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Abstract

The paper provides a novel Bayesian methodological framework to estimate structural
VAR (SVAR) models with recursive identification schemes that allows for the inclusion of
over-identifying restrictions. The proposed framework enables the researcher to (i) elicit
the prior on the non-zero contemporaneous relations between economic variables and
to (ii) derive an analytical expression for the posterior distribution and marginal data
density. We illustrate our methodological framework by estimating a backward look-
ing New-Keynesian model taking into account prior beliefs about the contemporaneous
coefficients in the Phillips curve and Taylor rule.

Keywords: Structural VAR, Bayesian inference, overidentifying restrictions.
JEL Classification: C11, C32, E47.
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1 Non-technical summary

Structural VAR (SVAR) models are the standard tool for analyzing the dynamic properties of

economic shocks, where the recursive identification scheme, initially proposed by Sims (1980),

remains the most popular starting point in most applications.

Over recent years the macroeconometric SVAR literature has moved toward Bayesian meth-

ods. The two main reasons are that the inclusion of prior information helps (i) improving the

precision of forecasts from VAR models (Litterman, 1986; Robertson and Tallman, 1999) and

(ii) strengthening the link between VAR analysis and economic theory. The most general

approach to Bayesian SVARs is arguably that of Waggoner and Zha (2003), which even if

efficient and robust is, by admission of the authors, not well suited for incorporating prior

beliefs in economic terms.

The contribution of our paper to the literature is to propose a prior setup for recursive

SVAR models that facilitates eliciting prior information from economic theory. In particular,

our prior is specified in terms of contemporaneous as well as lagged relationships between

endogenous variables. For example, it enables one to impose a prior in which inflation has an

instantaneous impact on the level of policy rate, in line with the standard Taylor rule. We claim

that our approach is advantageous for its hybrid nature. One aspect of this methodology is

the choice of priors in terms of contemporaneous relations of a model, in line with the original

spirit of the Cowles Commission approach. The second aspect is that it accounts for the

dynamics of the data in line with the VAR methodology proposed by Sims.

In the paper we illustrate our methodological approach by estimating a small New-Keynesian

model that consists of three equations, an IS curve, a Phillips curve and a Taylor rule, the

latter simplified slightly to illustrate the case of an over-identified model. The inclusion of

prior beliefs becomes very intuitive from a user perspective. In our application, for example,

they can be expressed simply in terms of the coefficient linking inflation and the output gap in

the Phillips curve and in terms of the coefficient linking the nominal interest rate and inflation

in the Taylor rule. The impulses responses derived for each of the three shocks in the model

therefore reflect simultaneously the model structure, the prior beliefs of the researcher as well

as the dataset.

From a technical point of view our prior setup is particularly advantageous as the relevant

distributions are derived analytically and there is no need therefore to resort to Markov Chain

Monte Carlo methods. This paper also opens several new avenues for further research. The

ability of drawing from exact distributions could be exploited in a multiplicity of applications,

for example when designing large SBVAR models. From a theoretical perspective one could

envisage extending this methodological framework to a wider range of identifications schemes

and forward looking models.
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2 Introduction

Structural VAR models remain the standard tool used for analyzing the dynamic propagation

of economic shocks. Though in the 1980s and 1990s there was an extensive debate on the

“appropriate” structuralization of VAR models, recursive identification schemes continue to be

widely used both in the academic literature and for policy analysis, particularly to investigate

the effects of monetary shocks (e.g. Christiano, Eichenbaum, and Evans, 1999, 2005; Uhlig,

2005).1 This paper contributes to the literature by proposing an analytically tractable prior

setup for recursive VARs with possibly overidentifying restrictions that is well suited to get

guidance from economic theory. We illustrate how these methodological advances can be ap-

plied to estimate a SVAR model with the prior centered on the three-equation New-Keynesian

model.

The most general approach to deal with Bayesian SVAR models is arguably that of Wag-

goner and Zha (2003, WZ). Their algorithm for drawing from the posterior is very efficient

under any identifying scheme. In particular, under the triangular identifying scheme it allows

for exact sampling. One may then wonder whether any new special treatment of recursive

SVAR models (with overidentifying restrictions) is needed. The answer is affirmative for two

reasons. First, the efficiency of the algorithm in WZ comes at the cost of transparency. Second,

as stated by WZ (see Waggoner and Zha, 2003, footnote 6), it is not well suited to incorporate

prior beliefs about the coefficients of a model. The reason of the above is that WZ normalize

the variances of the disturbances in the SVAR model, which means that the coefficients lose

their intuitive interpretation.

In this paper we propose a prior for the SVAR model that normalizes the coefficients of

the contemporaneous relations. This small change facilitates the choice of priors in terms of

contemporaneous relations, in line with the spirit of the original Cowles Commission recom-

mendations, while inference becomes more intuitive and the setup well suited to use theoretic

economic models as a prior for SVARs. The first advantage of our prior is that it shares some

convenient features with the standard Normal-Wishart prior (Kadiyala and Karlsson, 1997;

Sims and Zha, 1998) such as exact sampling from the posterior and an analytical form of

the marginal data density (MDD) for the case of overidentified recursive models. The for-

mer characteristic can be useful in the context of the growing literature on Large Bayesian

VARs (Banbura, Giannone, and Reichlin, 2010), which could be broadened to Large Bayesian

SVARs, whereas the latter considerably facilitates setting up an hierarchical prior, analogously

to what was done for example in Giannone, Lenza, and Primiceri (2012). The second advan-

tage of our prior is that it allows the researcher to distinguish between the lags of the same

1The fact that recursive models do deserve the extra attention is strengthened by the remark of Sims (2003)
“I personally find the arbitrary triangular ordering a more transparent data summary”.
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and of different variables, to center the prior on the contemporaneous relations present in the

economic model, and to impose overidentifying restrictions. In this sense, our prior can be

treated as an extension of the Sims and Zha (1998) framework.

The structure of the article is as follows. Section 2 outlines the proposed prior specification

and derives an analytical expression for the posterior and MDD. Section 3 presents an empirical

illustration based on the New-Keynesian model as described by Orphanides (2003). Section 4

concludes and provides possible avenues for future research. Finally, the Appendix shows that

our prior is a generalization of the standard Normal-Wishart prior for VAR models.

3 Structural Bayesian VAR model

We consider a structural VAR (SVAR) model of the form:

Ayt = B(1)yt−1 + B(2)yt−2 + . . . + B(P )yt−P + B(0) + εt, εt ∼ N (0, Ω) (1)

where yt is an N × 1 vector of observations, A and B(p) for p ≥ 1 are N × N matrices of

coefficients, and B(0) is the vector of constants. For the covariance matrix Ω we assume that

it is diagonal with elements ωn. To simplify notation, we rewrite (1) as:

Ayt = Bxt + εt, εt ∼ N (0, Ω) (2)

where xt = [y′t−1 y′t−2 . . . y′t−P 1]′ is a K-dimensional vector and B = [B(1) B(2) . . . B(P ) B(0)]

a matrix of size N ×K with K = PN + 1.

The n-th equation of (2) can be written as:

Anyt = Bnxt + εnt (3)

with An = [an1 an2 . . . anN ] and Bn = [bn1 bn2 . . . bnK ] representing the n-th rows of matrices

A and B, respectively.

We impose the following restrictions on the A matrix:

(i) The elements on diagonal satisfy ann = 1 (normalization).

(ii) The determinant is |A| = 1.

(iii) There are Mn free parameters of An that are estimated (gathered in a row vector Ãn)

and N − (Mn + 1) parameters set to zero.
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Following Waggoner and Zha (2003), we write down these restrictions as:

An = [1 Ãn]Sn (4a)

Ãn = AnS
∗
n (4b)

where Sn and S∗n are selection matrices consisting of zeros and ones of size (Mn + 1)×N and

N ×Mn, respectively.

The assumption |A| = 1 means that our framework is suitable for a lower or upper trian-

gular A (or restricted subsets). Given this limitation, in what follows we show that this setup

is well designed to introduce contemporaneous relations and overidentifying restrictions.

3.1 Prior specification

We propose the prior specification of the following form:2

p(Ω) =
N∏

n=1

p(ωn) ≡
N∏

n=1

IG(v1n, v2n) (5a)

p(A|Ω) =
N∏

n=1

p(Ãn|Ω) ≡
N∏

n=1

N (An, ωnF n) (5b)

p(B|A, Ω) =
N∏

n=1

p(Bn|A, Ω) ≡
N∏

n=1

N (Bn, ωnGn), (5c)

where N stands for the normal pdf and the inverted gamma IG pdf is defined as:

IG(v1, v2) := p(x) = vv1
2 [Γ(v1)]

−1x−(v1+1) exp{−v2

x
}, v1, v2 > 0. (6)

The underlined parameters are fixed and depend on a set of hyperparameters, the values of

which are chosen so that for exactly identified models our prior corresponded to that of the

standard Wishart-Normal prior (Kadiyala and Karlsson, 1997; Sims and Zha, 1998).3

For p(Ω) we suggest to set:

v1n = 1
2
(v − (N −Mn − 1))

v2n = 1
2
(v −N − 1)σ̂2

n.
(7)

where {σ̂2
n : n = 1, 2, . . . , N} are estimated variances of residuals from univariate autoregres-

2If Mn=0 and Ãn is the empty matrix, we set p(Ãn|Ω) to unity.
3In Appendix A we show that the standard Wishart-Normal prior is a specific case of our prior specification.
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sions and v is the first hyperparameter.

In the case of p(A|Ω), we need to set An and F n. The choice of the former depends on the

underlying economic model. For the latter, we suggest:

F n = S∗n
′diag

((
λ0

σ̂1

)2

,

(
λ0

σ̂2

)2

, . . . ,

(
λ0

σ̂N

)2
)

S∗n (8)

with λ0 being the second hyperparameter.

Finally, for p(B|A, Ω) we follow closely Sims and Zha and set:

Bn = AnB∗, (9)

where B∗ is an N ×K matrix of the form:

B∗ = [ D
N×N

0
N×N

0
N×N

. . . 0
N×N

0
N×1

]. (10)

The usual practice is to assume that D = diag(1, 1, . . . , 1) so that the prior is concentrated on

N random walk processes. In the next section we show that it might be justified to choose a

non-standard form of B∗ so that the prior is concentrated on the underlying economic model.

As regards ωnGn, we assume it to be a diagonal matrix with elements corresponding to the

prior variance of the coefficient for variable yj,t−p:

ωn

(
λ1

σ̂j × pλ4

)2

if anj is a free element in An

ωn

(
λ1λ2

σ̂j × pλ4

)2

otherwise.

(11)

The hyperparameter λ1 controls the overall tightness, λ2 ∈ (0, 1) differentiates between vari-

ables with contemporaneous impact on ynt and without such an impact and λ4 is the lag decay.

Finally, the prior variance for the constant term in the n-th equation is:

ωnλ
2
3, (12)

where for large values of hyperparameter λ3 the prior for the constant term is diffuse.
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3.2 Posterior draw

Let Y = [y1 y2 . . . yT ]′ and X = [x1 x2 . . . xT ]′ be observation matrices of size T × N and

T ×K, respectively, where T is the sample size. The likelihood function is:4

p(Y |A,B, Ω) = (2π)−NT/2|Ω|−T/2etr{−1
2
Ω−1(AY ′ −BX ′)(AY ′ −BX ′)′}. (13)

The algorithm of drawing from the posterior:

p(A,B, Ω|Y ) = p(Ω|A,B, Y )p(B|A, Y )p(A|Y ) (14)

consists of three steps:

i. draw A from p(A|Y )

ii. draw B from p(B|A, Y )

iii. draw Ω from p(Ω|A,B, Y )

An appealing feature of our prior setup is that the distributions p(Ω|A,B, Y ), p(B|A, Y ) and

p(A|Y ) have an analytical form and there is no need to resort to MCMC techniques. In what

follows, we derive the exact formulas.5

Posterior p(Ω|A,B, Y )

The Bayes formula implies that:

p(Ω|A,B, Y ) ∝ p(Y |A,B, Ω)p(B|A, Ω)p(A|Ω)p(Ω). (15)

By substituting (5) and (13) to (15), given the diagonal form of Ω, it can be derived that:

ωn|A,B, Y ∼ IG(v1n, v2n) (16)

with:6

v1n = v1n + T+K+Mn

2

v2n = v2n +
(AnY ′−BnX′)(AnY ′−BnX′)′+(Bn−Bn)G−1

n (Bn−Bn)′+(Ãn−An)F−1
n (Ãn−An)′

2

(17)

The diagonal form of Ω also means that:

4Notice that we assume that |A|=1.
5Full derivation is available upon request.
6To simplify notation, if Mn = 0 the term (Ãn−An)F−1

n (Ãn−An)′ drops out in all formulas of this section.
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p(Ω|A,B, Y ) =
N∏

n=1

p(ωn|A,B, Y ). (18)

Posterior p(B|A, Y )

We start the computation of p(B|A, Y ) by noticing that:

p(An, Bn|Y ) ∝ ((Bn −Bn)G
−1

N (Bn −Bn)′ + ςn)−v1n , (19)

with:

Bn = (BnG−1
n + AnY ′X)Gn

Gn = (X ′X + G−1
n )−1

ςn = AnY ′Y A′
n + (Ãn − An)F−1

n (Ãn − An)′ + BnG−1
n B′

n −BnG
−1

n B
′
n + 2v2n

(20)

The above result follows from two observations. First, it is possible to calculate the joint

distribution:

p(A,B|Y ) =
p(A,B, Ω|Y )

p(Ω|A,B, Y )
.

The denominator is given by (16)-(18), whereas the nominator can be computed with (5) and

(13) as p(A,B, Ω|Y ) ∝ p(Y |A,B, Ω)p(B|A, Ω)p(A|Ω)p(Ω). The second observation is that,

given the structure of model (1), it is possible to decompose p(A,B|Y ) into:

p(A,B|Y ) =
N∏

n=1

p(An, Bn|Y ). (21)

With (19) and (20), it can be shown that:

Bn|An, Y ∼ tK(Bn, Gn, ςn, gn), (22)

with:

gn = T + Mn + 2v1n. (23)

Here tK(µ, Σ, θ, γ) denotes K-dimensional t-Student pdf with γ degrees of freedom:

tK(µ, Σ, θ, γ) := p(x) = (γπ)−
K
2 |Σ|−1

2
Γ((γ+K)/2)

Γ(γ/2)
θ

γ+K
2 {θ + (x− µ)Σ−1(x− µ)′}−

γ+K
2 . (24)
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Finally, by analogy to (21), the conditional distribution p(B|A, Y ) is:

p(B|A, Y ) =
N∏

n=1

p(Bn|An, Y ), (25)

Posterior p(A|Y )

Let us define:

Rn =

[
Rn,11 Rn,12

Rn,21 Rn,22

]
= Sn[Y ′Y + B∗G

−1
n B′

∗ − (B∗G
−1
n + Y ′X)Gn(B∗G

−1
n + Y ′X)′]S ′n, (26)

where Rn,11 is a scalar and Rn,22 an Mn ×Mn matrix, so that:

[1 Ãn]Rn[1 Ãn]′ = AnY
′Y A′

n + BnG−1
n B′

n −BnG
−1

n B
′
n. (27)

The distribution p(Ãn|Y ) can be computed by integrating out Bn from p(An, Bn|Y ), which is

given by (19). The result is a multivariate t-Student:

Ãn|Y ∼ tMn(An, F n, χn, fn), (28)

where:

An = (F−1
n A′

n −Rn,21)
′F n

F n = (Rn,22 + F−1
n )−1

χn = Rn,11 + AnF
−1
n A′

n − AnF
−1

n A
′
n + 2v2n

fn = T + 2v1n

(29)

Finally, the posterior p(A|Y ) is:7

p(A|Y ) =
N∏

n=1

p(Ãn|Y ). (30)

3.3 Marginal data density

Another advantageous feature of our prior setup is that there is an analytical form of the

marginal data density. To derive it we need to calculate the following integral:

7For Mn = 0 we set p(Ãn|Y ) to unity.
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p(Y ) =

∫
p(Y |A,B, Ω)p(B|A, Ω)p(A|Ω)p(Ω)dAdBdΩ. (31)

We start by evaluating p(Y |A, Ω) =
∫

p(Y |A,B, Ω)p(B|A, Ω)dB. The combination of (5c)

and (13) leads to:

p(Y |A,B, Ω)p(B|A, Ω) = (2π)−
NT
2 |Ω|−T

2 etr{−1
2
Ω−1(AY ′ −BX ′)(AY ′ −BX ′)′}×

× (2π)−
NK
2

N∏
n=1

|Gn|−0.5ω
−K

2
n exp{−1

2
ω−1

n (Bn −Bn)G−1
n (Bn −Bn)′}.

(32)

Integrating out B yields:

p(Y |A, Ω) = κ1

N∏
n=1

ω−T/2
n exp{−1

2
ω−1

n (AnY ′Y A′
n + BnG

−1
n B′

n −BnG
−1

n B
′
n)}, (33)

where κ1 = (2π)−NT/2
∏N

n=1(|Gn|/|Gn|)0.5.

Next, we calculate p(A, Y ) =
∫

p(A, Ω, Y )dΩ =
∫

p(Y |A, Ω)p(A|Ω)p(Ω)dΩ. By combining

(5a), (5b) and (33) we have:

p(A, Ω, Y ) = κ1

N∏
n=1

ω
−T

2
n exp{−1

2
ω−1

n (AnY ′Y A′
n + BnG

−1
n B′

n −BnG
−1

n B
′
n)}×

×
N∏

n=1

(2π)−
Mn

2 |F n|−0.5ω
−Mn

2
n exp{− (Ãn−An)F−1

n (Ãn−An)′

2ωn
}×

×
N∏

n=1

[Γ(v1n)]−1(v2n)v1nω−(v1n+1)
n exp{−v2n

ωn
},

(34)

Integrating out Ω from (34) yields:

p(A, Y ) = κ1κ2

N∏
n=1

Γ(gn

2
)(ςn)−

gn

2 = κ1κ2

N∏
n=1

Γ(gn

2
)((Ãn − An)F

−1

n (Ãn − An)′ + χn)−
gn

2 (35)

where κ2 = 2NT/2
∏N

n=1 π−Mn/2|F n|−0.5Γ(v1n)−1(2v2n)v1n .

In the last step we compute the integral p(Y ) =
∫

p(A, Y )dA. Let us notice that

∫
Γ(gn

2
)((Ãn − An)F

−1

n (Ãn − An)′ + χn)−
gn

2 dÃn = π
Mn

2 Γ(fn

2
)|F n|0.5|χn|−

fn

2 (36)
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As a result, the marginal data density is:

p(Y ) = κ1κ2

N∏
n=1

π
Mn

2 Γ(fn

2
)|F n|0.5|χn|−

fn

2 =

=π−
NT
2

N∏
n=1

( |F n||Gn|
|F n||Gn|

)0.5

× Γ(T
2

+ v1n)

Γ(v1n)
× (2v2n)v1nχ

−(v1n+
T
2

)
n

(37)

3.4 Advantages of our prior setup

We consider the above prior specification as advantageous for the following reasons:

a. It provides an intuitive framework for setting priors on the contemporaneous relationship

between variables on the basis of economic theory.

b. It generalizes the commonly used Normal-Wishart prior for VARs (Appendix A).

c. It allows for overidentifying restrictions in recursive identification schemes and the sam-

pling from the posterior distribution is exact.

d. There is an analytical expression for the marginal data density, which facilitates model

comparisons and the choice of hyperparameters.

e. One may differentiate between the lag of the same or of a different variables, as advocated

e.g. by Litterman (1986).

We shall illustrate all these advantages in the following section by applying our methodological

framework to calculate impulse responses from a structural VAR model with priors taken from

a backward-looking New Keynesian model.

4 Empirical illustration

In the empirical part we shall consider a small New Keynesian model that consists of three

equations expressed in terms of the output gap zt, inflation πt and the nominal interest rate

Rt (see Orphanides, 2003, for a more detailed description):

zt = ρzzt−1 − ξ(Rt−1 − πt−1) + εD
t (38a)

πt = ρππt−1 + κzt + εS
t (38b)

Rt = ρRRt−1 + γπt + εM
t , (38c)
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where εD
t , εS

t and εM
t stand for the demand, supply and monetary shock, respectively. For

convenience the three equations could be labeled as an IS curve, a Phillips Curve and a

simplified Taylor rule. We illustrate the working of this setup by calculating the impulse

response function from the SVAR model of the form (1) with the prior given by model (38).

We collect quarterly data for zt, πt and Rt from the Federal Reserve and Bureau of Eco-

nomic Analysis databases. We use the following series: the Fed Funds Effective Rate, price

inflation (GDP deflator, quarter on quarter at annualized rate) and GDP in constant prices

for the period 1987:1-2011:4. The output gap is calculated with the Baxter and King (1999)

filter as the part of GDP attributed to the frequencies between 6 and 40 quarters. Given that,

as suggested by the authors, we set the maximum lag at 12 quarters, the model was estimated

on the basis of data from the period 1990:1-2008:4.

Let yt = [Rt πt zt]
′ so that we could write down (38) in the form of SVAR(1) with the prior

centered on:

E(A) =




1 −γ 0

0 1 −κ

0 0 1


 and E(B) =




ρR 0 0 0

0 ρπ 0 0

−ξ ξ ρz 0


 (39)

Apart from γ and κ, we fix the remaining parameters of the A matrix at zero, which means

that we impose one overidentifying restriction. As discussed in the methodological part of the

paper, our setup makes it straightforward to elicit non-zero prior beliefs for contemporaneous

relations. This is what we do by setting as prior beliefs κ = 0.1 in the Phillips curve and

γ = 0.15 in the Taylor rule. For the remaining parameters we set ξ = 0.1, ρz = 0.9, ρπ = 0.9

and ρR = 0.9. The above values are broadly in line with Ball (1999) and Orphanides (2003).

For the hyperparameters, we choose values close to those suggested by Sims and Zha (1998)

and set λ0 = 1, λ3 = 1000, λ4 = 1, v = N + 2, whereas for the hyperparameter λ2 that is

not present in the normal-Wishart setup, we set λ2 = 0.5. We do not fix the overall tightness

hyperparameter at a specified value, but assume an hierarchical prior structure as advocated,

inter alia, by a recent paper of Giannone, Lenza, and Primiceri (2012). In particular we assume

λ1 ∼ IG(2, 0.1) so that E(λ1) = 0.1.

Let us notice that conditional on hyperparameters the marginal data density is available in

the closed form (see 37). Treating λ1 as unknown parameter (37) can be written as p(Y |λ1).

The the marginal posterior of λ1 is:

p(λ1|Y ) ∝ p(λ1)p(Y |λ1). (40)

As a result, the Random Walk Metropolis-Hastings algorithm of drawing from posterior of

λ1 and calculating impulse responses (IRF) is as follows:

12



i. Set j = −J0 and initialize λ
(j−1)
1 = 0.1

ii. Draw candidate λ∗1 = λ
(j−1)
1 + δε, where δ is a calibrating factor and ε ∼ N (0, 1).

iii. Calculate θ = min{1, p(λ∗1)p(Y |λ∗1)

p(λ
(j−1)
1 )p(Y |λ(j−1)

1 )
} and draw u from U(0, 1), where U denotes the

uniform distribution on (0, 1).

iv. If θ < u set λ
(j)
1 = λ

(j−1)
1 , otherwise set λ

(j)
1 = λ∗1

v. If j > 0 draw A, B and Ω from p(A,B, Ω|Y, λ
(j)
1 ) and compute the value of IRF.

vi. If j<J go to (ii). Otherwise stop.

The values of J0 = 1000 and J = 100000 describe the size of the burn-in sample and the number

of MH draws. As a result, after running the algorithm we have J = 100000 realizations of

IRF from the posterior.

Figure 1 presents the prior and posterior density of λ1, showing that the latter is more

dispersed and that there is a higher probability that λ1 takes a higher value in the range

between 0.1 and 0.3. Figure 2 presents the median value of impulse responses for the three

shocks of the model. A standardized monetary policy shock is characterized by a temporary

but rather persistent increase of the nominal interest rate by 80 basis points. The negative

impact of the monetary shock on inflation and output (relative to trend) reaches the peak about

two and a half years after the shock, with annualized inflation falling by half a percentage point

and output by 0.2%. A standard (negative) supply shock, which might be interpreted as an

oil shock, has a direct inflationary impact of about 1 percentage point and a contemporaneous

response of monetary policy, evidenced by the immediate rise in the nominal interest rate by

almost 0.4 percentage points. The impact on the output gap is positive since the shock leads to

a downward shift in the level of potential GDP. Finally, a positive demand shock raises output

by 0.5% relative to the trend with an impact on inflation of about 0.1 percentage points. The

overall impact on both variables eventually dies out as the rise in the nominal interest rate

has an offsetting impact.

5 Conclusions

In this paper we have proposed a Structural Bayesian recursive VAR framework that has

several novel features compared to existing methods. The prior setup that we have designed

is advantageous from the econometric perspective as the Marginal Data Density has an an-

alytical form and there is no need to resort to MCMC techniques. Our prior set up is also
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appealing from an economic perspective for it is well suited to elicit priors on the contem-

poraneous relationship between variables, hence facilitating a meaningful definition of prior

beliefs in terms of economic theory. This paper opens a number of new avenues for further

research. The ability of drawing from exact distributions could be exploited in a multiplicity

of applications, for example for setting up a Large SBVAR model or in the context of ap-

plications with different hierarchical priors. The current framework appears also particularly

useful in applications where the researcher has prior beliefs on the contemporaneous coefficients

of a given model. Finally, from a theoretical perspective one could envisage extending this

methodological framework to alternative identification schemes and forward looking models.

Appendices

A Prior comparison

In this appendix we show that the commonly used Normal-Wishart prior for VAR models

(Kadiyala and Karlsson, 1997) is a specific case of our prior defined in (5). Let Σ denote

the error term covariance matrix of the reduced form representation corresponding to the

structural model given by (1):

Σ = A−1ΩA′−1. (A.1)

In Kadiyala and Karlsson the prior for Σ is of the inverted Wishart (IW) form:

p(Σ) ∝ |Σ|− 1
2
(v+N+1)etr{−1

2
Σ−1Q}. (A.2)

It is a common practice to set:

Q = (v −N − 1)× diag

((
σ̂1

λ0

)2

,

(
σ̂2

λ0

)2

, . . . ,

(
σ̂N

λ0

)2
)

(A.3)

so that:

E(Σ) = diag

((
σ̂1

λ0

)2

,

(
σ̂2

λ0

)2

, . . . ,

(
σ̂N

λ0

)2
)

. (A.4)

Below we elicit the values of v1n, v2n, An and F n for our prior setup consistent with the IW
prior and Q given by (A.2) and (A.3).

We consider the case in which A is unit upper triangular so that the correspondence

between Σ and {A, Ω} is one-to-one. To derive the joint prior for {A, Ω} we substitute the

Jacobian:
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J (Σ → A, Ω) =
N∏

n=1

(ωn)n−1. (A.5)

into (A.2), which yields:

p(A, Ω) =
N∏

n=1

ω
− 1

2
(v+N−2n+3)

n × exp{−1
2
ω−1

n AnQA′
n} (A.6)

and the conditional prior for A

p(A|Ω) ∝
N∏

n=1

exp{−1
2
ω−1

n AnQA′
n}. (A.7)

Let us define:

Q
n

= SnQS ′n, (A.8)

where the selection matrices Sn introduced in (5) for the upper-triangular A are:

Sn = [0(N−n+1)×(n−1) IN−n+1]. (A.9)

Given the form of Q in (A.3), we can partition Q
n

into:

Q
n

=

[
q∗

nn
0

0 Q∗
n

]
, (A.10)

where q
nn

= (v −N − 1)λ−2
0 σ̂2

n and Q∗
n

= (v −N − 1)λ−2
0 diag(σ̂2

n+1, . . . , σ̂
2
N).8 Consequently,

(A.7) can be written as:

p(A|Ω) ∝
N−1∏
n=1

exp{−1
2
ω−1

n ÃnQ∗
n
Ã′

n} =
N−1∏
n=1

N (0, ωnQ∗
n

−1). (A.11)

It is now evident that the conditional prior given by (A.11) is a specific form of the prior

defined in (5b), i.e. if we set An = 0 and F n = Q∗
n

−1. Let us notice that this choice of the

prior corresponds to the value of F n proposed in (8).

Finally, we derive the marginal prior for Ω induced by the IW prior (A.2). Since p(Ω) =∫
p(A, Ω)dA, the use of (A.6) yields:

p(Ω) =
N∏

n=1

IG(1
2
(v − n + 1), 1

2
q

nn
), (A.12)

8Notice that Q∗
N

reduces to the empty matrix.
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where the (IG) pdf is defined in (6). It is now evident that we need to set v1n = 1
2
(v− (n−1))

and v2n = 1
2
q

nn
in the prior defined in (5a) to be consistent with the IW prior. Let us notice

that for upper triangular A, when (N −Mn− 1) = (n− 1), these are the values of v1n and v1n

proposed in (7).
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Figure 1: Prior and posterior density of overall tightness hyperparameter
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Notes: The solid and dotted lines stand for prior and posterior density, respectively.
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Figure 2: Impulse response functions
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