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Abstract

This paper comments on selected aspects of identification issues of DSGE models. It
suggests the singular value decomposition (SVD) as a useful tool for detecting local weak
and non- identification. This decomposition is useful for checking rank conditions of iden-
tification, identification strength, and it also offers parameter space ‘identification patterns’.
With respect to other methods of identification the singular value decomposition is particu-
larly easy to apply and offers an intuitive interpretation. We suggest a simple algorithm for
analyzing identification and an algorithm for finding a set of the most identifiable set of pa-
rameters. We also demonstrate that the use of bivariate and multiple correlation coefficients
of parameters provides only limited check of identification problems.

Keywords: DSGE, identification, information matrix, rank, singular value decomposi-
tion,

J.E.L. Classification: F31, F41
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Non-technical summary

The paper discusses identification issues in Dynamic Stochastic General Equilibrium (DSGE)
models and suggest a simple and intuitive method to detect and interpret identification prob-
lems, based on singular value decomposition.

The use of formal econometric techniques makes sence only if the model is identified, to
ensure that different set of structural parameters do not result in observationally equivalent
outcomes. Weak or non- identified models make both frequentist and Bayesian estimation
and policy analysis more challenging. For unidentified parameters the criterion function
used for estimation is non-responsive to changes in these parameters.

The weak or non-identification of a parameter is caused its either by lack of influence of
the parameter value on the criterion function (likelihood in our case) or because it affects the
criterion function in the same way as some other parameters. In case of DSGE models the
identification problem may arise due to non-unique mapping from reduced form parameters
of the model to deep structural parameters having economic interpretation.

The paper proposes a particular matrix transformation, singular value decompostion
(SVD), as an extremely useful tool for detecting and interpreting local weak and non- iden-
tification. SVD may be used to analyze the Hessian of the estimation criterion function, the
Fisher information matrix in case of likelihood-based estimation, or the linearized mapping
from structural to reduced form parameters. SVD reveals the unidentified parameters as the
members of the nullspace of the analyzed mapping. The components of the nullspace are
labelled as ‘identification patterns’. The notion of the nullspace is explained in the paper.

SVD is suggested for checking the nullspace of the Fisher information matrix or the
Jacobian of the mapping from deep structural parameters to reduced ones. The number of
non-zero singular values determines the rank of the matrix and the number of identifiable
parameters. If a rank-defficiency of the matrix –a non-identification sign– is found, SVD is
the answer to the question what is the cause of the reduced rank. Further, by sequentially
eliminating most weakly identified parameters it is possible to sort the parameters in terms
of their identifiability.

The singular value decomposition is also linked to measures of collinearity and variance
inflation factors. It is demonstrated that a single collinear relationship among parameters
inflates both bivariate and multiple correlation coefficients based on the Fisher information
matrix. The correlation analysis thus may not be fully revealing about the true causes of
identification problems.

The identification method analyzed is demonstrated using two well-known DSGE mod-
els to explore weakly and non- identified parameters as well as to sort the parameters in
terms of their ‘identification strength’.
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Introduction

This paper is about a method and ’pictures’ that go with it.1 The particular method deals
with the inspection of ‘identification patterns’ in Dynamic Stochastic General Equilibrium
(DSGE) models built by economists and used for research and policy analysis, althought it
is not limited only to these models.

DSGE models are typically estimated using formal econometric full- or limited infor-
mation methods instead of less formal parameters calibration. In order to obtain meaningful
results, parameters must be identified, to ensure that different set of structural parameters
do not result in observationally equivalent outcomes. It is important to remember that iden-
tification is relevant in both classical (frequentist) and Bayesian approaches to statistical
inference.

We show that identification of DSGE models effectively boils down to a problem of
invertible linear transformations, i.e. whether one can recover a vector of structural param-
eters θ from a set of reduced-form parameters τ(θ) that are functionally dependent on those
structural ones. In the context of the problem order and rank conditions naturally arise.

Our goal is to find non-identified and weakly identified parameterizations, their struc-
tures, and suggest plausible restrictions on unidentified parameters. To determine what
parameters, or combinations of structural parameters, are causing the problem, we pro-
pose inspecting basic subspaces of linear maps which allow us to locate identifiable and
non-identifiable subspaces in the parameter space. We suggest that singular value decom-
position (SVD) is natural choice for locating unidentified parameter subspace and provides
also insight into the ‘strength’ of the identification. Further, we demonstrate that bivariate
and multiple correlation measures may provide misleading view about identification and we
propose a simple method for detecting best identified parameters based on rank-revealing
factorizations.

The issue of identification is well-known in econometrics literature, e.g. Fisher (1966),
Rothemberg (1971), Hannan (1971) or Hsiao (1983) to name but a few classics. Research
on ‘weak’ identification has recently been stimulated by the works of Staiger and Stock
(1997), or Stock, Wright and Yogo (2002).

The DSGE model identification problem was under-researched for a while and still
seem to be neglected by some economists in the field. The importance of the issue was
reminded by Canova and Sala (2006) and Canova and Sala (2009), insightful paper by
Cochrane (2007) or investigations by Iskrev (2008) and Iskrev (2009b) with a focus on es-
timation. Cochrane (2007) and Beyer and Farmer (2007) raise the important issue of obser-
vationally equivalent structures and types of equilibria in connection with –often arbitrary–
lag length restrictions; a point previously raised by Pesaran (1987) and Sargent (1978).
These papers alert economists to the importance of inspecting border-line lag specifications,
since absence or presence of sufficient lag length may prevent or deliver identifiability for

1The opening sentence is inspired by the one in Strang (1993)
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important structural parameters.

The recent contribution of Komunjer and Ng (2009) provides necessary and sufficient
order and rank conditions for local identifiability of DSGE models, so we will not restate
the results in this paper. The commonality of this paper and Komunjer and Ng (2009) is the
departure from well-established literature on identification of linear and non-linear dynamic
state-space models in an engineering literature.2 The above mentioned paper builds on the
results by an engineering classics Glover and Willems (1974) or Grewal and Glover (1976),
inter alia, to specific conditions of DSGE models – e.g. possible stochastic singularity and
lack of observed input. These are important contributions, providing both necessary and
sufficient conditions for local-identifiability of (minimal) state-space realizations from an
auto-covariance generating function (ACGF).

After some progress in the analysis of the identification via the nullspace of the linear
map and the singular value decomposition and its applications, the effort to treat the issue
formally we found interesting works on multicollinearity and identification. In the field
of regression analysis Belsley, Kuh and Welsch (1980) discuss multicollinearity detection
and mention the use of SVD. Vajda, Rabitz, Walter and Lecourtier (1989) use eigenvalue
decompositions of the Information matrix in chemical engineering models motivated by
principal components, and recently Van Doren, den Hof, Jansen and Bosgra (2008) use the
singular value decomposition for the analysis of the Information matrix as it is also sug-
gested bellow. The use of the SVD for detecting multicollinearity and near collinearity is
thus not novel, though we treat the issue in greater detail, with stronger relation to sub-
spaces and also suggest an algorithm for a parameter subset selection. The purpose of the
paper is to suggest a simple and workable method for identification checks.

The structure of the paper is as follows. The first section defines the issue of identifi-
cation and its importance. The second section focuses on the analysis of the presence of
unidentifiability and its sources by inspecting the rank and the nullspace of the linear map.
Section Three investigates the strength of identifiability in relationship with collinearity de-
tection, suggests an algorithm for parameter subset selection and analyzes the limitations
of correlation measures. Section Four demonstrates the method using two well-established
DSGE models and then we conclude.

2In engineering literature, ‘identification’ of the model is often understood as an estimation of the model,
although structural identification is also dealt with. Another important difference is that in engineering both the
system’s output and input are usually readily available, which is not the case in economics.
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1 Identification and Observational Equivalence

1.1 Identification Defined

Identification is related to observational equivalence. Let Y be the set of observations and
let structure S be a complete probability specification of Y in the form S = F (Y, θ) where
θ ∈ Θ ⊂ R

n is the vector of parameters, Θ being the parameter space. Two structures,
S0 = F (Y, θ0) and S∗ = F (Y, θ∗) are said to be observationally equivalent, if F (Y, θ0) =
F (Y, θ∗) for almost all Y . The structure is identified if this equality means θ0 = θ∗, and
unidentified otherwise.

Often, the inspection of global identification for the whole parameter space is difficult.
We say that the structure is locally identified if there exists an open neighbourhood of θ0

containing no other θ ∈ Θ which produces an observationally equivalent structure. This
paper only deals with local identification of DSGE models, meaning identification near the
specific value of θ in the parameter space Θ.

In a brilliant paper, Rothemberg (1971) proved, subject to some regularity conditions,
that θ0 is locally identified for a given structure if and only if the Information matrix eval-
uated at θ0 is not singular, i.e. of defficient rank. Further, Rothemberg (1971) stated the
results for two important cases – (i) the case of an Information matrix without the existence
of the reduced form structure and (ii) the case of existence of the reduced form, where re-
duced form parameters τ ∈ T ⊂ R

m help to establish the identification of the structural
parameters. We assume existence of reduced form parameters and the mapping T (θ, τ) = 0
since we focus on DSGE models.

In the case where T (θ, τ) = 0 exists and, importantly, if the reduced form parameters
are identified, the necessary and sufficient condition for identification is that T ≡ ∂T/∂θ′

is of full rank. The question is thus whether we can find a unique solution from τ to θ.

Bayesian View of the Identification Problem We briefly comment on a Bayesian
view of the identification. The problem does not seem as clearcut under the Bayesian
paradigm as under the Classical one. See Aldrich (2002) for an enlightening review and
discussion of ’how likelihood and identification went Bayesian’. The issue may be divided
into ‘genuine Bayesians’ and ‘Bayesians out-of-convenience’ who consider prior informa-
tion only as a method of regularization of the optimization problem of the likelihood.

Aldrich (2002) discusses the difficult evolution of ‘identification’ under the Bayesian
paradigm where parameters may be estimable even when data are completely uninforma-
tive. There were requests for broadening the concept of identification for the Bayesians,
view that “underidentifiability causes no real difficulty in the Bayesian approach” (Dréze
1972). This was followed by the recognition that “. . . it was misleading to use the word
‘identification’ in defining a property of the prior density for the parameters of unidentified
models. [I] agree with Kadane’s view that ‘identification is a property of the likelihood
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function and it is the same whether considered classically or from the Bayesian approach’”
(Dréze 1975).

The uninformativeness of data for parameters can be treated as marginal uninformative-
ness or conditional uninformativeness, see Poirier (1998). It is a common view that equality
of marginal posterior with a marginal prior distribution demonstrates a lack of identifica-
tion. The likelihood is weakly or non- responsive to changes in the parameter and the prior
information dominates regardless of the sample size. On the other hand, with explicit or
implicit dependence among parameters data may be marginally informative even for con-
ditionally unidentified parameter. This is way difference of marginal posterior from prior
density is not a sufficient sign of identification.

In the case of ‘Bayesians out-of-convenience’, the importance of identification as a
property of the likelihood is important. As argued in Gelman, Carlin, Stern and Rubin
(2004, Chapter 4) or recently in Guerron-Quintana, Inoeu and Kilian (2009) or Moon and
Schorfheide (2009), the large sample inference and frequency properties of Bayesian infer-
ence are greatly affected by identification problems. The key fact is that the likelihood does
not dominate the prior information as the sample size grows.

We are limiting ourselves to identification in terms of data informativeness and thus we
explore the properties of likelihood or other criterion functions.

1.2 DSGE Models Case

We write a linear or linearized DSGE model in a standard state-space form as

Xt = C1(θ) + T(θ)Xt−1 + R(θ)εt (1)

Yt = C2(θ) + Z(θ)Xt + H(θ)εt, (2)

where the state-space parameters are functionally related to set of structural parameters θ as
indicated by the notation and E[εε′] = S(θ). We declare the set of reduced form parameters
as

τ ≡ {vec C1(θ); vec C2(θ); vec T(θ); vec R(θ); vec Z(θ); vec H(θ); vec S(θ)}.

The properties of the mapping T (θ, τ) = 0 are crucial for identification of DSGE mod-
els. Due to its highly non-linear nature, we inspect the Jacobian of the map evaluated at a
particular θ so we explore linear map τ = Tθ. Note that the non-uniqueness of the solu-
tion of this map is sufficient to cause non-dentification. Its uniqueness is only a necessary
condition for identificiation since τ may not be well identified.3

3Recall that state-space models can be related by similarity transformations, which are unique in case of min-
imal systems, so the state Xt is not identified up to rotation, see e.g. Kailath (1980) or Harvey (1989), and for
the role in identification Glover and Willems (1974) or Komunjer and Ng (2009). We do not make any further as-
sumptions in terms of observability and controllability since we care about the presence of structural identifiability,
though these are related, see e.g. DiStefano (1977).
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We take the model under inspection as given including the set of observables as given,
although it is clear that the identification analysis is always conditional on the set of observ-
ables of the model. Note that this is not the same as distinguishing limited information and
full-information methods of estimation (Canova and Sala 2009), it concerns the model’s
proper transfer function and thus also full-information methods.

Estimation Methods The method discussed bellow is not limited to a particular esti-
mation method. It focuses on two basic ingredients – the Hessian of the criterion function
and, in if plausible, the mapping of structural parameters into reduced form parameters.

We will focus on the Information matrix in particular based on the log-likelihood func-
tion of the state-space model. We do not restrict ourselves to a particular way of obtaining
the likelihood function of the model, see e.g. Harvey (1989).4 All exercises are done with-
out the use of data and we do not estimate the model. Identification can be evaluated in
selected areas of parameter space. However, the number of time periods T is an important
as it enters the likelihood function as a parameter and determines what frequencies of data
are considered.

We shall thus explore properties the information matrix

R(θ) ≡ E

{(
∂L

∂θ′

)′ (∂L

∂θ′

)}
= E

{(
∂τ

∂θ′

)′ [(
∂L

∂τ ′

)′ ( ∂L

∂τ ′

)] (
∂τ

∂θ′

)}
(3)

= E

{(
∂τ

∂θ′

)′
R(τ)

(
∂τ

∂θ′

)}
, (4)

and the mapping Tθ = τ , where θ ∈ Θ ⊂ R
n is the vector of structural parameters and

τ ∈ T ⊂ R
m is the vector of reduced form parameters – if plausible – and R(τ) is defined

as the information matrix with respect to reduced form parameters.

2 Identification and Linear Maps

The identification issue generally boils down to inspection of a matrix rank. The object
of interest may be a Fisher Information-matrix, Hessian of a particular estimation criterion
function with respect to θ or a linear map from structural parameters θ to reduced form
parameters τ such as τ = Tθ. We need to inspect the rank of the matrix and determine
the causes of matrix rank-deficiency. In case of reduced form parameters, the question may
also be posed about the invertibility of the linear map (its matrix) T .

Let us focus on the intuitive case of the mapping Tθ = τ , where T is the Jacobian.
Let θ ∈ Θ ⊂ Rn and let τ ∈ T ⊂ R

m, which implies that the matrix of the map T

is (m × n). To investigate the mapping we employ standard results from linear algebra.

4The likelihood function can be calculated both in time and frequency domain. The frequency domain al
to perform identification analysis across frequencies.
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Simmons (2003), Strang (1988), Axler (1997) and Golub and van Loan (1996) are useful
general references, Strang (1993) is a joy to read.

2.1 Important Subspaces and SVD

The relationship Tθ = τ is fully described by linear transformation, its matrix T and its
four fundamental subspaces – nullspace of T , null(T ), range of T and nullspace and range
of T ′. Most importantly,

dim range(T ) + dim null(T ) = n. (5)

We define the rank of T as rank(T ) = dim range(T ). A non-obvious fact is that the
rank of the column space is equal to the rank of the row space of the matrix, hence the
concept of rank is unambiguous, i.e. dim range(T ) = dim range(T ′).

Recall that the null space of a linear transform is a subspace of its domain and that it
consists of all vectors which are the solution to Tθ = 0. Importantly, when the range is of
dimension r, the nullspace is of dimension n − r.

It is clear that only when τ is in the range(T ), i.e. in the column space of T , can
we solve the problem Tθ = τ . If m < n the problem for obtaining unique structural
parameters from reduced ones is ill posed. This is due to the fact that the order condition
does not hold and it is impossible for the columns of T to be independent. For at least one
solution we require m ≤ n, but in order to hope for at most one solution we require m ≥ n.

These facts are quite well known, so for exact identification we search for a unique
solution and we require the linear map, determined by matrix T , to be of a full rank. We
demonstrate that the inspection of T ’s subspaces clarifies the structure of the problem. The
null space of T is orthogonal to range of T ′, while the range of A is orthogonal to left-
nullspace, null(T ′), which has a dimension of m − r.

An absence of null(T ′) implies that there is a solution and an absence of null(T ) indi-
cates that the solution is unique. The absence of nullspace of T is easy to check using the
rank conditions.

When there is no unique solution, meaning the nullspace is not empty, it is crucial to
explore the nullspace structure, which determines the subspace of unidentifiable parame-
ters. We may also inspect the row Echelon form to find out free elements in case of singular
T . Consequently, we need to find ‘suitable’ basis for the subspace. The linear map is ex-
pressed by a matrix T , yet linear maps are defined with respect to two bases – domain and
target. When the bases are not explicitly stated standard basis can be assumed. Operators
(maps from a space to itself) require only one basis. Most matrix factorisations consider
square matrices only. It is useful to have a more general tool in order to analyze the matrix
of a linear mapping. One such useful tool is Singular value decomposition (SVD).
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Singular value decomposition If A is a real (m × n) matrix, then there exist orthog-
onal matrices

U = [u1, . . . , um] ∈ R
m×m and V = [v1, . . . , vn] ∈ R

n×n

such that

U ′AV = Σ = diag(σ1, . . . , σ
p) ∈ R

m×n, p = min{m, n}

where σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, (Golub and van Loan 1996).

Using SVD, we can find a very ‘nice’ basis for the needed subspaces. We obtain or-
thonormal basis vectors; the matrix of the linear map is diagonal with respect to both bases.
It is important to note that we can find SVD factorisation for any (m×n) matrix. After ap-
plying SVD to real matrices no complex numbers are involved. We are left, however, with
two orthogonal bases, which do not cancel mutually. While this is potentially problematic,
in our case it is not. SVD is intimately connected to the eigenvalue decomposition (EVD),
which for square and symmetric matrices –such as the Fisher information matrix– delivers
the same decomposition, with a diagonal matrix and a single basis related to SVD output.

As it is common, σi are labeled as singular values and vectors ui,vi are the i-th left and
right singular vectors, respectively. Furthermore we have A = UΣV ′ and thus Avi = σiui

and A′ui = σivi for i, respecting dimensions of U, V .5

SVD is a standard way of determining a rank of the matrix. The rank of a matrix A is
r such that

σ1 ≥ · · · ≥ σr > σr+1 = · · · = 0, (6)

that is, the rank of a matrix r is equal to the number of nonzero singular values. This is
why the diagonal form under the new basis is so useful – the inputs from the subspaces
associated with the zero singular values are eliminated. The matrix of rank r can thus be
rewritten factorized as

A =
[
U1 U2

] [
Σ1 0
0 0

] [
V ′

1

V ′
2

]
= U1Σ1V

′
1 =

r∑
i=1

σiuiv
′
i, (7)

where U1 is (m× r), Σ1 is (r× r) and V ′
1 is (r×n). The individual matrices accumulated

in the sum are of rank r = 1. Notably, with respect to near-collinearity and compression,
the approximation for a particular order of the sum of rank-one matrices can be understood
as optimal.

Once the rank is determined it is clear whether the identification problem becomes
a concern. If the matrix is rank-deficient, i.e. r < min{m, n}, then it means that the

5Hence ‖Avi‖ = σi. Also ui = Avi/σi and it is a unit eigenvector of AA′, so σ2
i are positive eigenvalues of

AA′.
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nullspace of A is not empty. If it is not empty, its structure will indicate the cause of the
problem. We know that

null(A) = span{vr+1, . . . , vn} (8)

range(A) = span{u1, . . . , ur}, (9)

so the problematic components form a basis for the null space of A. The unidentified
parameter combinations can be found in V ′

2 , and as a bonus they are sorted according to
degree of distance to singularity and in the form of normalized unit vectors.

In what follows we label the nullspace structure of the linear map under considera-
tion as an identification pattern. Following sections will demonstrate in more detail how
identification patterns can be used and interpreted.

2.2 Identification Patterns, Nullspace and Restrictions

As we have previously demonstrated, inspecting several subspaces associated with a linear
map suggests insights into the roots of (near) singularity. Let us assume we have already
decomposed the Information matrix R(θ) or map T and found it to be of rank r, r <

min{m, n} and thus rank-deficient. Now we have matrices V = [V1 V2] and U = [U1 U2]
which capture the necessary information about the map. In the case of a square symmetric
matrix we have U = V .

The rows of V ′
2 provide an orthonormal basis of the nullspace and identify directions

in the parameter space where the parameters are structurally unidentifiable. The columns
of U1 constitute the orthonormal basis for the range (column space) of the linear map (the
Information matrix) and constitute a mapping from the original parameter space Θ to the
lower dimensional parameter space K of dimension (n − r).

Rank-deficiency implies a need for a restriction of the parameter space of a particular
order. Inspecting the nullspace and the range of the map suggests what these restrictions
should be in order to achieve local identification. Basically, it is necessary to get rid of
linear combinations identified by the nullspace. Consider a restriction from θ ∈ Θ ⊂ Rn

into κ ∈ K ⊂ R
r given by φ(κ, θ) = 0. Then ∂θ/∂κ′ = U1 or simply θ = U1κ where U ′

1 is
a (r×n) matrix. Reparameterizing the model in terms of κ and calculating the Information
matrix R(κ), an (r × r) matrix, we get

R(κ) = E

{(
∂L

∂κ′

)′ ( ∂L

∂κ′

)}
(10)

= E

{(
∂θ

∂κ′

)′ [(
∂L

∂θ′

)′ (∂L

∂θ′

)] (
∂θ

∂κ′

)}
(11)

= E

{(
∂θ

∂κ′

)′ [
UΣV ′](

∂θ

∂κ′

)}
= E

{(
∂θ

∂κ′

)′ [
U1Σ1V

′
1

](
∂θ

∂κ′

)}
(12)

= E{U ′
1U1Σ1U1U

′
1} = E{Σ1}, (13)
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which is of rank r, as required. This rank condition is related to the rank conditions of
stacked [R(θ); φ(.)] as in Rothemberg (1971).

To better illustrate the idea, imagine a very special case of R(τ) = 1 with perfectly
identified reduced form parameters, which gives us R(θ) = E{T ′T}. Using SVD to ana-
lyze T = UΣV ′ yields

R(θ) = E(V Σ̃V ′), (14)

where Σ̃ = Σ2 and V are shared by the map from structural to reduced form parameters and
the Information matrix. In this case the results of identification exploration are identical,
regardless whether R(θ) or T is explored.

Since the nullspace of the linear map is usually much smaller than the range (column
space) of the map, it is easier to analyze and derive restrictions from there. The nullspace is
spanned by columns of V2 = [vr+1, . . . , vn], an (n × n − r) matrix. From right to left the
(n × 1) vectors provide the basis for the spaces associated with the associated eigenvalue
– zero or numerically close to zero. As indicated, ‖vk‖ = 1 and viv

′
j = 0 for i �= j. Since

for each vi in the nullspace we know that Tvi = 0, using the ‘column view’ it is clear that
elements of vi determine linear dependent columns.

Exploring the identity matrix would result into the set of identical singular values and
all elements of V,U with unitary vectors forming the standard basis.

To further illustrate the idea, let us demonstrate three interesting cases which can help
identification patterns comprehension. Assume for the moment that in θ parameter vec-
tor the element θ1 is redundant from the system, with its value not affecting the criterion
function and thus completely unidentified. Furthermore, assume that parameters θ2 and θ3

substantially affect the criterion function, but are perfectly positively collinear and enter
the system as (θ2 + θ3). Finally, let θ4 and θ5 enter the system as (θ4 − θ5), while θi for
i = {6, . . . , n} is well identified and unrelated to θ1,...,5. The nullspace given by V2 is
thereby the following:

V2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 −s 0
0 s 0
0 0 w

0 0 w
...

...
...

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

We have three identification patterns. First, for θ1, we see that the first column of
V2 suggests that the parameter is strictly unrelated to any other parameters and that it is
completely unidentified, since it is fully mapped to the nullspace. The second column of
V2 a implies perfect dependency between the two parameters. An identical increase in one
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parameter together with identical decrease in the other does not affect anything, trivially.
The third pattern is the reverse.

We therefore need to adopt three restrictions, respecting the structure of V2, in order
to reduce the system identified in the lower-dimensional space K by three dimensions.
We must restrict θ1 to a single particular value and at least one element from the (θ2, θ3),
(θ4, θ5) pairs. The identification problem is not solved by fixing θ1,4,5, for instance.

Often the problem is to choose a subset of parameters and to select those which are
close to being orthogonal with others, so that the conditioning number of the reduced sub-
problem is maximized. In sections bellow a sub-set selection method is suggested in order
to select or sort the parameters by their strength of identification.

More complex patterns For truly rank-deficient problems the properties of the T ’s
nullspace can be traced into great detail. The dimension of the nullspace (nullity) equals to
the number of free parameters, corresponding to non-pivotal columns of the matrix. Work-
ing out full details analytically is always possible, yet gets more difficult with increased
dimension. The free parameters are determined by inspecting of row Echelon form.

For large dimensional parameter spaces, the inspection of fully unidentified and weakly
identified patterns can be facilitated by plots of vi’s so the spatial patterns and strength of
dependence can be checked, as we will demonstrate in the next section. Having a simple
program that a produces list of unidentified and weakly identified parameters proved to be
useful.

3 Identification Strength

This section examines the case in which all parameters are identified. By identified param-
eters we understnand also those that may be only weakly identified(in the sense that their
individual impact on the criterion function is very small or there is hi collinearity among
parameters). SVD is the ideal tool for analyzing the strength of parameters’ identification –
finding close-linear combinations, sorting them according to their importance and selecting
a subset of parameters (columns) with maximal linear independence.

At this stage the rank of the linear mapping T is determined. The computational task of
rank determination is however difficult since computers calculations do not operate under
ideal precision. A singular values thus may be close to zero, but not a true zero. Fortunaterly
SVD is the right tool for determining the numerical rank of a matrix, see e.g. Golub and
van Loan (1996) or Higham (1996).

Let us use the label approximate nullspace for the nullspace associated with a set of
singular values considered ’small’ by the researcher. Judging what the ‘small’ means may
be often difficult. We will now show how to explore approximate nullspace, how to interpret
results from SVD in terms of weak identification and, finally, we suggest a subset selection
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approach to sorting parameters by their ‘degree of identification’.

3.1 Near collinearity

The problem of near singularity is crucial for strength of identification. It is well known
that linearly independent vectors (spaces) are orthogonal, i.e. perpendicular. The cosine of
the angle of two vectors is equal to the correlation of those two vectors and closely related
to their dot product –

corr(x, y) = cos α =
x′y

(‖x‖‖y‖) . (16)

SVD makes similar things more similar and dissimilar things dissimilar and so it decor-
relates the identification patterns, without using a ‘correlation’ analysis. As collinear-
ity can be among multiple columns, bivariate relationships or correlations are only nec-
essary, not sufficient signs of rank deficiency or weak identification. Recall also that
dim range(T ) = dim range(T ′), so rows must be considered as well.

For multiple columns of the (m× n) matrix T = [t1 . . . tn] full collinearity is recorded
as

n∑
i=1

γiti = 0, (17)

that is – the linear combinations of columns are zero for {γi �= 0}n
i=1. Often, we do not

have perfect collinearity, but only strong collinearity. The point is that it is useful to know
the linear dependencies having them sorted according to their distance from zero.

That is, basically, what SVD delivers. Note that since T = UΣV ′ we have for j ∈ [1, p],
p = min{m, n}. In our case, p = n and Tvi = σiui where vi, ui are of unit length. For
σi → 0, it is clear that σiui → 0 which implies that Tvi → 0. Now we need to adopt the
column-view of the operation again to see that

Tvi = [t1, . . . , tn]vi =
n∑

k=1

tkvk,i → 0 and ‖Tvi‖= σi. (18)

The elements of each right singular vector vi associated with σi determine the coefficients
γk determining the combination closest to zero, i.e. closest to collinearity. For significant
patterns of multicollinearity, most γk coefficients quickly approach zero. Since we have
‖Tvi‖= σi, we can re-normalize coefficients in the linear form and express this as a norm
of the error, where εi,k ≡ tk − (γ̂1t1 + · · · + γ̂k−1tk−1 + γ̂k+1tk+1 + · · · + γ̂ntn) and
‖εk,i‖= σi/|γk|. For perfect collinearity, the linear combination attains zero norm of the
error and thus multiple-correlation coefficient between tk and the rest of the selected vectors
is unity in that case.
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The use of SVD is closely related to principal components analysis (PCA). Determina-
tion of identification patterns can thus also be regarded as pointing to principal components
of the Information matrix.

Scaling of the Problem When analyzing the matrix T or R(θ) using SVD, the scal-
ing of the matrix matters for the identification analysis. Clearly scaling does not affect
the detection of perfect linear combinations since these are immune to rescaling. SVD is
dependent on scaling, however, and thus rescaling columns is often advisable if parameter
units differ a lot.

When analyzing a linear map of structural to reduced form parameters, T , rescaling
of columns to have equal length is advisable. It is common scale by absolute values of
individual parameters, e.g. by Γ = [|θ1|, . . . , |θn|] and ΓTΓ. In the case of R(θ) one may
decide to rescale to Rr(θ) = Γ−1/2R(θ)Γ−1/2 where Γ = diagR(θ) and thus both row and
column scaling is carried out. Obviously, rescaling using variances from the Information
matrix is feasible only after perfect linear collinearity is extracted from the system.

The condition number is invariant when matrix is multiplied by a constant – note that
in case of a determinant the opposite is the truth.6 The condition number is not, how-
ever, invariant to the rescaling of individual columns. If one partitions columns of A as
A = [A1 αak] , where ak is one column and α is scalar, then by letting α → 0 the con-
dition number κ(A) → ∞, an effect referred to as artificial ill-conditioning. Thus large
differences in scaling of the columns make condition numbers large.

The question then is what is the most ‘natural’ scaling for the problem. Our view is
that it is best not to scale or to scale by the absolute value of the parameters used in the
estimation. The reason is that in when searching for criterion function extreme during
estimation a gradient-based method relies on the score vector and its relation to SVD of
the Hessian. The information embodied in SVD can also be successfully used to enhance
the optimization routine.

To complicate things a little bit more, one must be aware that by appropriate rescaling
the structure of V2 changes, which is an issue for non-finite precision calculations. It may
not always be sufficient to inspect the structure of V2, since for any nonsingular matrix A

we have XV2A = 0 with an altered zero structure of linear dependency, so the problem
should be put into a linear transformation invariant setup, see Belsley and Klema (1974),
where inspection of G ≡ −V22V

−1
21 is analyzed.

Conditioning of the Problem It is a standard result in computation to check for the
conditioning of a matrix, which, simply put, determines the sensitivity of the problem Tθ =
τ to small variations in T and τ . Ill-conditioned problems display extreme sensitivity. The
condition number κ designates a distance to singularity and is the ratio of largest to smallest

6Although a zero determinant implies linear dependence, the use of determinants to check for singularity is
numerically very unstable and also a small value of a determinant has nothing to do with near collinearity.
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singular values.7 The ratio of the first and the i-th singular value is called the condition
index. The steepness of sorted singular values conveys a lot of information about the decay
of identifiability, as is the case with the ‘scree plot’ in principal components analysis. For
singular problems κ → ∞, see e.g. Golub and van Loan (1996) or a detailed treatment in
Higham (1996), inter alia.

3.2 Parameter subset selection

It is desirable to find a set of k individual parameters out of n, which are the best identified.
Those n − k are then restricted in a preferred way. So how should one choose them?

Let us assume that the nullity of the map T or Fisher Information matrix is one – hence,
we need to eliminate at least one parameter. It turns out that it often may be easier to
find what parameters to retain in the model, than determine those to be discarded. We
would like to keep parameters corresponding to set of columns that are as much as possible
independent, i.e. that minimize the condition number of the problem – given a particular
scaling.

The problem differs for a general (m×n) mapping T and for a square symmetric Fisher
information matrix. In case of the mapping from structural to reduced form parameters it is
important to leave independent parameters, leading to a column subset-selection problem,
i.e. a permutation matrix P1 which reorders T as TP1 = [T1 T2]. In case of a symmetric
square matrix an elimination of a parameter is creating a submatrix R− using a permutation
matrix P2 and obtaining the matrix R2 with the same condition number

R2 = P2RP ′
2 =

[
R− ×
× ×

]
= P2UΣU ′P ′

2. (19)

To determine a set of k columns to retain, where k ≤ r one might experiment and iterate
on orderings to get A = [A1 A2], which is our new column-partition of A so that condition
number of A1 is as small as possible. This approach is difficult, unless k = 1 which we
use in order to sort the parameters, excluding always a parameter whose elimination most
improves condition number in each round.

For the general problem of k �= 1 there are algebraic procedures that avoid iteration and
deliver plausible results. We follow Golub, Klema and Stewart (1976) as an example of
well-established and straightforward procedure to produce ‘enough’ linearly independent
columns of the matrix by manipulating its row-space.8

7Some details on implementation are important. First, the conditioning of the problem is norm-dependent, our
statements relate to 2-norm. Calculating SVD inMatlab by Mathworks, for instance, uses the command [U S
V] = svd(A). Further, if you check the rank of the matrix, then SVD is used again and the smallest non-zero
singular value is checked with entered tolerance, default tolerance being related to machine ε.

8The problem of subset selection is known in linear algebra and computer science. Given a matrix A ∈
R

m×n and positive k, we want to choose k columns of A forming a matrix B ∈ R
m×k such that the residual

‖A − BB+A‖ξ is minimized given the combination nk possibilities and ξ is either spectral or Frobenius norm.



19
ECB

Working Paper Series No 1235
August 2010

The procedure is as follows: Compute SVD of the matrix T = UΣV ′ and determine
k components, parameters that become the new free parameters. Feasible choice of k

is k ≤ r = rank(T ). Calculate rank-revealing QR factorization with column-pivoting9

V ′
1P = QR where V ′

1 is (k ×m) matrix in V ′ = [V ′
1 V2]′ and P is the permutation matrix.

Choose the subset of k components of the parameter set θ as θ̂ = P ′θ.

Note that the subset selection algorithm suggests what parameters to retain and what
parameters not to retain, yet these groups are not necessarily sorted. We suggest a simple
procedure for parameter sorting so that the condition number is monotonically decreasing.
The procedure runs backwards. First, select k = r columns of the matrix that are regular.
Always partition the matrix into two groups where only one vector is not to be selected.
Reduce the matrix by one dimension and proceed with the selected columns in the same
way until the number of columns is reduced to the last one. In the case of symmetric
matrices one can eliminate each time one row and one column, corresponding to a particular
parameter.

For a more detailed exposition of the column-subset selection algorithm via rank-revealing
transformations, see Golub et al. (1976) or Golub and van Loan (1996).

Graphical investigation One can –and we find it very useful– explore identification
patterns graphically. We produce plots (‘heat maps’) of individual identification patterns
embodied in vi so that we plot viv

′
i matrix with individual elements values represented by

a particular color on a scale. Plotting the vi and its associated singular value often allows
quick inspection of parameters involved in non- or weak identification. Obviously one can
group vis or plot the whole nullspace.

3.3 The problem with correlation measures

Correlations measures may not always be reliable measures of weak identification and so
this section is devoted to issues related to using correlation measures as tools to detect
multicollinearity and thus as measures to detect identification problems. The discussion
provides a numerical example and also use some results in Golub and van Loan (1996),
Belsley and Klema (1974) and Belsley et al. (1980).

The use of correlation as a measure of collinearity is very intuitive, since the correlation
of two vector amounts to a cosine angle of these vectors in n dimensional space. As the
bivariate correlation ρi,j gets closer to ±1, the vectors become more and more collinear.

Clearly, singularity may result from more than just two vectors, forming a linear combi-
nation. In this case one may find very low bivariate correlations between vectors, while the

A+ denotes Moore-Penrose generalized inverse. There are both deterministic and randomized algorithms for this
general difficult problem.

9In Matlab the command [q r p] = qr(A) delivers QR with column pivoting with the permutation
matrix P. There are, however, more robust algorithms available.
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matrix is effectively singular, which is easy to detected using SVD. An intuitive solution to
the problem then seems to be a coefficient of multiple correlation.

Multiple correlation coefficient (Anderson 2003) is defined as the maximum correlation
between xi and the linear combination αX , where X is a matrix and α is a vector. To get the
maximum correlation, the vector α is formed by projection coefficients. Anderson (2003,
pp.38, 145) also provides several useful formulas for calculating the multiple correlation
coefficient. For instance it can be shown that for covariance matrix S = [sij ] the multiple
regression coefficient for the first-left vector x1 can be expressed using formula

1 − R2
i =

|S|
s11|S22|

, (20)

where |.| denotes the determinant. As we have already mentioned, the determinant is an
unreliable measure of collinearity, yet if it is zero then R2

1 → 1 and one is tempted to carry
out a detailed limit analysis of the ratio in the formula. The problem is that a small, but
nonzero, determinant may have nothing to do with collinearity. Another venue must be
taken.

Marquardt (1970) demonstrates that when R is a correlation matrix, then the diagonal
elements of R−1 contain the variance inflation factors, (VIFs), where VIFi = 1/(1−R2

i ).
When the VIFs are large the multiple correlation coefficient increases. If a matrix B has
normalized columns (in a ‘regression form’) so that R = B′B is the correlation matrix,
then a diagonal of (B′B)−1 features the VIFs. Using SVD, we get B = UΣV ′ and thus
R−1 = V Σ−2V ′, so the individual VIFs can be expressed as

VIFk =
n∑

j=1

v2
kj

σ2
j

=
n∑

j=1

(
vkj

σj

)2

, (21)

where σk and vk are singular values and right-singular vectors of B. When there is not
perfect collinearity, the elements of vk are not true zeros, though some of them may be
small. Note that for each VIFk all singular values are used – including those potentially
very small in the case of near collinearity. Then, for an r-th element, we have

σr → 0 and vkr �= 0 VIFk → ∞ Rk → 1. (22)

A single near-collinear relationship can thus make all variance inflation factors infinite
or very large. All multiple correlation coefficients among vectors in the matrix are then
close to unity. Further, Belsley et al. (1980) demonstrate that this behavior is shared by
all bivariate correlations and thus partial correlation coefficients. Having many multiple
correlation coefficients close to unity then does not imply that all parameters of the model
are very dependent or weakly identified.
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Numerical example To demonstrate these facts in a simple setup, we choose to inspect
matrix B of the form

B = [B1 b5] =

⎡⎢⎢⎢⎢⎢⎢⎣
1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.20
0.00 0.00 1.00 0.00 0.40
0.00 0.00 0.00 1.00 −0.70
0.00 0.00 0.00 0.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎦ , (23)

where the first four columns are formed as B1 = I4+E , where I4 is identity and E is a draw
from Gaussian distribution with very small variance and b5 = 0.2b2 + 0.4b3 − 0.7b4 + ε,

so that the matrix is not singular and features one nearly collinear relationship where three
columns are involved.

In the resulting correlation matrix, VIFs and R2
i coefficients are then

R =

⎡⎢⎢⎢⎢⎢⎣
1.00 0.00 0.00 0.00 0.00
0.00 1.00 0.00 0.00 0.24
0.00 0.00 1.00 0.00 0.48
0.00 0.00 0.00 1.00 −0.84
0.00 0.24 0.48 −0.84 1.00

⎤⎥⎥⎥⎥⎥⎦ , VIF = 1012

⎡⎢⎢⎢⎢⎢⎣
0.00
0.40
1.60
4.92
6.93

⎤⎥⎥⎥⎥⎥⎦ R2
1:5 =

⎡⎢⎢⎢⎢⎢⎣
0.9679
0.8501
0.9923
0.8290
0.9941

⎤⎥⎥⎥⎥⎥⎦ . (24)

The matrix is not extremely ’badly behaved’ since the few first columns are almost mu-
tually orthogonal and there is only one small singular value, since diag(Σ) = [1.3 1 1 1 2.42×
10−7].

The facts above may perhaps partly explain why the 39 multiple correlation coefficients
in for the Smets and Wouters (2007) are all, except for three, larger than 0.99 for all param-
eter combinations since few truly unidentified parameters are kept in the set of regressors.

4 Identification Examples

We demonstrate the method explained above using three examples of well-established mod-
els – a small-scale model by An and Schorfheide (2006), a medium-scale model by Smets
and Wouters (2007) and –in the appendix– a small open economy model as popularised by
Monacelli (2003) and Justiniano and Preston (2004).

The procedures shown were also used for other DSGE models, for instance in Andrle,
Hlédik, Kamenı́k and Vlček (2007–2008) or Steinbach, Mulhoe and Smit (2009)10 to iden-
tify the strength of identification and identification patterns.11

10The author thanks the Research Dept. of the South African Reserve Bank for their warm hospitality during
November 2008.

11The solution of all models was obtained using the IRIS-Toolbox for Matlab by Jaromı́r Beneš, an objected-
oriented toolbox for developing and using DSGE models – www.iris-toolbox.com.
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4.1 An-Schorfheide (2006) Model

The log-linear version of the model by An and Schorfheide (2006) consists essentially
of a closed economy IS curve without lagged term of output, a forward-looking Phillips
curve, a consumption identity and a smoothing interest rate rule with contemporaneous
effect of inflation and output growth. The model features three measured variables – output
growth, inflation and nominal interest rates. There are three stochastic shocks – exogenous
government spending, technology shock and uncorrelated monetary policy innovation.

We analyze only local identification at specific coefficient values using the first data
generating process (DGP1). Following An and Schorfheide (2006) we define the reduced
form parameter κ for the slope of the Phillips curve, since its individual components are
not identified and we would trivially obtain a rank-deficient Information matrix with right-
singular vectors pointing to these components, associated with zero singular values. Con-
trary to An and Schorfheide (2006) we do not analyze the intercept parameters γ, rA, π

present in a measurement equation and focus only on the set of ten parameters
θ = {τ, κ, φ1, φ2, ρR, ρg, ρz, σR, σg, σz}, denoting the risk aversion coefficient, slope of
the Phillips curve, interest rate rule weights on inflation and output growth, interest rate
smoothing parameter and persistence and standard deviations of exogenous stochastic pro-
cesses. To calculate the Information matrix we use the T = 80 observations.

An and Schorfheide (2006, pp. 19–20) comment that the visual inspection of prior and
posterior distributions of their estimation indicate that the sample contains little informa-
tion on the risk-aversion coefficient τ and policy rule coefficients φ1, φ2, whereas data are
informative about the slope of the Phillips curve κ and also autocorrelation and standard
deviation of stochastic shocks.

Inspection of log-likelihood sensitivities with respect to individual parameters12, (An
and Schorfheide 2006, Fig. 14), indicates that the log-likelihood is rather flat with respect to
τ, ρg and φ2 in the neighbourhood of true parametrization. On the other hand, the curvature
of σR, σg, σz or ρR is reasonable. The authors provide the sensitivity analysis with respect
to components of κ, which are not flat, though it is the linear dependence that prevents the
identification of these parameters.

On the basis of An and Schorfheide (2006), we would expect the methods presented
in this paper to provide good local identification of the slope of the Phillips curve κ, stan-
dard deviations of stochastic shocks and weaker identification of risk-aversion parameter τ

and interest rate rule parameters φ1, φ2. The issue is how the possible interaction among
parameters affects the information from the log-likelihood curvature with respect to indi-
vidual parameters.

We analyze the Information matrix without any scaling. It is of full rank and identifica-
tion patterns (i.e. right-singular vectors), see plots in Fig. 1. Since the Information matrix is
not scaled, the condition number is large and the profile of condition indices drops sharply

12This is a version of the often used ‘happy faces’ plot.
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after the sixth dimension which can be easily seen from singular values of identification
patterns.

The plots seem to support the results of An and Schorfheide (2006) that parameters
κ, σR,z,g are (relatively) well identified. Another well identified parameter is the interest
rate smoothing parameter ρR, though we can observe that the parameter interacts with φ2

and τ , which is intuitive. On the other hand, the persistence of the government spending
is less identified; this is not due to collinearity but it is due to its small impact on the
likelihood, i.e. the likelihood is flat with respect to this parameter.

The least identified parameter seems to be the risk-aversion coefficient due to both its
small impact on the likelihood and its partial confounding with φ1, the interest rate rule
weight on inflation as can be viewed from the identification patterns 9 and 10. From an
economic point of view, the higher τ decreases the impact of interest rate changes on the
output gap in the IS curve, which is the driving force of the inflation. To stabilize inflation
with lower τ , the policy authority needs to increase the weight on inflation φ1 in the interest
rate reaction function.

The next step is the application of the heuristic procedure to ‘order’ the parameters
in terms of their identifiability. More precisely, we carry out repeated subset-selection
problem. The backward-pass algorithm delivers the following vector of sorted coefficients
θ̃ = {κ, σR, σz, σg, ρR, ρg, φ2, ρz, φ1, τ}, which seems to be broadly in line with the iden-
tification patterns and the discussion in An and Schorfheide (2006).

4.2 Smets-Wouters (2007) Model

To test the method on the model by Smets and Wouters (2007) we use the model code and
prior and posterior mode made public by the authors.

We inspect the Fisher Information matrix using T = 200. We also provide a correlation-
version of the FIM –after eliminating singularity– and calculate variance inflation factors
(VIFs) and corresponding right-singular vectors pointing into space associated with large
components of VIFs. The FIM was calculated numerically, so it is sensitive to numerical
inaccuracies. In the two-step numerical differentiation, the differentiation step reflects the
absolute value of the parameter, e.g. the numerical step for adjustment costs parameters is
larger than for the standard deviation of monetary policy shock.

We analyze only the parameters estimated by Smets and Wouters (2007), hence the
depreciation rate δ, share of government spending gy, steady-state labor market markup λw

and Kimbal aggregator parameters εp and εw are treated as fixed. The last three parameters
would otherwise lead to rank-defficiency due to their collinearity with ξw and ξp, the Calvo
parameters.

By inspecting the identification patterns we can see very complex interactions among
virtually all parameters. This implies that it would be difficult and insufficient to solely
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Fig. 1: Identification pattern – (An and Schorfheide, 2006)
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Tab. 1: Parameter subset selection – SW-07 model

1 ρw 11 ξp 21 σc 31 α
2 γ̄ 12 σeg 22 rΔy 32 σl

3 ρp 13 σr 23 cgy 33 ρr

4 ρg 14 σeb 24 μp 34 π̄
5 ρ 15 σea 25 ϕ 35 l̄
6 ρa 16 ξw 26 ψ
7 μw 17 σw 27 ιw
8 λ 18 rπ 28 ry

9 ρI 19 σp 29 ρb

10 Φ 20 σI 30 ιp

only on bivariate correlations of coefficients and that multiple correlation coefficients (and
thus variance inflation factors) would be high in general.

Notable exceptions with none or smaller interactions, clearly tractable to correspond-
ing right-singular vectors, are l̄, π̄ and γ̄ which determine the steady state level of hours
worked, inflation and trend growth rate, and others are ρg, σb, σr or ρ, determining the
auto-regression of exogenous government spending, variance of preference and monetary
policy shock or the interest rate smoothing parameter, to a smaller degree. With few inter-
actions, the first two parameters are poorly identified, whereas the second group belongs to
better identified parameters, as indicated by the analysis of singular values.

The identification patterns of most other parameters are rather complex and would re-
quire lengthy analysis, which sidestep by applying the subset selection algorithm to both
the unscaled and the parameter size scaled Information matrix. The results of this parameter
ranking are listed in Table 1 for the case scaled by the relative size of parameters.

It seems that the weakly identified parameters are l̄, π̄ determining the steady state, i.e.
constant terms, and autocorrelation of monetary policy shocks ρr, followed by σl and α,
determining Frisch labor elasticity and the share of capital in the production of intermedi-
ate goods. Calvo parameters for inflation and wages ξp and ξw do not belong to the best
identified parameters, but seem to be identified better than indexation parameters ιp and ιw.
The parameter affecting intertemporal elasticity of substitution σc is also left from the best
identified parameters.

Among the most accurately identifiable parameters one can find the autoregression co-
efficient of wage and inflation cost-push shocks ρw, ρp, government exogenous process
persistence ρg, the interest rate smoothing parameter ρ and persistence of technology shock
ρa, the habit formation parameter λ and the investment-specific shock persistence ρI . The
trend parameter γ̄ also seems to be well identified. We have excluded the parameter β from
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the analysis.13

Concerning parameters in the interest rate rule, the smoothing parameter ρ is best iden-
tified, followed by the inflation coefficient rπ, the output-gap difference rΔy and the least
identified coefficient for the output gap ry.

The identification analysis of the model by means of correlation analysis will be severely
affected by presence of parameters associated with very small singular values, λw, which
affect all correlation results as explained above.

13As for implementation of the model γ̄ parameter is rescaled differently than in Smets and Wouters (2007) and
thus results may be affected.



27
ECB

Working Paper Series No 1235
August 2010

5 Conclusion

This paper demonstrates both a simple and useful method for exploring the ‘identification
patterns’ of DSGE models. The identification patterns are associated with the nullspace of
the particular linear map being investigated. The problem of identification or the identifi-
cation strength is shown to be naturally analyzed with the conditioning of the map, which
also sorts the identification patterns in terms of their strength.

The method is able to indicate both strongly and weakly identified patterns of the pa-
rameter space, while also suggesting whether the result is due to lack of influence of the
parameter or due to its interactions with other parameters. The method seems very flexi-
ble and can be used to carry out a-priori investigations of the model identification before a
model has been estimated at all. The local nature of the method can be used for a global
identification analysis using simple pseudo- or random simulation schemes or investigating
particular border parametrisations. The presented analysis is not dependent on a particular
estimation method being used.

The location of the unidentified subspace of the parameter space, sorting of identifica-
tion patterns with respect to their strength and determination of the rank condition of the
identification problem – for all these tasks we demonstrate that singular value decomposi-
tion is an extremely helpful tool. In contrast to an eigenvalue decomposition the singular
value decomposition may be applied to any matrix, not necessarily square and symmetric.
This is useful for an analysis of a mapping from deep to reduced-form parameters of a
model.

We suggested a heuristic method for ordering the parameter vector in terms of individ-
ual element’s ‘identifiability’ by carrying out a repeated sub-set selection problem, which
takes into account both the flatness of the criterion function and parameter confounding.
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Dréze, J., “Econometrics and Decision Theory,” Econometrica, 1972, 40, 1–17.
, “Bayesian Theory of Identification in Simultaneous Equations Models,” in S.E.
Fienberg and A. Zellner, eds., Studies in Bayesian Econometrics and Statistics,
North-Holland 1975, pp. 159–174.

Fisher, F.M., The Identification Problem in Econometrics, New York: McGraw-Hill,
1966.

Gelman, A., J.B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian Data Analysis, 2nd ed.,
Chapman & Hall/CRC, 2004.

Glover, K. and J.C. Willems, “Parametrizations of Linear Dynamical Systems:
Canonical Forms and Identifiability,” IEEE Transactions on Automatic Control, 1974,
AC-19 (6), 640–646.

Golub, G.H. and F. van Loan, Matrix Computations, Baltimore: Johns Hopkins



29
ECB

Working Paper Series No 1235
August 2010

University Press, 3rd Ed., 1996.
, V. Klema, and G.W. Stewart, “Rank Degeneracy and Least Squares Problems,”
1976. Technical Report TR-456, Dept. of Computer Science, University of Maryland,
College Park, Maryland.

Grewal, M.S. and K. Glover, “Identifiability of Linear and Nonlinear Dynamical
Systems,” IEEE Transactions on Automatic Control, 1976, December (6), 833–837.

Guerron-Quintana, P., A. Inoeu, and L. Kilian, “Frequentist Inference in Weakly
Identified DSGE Models,” 2009. Federal Reserve Bank of Philadelphia WP No.09-13.

Hannan, E., “The Identification Problem for Multiple Equation Systems with Moving
Average Errors,” Econometrica, 1971, 39 (5), 751–765.

Harvey, A., Forecasting, structural time series models and the Kalman filter, Cambridge:
Cambridge UP, 1989.

Higham, N.J., Accuracy and Stability of Numerical Algorithms, Philadelphia: SIAM
Publications, 1996.

Hoerl, A.H. and R.W. Kennard, “Ridge Regression: Biased Estimation for
Nonorthogonal Problems,” Technometrics, 1976, 42 (1, February), 80–86.

Hsiao, Ch., “Identification,” in Z. Griliches and M.D. Intriligator, eds., Handbook of
Econometrics, Vol. I, Elsevier 1983.

Iskrev, N., “How Much Do We Learn from Estimation of DSGE models? A Case Study
of Identification in a New Keynesian Business Cycle Model,” 2008. mimeo, University
of Michigan.
, “Evaluating the strength of identification in DSGE models. An a priori approach,”
2009. Bank of Portugal mimeo, paper presented at ECB WGEM, 30 Nov.
, “Local Identification in DSGE Models,” 2009. Banco de Portugal Working Paper
No.7.

Justiniano, A. and B. Preston, “Small Open Economy DSGE Models: Specification,
Estimation and Model Fit,” 2004. mimeo.

Kailath, T, Linear Systems, Englewood Cliffs, N.J.: Prentice-Hall, 1980.
Komunjer, I. and S. Ng, “Dynamic Identification of DSGE Models,” 2009. University of

Michigan, November.
Marquardt, D.W., “Generalized inverses, ridge regression, biased linear estimation, and

nonlinear estimation,” Technometrics, 1970, 12, 591–612.
Monacelli, T., “Monetary Policy in a Low Pass-Through Environment,” 2003. ECB WP.

No 227.
Moon, H.R. and F. Schorfheide, “Bayesian and Frequentist Inference in Partially

Identified Models,” 2009. Univ. of Pennsylvania and Univ. of Southern Cal., mimeo.
Pesaran, H., The Limits to Rational Expectations, Blackwell, 1987.
Poirier, D.J., “Revising Beliefs in Nonidentified Models,” Econometric Theory, 1998, 14,

483–509.
Rothemberg, T.J., “Identification in Parametric Models,” Econometrica, 1971, 39 (3),

577–591.
Sargent, T., “Estimation of Dynamic Labor Demand Schedules under Rational



30
ECB
Working Paper Series No 1235
August 2010

Expectations,” Journal of Political Economy, 1978, 86 (6), 1009–1044.
Simmons, G.F., Introduction to Topology and Modern Analysis, Krieger Publishing

Company, 2003.
Smets, F. and R. Wouters, “Shocks and Frictions in US Business Cycles: A Bayesian

DSGE Approach,” American Economic Review, 2007, 97 (3), 586–606.
Staiger, D. and J.H. Stock, “Instrumental Variables Regression With Weak Instruments,”

Econometrica, 1997, 65, 557–586.
Steinbach, R., P. Mulhoe, and B. Smit, “An Open Economy New Keynesian DSGE

Model of the South African Economy,” 2009. South African Reserve Bank, April.
Stock, J.H., J.H. Wright, and M. Yogo, “A Survey of Weak Instruments and Weak

Identification in Generalized Method of Moments,” Journal of Business & Economics
Statistics, 2002, 20 (4), 518–529.

Strang, G., Linear Algebra and Its Applications, 3rd ed., Hardcourt Brace Jovanovich,
1988.
, “The Fundamental Theorem of Linear Algebra,” American Mathematical Monthly,
1993, 100 (9), 848–855.

Vajda, S., H. Rabitz, E. Walter, and Y. Lecourtier, “Qualitative and Quantitative
Identifiability Analysis of Nonlinear Chemical Kinetic Models,” Chem. Eng.
Communications, 1989, 83, 191–219.



31
ECB

Working Paper Series No 1235
August 2010

Appendix – Basic SOE Model

The appendix briefly discusses identification properties of a variant of Monacelli (2003) and Justini-
ano and Preston (2004) as described also in Steinbach et al. (2009). The modification to Steinbach
et al. (2009) is adding possibility of partial price indexation for imported prices πf,t and that we
simplified the foreign block using a simple VAR specification – consequently, we do not estimate
any of these autoregressive parameters or variances.

Likelihood The parameter space consists of 30 structural parameters, including standard devi-
ations. We do not estimate the model, rather we carry out an a-priori analysis of the identification.
For computing the Information matrix, we sample shocks using the prior-mode parameters of the
model, so no real data are used. The assumed sample size is T = 200.

The analysis –except of truly linear dependent combinations– is not scale invariant. We have
carried out the analysis for (i) unscaled Fisher information matrix (FIM), (ii) FIM scaled by the size
of the parameters and (iii) correlation form of FIM – after singularity has been eliminated.

Identification Patterns The Information matrix is analyzed using SVD as suggested in the
main text of the paper. There is no true zero – there are no parameter ’floating in the air’. The rank
of the matrix –i.e. dimension of the column space– is evaluated as r = 26, suggesting at least four
problematic identification patterns. Fig. 2 depicts the evolution of singular values and log-singular
values of the model. The 24-th singular value is still 9.4094e − 5. The shape of the singular values
profile suggest a significant portion weak identification resulting from the model structure.

Fig. 2: Singular values – small open economy model
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The nullspace has four dimensions. The approximate nullspace associated with ‘small’ singular
values, indicates weakly identified parameters. The first poorly unidentified pattern consist of ξw

(xi empl), denoting the CES production function elasticity for labor packers that subsequently
appears in the wage Phillips curve. The pattern shows it does not interact with anything, nor does it
contribute to anything. This should not come as a surprise. The corresponding right-singular vector
includes 0.99 at the location of the parameter in θ and zeros or very small numbers (−0.02 for θw, the
wage Calvo parameter).The second identification pattern points to αw (alpha w), the indexation
parameter and the pattern is similar to the previous one, since the parameter is not interacting with
others.
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Fig. 3: Identification pattern – SOE model
Identification pattern no. 29, s−val.  4.1127e−016
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Identification pattern no. 28, s−val.  3.678e−015

5 10 15 20 25 30

rho_habit
sigma
varphi

gamma
eta

theta_w
theta_h
theta_f
delta_h
delta_f

alpha_w
xi_empl

rho_i
phi_pie

phi_y
rho_a

rho_mud
rho_eta_w
rho_eta_p

rho_mpolicy
rho_mud_star

std_eps_a
std_eps_mud

std_eps_eta_w
std_eps_eta_p

std_eps_mpolicy
std_eps_mud_star

std_omega_pie
std_omega_y
std_omega_i

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tab. 2: Parameter subset selection – SOE model

order A B order A B
1 rho i rho i 16 delta h std eps a
2 theta h theta h 17 rho mpolicy delta h
3 rho mud std omega y 18 sigma std eps mpolicy
4 std omega y std omega i 19 rho eta w rho eta w
5 std omega i rho mud 20 std eps mud gamma
6 rho a rho habit 21 std eps a std eps mud
7 gamma phi pie 22 delta f delta f
8 std eps mpolicy rho a 23 varphi varphi
9 phi y std omega pie 24 std eps mud star rho eta p

10 rho habit rho mpolicy 25 rho eta p std eps mud star
11 std omega pie rho mud star 26 std eps eta w std eps eta w
12 rho mud star eta 27 std eps eta p std eps eta p
13 eta theta f 28 alpha w theta w
14 phi pie sigma 29 theta w alpha w
15 theta f phi y 30 xi empl xi empl

As an example we plot the v associated with the pattern in Fig. 3 to demonstrate the logic of
our plots. The white square is associated with αw, all other coefficients are corresponding to zero.
The colors help to eye-ball patterns. The analysis by an interocular trauma is known to work well
for understanding patterns.

The third pattern is more interesting, since it points out an interaction of parameters, namely of
standard deviation of a cost-push shock σp into home prices Phillips curve. The standard deviation
of this shock is not identified and displays small interaction with standard deviation of technology
shock σa. The main problem is the σp and we can spot traces of σa, yet note the positioning of the
zero-point.

Proceeding with the analysis the results show that the problematic parameters are – the indexa-
tion param. of wages αw, the packers labor demand param. ξw, the standard deviation of cost-push
shock σp, the Calvo parameter for wages θw, the standard deviation of wage cost-push shock σw,
the autocorrelation of the cost-push shock to home prices ρp, the standard deviation of foreign risk-
premium shock σ�

μ, the labor supply Frisch elasticity ϕ, a typical weakly identified parameter. On
the other hand, well identified parameters, as determined by the structure of the column space, is the
autocorrelation of the nominal interest rate in the interest rule, ρr or home prices Calvo parameter
θh both with almost no interactions with other parameters.

To have a clearer view on the selection of parameters, the parameter ordering, in terms of their
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strength of influence and collinearity, is calculated by repeated subset-selection problem. The results
for unscaled FIM and scaling by the absolute size of the parameters produce similar, though not
identical, results. Importantly the least identified parameters are sorted always right.

The parameter ordering is provided in the Tab. 2, for the case of the FIM without any scaling
(A) and for the FIM scaled by parameter sizes (B). The most reliably estimated parameters seem
to be ρi (rho i), Taylor rule smoothing parameter, home country Calvo parameter, (theta h),
autoregression parameter for home country interest risk-premium shock (rho mud). Surprisingly
highly positioned is the interest rate rule coefficient of inflation, φπ (phi pi), which in Steinbach
et al. (2009) seems not to be identified too well and in general it is often a parameter difficult to
estimate. The parameters denoting variance of measurement errors for output and interest rates
σy,i (std omega y,i) are well identified, though they are not estimated. Other well identified
parameters are habit formation, ρhabit (rho habit) and technology shock persistence ρa (rho a).
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