Comments on

"Insider-Outsider Labor Markets, Hysteresis and Monetary Policy" by Jordi Galí

Andrew Levin
Dartmouth College
March 2016

General Comments

- Highly relevant topic
- Elegant and lucid analysis
- Significant implications for the design of central bank mandates and policy strategies

The Job of the Discussant

- Praise the author's seminal work
- Quibble with some technical details
- Put empirical results in international context
- Shameless promotion of discussant's own work

Stylized NK Model

Labor Demand Curve: $\omega_t^d = a_t - \alpha n_t^d$

Price Markup Gap:
$$\mu_t^p = a_t - \alpha n_t - \omega_t$$

→ Aggregate price inflation responds to price markup gap

Labor Supply Curve: $\omega_t^s = c_t + \varphi n_t^s$

Wage Markup Gap:
$$\mu_t^w = a_t + (1 - \alpha + \varphi)n_t - \omega_t$$

→ Aggregate wage inflation responds to wage markup gap

Alternative Forms of Labor Market Inertia

• Real wage rigidity (Blanchard & Gali 2007)

$$\omega_t(j) = \gamma \omega_{t-1}(j) + (1-\gamma)\omega_t^s$$

• Employment targets (this paper)

$$n_t^*(j) = \gamma n_{t-1}(j) + (1-\gamma)n_t^s$$

Elements of Myopia in Wage Setting

• Time-Consistent Targeting

$$(1 - \beta \theta_{\omega}) \sum_{k=0}^{\infty} (\beta \theta_{\omega})^{k} E_{t} \{ n_{t+k}(j) - n_{t+k}^{*}(j) \} = 0$$

Time-Inconsistent Targeting

$$(1 - \beta \theta_{\omega}) \sum_{k=0}^{\infty} (\beta \theta_{\omega})^k E_t \{ n_{t+k}(j) \} = n_t^*(j)$$

The Monetary Policy Reaction Function

Respond to Output Growth

$$i_t = \phi_i i_{t-1} + \phi_{\pi} \pi_t + \phi_y \Delta y_t$$

Respond to Unemployment Gap

$$i_t = \phi_i i_{t-1} + \phi_\pi \pi_t + \phi_u u_t$$

German Unemployment, 1975-2015

Union Membership and Union Coverage Rates in 21 Wealthy Countries, 2007-2010

http://cepr.net Source: ICTWSS Database, version 3.0, May 2011. See full text for source.

The Evolution of the U.S. Employment Gap

Source: Levin (JEDC 2014)

Erceg & Levin (JMCB 2014)

• The employment gap is the sum of the participation gap and the unemployment gap:

$$\widetilde{n} = \widetilde{l_f} + \widetilde{u_r}$$

• The participation gap adjusts slowly to the unemployment rate:

$$\widetilde{l_{ft}} = 0.97 \ \widetilde{l_{ft-1}} + 0.06 \ \widetilde{u_{r_t}}$$

• The unemployment gap and the participation gap have distinct effects on inflation:

$$\pi_t = \beta \pi_{t+1} + \kappa_p (\psi_e \widetilde{u_r}_t + \psi_l \widetilde{l_{ft}})$$

Figure 10: Optimal Policy under Commitment

Evidence from U.S. Panel Data, 1990-2012

Contemporaneous Explanatory Variables

$$\omega_{ij,t} = 0.66 \omega_{ij,t-1} - 0.006 unemp_{ij,t} - 0.091 nonpart_{ij,t} - 0.021 underemp_{ij,t}$$
(320.4) (10.3) (40.8) (50.9)

Lagged Explanatory Variables

$$\omega_{ij,t} = 0.62 \omega_{ij,t-1} - 0.018 unemp_{ij,t} - 0.093 nonpart_{ij,t} - 0.020 underemp_{ij,t}$$

$$(290.9) \qquad (30.6) \qquad (41.0) \qquad (50.6)$$

Note: Each regression uses 1,173 observations. All variables are given in natural logarithms. Each equation includes state dummies, time dummies, and 19 demographic controls. The t-statistics are shown in parentheses.

Source: Blanchflower & Levin (NBER WP, 2015)

The Wage Curve

Source: Blanchflower & Levin (NBER WP, 2015)