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ABSTRACT

The aims of this paper are twofold: first, we 
attempt to express the threshold of a single “A” 
rating as issued by major international rating 
agencies in terms of annualised probabilities of 
default. We use data from Standard & Poor’s 
and Moody’s publicly available rating histories 
to construct confidence intervals for the level 
of probability of default to be associated with 
the single “A” rating. The focus on the single 
“A” rating level is not accidental, as this is the 
credit quality level at which the Eurosystem 
considers financial assets to be eligible 
collateral for its monetary policy operations. 
The second aim is to review various existing 
validation models for the probability of default 
which enable the analyst to check the ability of 
credit assessment systems to forecast future 
default events. Within this context the paper 
proposes a simple mechanism for the comparison 
of the performance of major rating agencies and 
that of other credit assessment systems, such as 
the internal ratings-based systems of commercial 
banks under the Basel II regime. This is done to 
provide a simple validation yardstick to help in 
the monitoring of the performance of the 
different credit assessment systems participating 
in the assessment of eligible collateral 
underlying Eurosystem monetary policy 
operations. Contrary to the widely used 
confidence interval approach, our proposal, 
based on an interpretation of p-values as 
frequencies, guarantees a convergence to an ex 
ante fixed probability of default (PD) value. 
Given the general characteristics of the problem 
considered, we consider this simple mechanism 
to also be applicable in other contexts. 

Keywords: credit risk, rating, probability of 
default (PD), performance checking, 
backtesting.

JEL classification: G20, G28, C49.
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1  INTRODUCT ION

1 INTRODUCTION

To ensure the Eurosystem’s requirement of high 
credit standards for all eligible collateral, the 
ECB’s Governing Council has established the 
so-called Eurosystem Credit Assessment 
Framework (ECAF) (see European Central 
Bank 2007). The ECAF comprises the 
techniques and rules which establish and ensure 
the Eurosystem’s requirement of high credit 
standards for all eligible collateral. Within this 
framework, the Eurosystem has specified its 
understanding of high credit standards as a 
minimum credit quality equivalent to a rating 
of “A”,1 as issued by the major international 
rating agencies. 

In its assessment of the credit quality of 
collateral, the ECB has always taken into 
account, inter alia, available ratings by major 
international rating agencies. However, relying 
solely on rating agencies would not adequately 
cover all types of borrowers and collateral 
assets. Hence the ECAF makes use not only of 
ratings from (major) external credit assessment 
institutions, but also other credit quality 
assessment sources, including the in-house 
credit assessment systems of national central 
banks,2 the internal ratings-based systems of 
counterparties and third-party rating tools 
(European Central Bank, 2007). 

This paper focuses on two objectives. First, it 
analyses the assignation of probabilities of 
default to letter rating grades as employed by 
major international rating agencies and, second, 
it reviews various existing validation methods 
for the probability of default. This is done from 
the perspective of a central bank or system of 
central banks (e.g. the Eurosystem) in the 
special context of its conduct of monetary 
policy operations in which adequate collateral 
with “high credit standards” is required. In this 
context, “high credit standards” for eligible 
collateral are ensured by requiring a minimum 
rating or its quantitative equivalent in the form 
of an assigned annual probability of default. 
Once an annual probability of default at the 
required rating level has been assigned, it is 

necessary to assess whether the estimated 
probability of default issued by the various 
credit assessment systems conform to the 
required level. The methods we review and 
propose throughout this paper for these purposes 
are deemed to be valid and applicable not only 
in our specific case but also in more general 
cases.

The first aim of the paper relates to the 
assignation of probabilities of default to certain 
rating grades of external rating agencies. 
Ratings issued by major international rating 
agencies often act as a benchmark for other 
credit assessment sources whose credit 
assessments are used for comparison. 
Commercial banks have a natural interest in the 
subject because probabilities of default are 
inputs in the pricing of all sorts of risk assets, 
such as bonds, loans and credit derivatives (see 
e.g. Cantor et al. (1997), Elton et al. (2004), 
and Hull et al. (2004)). Furthermore, it is of 
crucial importance for regulators as well. In the 
“standardised approach” of the New Basel 
Capital Accord, credit assessments from 
external credit assessment institutions can be 
used for the calculation of the required 
regulatory capital (Basel Committee on Banking 
Supervision (2005a)). Therefore, regulators 
must have a clear understanding of the default 
rates to be expected (i.e. probability of default) 
for specific rating grades (Blochwitz and Hohl 
(2001)). Finally, it is also essential for central 
banks to clarify what specific rating grades 
mean in terms of probabilities of default since 
most central banks also partly rely on ratings 
from external credit institutions for establishing 
eligible collateral in their monetary operations. 
Although it is well known that agency ratings 
may to some extent also be dependent on the 
expected severity of loss in the event of default 

1 Note that we focus on the broad category “A” throughout this 
paper. The “A”-grade comprises three sub-categories (named 
A+, A, and A- in the case of Standard & Poor’s, and A1, A2, and 
A3 in the case of Moody’s). However, we do not differentiate 
between them or look at them separately, as the credit threshold 
of the Eurosystem was also defined using the broad category.

2 At the time of publication of this paper, only the national central 
banks of Austria, France, Germany and Spain possessed an in-
house credit assessment system.
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(e.g. Cantor and Falkenstein (2001)), a 
consistent and clear assignment of probabilities 
of default to rating grades should be theoretically 
possible because we infer from the rating 
agencies’ own definitions of the meanings of 
their ratings that their prime purpose is to 
reflect default probability (Crouhy et al. 
(2001)). This especially holds for “issuer-
specific credit ratings”, which are the main 
concern of this paper. Hence a clear relation 
between probabilities of default and rating 
grades definitely exists, and it has been the 
subject of several studies (Cantor and 
Falkenstein (2001), Blochwitz and Hohl (2001), 
Tiomo (2004), Jafry and Schuermann (2004) 
and Christensen et al. (2004)). It thus seems 
justifiable for the purposes of this paper to 
follow the definition of a rating given by 
Krahnen et al. (2001) and regard agency ratings 
as “the mapping of the probability of default 
into a discrete number of quality classes, or 
rating categories” (Krahnen et al. (2001)).

We thus attempt to express the threshold of a 
single “A” rating by means of probabilities of 
default. We focus on the single “A” rating level 
because this is the level at which the ECB 
Governing Council has explicitly defined its 
understanding of “high credit standards” for 
eligible collateral in the ECB monetary policy 
operations. Hence, in the empirical application 
of our methods, which we regard as applicable 
to the general problem of assigning probabilities 
of default to any rating grades, we will restrict 
ourselves to a single illustrative case, the “A” 
rating grade. Drawing on the above-mentioned 
earlier works of Blochwitz and Hohl (2001), 
Tiomo (2004) and Jafry and Schuermann 
(2004), we analyse historical default rates 
published by the two rating agencies Standard 
& Poor’s and Moody’s. However, as default is 
a rare event, especially for entities rated “A” or 
better, the data on historically observed default 
frequencies shows a high degree of volatility, 
and probability of default estimates could be 
very imprecise. This may be due to country-
specific and industry-specific idiosyncrasies 
which might affect rating migration dynamics 
(Nickel et al. (2000)). Furthermore, 

macroeconomic shocks can generally also 
influence the volatility of default rates, as 
documented by Cantor and Falkenstein (2001). 
As discussed by Cantor (2001), Fons (2002) 
and Cantor and Mann (2003), however, agency 
ratings are said to be more stable in this respect 
because they aim to measure default risk over 
long investment horizons and apply a “through 
the cycle” rating philosophy (Crouhy et al. 
(2001) and Heitfield (2005)). Based on these 
insights we derive an ex ante benchmark for the 
single “A” rating level. We use data of Standard 
& Poor’s and Moody’s publicly available rating 
histories (Standard & Poor’s (2005), Moody’s 
(2005)) to construct confidence intervals for 
the level of probability of default to be 
associated with a single “A” rating grade. This 
results in one of the main contributions of our 
work, i.e. the statistical deduction of an ex ante 
benchmark of a single “A” rating grade in terms 
of probability of default.

The second aim of this paper is to explore 
validation mechanisms for the estimates of 
probability of default issued by the different 
rating sources. In doing so, it presents a simple 
testing procedure that verifies the quality of 
probability of default estimates. In a quantitative 
validation framework the comparison of 
performance could be based mainly on two 
criteria: the discriminatory power or the quality 
of calibration of the output of the different 
credit assessment systems under comparison. 
Whereas the “discriminatory power” refers to 
the ability of a rating model to differentiate 
between good and bad cases, calibration refers 
to the concrete assignment of default 
probabilities, more precisely to the degree to 
which the default probabilities predicted by the 
rating model match the default rates actually 
realised. Assessing the calibration of a rating 
model generally relies on backtesting 
procedures.3 In this paper we focus on the 

3 To conduct a backtesting examination of a rating source the 
basic data required is the estimate of probability of default for 
a rating grade over a specified time horizon (generally 12 
months), the number of rated entities assigned to the rating 
grade under consideration and the realised default status of 
those entities after the specified time horizon has elapsed 
(i.e. generally 12 months after the rating was assigned).  
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1  INTRODUCT ION

quality of the calibration of the rating source 
and not on its discriminatory power.4

Analysing the significance of deviations 
between the estimated default probability and 
the realised default rate in a backtesting exercise 
is not a trivial task. Realised default rates are 
subject to statistical fluctuations that could 
impede a straight forward assessment of how 
well a rating system estimates probabilities of 
default. This is mainly due to constraints on the 
number of observations available owing to the 
scarcity of default events and the fact that 
default events may not be independent but show 
some degree of correlation. Non-zero default 
correlations have the effect of amplifying 
variations in historically observed default rates 
which would normally prompt the analyst to 
widen the tolerance of deviations between the 
estimated average of the probabilities of default 
of all obligors in a certain pool and the realised 
default rate observed for that pool. In this sense, 
two approaches can be considered in the 
derivation of tests of deviation significance: 
tests assuming uncorrelated default events and 
tests assuming default correlation. 

There is a growing literature on probability of 
default validation via backtesting (e.g. Cantor 
and Falkenstein (2001), Blochwitz et al. (2003), 
Tasche (2003), Rauhmeier (2006)). This work 
has been prompted mainly by the need of 
banking regulators to have validation 
frameworks in place to face the certification 
challenges of the new capital requirement rules 
under Basel II. Despite this extensive literature, 
there is also general acceptance of the principle 
that statistical tests alone would not be sufficient 
to adequately validate a rating system (Basel 
Committee on Banking Supervision (2005b)). 
As mentioned earlier, this is due to scarcity of 
data and the existence of a default correlation 
that can distort the results of a test. For example, 
a calibration test that assumes independence of 
default events would normally be very 
conservative in the presence of correlation in 
defaults. Such a test could send wrong messages 
for an otherwise well calibrated rating system. 
However, and given these caveats, validation 

by means of backtesting is still considered 
valuable for detecting problems in rating 
systems. 

We briefly review various existing statistical 
tests that assume either independence or 
correlation of defaults (cf. Brown et al. (2001), 
Cantor and Falkenstein (2001), Spiegelhalter 
(1986), Hosmer and Lemeshow (2000), Tasche 
(2003)). In doing so, we take a closer look at 
the binomial model of defaults that underpins a 
large number of tests proposed in the literature. 
Like any other model, the binomial model has 
its limitations. We pay attention to the 
discreteness of the binomial distribution and 
discuss the consequences of approximation, 
thereby accounting for recent developments in 
statistics literature regarding the construction 
of confidence intervals for binomially 
distributed random variables (for an overview 
see Vollset (1993), Agresti and Coull (1998), 
Agresti and Caffo (2000), Reiczigel (2004) and 
Cai (2005)). 

We conclude the paper by presenting a simple 
hypothesis testing procedure to verify the 
quality of probability of default estimates that 
builds on the idea of a “traffic light approach” 
as discussed in, for example, Blochwitz and 
Hohl (2001) and Tiomo (2004). A binomial 
distribution of independent defaults is assumed 
in accordance with the literature on validation. 
Our model appears to be conservative and thus 
risk averse. Our hypothesis testing procedure 
focuses on the interpretation of p-values as 
frequencies, which, contrary to an approach 
based on confidence intervals, guarantees a 
long-run convergence to the probability of 
default of a specified or given level of 
probability of default that we call the benchmark 
level. The approach we propose is flexible and 
takes into account the number of objects rated 
by the specific rating system. We regard this 
approach as an early warning system that could 
identify problems of calibration in a rating 

4 For an exposition of discriminatory power measures in the 
context of the assessment of performance of a rating source see, 
for example, Tasche (2006).
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system, although we acknowledge that, given 
the fact that default correlation is not taken into 
account in the testing procedure, false alarms 
could be given for otherwise well-calibrated 
systems. Eventually, we are able to demonstrate 
that our proposed “traffic light approach” is 
compliant with the mapping procedure of 
external credit assessment institutions foreseen 
in the New Basel Accord (Basel Committee on 
Banking Supervision (2005a)).

The paper is organised as follows. In Section 2 
the statistical framework forming the basis of a 
default generating process using binomial 
distribution is briefly reviewed. In Section 3 we 
derive the probability of default to be associated 
with a single “A” rating of a major rating 
agency. Section 4 discusses several approaches 
to checking whether the performance of a 
certain rating source is equivalent to a single 
“A” rating or its equivalent in terms of 
probability of default as determined in Section 3. 
This is done by means of their realised default 
frequencies. The section also contains our 
proposal for a simplified performance checking 
mechanism that is in line with the treatment of 
external credit assessment institutions in the 
New Basel Accord. Section 5 concludes the 
paper.
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2 A STATISTICAL FRAMEWORK – MODELLING 
DEFAULTS USING A BINOMIAL DISTRIBUTION

The probability of default itself is unobservable 
because the default event is stochastic. The 
only quantity observable, and hence measurable, 
is the empirical default frequency. In search of 
the meaning of a single “A” rating in terms of 
a one year probability of default we will thus 
have to make use of a theoretical model that 
rests on certain assumptions about the rules 
governing default processes. As is common 
practice in credit risk modelling, we follow the 
“cohort method” (in contrast to the “duration 
approach”, see Lando and Skoedeberg (2002)) 
throughout this paper and, furthermore, assume 
that defaults can be modelled using a binomial 
distribution (Nickel et al. (2000), Blochwitz 
and Hohl (2001), Tiomo (2003), Jafry and 
Schuermann (2004)). The quality of each 
model’s results in terms of their empirical 
significance depends on the adequacy of the 
model’s underlying assumptions. As such, this 
section briefly discusses the binomial 
distribution and analyses the impact of a 
violation of the assumptions underlying the 
binomial model.5 It is argued that postulating a 
binomial model reflects a risk-averse point of 
view.6

We decided to follow the cohort method as the 
major rating agencies document the evolution 
of their rated entities over time on the basis of 
“static pools” (Standard & Poor’s 2005, 
Moody’s 2005). A static pool consists of NY 
rated entities with the same rating grade at the 
beginning of a year Y. In our case NY denotes 
the number of entities rated “A” at the beginning 
of year Y. The cohort method simply records 
the number of entities DY that have defaulted by 
the year end out of the initial NY rated entities 
(Nickel et al. (2000), Jafry and Schuermann 
(2004)).

It is assumed that DY, the number of defaults in 
the static pool of a particular year Y, is 
binomially distributed with a “success 
probability” p and a number of events NY (in 
notational form: DY  ≈ B(NY ; p)). From this 

assumption it follows that each individual 
(“A”-rated) entity has the same (one year) 
probability of default “p” under the assumed 
binomial distribution. Moreover the default of 
one company has no influence on the (one year) 
defaulting of the other companies, i.e. the (one 
year) default events are independent. The 
number of defaults DY can take on any value 
from the set {0,1,2,…NY}. Each value of this set 
has a probability of occurrence determined by 
the probability density function of the binomial 
distribution which, under the assumptions of 
constant p and independent trials, can be shown 
to be equal to: 

b n N p P D n
N

n
p pY Y Y Y

Y

Y

n N n
Y Y Y( ; ; ) = =( ) =

⎛

⎝
⎜

⎞

⎠
⎟ −( ) −

1  (1)

The mean and the variance of the binomial 
distribution are given by 

µ

σ
D Y

D Y

Y

Y

N p

N p p

=

= −2 1( )

 (2)

As indicated above, a clear distinction has to be 
made between the “probability of default” (PD) 
(i.e. the parameter p in formula (1)) and the 
“default frequency”. While the probability of 
default is the fixed (and unobservable) 
parameter “p” of the binomial distribution, the 
default frequency is the observed number of 
defaults in a binomial experiment, divided by 
the number of trials df

n

NY
Y

Y

=
⎛

⎝
⎜

⎞

⎠
⎟

. This default 

frequency varies from one experiment to 
another, even when the parameters p and NY 
stay the same. It can take on values from the set  

df
N N NY

Y Y Y

∈
⎧
⎨
⎩

⎫
⎬
⎭

0 1 2
1, , ,..., . The value observed for 

5 For a more detailed treatment of binomial distribution see 
e.g. Rohatgi (1984), and Moore and McCabe (1999).

6 An alternative distribution for default processes is the “Poisson 
distribution”. This distribution has some benefits, such as the 
fact that it can be defined by only one parameter and that it 
belongs to the exponential family of distributions which easily 
allow uniformly most powerful (UMP) one and two-sided tests 
to be conducted in accordance with the Neyman-Pearson 
theorem (see the Fisher-Behrens problem). However, in this 
paper we have opted to follow the mainstream literature on 
validation of credit systems which rely on binomial distribution 
to define the default generating process. 
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one particular experiment is the observed 
default frequency for that experiment. 

The mean and variance of the default frequency 
can be derived from formula (1): 

µ

σ

df

df
Y

Y

Y

p

p p

N

=

= −2 1( )

 (2’)

The probability density function can be derived 
from (1) by setting f

n

NY
Y

Y

= :

P df f
N

f N
p pY Y

Y

Y Y

f N f N
Y Y Y Y=( ) =

⎛

⎝
⎜

⎞

⎠
⎟ −( ) −( )

1
1  (3)

As f
N N NY

Y Y Y

∈
⎧
⎨
⎩

⎫
⎬
⎭

0 1 2
1, , ,...,  this distribution is 

discrete. 

THE BINOMIAL DISTRIBUTION ASSUMPTIONS
It is of crucial importance to note that formula 
(1) is derived under two assumptions. First, the 
(one year) default probability should be the 
same for every “A”-rated company. Secondly, 
the “A”-rated companies should be independent 
with respect to the (one year) default event. 
This means that the default of one company in 
one year should not influence the default of 
another “A”-rated company within the same 
year.

THE CONSTANT “p”
It may be questioned whether the assumption 
of a homogeneous default probability for all 
“A”-rated companies is fulfilled in practice 
(e.g. Blochwitz and Hohl (2001), Tiomo (2004), 
Hui et al. (2005), Basel Committee on Banking 
Supervision (2005b)). The distribution of 
defaults would then not be strictly binomial. 
Based on assumptions about the distribution of 
probability of defaults within rating grades, 
Blochwitz and Hohl (2001) and Tiomo (2004) 
use Monte Carlo simulations to study the impact 
of heterogeneous probabilities of default on 
confidence intervals. 

The impact of a violation of the assumption of 
a uniform probability of default across all 

entities with the same rating may, however, 
also be modelled using “mixed binomial 
distribution”, of which “Lexian distribution” is 
a special case. Lexian distribution considers a 
mixture of “binomial subsets”, each subset 
having its own PD. The PDs can be different 
between subsets. The mean and variance of the 
Lexian variable x, which is the number of 
defaults among n companies, are given by7 

µ

σ
x

x

np

np p n n p

=

= − + −

,

( ) ( ) var( )2 1 1

 (4)

Where p̄ is the average value of all the (distinct) 
PDs and var(p) is the variance of these PDs. 

Consequently, if a mixed binomial variable is 
treated as a pure binomial variable, its mean, 
the average probability of default would still be 
correct, whereas the variance would be 
underestimated when the “binomial estimator” 
np(1-p) is used (see the additional term in (4)). 
The mean and the variance will be used 
to construct confidence intervals. An 
underestimated variance will lead to narrower 
confidence intervals for the (average) 
probability of default and thus to lower 
thresholds. Within the context of this paper, 
lower thresholds imply a risk-averse approach.

INDEPENDENT TRIALS
Several methods for modelling default 
correlation have been proposed in literature 
(e.g. Gordy (1998), Nagpal and Bahar (2001), 
Servigny and Renault (2002), Blochwitz, When 
and Hohl (2003, 2005) and Hamerle, Liebig and 
Rösch (2003)). They all point to the difficulties 
of measuring correlation.

Although default correlations are low for 
sufficiently high levels of credit quality such as 
a single “A” rating, they could be an important 
factor in performance testing for lower rating 
grades. Over the period 1981-2005 Standard 
and Poor’s historical default experience (see 
Table 1) shows that, with the exception of 2001, 

7 See e.g. Johnson (1969)
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not more than one company defaulted per year, 
a fact which indicates that correlation cannot be 
very high. Secondly, even if we assumed that 
two firms were highly correlated and one 
defaulted, the other one will most likely not 
default in the same year, but only after a certain 
lag! Given that the primary interest is in an 
annual testing framework, the possibility of 
intertemporal default patterns beyond the one 
year period is of no interest. Finally, from a risk 
management point of view, providing that the 
credit quality of the pool of obligors is high 
(e.g. single “A” rating or above), it could be 
seen as adequate to assume that there is no 
default correlation, because not accounting for 
correlation leads to confidence intervals that 
are more conservative.8 Empirical evidence for 
these arguments is provided by Nickel et al. 
(2000). Later on we will relax this assumption 
when presenting for demonstration purposes 
a calibration test accounting for default 
correlation. 

8 As in the case of heterogeneous PDs, this is due to the increased 
variance when correlation is positive. Consider, for example, 
the case where the static pool can be divided into two subsets. 
Within each subset issuers are independent, but between subsets 
they are positively correlated. The number of defaults in the 
whole pool is then a sum of two (correlated) binomials. The 
total variance is given by N

p p
N

p p
2

1
2

1 2 12( ) ( )− + − + σ , which is again 
higher than the “binomial variance”.
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3 THE PROBABILITY OF DEFAULT ASSOCIATED 
WITH A SINGLE “A” RATING

In this section we derive a probability of default 
that could be assigned to a single “A” rating. 
We are interested in this rating level because 
this is the minimum level at which the 
Eurosystem has decided to accept financial 
assets as eligible collateral for its monetary 
policy operations. The derivation could easily 
be followed to compute the probability of 
default of other rating levels.

Table 1 shows data on defaults for issuers rated 
“A” by Standard & Poor’s (the corresponding 
table for Moody’s is given in Annex 1). The 
first column lists the year, the second shows the 
number of “A” rated issuers for that year. The 
column “Default frequency” is the observed 
one-year default frequency among these issuers. 
The last column gives the average default 

frequency over the “available years” (e.g. the 
average over the period 1981-1984 was 
0.04%). 

The average one-year default frequency over 
the whole observation period spanning from 
1981 to 2004 was 0.04%, the standard deviation 
of the annual default rates was 0.07%. 

The maximum likelihood estimator for the 
parameter p of a binomial distribution is the 
observed frequency of success. Table 1 thus 
gives for each year between 1981 and 2004 a 
maximum likelihood estimate for the probability 
of default of companies rated “A” by S&P, 
i.e. 24 (different) estimates. 

One way to combine the information contained 
in these 24 estimates is to apply the central 
limit theorem to the arithmetic average of the 
default frequency over the period 1981-2004 

Table 1 One-year default frequency within Standard and Poor’s A-rated class

Year Number of issuers Default frequency (%) Average (1981-YYYY) (%)
1981 494 0.00 0.00
1982 487 0.21 0.11
1983 466 0.00 0.07
1984 471 0.00 0.05
1985 510 0.00 0.04
1986 559 0.18 0.07
1987 514 0.00 0.06
1988 507 0.00 0.05
1989 561 0.00 0.04
1990 571 0.00 0.04
1991 583 0.00 0.04
1992 651 0.00 0.03
1993 719 0.00 0.03
1994 775 0.13 0.04
1995 933 0.00 0.03
1996 1,027 0.00 0.03
1997 1,106 0.00 0.03
1998 1,116 0.00 0.03
1999 1,131 0.09 0.03
2000 1,118 0.09 0.04
2001 1,145 0.17 0.04
2002 1,176 0.09 0.04
2003 1,180 0.00 0.04
2004 1,209 0.00 0.04

Average 1981-2004
Standard deviation 1981-2004

0.04
0.07

Source: Standard & Poor’s, “Annual Global Corporate Default Study: Corporate defaults poised to rise in 2005”.
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which is 0.04% according to Table 1. As such, 
it is possible to construct confidence intervals 
for the true mean µx̄ of the population around 
this arithmetic average. The central limit 
theorem states that the arithmetic average x̄ of 
n independent random variables xi, each having 
mean µi and variance σ2

i , is approximately 
normally distributed with parameters 

µ
µ

x
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i

n

n
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(see e.g. DeGroot (1989),

 

and Billingsley (1995)). Applying this theorem 
to S&P’s default frequencies, random variables 
with µi = p and σ2

i = p(1– p)/Ni, yields the result 
that the arithmetic average of S&P’s default 
frequencies is approximately normal with mean 
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If the 
probability of default “p” is not constant over 
the years then a confidence interval for the 
average probability of default is obtained. In 
that case the estimated benchmark would be 
based on the average probability of default. 
After estimating p and σ x̄

2 from S&P data ( ̂p = 
0.04%, σ̂ x̄ = 0.0155%, for “A” and  ̂p = 0.27%, 
σ̂ x̄ = 0.0496% for “BBB”), confidence intervals 
for the mean, i.e. the default probability p, can 
be constructed. These confidence intervals are 
given in Table 2 for S&P’s rating grades “A” 
and “BBB”. Similar estimates can be derived 
for Moody’s data using the same approach. The 
confidence intervals for a single “A” rating 
from Moody’s have lower limits than those 
shown for S&P in Table 2. This is due to the 
lower mean realised default frequency recorded 
in Moody’s ratings. However, in the next 
paragraph it will be shown that Moody’s 
performance does not differ significantly from 
that of S&P for the single “A” rating grade. 

A similar result is obtained when the 
observations for the 24 years are “pooled”. 
Pooling is based on the fact that the sum 
of independent binomial variables with the 
same p is again binomial with parameters 

D B N pY Y∑ ∑≈ ( );  (see e.g. DeGroot (1989)). 
Applying this theorem to the 24 years of S&P 
data (and assuming independence) it can be 
seen that eight defaults are observed among 
19,009 issuers (i.e. the sum of all issuers rated 

single “A” over the 1981-2004 period). This 
yields an estimate for p of 0.04% and a binomial 
variance of 0.015%, similar to the estimates 
based on the central limit theorem. 

The necessary condition for the application of 
the central limit theorem or for pooling is the 
independence of the annual binomial variables. 
This is hard to verify. Nevertheless, several 
arguments in favour the above method can be 
brought forward. First, a quick analysis of the 
data in Table 1 shows that there are no visible 
signs of dependence among the default 
frequencies. Second, and probably the most 
convincing argument, the data in Table 1 
confirms the findings for the confidence 
intervals that are found in Table 2. Indeed, the 
last column in Table 1 shows the average over 
2, 3, ..., 24 years. As can be seen, with a few 
exceptions, these averages lie within the 
confidence intervals (see Table 2). For the 
exceptions it can be argued (1) that not all 
values have to be within the limits of the 
confidence intervals (in fact, for a 99% 
confidence interval one exception is allowed 
every 100 years, and for a 95% interval it is 
even possible to exceed the limits every 20 
years) and (2) that we did not always compute 
24-year averages although the central limit 
theorem was applied to a 24-year average. 
When random samples of size 23 are drawn 
from these 24 years of data, the arithmetic 
average seems to be within the limits given in 
Table 2. The third argument in support of our 

Table 2 Confidence intervals for the µx− of 
S&P’s “A” compared to “BBB”

(percentages)

Confidence level Lower Upper 
S&P A

95.0 0.01 0.07
99.0 0.00 0.08
99.5 0.00 0.09
99.9 0.00 0.10

S&P BBB
95.0 0.17 0.38
99.0 0.13 0.41
99.5 0.12 0.43
99.9 0.09 0.46
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findings is a theoretical one. In fact, a violation 
of the independence assumption would change 
nothing in the findings about the mean µx̄. 
However, the variance would no longer be 
correct as the covariances should be taken into 
account. Furthermore, dependence among the 
variables would no longer guarantee a normal 
distribution. The sum of dependent and (right) 
skewed distributions would no longer be 
symmetric (like the normal distribution) but 
also skewed (to the right). Assuming positive 
covariances would yield wider confidence 
intervals. Furthermore, as the resulting 
distribution will be skewed to the right, and as 
values lower than zero would not be possible, 
using the normal distribution as an approximation 
would lead to smaller confidence intervals. As 
such, a violation of the independence assumption 
implies a risk-averse result. 

An additional argument can be brought forward 
which supports our findings: First, in the 
definition of the “A” grade we are actually also 
interested in the minimum credit quality that 
“A-grade” stands for. We want to know the 
highest value the probability of default can take 
to be still accepted as equivalent to “A”. 
Therefore we could also apply the central limit 
theorem to the data for Standard & Poor’s BBB. 
Table 2 shows that in that case the PD of a BBB 
rating is probably higher than 0.1%. 

We can thus conclude that there is strong 
evidence to suggest that the probability of 
default for the binomial process that models the 
observed default frequencies of Standard & 
Poor’s “A” rating grade is between 0.00% and 
0.1% (see Table 2). The average point estimate 
is 0.04%. For reasons mentioned above, these 
limits are conservative, justifying the use of 
values above 0.04% (but not higher than 0.1%). 
An additional argument for the use of a 
somewhat higher value for the average point 
estimate than 0.04% is the fact that the average 
observed default frequency for the last five 
years of Table 1 equals 0.07%. 

TESTING FOR EQUALITY IN DEFAULT 
FREQUENCIES OF TWO RATING SOURCES AT THE 
SAME RATING LEVEL
The PD of a rating source is unobservable. 
As a consequence, a performance checking 
mechanism cannot be based on the PD alone. In 
this section it is shown that the central limit 
theorem could also be used to design a 
mechanism that is based on an average observed 
default frequency.9 

Earlier on, using the central limit theorem, we 
found that the 24-year average of S&P’s default 
frequencies is normally distributed: 

x NS P

x xS P S P
& ( ; )& &≈ µ σ  (5)

with µ
x S P&  and σ

x S P&  estimated at 0.04% and 
0.0155% respectively. 

In a similar way, the average default frequency 
of any rating source is normally distributed: 

x Nrs

x xrs rs≈ ( ; )µ σ  (6)

The formulae (5) and (6) can be used to test 
whether the average default frequency of the 
rating source is at least as good as the average 
of the benchmark by testing the statistical 
hypothesis

H
x xrs SaP0 :µ µ<  against H

x xrs SaP1 :µ µ≥  (7)

Although seemingly simple, such a performance 
checking mechanism has several disadvantages. 
First, assuming, for example, 24 years of data 
for the rating source, the null hypothesis cannot 
be rejected if the annual default frequency 
is 0.00% on 23 occasions and 0.96% once 
(x rs = × + × =23 0 00 1 0 96

24
0 04

. % . %
. %, p-value is 50%). 

In other words, extreme values for the observed 
default frequencies are allowed (0.96%). 
Second, the performance rule is independent of 
the static pool size. A default frequency of 
0.96% on a sample size of 10,000 represents 

9 This is only possible when historical data are available, 
i.e. when a n-year average can be computed. 



15
ECB 

Occasional Paper No 65
July 2007

3  THE 
PROBAB IL ITY 
OF  DEFAULT 
ASSOC IATED 

WITH A  S INGLE 
“A” RAT ING

96 defaults, while it is only 2 defaults for a 
sample of 200. Third, requiring 24 years of data 
to compute a 24-year average is impractical. 
Other periods could be used (e.g. a 10-year 
average), but that is still impractical as 10 years 
of data must be available before the rating 
source can be backtested. Taking into account 
these drawbacks, two alternative performance 
checking mechanisms will be presented in 
Section 4.1.

This rule can, however, be used to test whether 
the average default frequencies of S&P and 
Moody’s are significantly different. Under the 
null hypothesis 

H
x xS P Moody s0 : & ’µ µ=  (8)

the difference of the observed averages is 
normally distributed, i.e. (assuming 
independence) 

x x NS P Moody s

x xS P Moody s
& ’ ( ; )& ’− ≈ +0 2 2σ σ  (9)

Using an estimate of the variance, the variable 
x x

s s

S P Moody s

x xS P Moody s

& ’

& ’

−
+2 2

 has a t-distribution with 46 

degrees of freedom and can be used to check 
the hypothesis (8) against the alternative 
hypothesis H

x xS P Moody s1 : & ’µ µ≠ .

Using the figures from S&P and Moody’s 
( ̂p = 0.04%, σ̂ x̄ = 0.0155%,  for S&P’s “A” and  
p̂ = 0.02%, σ̂ x̄ = 0.0120% for Moody’s “A”), a 
value of 0.81 is observed for this t-variable. 
This t-statistic has an implied p-value (2-sided) 
of 42% so the hypothesis of equal PDs for 
Moody’s & S&P’s “A” grade cannot be rejected. 
In formula (9) S&P and Moody’s “A” class 
were considered independent. Positive 
correlation would thus imply an even lower 
t-value. 

PERFORMANCE CHECKING: THE DERIVATION OF A 
BENCHMARK FOR BACKTESTING
To allow performance checking, the assignment 
of PDs to rating grades alone is not enough. In 
fact, as can be seen from S&P data in Table 1, 
the observed annual default frequencies often 

exceed 0.1%. This is because the PD and the 
(observed) default frequencies are different 
concepts. A performance checking mechanism 
should, however, be based on “observable” 
quantities, i.e. on the observed default 
frequencies of the rating source. 

In order to construct such a mechanism it is 
assumed that the annually observed default 
rates of the benchmark may be modelled using 
a binomial distribution. The mean of this 
distribution, the probability of default of the 
benchmark, is estimated at p̂�[0.0%, 0.1%] 
(with an average of 0.04%). The other binomial 
parameter is the number of trials N. To define 
the benchmark N is taken to be the average size 
of S&P’s static pool or N = 792 (see Table 1). 
This choice may appear somewhat arbitrary 
because the average size over the period 2000-
2004 is higher (i.e. 1,166), but so is the average 
observed default frequency over that period 
(0.07%). If the binomial parameters were based 
on this period, then the mean and the variance 
of this binomial benchmark would be higher, 
and so confidence limits would also be higher. 

In Section 4.1 below two alternatives for the 
benchmark will be used: 

1. A fixed upper limit of 0.1% for the benchmark 
probability of default.

2. A stochastic benchmark, i.e. a Binomial 
distribution with parameters p equal to 0.1% 
and N equal to 792. 
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As realised default rates are subject to statistical 
fluctuations it is necessary to develop 
mechanisms to show how well the rating source 
estimates the probability of default. This is 
generally done using statistical tests to check 
the significance of the deviation of the realised 
default rate from the forecast probability of 
default. The statistical tests would normally 
check the null hypothesis that “the forecast 
probability of default in a rating grade is 
correct” against the alternative hypothesis that 
“the forecast default probability is incorrect”. 

As shown in Table 1, the stochastic nature of 
the default process allows for observed default 
frequencies that are far above the probability of 
default. The goal of this section is to find upper 
limits for the observed default frequency that 
are still consistent with a PD of 0.1%. 

We will first briefly describe some statistical 
tests that can be used for this purpose. The first 
one is to test a realised default frequency for a 
rating source against a fixed upper limit for the 
PD, this is the “Wald test” for single proportions. 
The second test will assess the significance of 
the difference between two proportions or, in 
other words, two default rates that come from 
two different rating sources. We will then 
proceed to a test that considers the significance 
of deviations between forecast probabilities of 
default and realised default rates of several 
rating grades, the “Hosmer-Lemeshow test”. In 
some instances, the probability of default 
associated with a rating grade is considered not 
to be constant for all obligors in that rating 
grade. The “Spiegelhalter test” will assess the 
significance of deviations when the probability 
of default is assumed to vary for different 
obligors within the rating grade. Both the 
Hosmer-Lemeshow and the derived 
Spiegelhalter test can be seen as extensions of 
the Wald test. Finally, we introduce a test that 
accounts for correlation and show how the 
critical values for assessing significance in 

deviations can be dramatically altered in the 
presence of default correlation. 

THE WALD TEST FOR SINGLE PROPORTIONS
For hypothesis testing purposes, the binomial 
density function is often approximated by a 
normal density function with parameters given 
by (2) or (2’) in Section 2 (see e.g. Cantor and 
Falkenstein (2001), Nickel et al. (2000)).

df N p
p p

NY
Y

≈ −⎛

⎝
⎜

⎞

⎠
⎟;

( )1
 (10)

When testing the null hypothesis H0: “the 
realised default is consistent with a specified 
probability of default value lower than p0 or 
benchmark” against H1: “the realised default is 
higher than p0”, a Z-statistic 

Z
df p

df df
NY

= −
−

0

1( )  (11)

can be used, which is compared to the quantiles 
of the standard normal distribution. 

The quality of the approximation depends on 
the values of the parameters NY,, the number of 
rated entities with the same rating grade at the 
beginning of a year Y, and p, the forecast 
probability of default (see e.g. Brown et al. 
2001). A higher NY results in better 
approximations. For the purpose of this paper, 
NY is considered to be sufficiently high. The 
low PD values for “A” rated companies (lower 
than 0.1%) might be problematic since the 
quality of the approximation degrades when p 
is far away from 50%. In fact, the two parameters 
interact, the higher NY is, the further away from 
50% p can be. Low values of p imply a highly 
skewed (to the right) binomial distribution, and 
since the normal distribution is symmetric the 
approximation becomes poor. The literature on 
the subject is extensive (for an overview see 
Vollset (1993), Agresti and Coull (1998), 
Newcombe (1998), Agresti and Caffo (2000), 
Brown et al. (2001), Reiczigel (2004), and Cai 
(2005)). Without going into more details, the 
problem is briefly explained in a graphical 
way.
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In Chart 1 the performance of the Wald interval 
is shown for several values of N, once for 
p = 0.05% and once for p = 0.10%. Formula (10) 
can then be used to compute the upper limit (dfU) 
of the 90% one-sided confidence interval. As 
the normal distribution is only an approximation 
for the binomial distribution, the cumulative 
binomial distribution for this upper limit will 
seldom be exactly equal to 90%, i.e
B df N N p P D df NU Y Y Y U Y( ; ; ) %× = ≤ ×( ) ≠ 90 .  

The zigzag line shows, for different values of N, 
the values for the cumulative binomial 
distribution in the upper limit of the Wald 
interval. For p = 0.1% and N = 500 this value 
seems to be close to 90%. However for 
p = 0.05% and N = 500 the coverage is far below 
90%. This shows that for p=0.05% the 90% 
Wald confidence interval is in fact not a 90% 
but only a 78% confidence interval, meaning 
that the Wald confidence interval is too small 
and that a test based on this approximation (for 
p = 0.05% and N = 500) is (too) conservative. 
The error is due to the approximation of the 
binomial distribution (discrete and asymmetric) 
by a normal (continuous and symmetric) one. 
Thus it is to be noted that, the higher the value 
of N, the better the approximation becomes, and 
that in most cases the test is conservative.10 

Our final traffic light approach will be based on 
a statistical test for differences of proportions. 

This test is also based on an approximation of 
the binomial distribution by a normal one. In 
this case, however, the approximation performs 
better as is argued in the next section. 

THE WALD TEST FOR DIFFERENCES OF 
PROPORTIONS
To check the significance of deviations between 
the realised default rates of two different rating 
systems, as opposed to just testing the 
significance of deviations of one single default 
rate against a specified value p0, a Z-statistic 
can also be used. 

If we define the realised default rate and the 
number of rated entities of one rating system 
(1) as df 1 and N1 respectively and of another 
rating system (2) as df 2 and N2 respectively, we 
can test the null hypothesis H0: df 1 = df 2 
(or df 1 - df 2=0) against H1: df 1 ≠ df 2. To derive 
such a test of difference in default rates we 
need to pool the default rates of the two rating 
systems and compute a pooled standard 
deviation of the difference in default rates in 
the following way,

Chart 1 The performance of the Wald interval for different values of N, and for 
p =0.1% (left) and p = 0.05% (right)
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10 The authors are well aware of the fact that the Poisson 
distribution (discrete and skewed, just like the binomial) is a 
better approximation than the normal distribution. However the 
normal approximation is more convenient for differences of 
proportions (because the difference of independent normal 
variables is again a normal variable, a property that is not valid 
for Poisson distributed variables). 
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Assuming that the two default rates are 
independent, the corresponding Z-statistic is 
given by 

Z
df df

df df
N N

pooled pooled

= −

− +
⎛

⎝
⎜

⎞

⎠
⎟

1 2

1 2

1
1 1

( )  (14)

The value for the Z-statistic may be compared 
with the percentiles of a standard normal 
distribution. 

Since the binomial distributions considered 
have success probabilities that are low (< 0.1%) 
they are all highly skewed to the right. Taking 
the difference of two right skewed binomial 
distributions, however, compensates for the 
asymmetry problem to a large extent. 

Chart 2 illustrates the performance of the 
Wald approximation applied to differences of 
proportions. For several binomial distributions 
(i.e. (N, p) = (500, 0.20%), (1,000, 0.20%), 
(5,000, 0.18%) and (10,000, 0.16%)) the 80% 
confidence threshold for their difference with 
respect to the binomial distribution with 
parameters (0.07%, 792) is computed using the 
Wald interval. Then the exact confidence level 
of this “Wald threshold” is computed.11

The figure shows that for the difference between 
the binomials with parameters (792, 0.07%) 
and (500, 0.20%) the 80% confidence threshold 
resulting from the Wald approximation is in 
fact an 83.60% confidence interval. For the 
difference between the binomials with 
parameters (792, 0.07%) and (1,000, 0.20%) 
the 80% confidence threshold resulting from 
the Wald approximation is in fact a 79.50% 
confidence interval, and so on. 

It can be seen that the Wald approximations for 
differences in proportions perform better than 

the approximations in Chart 1 for single 
proportions (i.e. the coverage is close to the 
required 80%). From this it may be concluded 
that hypothesis tests for differences of 
proportions, using the normal approximation, 
work well, as is demonstrated by Chart 2. Thus 
they seem to be more suitable for our purposes 
in this context.

THE HOSMER-LEMESHOW TEST (1980, 2000)
The binomial test (or its above mentioned 
normal/Wald test extensions) is mainly suited 
to testing a single rating grade, but not several 
or all rating grades simultaneously. The Hosmer-
Lemeshow test is in essence a joint test for 
several rating grades. 

Assume that there are k rating grades with 
probabilities of default p1, …., pk. Let ni be the 
number of obligors with a rating grade i and di 
be the number of defaulted obligors in grade i. 
The statistic proposed by Hosmer-Lemeshow 
(HSLS) is the sum of the squared differences of 
forecast and observed numbers of default, 
weighted by the inverses of the theoretical 
variances of the number of defaults. 

HSLS
n p d

n p p
i i i

i i ii

k

=
−( )
−( )=

∑
2

1 1
 (15)

11 The values that were chosen for the parameters will become 
clear in Section 4.1.2.

Chart 2 Performance of the Wald interval 
for differences of proportions
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The Hosmer-Lemeshow statistic is χ2 distributed 
with k degrees of freedom under the hypothesis 
that all the probability of default forecasts 
match the true PDs and that the usual 
assumptions regarding the adequacy of the 
normal distribution (large sample size and 
independence) are justifiable.12 It can be shown 
that, in the extreme case, when there is just one 
rating grade, the HSLS statistic and the 
(squared) binomial test statistic are identical. 

THE SPIEGELHALTER TEST (1986)
Whereas the Hosmer-Lemeshow test, like the 
binomial test, requires all obligors assigned to 
a rating grade to have the same probability of 
default, the Spiegelhalter test allows for 
variation in PDs within the same rating grade. 
The test also assumes independence of default 
events. The starting point is the mean square 
error (MSE) also known as the Brier score (see 
Brier 1950)

MSE
N

y pi
i

N

i= −∑1 2( )  (16)

where there are 1, …, N obligors with individual 
probability of default estimates pi. yi denotes 
the default indicator, y = 1 (default) or y = 0 (no 
default). 

The MSE statistic is small if the forecast PD 
assigned to defaults is high and the forecast PD 
assigned to non-defaults is low. In general, a 
low MSE indicates a good rating system. 

The null hypothesis for the test is that “all 
probability of default forecasts, pi, match 
exactly the true (but unknown) probability of 
default” for all i. Then under the null hypothesis, 
the MSE has an expected value of

E MSE
N

p pi i
i

N

[ ] = −
=
∑1

1
1

( ) (17)

and

var ( )( )MSE
N

p p pi
i

N

i i[ ] = − −
=
∑1

1 1 22
1

2 (18)

Under the assumption of independence and 
using the central limit theorem, it can be shown 
that under the null hypothesis the test statistic

Z
MSE E MSE

MSE
=

− [ ]
[ ]var

 (19)

follows approximately a standard normal 
distribution which allows a standard test 
decision (see Rauhmeier and Scheule (2005) 
for practical examples).

CHECKING DEVIATION SIGNIFICANCE IN THE 
PRESENCE OF DEFAULT CORRELATION
Whereas all the tests presented above assume 
independence of defaults, it is also important to 
discuss tests that take into account default 
correlation. The existence of default correlation 
within a pool of obligors has the effect of 
reinforcing the fluctuations in default rate of 
that pool. The tolerance thresholds for the 
deviation of realised default rates from 
estimated values of default may be substantially 
larger when default correlation is taken into 
account than when defaults are considered 
independent. From a conservative risk 
management point of view, assuming 
independence of defaults is acceptable, as this 
approach will overestimate the significance of 
deviations in the realised default rate from the 
forecast rate. However, even in that case, it is 
necessary to determine at least the approximate 
extent to which default correlation influences 
probability of default estimates and their 
associated default realisations. 

Most of the relevant literature models 
correlations on the basis of the dependence of 
default events on a common systematic random 
factor (cf. Tasche (2003) and Rauhmeier 
(2006)). This follows from the Basel II approach 
underlying risk weight functions which utilise 
a one factor model.13 If DN is the realised 
number of defaults in the specified period of 
time for a 1 to N obligor sample:

12 If we use the HSLS statistic as a measure of goodness of fit 
when building the rating model using “in-sample” data then the 
degrees of freedom of the χ2 distribution are k-2. In the context 
of this paper, we use the HSLS statistic as backtesting tool on 
“out of sample” data which has not been used in the estimation 
of the model. 

13 See Finger (2001) for an exposition.
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D XN i
i

N

= + − ≤⎡⎣ ⎤⎦
=
∑1 1

1

ρ ρε θ  (20)

The default of an obligor i is modelled 
using a latent variable AV Xi i= + −ρ ρε1  
representing the asset value of the obligor. The 
(random) factor X is the same for all the obligors 
and represents systemic risk. The (random) 
factor εi depends on the obligor and is called the 
idiosyncratic risk. The common factor X implies 
the existence of (asset) correlation among the N 
obligors. 

If the asset value AVi falls below a particular 
value θ (i.e. the default threshold) then the 
obligor defaults. The default threshold should 
be chosen in such a way that E[DN] = Np. This 
is the case if θ = Φ-1(p) where Φ-1 denotes the 
inverse of the cumulative standard normal 
distribution function and p the probability of 
default (see e.g. Tasche (2003)). The indicator 
function 1[] has the value 1 if its argument is 
true (i.e. the asset value is below θ and the 
obligor defaults) and the value 0 otherwise (i.e. 
no default). The variables X and εi are normally 
distributed random variables with a mean of 
zero and a standard deviation of one (and as a 
consequence AVi is also standard normal). It is 
further assumed that idiosyncratic risk is 
independent for two different borrowers and 
that idiosyncratic and systematic risk are 
independent. In this way, the variable X 
introduces the dependency between two 
borrowers through the factor ρ, which is the 
asset correlation (i.e. the correlation between 
the asset values of two borrowers). Asset 
correlation can be transformed into default 
correlations as shown, for example, in Basel 
Committee on Banking Supervision (2005b). 

Tasche 2003 shows that on a confidence level α 
we can reject the assumption that the actual 
default rate is less than or equal to the estimated 
probability of default whenever the number of 
defaults D is greater than or equal to the critical 
value given by
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and Φ-1 denotes the inverse of the cumulative 
standard normal distribution function and ρ the 
asset correlation. However, the above test, 
which includes dependencies and a granularity 
adjustment, as in the Basel II framework, 
shows a strong sensitivity to the level of 
correlation.14

It is interesting to see how the binomial test and 
the correlation test as specified above behave 
under different assumptions. As can be seen in 
Tables 3 and 4, the critical number of defaults 
that can be allowed before we could reject the 
null hypothesis that the estimated probability of 
default is in line with the realised number of 
defaults, goes up as we increase the level of 
asset correlation among obligors for every level 
of sample size from 0.05 to 0.15.15 The binomial 
test produces consistently lower critical values 
of default than the correlation test for all sample 
sizes. However, the test taking into account 
correlation suffers from dramatic changes in 
the critical values, especially for larger sample 
sizes (i.e. over 1,000).

14 Tasche (2003) also discusses an alternative test to determine 
default-critical values assuming a Beta distribution, with the 
parameters of such a distribution being estimated by a method 
of matching the mean and variance of the distribution. This 
approach will generally lead to results that are less reliable than 
the test based on the granularity adjustment.  

15 The ρ = 0.05 may be justified by applying the non-parametric 
approach proposed by Gordy (2002) to data on the historical 
default experiences of all the rating grades of Standard & 
Poor’s, which yields an asset correlation of ~5%. Furthermore, 
Tasche (2003) also points out that “ρ = 0.05 appears to be 
appropriate for Germany”. 24% is the highest asset correlation 
according to Basle II (see Basel Committee on Banking 
Supervision (2005a)).
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As can be inferred from the above tables, the 
derivation of critical values of default, taking 
into account default correlation, is not a straight 
forward exercise. First, we need to have a good 
estimate of asset correlation. In practice, this 
number could vary depending on the portfolio 
considered. A well-diversified portfolio of 
retail loans across an extensive region will 
present very different correlation characteristics 
than that of a sector concentrated portfolio of 
corporate names. In practice, default correlations 
could be seen in the range of 0-5%.16 Second, 
the validation analyst should take into account 
that there should be a consistency between the 
modelling of correlation for risk measurement 
in the credit assessment system that is going to 
be validated and the validation test to derive 
consistent confidence intervals for such credit 
system. This consistency is in practice difficult 
to achieve because the correlation dynamics in 
the validation test may not be in line with those 
assumed in the rating system. 

The binomial test, although conservative, is 
seen as a good realistic proxy for deriving 
critical values. It is considered a good early 
warning tool, free of all the estimation problems 
seen in tests that incorporate correlation 
estimates. Therefore, in what remains of this 
paper we will focus on the binomial distribution 
paradigm and its extension in the normal 
distribution as the general statistical framework 
to derive a simple mechanism for performance 
checking based on backtesting.

4.1 TWO POSSIBLE BACKTESTING STRATEGIES

In what follows we will concentrate on 
elaborating two backtesting strategies that 
focus on a rating level of a single “A” as defined 
by the main international rating agencies. This 
is the credit quality level set by the Eurosystem 
for determining eligible collateral for its 
monetary policy operations. The single “A” 
rating is thus considered the “benchmark”. The 
previous section defined this benchmark in 
terms of a probability of default. As the true 
probability of default is unobservable, this 
section presents two alternative backtesting 
strategies based on the (observable) default 
frequency:

1. A backtesting strategy that uses a fixed, 
absolute upper limit for the probability of 
default as a benchmark.

2. A backtesting strategy that uses a stochastic 
benchmark. This assumes that the benchmark 
is not constant as in the first strategy

These alternatives will be summarised in a 
simplified rule which will result in a traffic 
light approach for backtesting, much in the 
same vein as in Tasche (2003), Blochwitz and 
Hohl (2001) or Tiomo (2004).

Table 3 95% critical values for a benchmark 
probability of default of 0.10% under 
different calibration tests

N Binomial Correlation 
= 0.05

Correlation 
= 0.15

100 1 2 2
500 2 3 3
1,000 3 4 5
5,000 9 15 21

Table 4 99.9% critical values for a 
benchmark probability of default of 0.10% 
under different calibration tests

N Binomial Correlation 
= 0.05

Correlation 
= 0.15

100 2 4 4
500 2 6 12
1,000 5 10 22
5,000 13 37 102

16 Huschens and Stahl (2005) show evidence that, for a well 
diversified German retail portfolio, asset correlations are in the 
range between 0% and 5%, which implies even smaller default 
correlations. 
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4.1.1 A BACKTESTING STRATEGY RELYING ON 
A FIXED BENCHMARK 

Using the central limit theorem we found in 
Section 3 that the probability of default of the 
benchmark (pbm) is at most 0.1%. A rating 
source is thus in line with the benchmark if its 
default probability for the single “A” rating is 
at most 0.1%.

Assuming that the rating source’s default events 
are distributed in accordance with a binomial 
distribution with parameters PDrs and NY

rs, the 
backtesting should check whether 

PDrs ≤ 0 1. % (23)

Since PDrs is an unobservable variable, (23) can 
not be used for validation purposes. A quantity 
that can be observed is the number of defaults 
in a rating source’s static pool within one 
particular year, i.e. dfY

rs. 

The performance checking mechanism 
should thus check whether observing a value 
dfY

rs for a random variable which is 
(approximately) normally distributed 

df N PD
PD PD

NY
rs rs

rs rs

Y
rs≈ −⎛

⎝
⎜

⎞

⎠
⎟;

( )1  is consistent 
 with (23). 

This can be done using a statistical hypothesis 
test. The null hypothesis that H0 : prs ≤ 0.1% 
must be tested against the alternative hypothesis  
H1 : prs > 0.1%.

Assuming that the null hypothesis of this 
statistical test, H0, is true, the probability of 
observing the value dfY

rs can be computed. This 
is the p-value of the hypothesis test or the 
probability of obtaining a value of dfY

rs or higher, 
assuming that H0 is true. This p-value is given 
by

' . %

. %( . %)

rs

rs
y

df 0 1
1

0 1 1 0 1
N

Φ

⎛ ⎞
⎜ ⎟

−⎜ ⎟− ⎜ ⎟−
⎜ ⎟⎜ ⎟⎝ ⎠

  (24)

where Φ is the cumulative probability function 
for the standard normal distribution. Table 5 

gives an example for an eligible set of 
Ny

rs = 10,000 companies.

The first column of the table gives different 
possibilities for the number of defaults observed 
in year “Y”. The observed default frequency is 
derived by dividing the number of defaults by 
the sample size. This is shown in the second 
column of the table. The third column shows 
the p-values computed using formula (24). So 
the p-value for observing at least 15 defaults 
out of 10,000, assuming that H0 is true, equals 
5.68%. In the same way it follows from the 
table that if H0 is true, then the probability of 
observing at least 18 defaults in 10,000 is 
0.57%, or “almost impossible”. Or, to put it 
another way, if we observe 18 defaults or more 
then it is almost impossible for H0 to be true.

Table 5 Test of credit quality assessment source 
against the limit of 0.1% for a sample size of 
10,000. N denotes the number of defaults
(percentage)

N df’(rs) p-value Probability 
of “N” if H0 is 

true 
 0 0.00
 1 0.01 99.78 0.35
 2 0.02 99.43 0.77
 3 0.03 98.66 1.54
 4 0.04 97.12 2.80
 5 0.05 94.32 4.60
 6 0.06 89.72 6.84
 7 0.07 82.87 9.22
 8 0.08 73.66 11.24
 9 0.09 62.41 12.41
10 0.10 50.00 12.41
11 0.11 37.59 11.24
12 0.12 26.34 9.22
13 0.13 17.13 6.84
14 0.14 10.28 4.60
15 0.15 5.68 2.80
16 0.16 2.88 1.54
17 0.17 1.34 0.77
18 0.18 0.57 0.35
19 0.19 0.22 0.14
20 0.20 0.08 0.05
21 0.21 0.03 0.02
22 0.22 0.01 0.01
23 0.23 0.00 0.00
24 0.24 0.00 0.00
25 0.25 0.00 0.00
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The last column “probability” computes the 
theoretical probability for observing a particular 
number of defaults if H0 is true. It is the 
difference between two successive p-values. 
For example, if H0 is true, then the probability 
of observing at least one default out of 
10,000 equals 99.78%, and the probability of 
observing at least two defaults is 99.43%. As a 
consequence, if H0 is true, the probability of 
having exactly one default is 0.35%. The 
column “probability” can thus be used as an 
exact behavioural rule, i.e. if H0 is true then one 
can have

– exactly one default in 10,000 every 
0.35 years out of 100 years

– exactly two defaults in 10,000 every 
0.77 years out of 100 years

– exactly three defaults in 10,000 every 
1.54 years out of 100 years

– ....

Averaging this rule over a 100 year period 
shows that in the long run the average default 
frequency will converge to 0.1%. However, 
such a rule is, of course, too complex to be 
practical. It is simplified below. 

Table 5 can be used as backtesting for a sample 
of 10,000 obligor names with an ex ante 
probability of default of 0.10% after fixing a 
confidence level (i.e. a minimum p-value, 
e.g. 1%): if the size of the static pool is 10,000 

then the rating source is in line with the 
benchmark only if at most 17 defaults are 
observed (confidence level of 1%) i.e. 
df'Y

rs ≤ 0.17%. 

This technique has the disadvantage of first 
having to decide on a confidence level. 
Moreover, fixing only one limit (0.17% in the 
case above) does not guarantee a convergence 
over time to an average of 0.1% or below. 

A p-value, being a probability, can be interpreted 
in terms of “number of occurrences”. From 
Table 5 we infer that, if the null hypothesis is 
true, the observed default frequency must 
be lower than 0.12% in 80% of cases. In 
other words, a value above 0.12% should be 
observable only once every 5 years (i.e. if the 
realised default frequency should be lower than 
0.12% in 80 out of 100 years, then the realised 
default frequency could be higher than 0.12% 
in 20 out of 100 years, or once every 5 years), 
otherwise the rating source is not in line with 
the benchmark. 

This gives a second performance checking rule: 
a rating source with a static pool of size 10,000 
is in line with the benchmark if at most once 
every five years a default frequency above 
0.12% is observed. A default frequency above 
0.17% should “never” be observed. 

Table 6 Backtesting strategy based on a fixed benchmark for different static pool sizes

(percentage)

All time Once in 5y Never Average DF 

500 0.00-0.00 0.20-0.40 >0.40 0.06
1,000 0.00-0.10 0.20-0.40 >0.40 0.10
2,000 0.00-0.10 0.15-0.25 >0.25 0.08
3,000 0.00-0.10 0.13-0.23 >0.23 0.08
4,000 0.00-0.13 0.15-0.25 >0.25 0.09
5,000 0.00-0.12 0.14-0.20 >0.20 0.08
6,000 0.00-0.12 0.13-0.20 >0.20 0.08
7,000 0.00-0.11 0.13-0.19 >0.19 0.08
8,000 0.00-0.11 0.13-0.19 >0.19 0.08
9,000 0.00-0.11 0.12-0.18 >0.18 0.07
10,000 0.00-0.11 0.12-0.17 >0.17 0.07
50,000 0.00-0.112 0.114-0.134 >0.134 0.07
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The intervals for other sizes of the static pool 
are shown in Table 6. The lower value of the 
“Once in 5y” interval is derived from the 80% 
confidence limit, the absolute upper limit 
“Never” is derived from a 99% confidence 
interval. 

The column “average DF” is an estimated 
average using 4 in 5 occurrences at the midpoint 
of the first interval and 1 in 5 occurrences at the 
midpoint of the second. These averages are 
clearly below the benchmark limit of 0.1%. 

Notice, however, that the validation strategies 
proposed above make use of hypothesis tests 
for one proportion. As illustrated earlier in 
Section 4, the Wald approximation performs 
worse for one proportion than for differences of 
proportions. Hence an alternative test based on 
differences of proportions will be developed in 
the following section. 

4.1.2 A BACKTESTING STRATEGY BASED ON A 
STOCHASTIC BENCHMARK

In the preceding section a performance checking 
mechanism using a fixed upper limit for the 
benchmark was derived. That fixed upper limit 
followed from the central limit theorem and 
was found to be 0.1%. 

An examination of Table 1 could also prompt 
the idea that the benchmark is not fixed but 
stochastic. Thus we will develop an alternative 
backtesting strategy in this section, based on a 
stochastic benchmark. In fact, in Section 3 we 
concluded that the benchmark can be defined 
as 

df N PD
PD PD

N
bm bm

bm bm

bm
≈ −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟;

( )1   (25)

where PDbm was estimated at 0.04% and Nbm 
was estimated at 792. 

On the other hand, the rating source’s default 
frequency is also normally distributed, 

df N PD
PD PD

NY
rs rs

rs rs

Y
rs

≈ −⎛

⎝
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⎞

⎠
⎟⎟;

( )1   (26)

If one assumes a stochastic benchmark, there is 
no longer an upper limit for the PD of the rating 
source. The condition on which to base the 
performance-checking mechanism should be 
that “the rating source should do at least as well 
as the benchmark”. In terms of a probability of 
default, this means that the rating source’s PD 
should be lower than or equal to that of the 
benchmark. The hypothesis to be tested is thus 
H0 : PDrs ≤ PDbm against H1 : PDrs ≤ PDbm where 
PDbm was estimated at 0.04% and Nbm was 
estimated at 792. 

The test is completely different from the one in 
the preceding section. Indeed we cannot replace 
PDbm by 0.04% because this is only an estimate 
of the benchmark’s PD. The true PD of the 
benchmark is unknown. We should therefore 
combine the variance of the ex-ante estimated 
probability of default of the rating source and 
that of the benchmark in one measure in order 
to conduct the backtesting.

The difference of two normally distributed 
variables also has a normal distribution thus, 
assuming that both are independent:17

df df N PD PDY
rs bm rs bm− ≈ −

⎛

⎝
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PD PD

N

PD PD

N

rs rs

Y
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bm bm
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⎟⎟

  (27)

PDrs and PDbm are unknown, but if the null 
hypothesis is true then their difference should 
be PDrs – PDbm ≤ 0. An estimate of the combined 
variance PD PD

N

PD PD

N

rs rs

Y
rs

bm bm

bm

( ) ( )1 1− + −  is 

needed. A standard hypothesis test, testing the 
equality of two proportions, would use a 
“pooled variance” as estimator. This pooled 
variance itself being derived from a “pooled 
proportion” estimator (see e.g. Moore and 
McCabe (1999), and Cantor and Falkenstein 
(2001)). The reasoning is that as we test the 

17 If the rating source’s eligible class and the benchmark are 
dependant then the variance of the combined normal distribution 
should include the covariance term. 
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hypothesis of equal proportions, all observations 
can be pooled so that there are a total of NY

rs + 
Nbm observations, among which there are 

' 'bm bm rs rs
Y YN df N df+ . The pooled proportion is 

thus

792 0.04% '
'

792

rs rs
pooled Y Y

rs
Y

N df
df

N

× +=
+

  (28)

and the two variances are then
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and (9) becomes

rs bm
Ydf df N− ≈
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rs
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1 1
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However, as we have an estimate of the 
benchmark that is based on only 24 past 
observations, we decided not to touch the 
variance estimate of the benchmark. So, taking 
a risk-averse position, we assigned the empirical 
variance of the benchmark recorded in these 24 
observations (1981-2004) untouched, and the 
hypothesis test uses the distribution given in 
(31). 
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Using the observed default frequency (df'rs) as 
an estimate for the rating source, and using the 
estimated benchmark values, the p-values of 
the test are given by:
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The results for an estimated benchmark PD of 
0.04% and a static pool of 10,000 companies 
are shown in Table 7. 

Table 7 can be used as backtesting for a sample 
of 10,000 obligor names with an stochastic 
benchmark, after fixing a confidence level 
(i.e. a minimum p-value, e.g. 1%). A rating 
source with a static pool of size 10,000 is in 
line with the benchmark if at most once every 
five years a default frequency above 0.1% is 
observed. A default frequency above 0.23% 
should “never” be observed. 

The intervals for other sizes of the static pool 
are shown in Table 8. The average default 

Table 7 Test of credit quality assessment source 
against the limit of stochastic benchmark for a 
sample size of 10,000, using df ’(bm) = 0.04%
(percentages)

BM
Mean
0.04 

Stand dev
0.07 

df’ (bm)
0.04 

Size 10,000 mean
N df’(rs) p-value Probability 

of “N” if H0 is 
true

 0 0.0000 71.27 5.10
 1 0.0100 66.17 5.31
 2 0.0200 60.86 5.43
 3 0.0300 55.43 5.43
 4 0.0400 50.00 5.34
 5 0.0500 44.66 5.16
 6 0.0600 39.49 4.91
 7 0.0700 34.59 4.59
 8 0.0800 30.00 4.23
 9 0.0900 25.77 3.84
10 0.1000 21.94 3.44
11 0.1100 18.50 3.04
12 0.1200 15.46 2.65

13 0.1300 12.81 2.29
14 0.1400 10.52 1.95
15 0.1500 8.57 1.65
16 0.1600 6.92 1.37
17 0.1700 5.55 1.14
18 0.1800 4.41 0.93
19 0.1900 3.48 0.75
20 0.2000 2.73 0.61
21 0.2100 2.12 0.48
22 0.2200 1.64 0.38
23 0.2300 1.26 0.30
24 0.2400 0.96 0.23
25 0.2500 0.73 0.18
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Table 8 Backtesting strategy based on a stochastic benchmark for different static pool sizes

(percentages)

p (bm) = 0.04% p (bm) = 0.07%
All time Once in 5y Average DF All time Once in 5y Average DF

500 0-0 0.2-0.6 0.08 0-0 0.2-0.8 0.10

1,000 0-0 0.2-0.5 0.07 0-0.1 0.2-0.5 0.11

2,000 0-0.1 0.15-0.35 0.09 0-0.1 0.2-0.45 0.11

3,000 0-0.1 0.13-0.3 0.08 0-0.1 0.13-0.37 0.09

4,000 0-0.1 0.125-0.275 0.08 0-0.125 0.15-0.37 0.10

5,000 0-0.1 0.12-0.28 0.08 0-0.16 0.18-0.34 0.12

6,000 0-0.1 0.12-0.25 0.08 0-0.15 0.16-0.35 0.11

7,000 0-0.1 0.11-0.24 0.08 0-0.15 0.17-0.34 0.11

8,000 0-0.1 0.11-0.237 0.07 0-0.15 0.16-0.32 0.11

9,000 0-0.1 0.11-0.23 0.07 0-0.15 0.16-0.32 0.11

10,000 0-0.1 0.11-0.23 0.07 0-0.15 0.16-0.32 0.11

50,000 0-0.1 0.11-0.21 0.07 0-0.15 0.152-0.29 0.10

frequency seems to be lower than 0.1% for all 
sizes. As argued in Section 3, a higher average 
than 0.04% could be justified. Table 8 also 
shows the results when an estimate of 0.07% is 
used for the benchmark PD. As in Table 6, the 
lower value of the “Once in 5y” interval is 
derived from the 80% confidence limit, the 
absolute upper limit “Never” is derived from a 
99% confidence interval.

It appears that with these assumptions (i.e. an 
ex ante estimate for the probability of default of 
0.07% and benchmark sample size of 792 
obligors) the backtesting strategy based on the 
stochastic benchmark is less conservative than 
that based on a fixed benchmark (cf. Table 6 
and 8). For every sample size the confidence 
intervals for the realised default rates are wider 
for the stochastic benchmark test. It can also be 
seen that the confidence intervals are relatively 
wider for large sample sizes when using the 
stochastic benchmark.

4.1.3 THE BACKTESTING MECHANISMS AND 
BASEL II

Under the new rules of Basel II supervisors will 
be responsible for assigning an eligible External 
Credit Assessment Institution’s (ECAI) credit 
risk assessment to the risk weights available 
under the standardised approach. Annex 2 of 

the revised Basel II framework (2005a) contains 
the Committee’s proposal for a consistent 
mapping of credit risk assessments into the 
available risk weights. The mapping mechanism 
uses two quantifiable parameters:

– a ten-year average of a three-year cumulative 
default frequency, and

– the two most recent three-year cumulative 
default frequencies

These measures have to be compared to 
benchmark values:

– For the two most recent three-year 
cumulative default frequencies the Basel II 
documents give two benchmark levels:

 –  a monitoring level derived from Monte 
Carlo simulations and fixed at the 99% 
quantile which takes a value of 1.0% for 
the “A” grade, and

 –  a trigger level representing the 99.9% 
quantile, which takes a value of 1.3% for 
the “A” grade.

Using the 10 year average of the 3-year default 
frequencies observed over the years 1993-2002 
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by Standard&Poor’s (0.25%) and the average 
number of issuers over the same period (1,024), 
the 99% and the 99.9% confidence intervals 
resulting from tests with a stochastic benchmark 
are shown for different static pool sizes in 
Table 9. 

This table shows that our stochastic benchmark 
tests for confidence levels of 99% and 99.9% 
respectively yield results similar to the threshold 
values given in Annex 2 of the revised Basel II 
framework. It appears that our proposed test is 
slightly more conservative. If, instead of the 
stochastic benchmark, we were to use the fixed 
benchmark strategy, the confidence intervals 
would be even more conservative than those 
provided by the Basel II rules.

4.2 THE TRAFFIC LIGHT APPROACH, A 
SIMPLIFIED BACKTESTING MECHANISM

The testing procedures outlined in the previous 
sections allow

– confidence intervals to be defined for the 
annual default frequency (i.e. the annual 
interpretation of the rule) and 

– the specification of how often a value should 
fall within a specific interval (i.e. the multi-
period interpretation of the rule) in order to 
converge to a long-run average of 0.10%.

Moreover, the intervals for the annual default 
frequency depend on the size of a credit quality 
assessment source’s eligible set (i.e. the static 
pool).

To apply the tests discussed in 4.1 in practice, 
a traffic light approach is proposed. Instead of 
defining exactly how often every possible 
default frequency may be observed for a certain 
credit quality assessment source, Tables 6 and 
8 can be simplified to a restriction on how often 
a realised default frequency should fall within 
one of only three intervals (the three zones 
(green, orange, and red) of the “traffic light 
approach”). 

1. Depending on the size of a rating source’s 
static pool, two threshold levels are defined 
that separate these three zones: (1) a 
monitoring level, and (2) a trigger level. 

2. If the annually observed default frequency 
is (strictly) below the monitoring level, then 
the rating source is in line with the 
benchmark and is in the green zone.

3. If the observed default frequency is above 
(or equal to) the monitoring level and 
(strictly) below the trigger level, then the 
rating source is in the orange zone. The 
rating source is allowed to be in the orange 
zone only once in five years (on average). 

4. If the observed default frequency is above 
(or equal to) the trigger level, then the rating 
source is in the red zone. 

A practical example of a traffic light approach 
as defined above, with the monitoring and the 
trigger levels derived from Table 8, is given in 
Table 10 below. A similar example of a traffic 
light approach could also be constructed on the 
basis of Table 6 (test based on a fixed benchmark 
rule). The monitoring and trigger levels would 
be somewhat more conservative than those 
shown in Table 8. 

One way of applying the traffic light approach 
in practice, assuming that a rating source has a 

Table 9 Confidence intervals based on a 
stochastic benchmark rule applied to the 
3 year default rates
(percentages)

Conf 99% Conf 99.9%
500 1.00 1.40
600 1.00 1.30
700 1.00 1.28
800 0.90 1.25
900 0.90 1.22
1,000 0.90 1.20
11,00 0.90 1.20
12,00 0.90 1.15
Average 0.94 1.25
p.m. Basel II 1.00 1.30
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Table 10 Example of traffic light monitoring and trigger levels based on a stochastic 
benchmark rule

(percentages)

Size of eligible set Monitoring level (orange) Trigger level (red) 
Up to 500 0.20 1
Up to 1,000 0.20 0.80
Up to 5,000 0.18 0.34
Up to 50,000 0.16 0.28

static pool in the vicinity of 500 obligors, could 
be as follows: if the rating source records an 
annual realised default rate that is in the red 
zone (i.e. a realised default rate above 1%) or a 
default rate that repeatedly falls in the orange 
zone (i.e. more than once over a period of 
5 years), then the analyst may wish to consult 
with the relevant rating provider to understand 
why its default experience is considerably 
worse than the historical default experience of 
the benchmark rating agencies. The credit 
quality assessment system provider will be 
asked to provide additional information to 
justify its violation of the rules. 

If no convincing arguments were brought 
forward, then the conclusion would be that the 
rating source’s model estimates probabilities of 
default which are too low and the model must 
be re-calibrated.18

Finally, please note that default frequencies are 
discrete variables, so the upper limit of the 
green zone can be far below the lower limit of 
the orange zone. E.g. for a static pool size 
below 500 the green zone means no defaults at 
all, because the lowest non zero is 0.2% (1/500) 
(see Table 8).

18 If forecast PDs and ex-post default information are available for 
every individual borrower in the static pool of the rating source, 
then the Brier score/Spiegelhalter test, for example, could be 
used to check the forecasting performance of the rating source’s 
model. 
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In this paper we concentrate on two main goals. 
First, we are interested in translating the single 
“A” rating as published by major rating agencies 
for debt issuers into a quantitative metric, the 
annual probability of default. In particular we 
look at the single “A” rating, because that is the 
minimum level at which the Eurosystem sets it 
requirement of high credit standards for 
collateral that can be used in its monetary policy 
operations. This translation method could be 
useful for mapping credit assessments of other 
rating sources to those of the major rating 
agencies by means of this probability of default 
metric. Although, the information that is 
contained in a rating goes beyond the probability 
of default of an obligor, we present arguments 
in support of the translation from a rating to a 
PD. The example presented with the single “A” 
rating could also be extended to other rating 
grades. We demonstrate that the probability of 
default for a single “A” issued by the main 
rating agencies is at most 0.1%. 

Second, we are interested in assessing the 
quality of the estimated probability of default 
for a rating grade, in this case the single “A” 
rating grade, by means of the realised default 
rate, also called backtesting of the probability 
of default. We review briefly the main statistical 
tests that have appeared in the literature 
focusing on the binomial test and its normal 
extension, analysing in particular its main 
underlying assumptions, independence of 
default events and constant probability of 
default. We show that the existence of default 
correlation would imply wider confidence 
intervals than those derived with the binomial 
test, in which independence of default events is 
assumed. However, it is also argued that in 
practice default correlations would be low, in 
particular for high credit quality debtors, and 
that, from a risk management perspective, it is 
preferable to rely on a more conservative test, 
such as the binomial test to derive critical 
values. 

Assuming that the default generating process 
follows a binomial distribution, the paper 
proposes two generic backtesting strategies for 
testing the quality of forecast probabilities of 
default: first, a backtesting strategy that uses a 
fixed, absolute upper limit for the probability 
of default, which in the case of a single “A” 
rating is derived at 0.10%; and second, a 
backtesting strategy that relies on an stochastic 
benchmark, a benchmark probability of default 
that is not constant, unlike in the first strategy. 
The second strategy could be justified in cases 
where there is uncertainty about the level of the 
benchmark or if the benchmark is expected to 
move over time. We show that a backtesting 
strategy based on a stochastic benchmark would 
produce wider confidence intervals than those 
obtained using a fixed benchmark. The two 
strategies are based on one and five-year multi-
period tests. The use of a multi-period test is 
intended to provide a more informative 
statement about the performance of a rating 
source as reliance only on annual tests may be 
misleading due to, for example, problems in the 
measurement of default with scarce data, 
situations of unforeseen non-normal stress that 
increase default rates, or the existence of default 
correlation.

The backtesting strategies presented are 
implemented through a traffic light approach in 
the same vein as in Tasche (2003). Depending 
on the size of a rating source’s static pool, two 
threshold levels are defined that separate three 
zones, green, orange and red: (1) a monitoring 
level, and (2) a trigger level. If the annually 
observed default frequency is (strictly) below 
the monitoring level, then the rating source is 
in the green zone and is in line with the 
benchmark. If the observed default frequency is 
above (or equal to) the monitoring level and 
(strictly) below the trigger level, then the rating 
source is in the orange zone, which implies that 
the realised default rate is not compatible with 
the PD forecast but still in the range of usual 
statistical deviations. We implement the multi-
period rule by allowing the default frequency to 
be in the orange zone only once in five years 
(on average). If the observed default frequency 
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is above (or equal to) the trigger level, then the 
rating source is in the red zone, indicating that 
the realised default frequency is unequivocally 
not in line with the PD forecast. 

We see the backtesting techniques and strategies 
described in this paper as early warning tools 
for identifying performance problems in credit 
assessment systems. This could be useful in the 
context of the Eurosystem Credit Assessment 
Framework, in which various credit assessment 
sources can be employed to assess the credit 
quality standards of eligible collateral. In such 
a setting it is important to guarantee that the 
different participating credit systems fulfil their 
rating mandates correctly and comparably. In 
this sense, this paper puts emphasis on risk 
management and therefore there is a general 
preference for backtesting strategies that are 
more conservative. However, the techniques 
presented in this paper are by no means the only 
mechanism that an analyst has at his disposal 
for validating the functioning of a credit system, 
but they are an important one. They could be 
considered as a first step (i.e. early warning) in 
a more comprehensive process that should take 
into account also more qualitative elements 
(see Basel Committee (2005b). The drawbacks 
shown in this paper as regards problems of 
measurement, existence of correlation, or the 
existence of non-normal stress situations should 
be weighed carefully when assessing credit 
assessment systems based solely on the results 
of backtesting tools of the type presented.
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ANNEX

ANNEX 

HISTORICAL DATA ON MOODY’S A-GRADE

Historical data on Moody’s A-grade

Year Issuers 1Y-Def.-Freq. (%)
1981 376 0.00
1982 387 0.26
1983 432 0.00
1984 472 0.00
1985 524 0.00
1986 579 0.00
1987 555 0.00
1988 553 0.00
1989 587 0.00
1990 614 0.00
1991 609 0.00
1992 694 0.00
1993 740 0.00
1994 880 0.00
1995 968 0.00
1996 1,071 0.00
1997 1,133 0.00
1998 1,154 0.00
1999 1,173 0.00
2000 1,237 0.00
2001 1,287 0.16
2002 1,301 0.16
2003 1,279 0.00
2004 1,244 0.00
Mean 0.02
Standard deviation 0.07

Source: Moody’s (2005), Moody’s Default Report 2005. Annual 
Default Study.
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