed to forecasting aggregate euro area year-on-year infla-
tion directly (’direct’ method) in terms of their root mean square forecast
error. This study covers a broad range of models and model selection pro-
cedures, including univariate and multivariate linear time series methods,
and it distinguishes between different forecast horizons, HICP components
and inflation measures. Various model selection procedures are employed
to select models for the aggregate and the disaggregate components. Some
of the methods employed imply the same specification across all subcompo-
nents and the aggregate, whereas others allow for different lag lengths and
different macroeconomic variables to be included. This set-up allows to in-
vestigate to what extent different model specifications influence the forecast
results.

The results indicate that aggregating forecasts by component does not
necessarily help forecast year-on-year inflation twelve months ahead. For
forecasting year-on-year inflation in the euro area the results presented raise
the question whether modelling and forecasting the subcomponents is worth-
while if the forecast of the aggregate is the objective.

Although the details of the results in this study are of course specific
to the empirical application of euro area inflation, the findings nevertheless
point at some more general problems the forecaster may face when aggre-
gating forecasts of disaggregate components to forecast the aggregate. The
following main explanations for the results can be derived. The results sug-
gest that taking into account differences in the dynamic properties of sub-
components by different model specifications across subcomponents in terms
of variables and/or lags do not necessarily improve the aggregate forecast.
Even for a forecast method where the variables that enter the respective
model for each of the HICP subcomponents are selected from a relatively
large number of potentially relevant domestic and international variables, it
is better in terms of forecast accuracy to directly forecast aggregate year-
on-year inflation for a forecast horizon of 12 months ahead. Furthermore,
combination of different forecast methods as well as the direct and indirect
forecasts is found not to improve over the (best) direct forecast 12 months
ahead.

The forecast errors for disaggregate components of euro area HICP are
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also analysed. It turns out that the forecast errors of the subcomponents do
not cancel. This is because many shocks, e.g. the oil price shock or the shock
to unprocessed food in 2000 and 2001 in the euro area, affect several or even
all components of HICP over the evaluation period and therefore forecast
errors appear in the same direction for those components affected. Also, the
extent of the effect of a shock and its dissemination across subcomponents
is difficult to predict. Therefore, the forecast bias of the aggregate is not
reduced, but increased by aggregating the subcomponent forecasts in this
case.

Furthermore, the forecast performance of aggregating subcomponent
forecasts is investigated for another inflation measure of interest to mone-
tary policy makers: inflation excluding unprocessed food and energy prices,
sometimes referred to as ’core’ inflation. The results are more favorable for
aggregating subcomponent forecasts than in the analysis for overall HICP
inflation. For this aggregate the majority of methods exhibits higher forecast
accuracy for aggregating subcomponent forecasts. Comparing these findings
with the results for overall year-on-year inflation leads to further insight into
the reasons for the problems with aggregating disaggregate forecasts: Ag-
gregating subcomponent forecasts appears to be problematic when some
subcomponents are inherently difficult to forecast due to frequent shocks to
the series, in case of HICP the subcomponents energy and unprocessed food
prices.
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1 Introduction

The primary objective of the ECB’s monetary policy is price stability. Price
stability has been defined by the Governing Council of the ECB, according to
the clarification in May 2003, as a year-on-year increase in the Harmonized
Index of Consumer Prices (HICP) for the euro area of below, but ”close to
2% over the medium term” (European Central Bank, 2003b).

The European System of Central Banks (ESCB) is monitoring and pro-
jecting prices under the second pillar of the ECB’s monetary policy strategy
to assess price developments in the euro area. Since December 2000 the
ECB has been publishing its inflation projection for the euro area.3 Further
insights regarding the performance of different forecasting strategies for euro
area inflation are highly relevant for policy makers and ECB observers.

In the context of forecasting euro area inflation the question arises to
what extent the forecasting accuracy of different time series models for ag-
gregate inflation can be improved by modelling subcomponents of inflation
and aggregating forecasts based on these models. Contemporaneous aggre-
gation of forecasts may be considered in two dimensions: the aggregation
of national HICP forecasts for euro area countries and the aggregation of
HICP subcomponent forecasts for the euro area.

The forecasting accuracy of aggregating country-specific forecasts in com-
parison with forecasts based on aggregated euro area wide data has been
analysed on the basis of a broad range of models in Marcellino, Stock &
Watson (2002). Other studies have focused on specific methods incorpo-
rating national information into forecasts of euro area wide inflation. For
example, Angelini, Henry & Mestre (2001) and Cristadoro, Forni, Reichlin
& Veronese (2001) employ dynamic factor models in this context.

In contrast to these studies, the aim of this analysis is to compare the
forecasting accuracy of models forecasting aggregate HICP directly as op-
posed to aggregating forecasts for HICP subcomponents. A broad range
of models and model selection procedures is employed. The comparison is
based on data for the euro area as a whole as these are the data relevant for
the monetary policy of the ECB.

The debate about aggregation versus disaggregation in economic mod-
elling goes back to Theil (1954) and Grunfeld & Griliches (1960). One strand
of that literature has focussed on the effect of contemporaneous aggregation
on forecast accuracy. There are two main arguments for aggregating fore-
casts of disaggregated variables instead of forecasting the aggregate variable
of interest directly. One rationale is that the disaggregated variables can be
better modelled by taking their different dynamic properties into account

3The word ’projection’ in contrast to forecasting is used by the ECB to indicate that
the published projections are based on a set of underlying technical assumptions, including
the assumption of unchanged short-term interest rate. In contrast, no assumptions for the
development of any of the variables over the forecast horizon are made in this study.
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and, therefore, can be predicted more accurately than the aggregate vari-
able. Modelling disaggregated variables may involve using a larger and more
heterogenous information set, and specifications may vary across the disag-
gregate variables (see Barker & Pesaran, 1990b). A second argument in
favour of disaggregation is that forecast errors of disaggregated components
might cancel partly, leading to more accurate predictions of the aggregate
(see also Clements & Hendry (2002b) for a discussion on forecast combina-
tion as bias correction). In contrast, it may also be argued that it is better to
forecast the aggregate directly. Since the models for the disaggregate vari-
ables will in practice not be perfectly specified (see Grunfeld & Griliches,
1960), the misspecified disaggregate model might not improve the forecast
accuracy for the aggregate, especially in the presence of shocks to some of
the disaggregate variables, as will be seen in the analysis presented in this
study. On the other hand, a well specified model does not necessarily imply
higher forecast accuracy. An additional argument against disaggregation for
forecasting the aggregate is that unexpected shocks might affect the fore-
cast errors of some of the disaggregate variables in the same direction so
that forecast errors do not cancel.

In this study, I examine whether aggregating inflation forecasts based on
HICP subindices is really better than forecasting aggregate HICP inflation
directly. I analyse the role of a number of factors that based on asymptotic
theory and Monte Carlo simulations have been found in the literature to
affect the role of disaggregation on forecasting accuracy. They include i)
different forecast models, ii) different model selection procedures, iii) differ-
ent forecast horizons, and iv) different inflation measures (e.g. aggregate
’headline’ inflation including all subindices versus HICP inflation excluding
unprocessed food and energy prices, sometimes referred to as ’core’ infla-
tion). The forecasting methods include a random walk model for year-on-
year inflation, univariate autoregressive models and vector autoregressive
models based on various model selection strategies. Univariate and multi-
variate linear time series models are chosen for the comparison since these
are often used for forecasting inflation in Europe on a national or euro area
wide level. Vector error correction models have not been included in the
comparison since those models can fail badly in forecasting in the presence
of structural breaks in the equilibrium mean (see e.g. Clements & Hendry
(2002a)).4 Non-linear time series models are not considered here due to the
short time series available for estimation.5 Time-varying parameter models
are not considered here, either. Stock & Watson (1996) suggest that gains

4For an application of a VECM to forecasting euro area inflation taking into account
a cointegration relation between HICP subindices, see Espasa, Senra & Albacete (2002).

5An exposition of the forecasting performance of non-linear models can, for example,
be found in Clements & Hendry (1999, Ch.10). See also Marcellino (2002) for some
promising results using non-linear models for longer euro area macroeconomic series that
are extended backwards by aggregating available country data.
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from using time varying parameter models for forecasting are generally small
or non-existent, especially for short horizons.6 Misspecification is not a cen-
tral issue in the context of the present paper. For example, Diebold & Kilian
(2000) show that a correctly specified model does not necessarily improve
the forecast accuracy relative to a misspecified model.

Various model selection strategies are employed in this study to select
models for the aggregate HICP and its disaggregate components. These
include choosing an information set guided by economic theory where the
same model specification is chosen for each of the subcomponents. The
model selection procedures also include the Schwarz information criterion
for selecting parsimonious models as well as a general-to-specific modelling
strategy implemented in the software package PcGets (Hendry & Krolzig,
2001a).7 The latter model selection procedures allow for varying specifica-
tions across subcomponents in terms of lag order and / or variables included.

The remainder of the paper is structured as follows: In section 2 some
asymptotic and small sample simulation results from the literature regard-
ing the relative forecasting performance of aggregated forecasts of time series
subcomponents are discussed. Section 3 presents the data used in the anal-
ysis. The forecast methods and model selection procedures employed on
which the forecast comparison is based are outlined in section 4, whereas
in section 5 the empirical results for the relative forecast accuracy of the
aggregated versus the disaggregated approach to forecasting euro area in-
flation are presented and discussed. Finally, section 6 draws some tentative
conclusions from the analysis.

2 Forecasting contemporaneously aggregated time
series: Some results from the literature

In empirical analysis the researcher often has to work with temporally or
contemporaneously aggregated variables. Recently, there has been renewed
interest in the consequences of temporal aggregation for empirical analysis
(see Marcellino (1999)). Similarly, the effects of contemporaneous aggrega-
tion across national variables in the context of modelling euro area devel-
opments have received increasing interest.8 The focus of this study is on
analysing the effects of contemporaneous aggregation of subcomponents of

6See Canova (2002) for a recent more favourable evaluation of the forecasting perfor-
mance of Bayesian time varying parameter models, whereas his results for BVARs are less
favourable.

7For an analysis of the role of model selection strategies on forecasting failure, see e.g.
Clements & Hendry (2002a).

8In addition to the papers on forecasting inflation in the euro area mentioned in the
introduction, see e.g. Zellner & Tobias (2000) on disaggregation and forecasting perfor-
mance in industrialized countries.
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time series variables on forecasting accuracy which in the empirical literature
has found rather limited attention so far.

Consider forecasting a contemporaneously aggregated variable that is
defined as a variable consisting of the sum or the weighted sum of a number
of different disaggregated subcomponents at time t. The contemporaneous
aggregate can be written as

yagg
t = w1y

1
t + w2y

2
t + ... + wnyn

t , t = 1, ..., T,

where yj
t (j = 1, ..., n) are the subcomponents of yagg

t , n is the number of
subcomponents considered and wj , j = 1, ..., n, are the aggregation weights.
It is assumed that the aggregation weights are fixed, i.e. they do not change
over time9, and that wj > 0and

∑
wj = 1. Thus, yagg

t is assumed to be a
linear transformation of the stochastic processes yj

t . Two different forecasts
of the aggregate will be considered in this study. The direct forecast of
the aggregated variable, denoted as ŷagg

t , and an indirect forecast of the
aggregated variables by aggregating the n subcomponents forecasts ŷj

t (j =
1, ..., n), i.e. ŷagg

sub,t =
∑

wj ŷ
j
t .

The issue of contemporaneous aggregation of economic variables has al-
ready been discussed and analysed in an early contribution by Theil (1954)
who argues that a disaggregated modelling approach improves the model
specification of the aggregate. Grunfeld & Griliches (1960), however, point
out that if the micro equations are not assumed to be perfectly specified,
aggregation is not necessarily bad since the ’specification error’ might be
higher than the ’aggregation error’.

In the course of further developments in this discussion, the theoretical
econometric literature on contemporaneous aggregation of time series has
focused on several themes. One strand of the theoretical literature has
concentrated on deriving the nature of the data generating process (DGP)
of the aggregated process if the subcomponents are assumed to follow a
certain DGP (e.g.Rose (1977) for ARIMA processes, Lippi & Forni (1990)
for ARMAX models and Nijman & Sentana (1996) for GARCH models).

Another strand of the theoretical literature has focussed on the effect
of contemporaneous aggregation on forecasting accuracy, for example Rose
(1977), Tiao & Guttman (1980), Wei & Abraham (1981), Kohn (1982) and
Lütkepohl (1984a, b,1987). Leamer (1990) derives an optimal degree of
disaggregation in terms of the prediction error.10

In the following, the main asymptotic and small sample simulation re-
sults from the latter strand of the literature, that are of interest in the

9For an extension allowing for time varying weights, see e.g. Van Garderen, Lee &
Pesaran (2000).

10Some related issues and results are presented in a paper by Granger & Morris (1976).
Granger (1990) provides a survey on aggregation of time series variables. Further papers,
including a number of empirical studies, can be found in Barker & Pesaran (1990a).
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context of the empirical analysis presented later, are summarized. Based
on asymptotic theory the following results can be derived. If the DGPs
of the individual subcomponents and the aggregate are known in terms of
structure and coefficients, aggregating subcomponent forecasts is better in
terms of a mean square forecast error (MSFE) criterion than forecasting
the aggregate directly, MSFE(ŷagg

sub ) < MSFE(ŷagg). This result is due to
the larger information set underlying the aggregate forecast. However, the
usefulness of this result is limited because in practice the DGP is usually
not known. If the assumption of a known DGP is relaxed and it is as-
sumed that the unknown process order is estimated using a consistent order
selection criterion, the relative forecast accuracy of the direct or indirect
approach to forecasting the aggregate will depend on the true DGP.11 Un-
der certain assumptions about the DGP12 the aggregation of forecasts of the
components can actually be inferior to forecasting the aggregated time series
directly, MSFE(ŷagg

sub ) > MSFE(ŷagg). The higher estimation variability of
estimating the disaggregated processes instead of the aggregate process may
increase the MSFE, in some cases even in large samples (Lütkepohl, 1987,
p.310). The relative forecast accuracy depends on the extent to which the
systematic differences in the MSFE are offset by the effects of estimation
variability.

Therefore, asymptotic theory provides inconclusive results regarding the
ranking of the disaggregate and the aggregate approach to forecasting the
variable of interest.

Despite the effort to understand the theoretical aspects of the effect of
disaggregation on forecasting, this line of research has yielded few practi-
cally useful insights. Therefore, Lütkepohl (1984a, 1987) presents Monte
Carlo simulations to analyse the relative small sample accuracy in terms of
the MSFE of directly forecasting the aggregate and aggregating subcompo-
nent forecasts. He also includes modelling approaches where parsimonious
specification is limiting estimation variability due to reduced precision of
the estimates in short samples. The small sample simulations largely con-
firm the asymptotic results. He finds that the small sample ranking of the
two approaches are mixed. The results suggest that it is not necessarily
better to aggregate the subcomponent forecasts instead of forecasting the
aggregate. If the subcomponents are uncorrelated and the forecast horizon
is short, then aggregating the subcomponent forecasts may lead to a lower
MSFE for certain DGPs.

Overall, results from asymptotic theory and small sample simulations do
11In case of a finite order DGP the asymptotic MSFE matrices are the same as in the

case of known process orders. In the case of an infinite order DGP an approximation of
the MSFE can be derived asymptotically under the assumption that the AR orders of
the processes fitted to the data approach infinity with the sample size (Lütkepohl, 1987,
p.73).

12See Lütkepohl (1987, p.129)
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not seem to give a clear answer as regards the relative forecast accuracy of
the disaggregate versus the aggregate forecasting approach. Therefore, it
seems that whether aggregation of subcomponent forecasts improves fore-
cast accuracy is largely an empirical question. Furthermore, the theoretical
analyses as well as the small sample simulation assume certain DGPs. In
practice, however, the DGP is not known. Therefore, an empirical out-of-
sample experiment is carried out in this study. The aim is to gather insights
about the effect of contemporaneous aggregation on forecasting accuracy for
euro area HICP inflation at the center of interest of the ECB’s monetary
policy.

I extend earlier studies in paying special attention to the potential role
of macroeconomic predictors for HICP inflation. The theoretical literature
and the simulation studies on the effects of contemporaneous aggregation on
forecasting accuracy mainly focus on univariate models. Only those multi-
variate models are considered that include different HICP subcomponents,
but no other macroeconomic variables are introduced (see e.g. Lütkepohl,
1987).

Since in this study I investigate the role of macroeconomic variables in
forecasting aggregate HICP inflation versus forecasting subcomponent HICP
inflation, I employ different model selection procedures. In contrast, most of
the asymptotic results regarding (dis-)aggregation in forecasting either as-
sume the true DGP to be known or correctly specified, or they are derived
assuming that a consistent model selection criterion is used. In practice,
estimation variability will be a main factor in reducing the relative forecast
efficiency of models with a high number of parameters. Therefore, the model
selection procedure is important in deriving the final model. One possibility
is to employ information criteria to select the lag length of (V)AR mod-
els. Lütkepohl (1984a) presents results for subset VARs where information
criteria are also used to decide on deleting individual elements from the co-
efficient matrices. This model selection procedure leads to lower estimation
variability due to parsimonious specification. Another possibility to choose
a parsimoniously specified model is to use the general-to-specific model se-
lection procedure suggested by Hendry & Krolzig (2001b) and implemented
in PcGets (Hendry & Krolzig, 2001a). This model selection procedure has
been included in the comparison presented below (for more details on the
model selection procedure, see 4).

3 HICP aggregate data and subcomponents

The data employed in this study include aggregated overall HICP for the
euro area as well as its breakdown into five subcomponents: unprocessed
food, processed food, industrial goods, energy and services prices.

This particular breakdown into subcomponents has been chosen in ac-



���������	
���������������������������� ��

cordance with the data published in the ECB Monthly Bulletin and since the
analysis of price developments of HICP subcomponents regularly presented
in the ECB Monthly Bulletin (see European Central Bank (2000, p.28)) is
based on this breakdown. A range of explanatory variables for inflation is
also considered.

The data employed are of monthly frequency13, starting in 1992(1) un-
til 2001(12). This is a relatively short sample, which is determined by the
availability of data for the euro area. The sample is split into an estima-
tion and a forecast evaluation period. Model selection and estimation is
carried out on the basis of 36 recursive samples starting from 1992(1) up
to 1998(1), extending the sample by one month sequentially. The longest
recursive estimation sample ends in 2000(12). Seasonally adjusted data have
been chosen14 because of the changing seasonal pattern in some of the HICP
subcomponents for some countries due to a measurement change.15,16 The
notation for the HICP subindices will be the following: HICP unprocessed
food will be denoted puf , HICP processed food ppf , HICP industrial pro-
duction pi, HICP energy pe and HICP services ps. Furthermore, aggregate
HICP will be denoted pagg.

The aggregate HICP price index and the HICP subindices in logarithm
are presented in Figure 1 and the year-on-year inflation rates in % of the
respective indices are depicted in Figure 2. The HICP indices in first dif-
ferences are displayed in Figure 8 in the Appendix. Aggregate HICP, HICP
processed food, HICP industrial production and HICP services in levels dis-
play a relatively smooth upward trend. In contrast, HICP unprocessed food
and HICP energy exhibit a much more erratic development (see Figure 1).
The annual inflation rates (see Figure 2) exhibit a downward trend for ag-
gregate HICP, processed food prices, prices of industrial goods and service
prices roughly until 1999. Unprocessed food and energy prices do not show
a downward trend, but a sharp increase in 1999 due to oil price increases
and animal deseases.

Since Diebold & Kilian (2000) show for univariate models that testing
for a unit root is useful for selecting forecasting models, Augmented Dickey
Fuller (ADF) tests have been carried out for all HICP (sub-)indices (in
logarithm). The tests are based on the sample from 1992(1) to 2000(12),
i.e. the longest of the recursively estimated samples. The tests do not reject
non-stationarity for the levels of all (sub-)indices over the whole period.17

13Except for unit labour costs which are of quarterly frequency and have been interpo-
lated.

14Except for interest rates, producer prices and HICP energy that do not exhibit a
seasonal pattern.

15The data used in this study are taken from the ECB and Eurostat.
16The sensitivity of the results to using seasonally unadjusted data has been analysed on

the basis of a shorter sample. The results show no substantial change in the conclusions.
17The ADF test specification includes a constant and a linear trend for the levels and

first differences. The number of lags included is chosen according to the largest significant
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Figure 1: HICP aggregate and subindices (in logarithms)
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Figure 2: Year-on-year HICP inflation (in %), aggregate and subindices
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Non-stationarity is rejected for the first differences of all series except the
aggregate HICP and HICP services. For the first differences of the latter
two series, however, non-stationarity is not rejected for all shorter recursive
estimation samples up to 2000(8) and 2000(7), respectively. Therefore and
because of the low power of the ADF test HICP (sub-)indices are assumed
to be integrated of order one in the analysis and modelled accordingly.

Further variables that enter the large VAR model included in the fore-
cast accuracy comparison are industrial production, y, and nominal money
M3, m, producer prices, pprod, import prices (extra euro area), pim, unem-
ployment, u, unit labour costs, ucl, commodity prices (excluding energy)
in euro, pcom, oil prices in euro, poil, the nominal effective exchange rate of
the euro, NEER18, as well as a short-term and a long-term nominal inter-
est rate, is and il This choice of variables to enter the multivariate model
tries to strike a balance between including relatively few variables due to the
short data series available for the euro area on the one hand and including
the key variables that influence inflation according to economic theory. All
variables except the interest rates are in logarithms. The graphs displaying
these explanatory variables are presented in the Appendix.19

4 Forecast Methods and Model Selection

Five different forecasting models using different model selection procedures
are employed for both forecast methods, i.e. forecasting HICP inflation di-
rectly and aggregating subcomponent forecasts. In case of the first three
forecasting models the specification is the same across HICP subcompo-
nents. The random walk with drift (RW ) is employed as a benchmark
model since it has often been found to outperform other forecasting mod-
els. Furthermore, a simple Phillips curve model, as e.g. in Stock & Watson
(1999b), is employed including inflation and the change in unemployment in
the VAR with 12 lags. This model will be denoted V ARPh(12). The third
model is a large VAR with 12 endogenous domestic and international vari-
ables described in the data section above, allowing for 2 lags only due to the
short sample (V ARInt(2)). The fourth and fifth model are chosen based on
in-sample information. A univariate autoregressive (AR) model is included
in the comparison where the lag order is parsimoniously chosen using the
Schwarz criterion, denoted ARSC . Therefore, the lag order varies across the
different components. Finally, a general-to-specific model selection strat-
egy is employed to choose a VAR (V ARInt

Gets), implemented in the computer
package PcGets by Hendry & Krolzig (2001a), where the choice of variables

lag on a 5% significance level.
18ECB effective exchange rate core group of currencies against euro.
19A reliable measure of administered prices and indirect taxes to be included in the

analysis is not available for the euro area (European Central Bank, 2003a).
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and lag length is based on mis-specification tests, structural break tests, t-
and F-block tests, encompassing tests and information criteria. A ’liberal’
selection strategy has been chosen implying a higher probability of retaining
relevant variables at the risk of retaining irrelevant ones. Since PcGets is in
principle a single equation procedure, a LR test has been carried out to test
the null hypothesis that the specific models selected by PcGets for each of
the variables included in the VAR are a valid reduction of the unrestricted
redued form VAR. This test does not reject for the models employed in the
analysis. The model is selected by PcGets starting with a VAR including
the large potential number of domestic and international variables as in-
cluded in V ARint(2). In contrast to V ARint(2), for this model type different
variables and lag lengths are possibly chosen across different HICP sub-
components and the aggregate. The two methods ARSC and V ARInt

Gets are
included to analyse whether different specifications across subcomponents
in terms of lags and variables help to improve the forecasting accuracy of
aggregating subcomponent forecasts. The automated model selection pro-
cedure implemented in PcGets is particularly useful in this investigation
since economic theory does not provide much guidance on how to model the
disaggregate components of HICP. It should be noted, however, that the
general-to-specific model selection procedure implemented in PcGets does
not aim at improving forecast performance, but is based purely on in-sample
information.

Simulated out-of-sample model choice has not been considered here be-
cause it is not feasible nor is it desirable. It is not feasible, since the already
short sample would have to be split further to create an additional out-of-
sample period for model choice different from the forecast evaluation period.
It is not desirable either to choose the models based on a simulated out-of-
sample experiment, since the model choice would depend on the specific
characteristics of the out-of-sample model selection period and whether the
DGP in this short period resembles the DGP in the future. Also, Inoue &
Kilian (2003) show that the simulated out-of-sample selection method will
select overparameterised models with positive probability, resulting in larger
finite sample RMSFE.

For all models, except for V ARInt
Gets where PcGets is employed, the model

choice and simulated out-of-sample forecast experiment are carried out using
GAUSS. All models are re-estimated for each of the recursive samples. Re-
garding the model selection procedures, the ARSC is applied for each of the
recursive samples. The lag lengths for the different component models and
the aggregate model do hardly change over the different recursive samples,
however. The PcGets procedure is applied for the sample until 1998(1).20

20For a shorter forecast evaluation period, namely over the last 12 out-of-sample periods,
PcGets has been applied to choose a new model for each recursive sample. This did not
improve the relative performance in comparison with the other methods.



���������	
���������������������������� ��

5 Simulated out-of-sample forecast comparison

To evaluate the relative forecast accuracy of forecasting aggregate HICP
directly versus aggregating the forecasts of HICP subcomponents, a simu-
lated out-of-sample forecast experiment is carried out. One to twelve step
ahead forecasts are performed based on different linear time series models
estimated on recursive samples. The main criterion for the comparison of
the forecasts employed in this study, as in a large part of the literature on
forecasting, is the root mean square forecast error (RMSFE).

The forecasts produced by the respective method have to be transformed,
since the forecast accuracy is to be evaluated in terms of root mean square
forecast error (RMSFE) of year-on-year inflation. Note that the multi-
horizon MSFEs do not allow forecast comparison between different represen-
tations of the same system. Furthermore, switching the basis of comparison
can lead to a change in ranking of the methods in this case.21 Therefore, it
is important to note that here the focus is on the comparison of all HICP
(sub-)indices in terms of their forecast accuracy for year-on-year inflation
rates since those are most relevant from a monetary policy perspective.

The aggregate HICP is a weighted chain index, where the weights change
each year. Since the end of all recursive estimation samples is in 1998, 1999
and 2000, respectively, the aggregation of the forecasts is carried out using
the HICP subcomponent weights of the respective end year of the estimation
period (at prices of December the previous year) which would be known to
the forecaster in real time.22 The forecasts from the models in first differ-
ences are recalculated to level forecasts and rebased to the month 1997(12),
1998(12) and 1999(12), respectively, in accordance with the weights used.
The weighted sum of the subcomponents forecasts is then rebased to the
base year 1996 of the actual aggregate index and transformed into year-on-
year inflation rates. Those are then compared with the respective realization
of year-on-year inflation. The actual weights used of, for example, the year
2000 are 8.2 % for unprocessed food, 12.6 % for processed food, 32.6 % for
industrial goods, 9.0 % for energy and 37.6 % for services prices.

Table 1 presents the comparison of the relative forecast accuracy mea-
sured in terms of RMSFE of year-on-year inflation of the direct forecast of
aggregate inflation (∆12p̂

agg) and the indirect forecast of aggregate inflation,
i.e. the aggregated forecasts of the subindices (∆12p̂

agg
sub).

Tests of equal forecast accuracy or forecast encompassing tests23 have
21Clements & Hendry (1998, p.69/70).
22Note that therefore one source of the resulting forecast error is also the change in

subcomponent weights in the following year in comparison to the current year, although
the changes in weights from year to year are relatively small.

23Taking into account estimation uncertainty West & McCracken (1998) and West
(2001) propose tests of equal forecast accuracy and forecast encompassing for non-nested
models. In contrast, Clark & McCracken (2001) present forecast accuracy and forecast
encompassing tests for nested models.
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not been carried out, since we compare methods rather than models, i.e.
forecasting the aggregate directly is compared to aggregating the subcom-
ponent forecasts. This distinction between methods and models is in line
with Stock & Watson (1999a, p.2), who refer to forecast methods in the case
where forecasts are based ”not on a single estimated model but on results
from multiple models that are estimated subject to model selection criteria
or pretests.”24

Since different forecast horizons might lead to different rankings of the
forecasting methods, the comparison is carried out for short-term to medium-
term forecast horizons, 1 to 12 months ahead. In the paper, the results for
1-,6- and 12-months ahead forecasts are presented. The RMSFE evaluation
is based on recursive forecasts that involve an average of the respective hori-
zon forecasts over all 36 recursive samples.25 The one step ahead forecasts
are starting with the forecast for 1998(2) based on the estimation sample
1992(1) to 1998(1), the second forecast is for 1998(3) based on the estimation
sample up to 1998(2), etc., the 36th forecast for 2001(1) is then based on the
estimation sample up to 2000(12). Similarly, 12-period-ahead forecasts are
carried out for 36 different estimation samples. The forecast for 1999(1) is
based on the sample up to 1998(1), whereas the last 12 step ahead forecast
is carried out for 2001(12) based on the estimation sample until 2000(12).

Other simulated out-of-sample experiments have been carried out consid-
ering 3 subperiods of 12 months of the forecast evaluation period to analyse
the sensitivity of the results towards a specific forecast period. The results
of this analysis did not change the conclusions of the paper.26 The follow-
ing presentation of the forecast comparison focusses on the longest forecast
evaluation period.

For a 1-step-ahead forecast horizon aggregating subcomponent forecasts
tends to outperform forecasting the aggregate directly in terms of RMSFE
(see Table 1). Whereas for the RW both approaches show almost the same
performance, for most of the other models aggregating the subcomponent
forecasts performs better. The large V ARint(2) and the V ARint

Gets perform
best overall. These models are probably better in capturing the increase in
energy prices and its second round effects on the other price components as
well as the increase in unprocessed food prices in 2000 by explicitly including

24A similar argument is brought forward by Stock & Watson (2003). In the context
of comparing direct and aggregated forecasts across euro area countries Marcellino et al.
(2002) is an example for presenting no tests of forecast accuracy nor of forecast encom-
passing, focusing on MFE and MSFE results.

25Note that in this paper due to the short estimation and forecast evaluation period,
the forecast origins are kept the same for all forecast horizons. Additional forecasts for
shorter horizons at a different forecast origin implying different parameter estimates might
in this case have a comparatively large impact on the average performance of the different
forecast methods.

26The results are available from the author upon request.
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Table 1: Relative forecast accuracy, RMSFE of year-on-year infla-
tion in percentage points, Recursive estimation samples 1992(1)
to 1998(1),...,2000(12)

horizon 1 6 12
method direct indirect direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub ∆12p̂

agg ∆12p̂
agg
sub

RW 0.142 0.142 0.476 0.479 0.807 0.813
V ARPh(12) 0.146 0.154 0.456 0.444 1.063 0.980
V ARInt(2) 0.115 0.103 0.422 0.437 0.788 0.814
ARSC 0.144 0.143 0.439 0.475 0.756 0.877
V ARInt

Gets 0.130 0.111 0.404 0.449 0.702 0.842

Note: super and subscripts indicate model selection procedure, SC: Schwarz criterion,
Ph(12): Phillips curve model including inflation and unemployment, 12 lags, Int(2): model
including international variables in addition to domestic ones, 2 lags, Gets: model selection
with PcGets (Hendry & Krolzig, 2001a), bold numbers: indicate lowest RMSFE per column

oil prices, commodity prices and producer prices, among others.
In contrast, for a forecast horizon of 6 and 12 months, directly forecasting

aggregate inflation tends to perform better in RMSFE terms. The V ARInt
Gets

turns out to be best overall for the period considered for h = 6 and h = 12
for directly forecasting the aggregate. The V ARInt(2) model performs better
than most of the other models for h = 6 and 12 for the indirect method.
This indicates that a different specification across components chosen based
on in-sample criteria does not necessarily improve the forecast accuracy
of aggregating subcomponent forecasts. The average RMSFE and average
mean forecast error (MFE) for all forecast horizons is presented in the Table
3. These numbers also exhibit higher forecast accuracy of the direct forecast
method for most models on average over the forecast horizons.

The MFE in Table 2 shows that the modulus of the bias of the forecast
tends to be lower for some of those methods that also show a lower RMSFE
in the case of aggregating the subcomponent forecasts (∆12p̂

agg
sub) for a one

month horizon. For 6 and 12 months forecast horizons, in contrast, the
direct forecast method exhibits a lower MFE for most models, as in Table
1 in terms of RMSFE.

It should be noted that the general-to-specific model selection procedure
for V ARInt

Gets does improve in RMSFE terms over the simple Phillips curve
model, but not over the large V ARInt(2) for 1 month ahead forecasts. For a
twelve months ahead forecast, the V ARInt

Gets does improve forecast accuracy
in RMSFE terms over the V ARInt(2) for forecasting the aggregate directly,
but not for aggregating the subcomponent forecasts where the V ARInt(2)



���������	
�����������������������������,

Table 2: Relative forecast accuracy, MFE of year-on-year infla-
tion in percentage points, Recursive estimation samples 1992(1)
to 1998(1),...,2000(12)

horizon 1 6 12
method direct indirect direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub ∆12p̂

agg ∆12p̂
agg
sub

RW -0.044 0.050 -0.161 0.191 -0.233 0.295
V ARPh(12) 0.022 0.0 0.205 -0.170 0.488 -0.432
V ARInt(2) 0.001 -0.004 0.115 -0.132 0.304 -0.334
ARSC -0.027 -0.012 -0.110 -0.156 -0.141 -0.378
V ARInt

Gets -0.027 -0.008 -0.083 -0.155 -0.118 -0.359

Note: super and subscripts indicate model selection procedure, SC: Schwarz criterion,
Ph(12): Phillips curve model including inflation and unemployment, 12 lags, Int(2): model
including international variables in addition to domestic ones, 2 lags, Gets: model selection
with PcGets (Hendry & Krolzig, 2001a), bold numbers: indicate lowest MFE (in absolute
terms) per column

Table 3: Average relative forecast accuracy over all forecast hori-
zons, average RMSFE and average MFE of year-on-year inflation
in percentage points, Recursive estimation samples 1992(1) to
1998(1),...,2000(12)

criterion ARMSFE AMFE
method direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub

RW 0.494 0.497 -0.162 0.195
V ARPh(12) 0.535 0.519 0.232 -0.193
V ARInt(2) 0.443 0.452 0.135 -0.152
ARSC 0.460 0.507 -0.107 -0.177
V ARInt

Gets 0.421 0.471 -0.085 -0.172

Note: super and subscripts indicate model selection procedure, SC: Schwarz criterion,
Ph(12): Phillips curve model including inflation and unemployment, 12 lags, Int(2): model
including international variables in addition to domestic ones, 2 lags, Gets: model selec-
tion with PcGets (Hendry & Krolzig, 2001a), bold numbers: indicate lowest ARMSFE and
AMFE per column
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surprisingly performs better. This indicates that the model selection proce-
dure that is designed to improve the in-sample fit of the respective method,
does not necessarily improve the out-of-sample forecast accuracy for the
HICP subcomponents (see also Table 4).27

To evaluate how good or bad these methods are in terms of predicting
year-on-year inflation and how much the direct forecast of the aggregate
actually differs from the indirect forecast based on the same method, both
forecasts are presented graphically for each method together with the re-
spective realization.
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Figure 3: Year-on-year inflation rate and forecasts in %, 1 month ahead, solid:
actual, dotted: aggregate forecast, dashed: aggregated subcomponent forecasts

Figure 3 presents the actual year-on-year inflation rates and the 1-step
ahead forecasts for 36 recursive samples for all methods. It shows that for
a one step ahead forecast horizon there is hardly any difference between
the direct and indirect approach to forecasting year-on-year inflation for
any of those models. The largest difference is for V ARPh(12) of about 0.2
percentage points.

For a forecast horizon of 12 months, which is more relevant for monetary
policy, a similar result can be seen in Figure 4 for the RW . For the RW
model there is hardly any difference between the direct and indirect fore-

27The relation between model (mis-)specification and forecast accuracy has been dis-
cussed extensively in e.g. Clements & Hendry (1999, Ch3/4, 2001); see also Clements &
Hendry (2002a).
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Figure 4: Year-on-year inflation rate and forecasts in %, 12 months ahead, solid:
actual, dotted: aggregate forecast, dashed: aggregated subcomponent forecasts
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Figure 5: Year-on-year inflation rate in %, solid: actual, dashed: AR subcompo-
nent forecast, 12 months ahead
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cast, whereas the ARSC , the V ARPh(12), the V ARInt(2) and the V ARInt
Gets

differ up to around 1.3 percentage points. For the majority of those models
that exhibit a relevant difference between the direct and indirect forecast
of year-on-year inflation, i.e. ARSC , V ARInt(2) and V ARInt

Gets, the RMSFE
indicates a better performance of forecasting the aggregate year-on-year in-
flation directly. The predictive failure of all methods for the 12 months
ahead forecast over most of the recursive samples can be explained by their
failure to predict several unexpected events: The increase in year-on-year
changes of unprocessed food prices since early 2000 due to the effects of
weather conditions and animal diseases (BSE and Foot-and-Mouth disease);
the increase in year-on-year changes of processed food prices over the whole
year 2001 due to lagged effects of the animal diseases coming from unpro-
cessed food prices; the increase in year-on-year changes of industrial goods
prices in 2001, which is to a large extent due to lagged effects of the increase
of energy prices and the depreciation of the euro. Furthermore, the increase
in year-on-year changes of energy prices since 1999 and its decline in 2001
is not well captured by either of the methods.

Figure 5 shows the results for the AR model for each of the subcom-
ponents since this model performs comparatively well. It can be seen that
unprocessed food, processed food and services inflation are over-predicted
in the beginning of the forecast evaluation period, whereas especially unpro-
cessed food and processed food inflation are substantially under-predicted
for the whole year of 2001. Energy inflation is substantially over-predicted
for the second half of 1999, the year 2000 and the first half of 2001. A similar
picture arises for the other models. All forecast models fail badly in predict-
ing the most volatile HICP components, puf and pe. Table 4 presents the
respective RMSFE per component. These results provide some explanation
why aggregating subcomponent forecasts is not better than forecasting the
aggregate inflation rate directly: The subcomponents are affected by certain
shocks in the same way and therefore lead to forecast failures in the same
direction.

Overall, for aggregate HICP the results presented in this study reveal a
tendency to higher forecast accuracy of forecasting aggregate year-on-year
inflation directly over longer horizons, especially for the 12 months horizon
of interest for monetary policy.

Forecast Combination One line of further interesting research is whether
combining direct and indirect forecasts improves forecast accuracy over all
the forecasts of the aggregate 12 months ahead. Two possible directions of
forecast combination are of interest here. Either combining the direct and
indirect forecast for each of the five methods considered or, alternatively,
combining the different direct forecasts based on alternative methods and
compare those forecasts to combined indirect forecasts from different meth-
ods. A comprehensive discussion of different methods of forecast combina-
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Table 4: Forecasts of HICP (sub-) indices: Forecasting accuracy,
RMSFE of year-on-year inflation, forecast horizons: 1 and 12

RW V ARPh(12) V ARInt(2) ARSC V ARInt
Gets

h=1
puf 0.365 0.502 0.466 0.361 0.393
ppf 0.119 0.106 0.108 0.098 0.111
pi 0.106 0.098 0.115 0.100 0.110
pe 1.442 1.756 1.169 1.493 1.168
ps 0.149 0.104 0.122 0.097 0.113
h=12
puf 3.783 4.316 3.998 3.677 3.722
ppf 1.233 1.229 0.962 1.134 1.127
pi 0.815 0.570 0.534 0.473 0.594
pe 7.957 12.477 8.622 8.196 7.775
ps 1.409 0.604 0.592 0.532 0.500

Note: super and subscripts indicate model selection procedure, SC: Schwarz criterion,
Ph(12): Phillips curve model including inflation and unemployment, 12 lags, Int(2): model
including international variables in addition to domestic ones, 2 lags, Gets: model selec-
tion with PcGets (Hendry & Krolzig, 2001a), bold numbers: indicate lowest RMSFE per
component row
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tion would go beyond the scope of the paper. A discussion of the different
forecast combination methods and review of the literature can be found in
Clemen (1989), Diebold & Lopez (1996) and Clements & Hendry (2002c).

It should be noted that in principle the aggregation of subcomponent
forecasts is a way of forecast combination. As discussed above, combin-
ing the subcomponent forecasts does not help to forecast the aggregate 12
months ahead since forecasts will fail in the same direction when an unex-
pected shock occurs that is affecting some or all forecasts to be combined.
On the same grounds, one would expect that combining the direct and indi-
rect method of forecasting aggregate inflation does not necessarily improve
forecast accuracy. On the other hand, combination of forecasts can improve
the overall forecasts if models provide partial explanations, especially if fore-
casts are differentially biased (one is biased upward, one downward). Fur-
thermore, variance reduction can be achieved by using various information
sets efficiently. Sample estimation uncertainty will also influence the relative
forecast accuracy. Clements & Hendry (2002c) derive some results why fore-
cast combination might work for one-step ahead forecasts. However, there
are to the knowledge of the author no results available for multi-step ahead
forecasts. Therefore, whether forecast combination improves over separate
forecasts of aggregate inflation has to be investigated empirically.

In the context of this study, RMSFEs are calculated for a number of
combined forecasts of euro area inflation 12 months ahead. Simple (mean)
averaging is employed since that is often found to perform better than more
sophisticated methods (see e.g. Clements & Hendry, 2002c). For three out of
the five methods considered the direct and the indirect forecasts are actually
biased in the opposite direction (see Table 2). Thus, the direct and indirect
forecast for each method are combined. However, forecast combination does
not improve the RMSFE over the best forecast for the respective method.
Alternatively, different forecast methods are combined for the indirect fore-
cast and compared with different combined forecast methods for the direct
forecast. More precisely, since for the indirect forecast the RW and the
V ARint(2) perform best in RMSFE terms (see Table 1), but exhibit a bias
in opposite direction, those two methods are combined. For the direct fore-
cast the V ARint(2), the ARSC and the V ARint

Gets are combined since those
methods perform best in RMSFE. V ARint(2) and ARSC have a positive bias
whereas V ARint

Gets exhibits a negative bias. For the indirect forecast combin-
ing does indeed lead to some improvement over the best respective forecast,
whereas for the direct method the combined forecast is similar to the best
one. However, the direct forecast still performs best overall for the forecast
combinations chosen.

HICP excluding energy and unprocessed food Another aggregate in-
flation measure that is of interest for the ECB is HICP inflation excluding
energy and unprocessed food, sometimes referred to as ’core’ inflation. The
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results in terms of the RMSFE of year-on-year ’core’ inflation are presented
in Table 5.

Table 5: Relative forecast accuracy, RMSFE of year-on-year
inflation of HICP excluding unprocessed food and energy in
percentage points, Recursive estimation samples 1992(1) to
1998(1),...,2000(12)

horizon 1 6 12
method direct indirect direct indirect direct indirect

∆12p̂
core ∆12p̂

core
sub ∆12p̂

core ∆12p̂
core
sub ∆12p̂

core ∆12p̂
core
sub

RW 0.103 0.105 0.551 0.565 1.068 1.097
V ARPh(12) 0.065 0.060 0.244 0.226 0.584 0.570
V ARInt(2) 0.078 0.075 0.281 0.264 0.525 0.490
ARSC 0.061 0.055 0.237 0.226 0.520 0.501
V ARInt

Gets 0.065 0.111 0.265 0.449 0.554 0.842

Note: super and subscripts indicate model selection procedure, SC: Schwarz criterion,
Ph(12): Phillips curve model including inflation and unemployment, 12 lags, Int(2): model
including international variables in addition to domestic ones, 2 lags, Gets: model selection
with PcGets (Hendry & Krolzig, 2001a), bold numbers: indicate lowest RMSFE per column

Here the results show a different pattern. Three out of five methods
exhibit a better accuracy for aggregating the subcomponent forecasts for a
forecast horizon of one month, i.e. all methods except for the RW and the
V ARInt

Gets. A similar pattern is found for the 6 and 12 months ahead fore-
casts. Similar results are also exhibited by the average RMSFE (ARMSFE)
over all forecast horizons in Table 6. The results for V ARInt

Gets in Table 5 also
show that for the three components the varying specification across compo-
nents in terms of variables chosen does not improve the forecast accuracy
of aggregating the subcomponent forecasts. Figures 6 and 7 shows that for
the RW the difference between the indirect and direct approach to forecast-
ing year-on-year inflation is negligible for both one month and 12 months
horizons. The AR, the V ARPh(12) and the V ARint(2) methods exhibit very
similar forecasts of the direct and indirect method for year-on-year ’core’ in-
flation for one month ahead forecasts (Figure 6). In contrast, for 12 months
ahead forecasts the difference is up to 0.4 percentage points for these three
models (Figure 7). There appears to be a similar difference in the forecasts
by the direct and indirect method for the V ARInt

Gets, in which case the direct
method provides a more accurate forecast in RMSFE terms. Overall, these
findings confirm that the better RMSFE accuracy of the majority of models
for the indirect method of aggregating subcomponent forecasts matters in
terms of the actual ’core’ inflation forecast. This ’core’ inflation series in-
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Table 6: Average relative forecast accuracy over all fore-
cast horizons, average RMSFE and average MFE of year-on-
year HICP inflation excluding energy and unprocessed food
in percentage points, Recursive estimation samples 1992(1) to
1998(1),...,2000(12)

criterion ARMSFE AMFE
method direct indirect direct indirect

∆12p̂
agg ∆12p̂

agg
sub ∆12p̂

agg ∆12p̂
agg
sub

RW 0.591 0.607 -0.517 0.539
V ARPh(12) 0.291 0.278 0.050 -0.064
V ARInt(2) 0.294 0.275 -0.003 0.070
ARSC 0.267 0.262 0.005 0.060
V ARInt

Gets 0.293 0.471 -0.094 -0.172

Note: super and subscripts indicate model selection procedure, SC: Schwarz criterion,
Ph(12): Phillips curve model including inflation and unemployment, 12 lags, Int(2): model
including international variables in addition to domestic ones, 2 lags, Gets: model selec-
tion with PcGets (Hendry & Krolzig, 2001a), bold numbers: indicate lowest ARMSFE and
AMFE (in absolute terms) per column
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Figure 6: Year-on-year inflation rate of HICP excluding unprocessed food and
energy and forecasts in %, 1 month ahead, solid: actual, dotted: aggregate forecast,
dashed: aggregated subcomponent forecasts



���������	
�����������������������������)

1999 2000 2001 2002

1

2

3

4 Random Walk Model

1999 2000 2001 2002

1

2

3

4
Autoregressive  Model

1999 2000 2001 2002

1

2

3

4 Phillips Curve VAR

1999 2000 2001 2002

1

2

3

4
International VAR

1999 2000 2001 2002

1

2

3

4
PcGets VAR

Figure 7: Year-on-year inflation rate of HICP excluding unprocessed food and en-
ergy and forecasts in %, 12 months ahead, solid: actual, dotted: aggregate forecast,
dashed: aggregated subcomponent forecasts

cluding only those subindices of HICP that are less affected by shocks tends
to be better forecasted by aggregating the subcomponent forecasts instead
of forecasting the aggregate directly, whereas the year-on-year inflation rate
of HICP total tends to be better forecasted directly at longer horizons.

6 Conclusions: Why does disaggregation not nec-
essarily help?

In this study an out-of-sample experiment is carried out to compare the rela-
tive forecast accuracy of aggregating the forecasts of euro area subcomponent
inflation (’indirect’ method) as opposed to forecasting aggregate euro area
year-on-year inflation directly (’direct’ method) in terms of their RMSFE.
This study covers a broad range of models and model selection procedures.

I find that it is not necessarily better to employ the indirect rather than
the direct method of forecasting aggregate euro area year-on-year inflation.
For many of the forecast methods considered here that are often used by
practitioners and researchers, forecasting aggregate euro area year-on-year
inflation directly results in higher forecast accuracy for medium-term fore-
cast horizons of 12 months relevant for monetary policy.

The findings suggest that to forecast euro area aggregate year-on-year
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inflation, aggregating subcomponent forecasts has to be considered with
some caution. For forecasting year-on-year inflation in the euro area the
results presented raise the question whether modelling and forecasting the
subcomponents is worthwhile if the forecast of the aggregate is the objective.

Although the details of the results in this study are of course specific
to the empirical application of euro area inflation, the findings nevertheless
point at some more general problems the forecaster may face when aggre-
gating forecasts of disaggregate components to forecast the aggregate.

From my analysis I find the following main explanations for my results.
I find that taking into account differences in the dynamic properties of sub-
components by different model specifications across subcomponents in terms
of variables and/or lags do not necessarily improve the aggregate forecast.
The analysis has shown that even for the VAR, where the general-to-specific
model selection procedure (PcGets) selects variables to enter the respective
model for each of the HICP subcomponents from a relatively large number
of potentially relevant domestic and international variables, it is better in
terms of forecast accuracy to directly forecast aggregate year-on-year infla-
tion for a forecast horizon of 12 months ahead. Furthermore, combination
of different forecast methods as well as the direct and indirect forecasts is
found not to improve over the best (direct) forecast 12 months ahead.

I also analyse the forecast errors for disaggregate components of euro
area HICP and find that the forecast errors of the subcomponents do not
cancel. This is because many shocks, e.g. the oil price shock or the shock to
unprocessed food in 2000 and 2001 in the euro area, affect several or even
all components of HICP over the forecast evaluation period and therefore
forecast errors appear in the same direction for those components affected.
Also, the extent of the effect of a shock and its dissemination across subcom-
ponents is difficult to predict. Therefore, the forecast bias of the aggregate
is not reduced, but increased by aggregating the subcomponent forecasts in
this case.

Furthermore, I have investigated the forecast performance of aggregating
subcomponent forecasts for another inflation measure of interest to mone-
tary policy makers: inflation excluding unprocessed food and energy prices,
sometimes referred to as ’core’ inflation. The results are more favorable for
aggregating subcomponent forecasts than in the analysis for overall HICP
inflation. For this aggregate the majority of methods exhibits higher forecast
accuracy for aggregating subcomponent forecasts. Comparing these findings
with the results for overall year-on-year inflation leads to further insight into
the reasons for the problems with aggregating disaggregate forecasts: Ag-
gregating subcomponent forecasts appears to be problematic when some
subcomponents are inherently difficult to forecast due to frequent shocks
to the series, in case of HICP subcomponents the shocks to energy and
unprocessed food prices.
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Appendix A Data
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Figure 8: First differences of HICP (sub-)indices (in logarithm)
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Figure 9: Money M3, industrial production, unemployment and unit labour costs
(in logarithm)
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Figure 10: Oil prices (in euros), commodity prices (excluding energy, in euros),
import prices (extra euro area), producer prices (in logarithm)



���������	
������������������������������

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

4.5

4.6

4.7
nominal effective exchange rate

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

2

3

4

5

6 nominal short−term interest rate

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

4

6

8

10 nominal long−term interest rate

Figure 11: Nominal effective euro exchange rate, nominal short- and long-term
interest rate (in logarithm except for interest rates)
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