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Abstract

Some observers have argued that stagnation may become the new

norm. We examine this possibility in a New Keynesian model with

agents forming expectations using adaptive learning and consider fis-

cal policy in this context. We impose inflation and consumption lower

bounds, which can be relevant when agents are pessimistic. The tar-

geted steady state is locally stable under learning, but if initial ex-

pectations are pessimistic the economy can instead sink into a steady-

state stagnation trap. Fiscal multipliers are first examined for an

economy near the targeted steady state, and then studied when it is

subject to an expectations shock. Following a serious pessimistic ex-

pectations shock a sufficiently large fiscal stimulus is needed to avoid

or emerge from the stagnation steady state. The probability of avoid-

ing stagnation depends on the size and length of the stimulus and

appears to depend critically on how early the policy is employed.
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1 Introduction

The sluggish macroeconomic performance of advanced market economies in

the seven years after the Great Recession has raised interest in the possibility

of the economy becoming stuck for long periods in a distinct stagnation

state and that this stagnation might be associated with the zero lower bound

(ZLB) for the monetary policy interest rate.1 One possible explanation for

the stagnation state is that it is caused by a wide-spread lack of confidence on

the part of economic agents. In other words, a stagnation state with deflation

and interest rates constrained by the ZLB may be a possible equilibrium of

the economy. We develop an extension of a standard new Keynesian (NK)

model to account for existence of a stagnation steady state. Our analysis

assumes that economic agents make forecasts using adaptive learning (AL)

and we impose the requirement that the stagnation steady state be (locally)

stable under adaptive learning. Existence of a stagnation steady state is

consistent with the observation that under the ZLB constraint, real economic

performance of the US, Japanese and the euro area economies appears to be

clearly worse than in the earlier period before the ZLB became binding.

Within the context of the standard NKmodel, the implications of the ZLB

have been approached from several angles. First, there is the possibility of

exogenous shocks to demand that push the economy to the ZLB. Exogenous

discount rate or, more plausibly, credit-spread shocks have been emphasized

by Eggertsson and Woodford (2003), Christiano, Eichenbaum, and Rebelo

(2011), Corsetti, Kuester, Meier, and Muller (2010) and Woodford (2011).

These shocks are often assumed to follow a two-state Markov process in which

the credit-spread shock disappears each period with a fixed probability, with

the aggregate output and inflation recovering as soon as the exogenous shock

stops operating.

While this approach has been fruitful in suggesting suitable monetary and

fiscal policy responses to such shocks, it has several somewhat unattractive

features. It relies heavily on the persistence of a shock that evaporates ac-

cording to an exogenous process, and recession ends as soon as the exogenous

negative shock ends.2 Furthermore, this approach, sometimes developed us-

1For different arguments and explanations for long-lasting stagnation see, for example,

Summers (2013), Evans (2013), Teulings and Baldwin (2014), Eggertsson and Mehrotra

(2014), Benigno and Fornaro (2015) and Schaal and Taschereau-Dumouchel (2015).
2There is also an issue with the existence of an rational expectations solution if the

probability of the shock ending is too small. A related issue for calibrated models, is the
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ing a linear approximation around the intended steady state with the ZLB

appended, does not do justice to the multiplicities issue raised by Benhabib,

Schmitt-Grohe, and Uribe (2001b) for the NK model and Reifschneider and

Williams (2000) for backward-looking models.

A second approach, emphasized by Benhabib, Schmitt-Grohe, and Uribe

(2001b), focuses squarely on the existence of multiple rational expectations

equilibria (REE) when the interest-rate rule is subject to the ZLB. In partic-

ular, in addition to the intended steady state at the inflation rate targeted

by monetary policy, there is a second, unintended steady state at a low in-

flation or modest deflation rate, as well as perfect foresight paths converging

to the unintended steady state. This multiplicity was emphasized in Bullard

(2010). Figure 1 gives a scatter plot of core inflation vs. the policy interest

rate, as originally done in Bullard (2010) for Japan and US data and subse-

quently by Honkapohja (2015) using Japan and euro area data. Figure 1 uses

monthly data, over 1/2002 to 1/2015 for euro area and US and to 10/2013

for Japan,3 and combines them in one figure. The illustrated policy rule is

drawn with a two-percent inflation target and is merely used to provide a

common reference since the two percent target does not exactly match either

U.S. or euro area practice.
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Figure 1: Interest rate vs inflation in Japan, US and euro area

length of time for which Japan has been at the ZLB.
3Japan switched the policy target in 2013 to monetary base.
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Inflation and interest rates at the two steady states in Figure 1 correspond

to the two intersections of the Fisher equation and the Taylor-type inter-

est rate rule.4 The Japanese data from this period is essentially entirely

within the liquidity trap, while the US and euro area data show a mixture of

liquidity-trap and non-liquidity trap periods. Both the US and the euro area

had brief periods of deflation during 2009 and the Great Recession, followed

by a period of inflation. However recently, since 2013, inflation in both the

euro area and the US has been systematically below target and shown some

signs of decline. Figure 1 thus suggests some possibility of convergence to an

unintended low inflation steady state.

A major problem with this second approach is that it neglects the fact

that the concern about periods of the ZLB is its association with periods of

recession, low output and stagnation. Although there is a long-run trade-off

in the NK model between output and inflation, the extent of this trade-off

is quite minor as the discount factor is close to one. It follows that in the

unintended low inflation steady state the level of aggregate output is only

very slightly below that of the intended steady state in Figure 1. Figures 2a

to 2c give real GDP per capita since 2001 for the US, Japan and the euro

area.5

4The interest-rate rule curve takes the form  =  ∗ exp(), where  is net inflation
and  is the net interest rate.

5Data for Figures 2 a-c is from Macrobond data base which in turn utilizes standard

data sources. GDP data is volume data with 2010 as reference year and in local currency.

GDP data is annualized. This was specifically done for the Euro area by multiplying

quarterly data by 4. Population data is total population and it is interpolated for quarters.
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Figure 2c: Euro area real GDP per capita in euros

Figures 2a-c illustrate the point that depressed output levels in Japan, the

US and the Euro area have been associated with the ZLB. This is inconsistent

with the view of two steady-states in the second approach. Taken together

with Figure 1, there appears also to be the possibility of stagnation, i.e.

persistently depressed levels of output, at low inflation or deflation steady

states. This is discussed further below. Here we note the magnitudes of the

drop in (real) GDP per capita.

For the US, the decrease from 2007Q4 to 2009Q2 was about 6.0%. Given

an underlying trend growth in the US of real GDP per capita of 2% per year,

one would have expected 3% total growth over this period, so one could argue

that this corresponds to a 9% GDP gap.6 For Japan, the decrease in GDP

per capita from 1997Q1 to 1999Q1 was 3.5% and from 2008Q1 to 2009Q2

was 7.5%. For the euro area the drop in GDP per capita from 2008Q1 to

2009Q2 was 5.5%. Again, allowing for usual trend growth in GDP per capita,

the resulting GDP gaps would be larger.

Another objection to the two-steady state view of recent events is that the

unintended low-inflation steady state is not stable under adaptive learning.

This point has been emphasized in Evans, Guse, and Honkapohja (2008)

and Benhabib, Evans, and Honkapohja (2014). We expand on this point at

6This is consistent with the increase in the unemployment rate of about 5 percentage

points and an Okun’s Law coefficient around 2.
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length below, but the key point is that this makes it implausible that the

economy will converge to the unintended steady state. This instability under

learning is in contrast to the (local) stability under learning of the targeted

steady state in the model of Benhabib, Schmitt-Grohe, and Uribe (2001b).

A third approach relies on sunspot equilibria that can also be shown to

exist when there are two steady states. A sunspot is modelled as a two-

state Markov process with fixed transition probabilities. This can either be

a stationary 2-state sunspot equilibrium, as in Aruoba, Cuba-Borda, and

Schorfheide (2014) or a 2-state sunspot equilibrium with an absorbing state

at the targeted steady state, as in Mertens and Ravn (2014). In this approach

the state corresponding to deflation and recession is not due to a fundamental

shock, but to a pure confidence shock.

This approach is attractive in that it gives full weight to the multiple

equilibria issue. However it also has disadvantages. As with sunspot equilib-

ria more generally, there is the practical question of what variable is used to

coordinate expectations. From our viewpoint there is also the issue of sta-

bility under learning: it can be shown that two-state sunspot equilibria are

not locally stable under learning when they are close to two steady states,

one of which is not locally stable under learning as in the present case; e.g.

see Evans and Honkapohja (2001), Chapter 12.

There is also an issue concerning the relatively small magnitude of re-

cessions on this approach. This size appears to be greatest in the case of a

Markov sunspot equilibrium with an absorbing state. However, even in this

case the size of the recession is relatively mild: in the illustrations given in

Mertens and Ravn (2014) the impact on output is −16%. This is more in
line with typical recessions and, as seen from the figures given above, this

magnitude is well below the levels associated with the Great Recession. This

is a reflection of the fact that output levels in the two steady states are

nearly equal. We remark that the output drops in the Great Recession are

still relatively small compared to the Great Depression, during which there

was substantial deflation and the ZLB was eventually also attained. Real

GDP figures for the US show a 26.5% drop between 1929 and 1933. Much

of the policy discussion in the US during the Great Recession, in particular

the speed with which the policy interest rate was reduced to the ZLB and

the various rounds of quantitative easing, was concerned with taking steps to

avoid the output drop and unemployment increase magnitudes of the Great

Depression.

This discussion motivates the approach that we take in the current pa-
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per. In Evans, Guse, and Honkapohja (2008) and Benhabib, Evans, and

Honkapohja (2014) adaptive learning was introduced into the NKmodel with

two steady states arising from the ZLB. These papers showed that while the

unintended steady state is not locally stable under learning, it is on the edge

of a deflation trap region in which inflation and output fall without bound.

In the current paper we add lower bounds to inflation and consumption into

a NK model. We think such bounds are both plausible and more consis-

tent with observed data. Depending on the magnitude of the inflation lower

bound there are then one or three steady states. The critical level is a de-

flation rate equal to the discount rate. If the inflation lower bound is higher

than this critical rate then the deflation trap region cannot be reached and

the targeted steady state is unique. However, if the inflation bound is below

this critical rate, then there are three steady states. We will show that in this

case there is a stagnation steady state, at the inflation lower bound, which

is locally stable under learning. This stagnation or “trap” steady state can

have very low output accompanied by moderate deflation.

When our model has three steady states, these are all rational expecta-

tions (RE) steady states, and from the RE viewpoint the model is therefore

indeterminate. However, AL resolves the indeterminacy issue in the sense

that, given initial expectations and the learning rule, the time path of the

economy is pinned down. AL explains how deep recessions accompanied by

deflation can emerge and points to the possibility of deflationary stagnation.

We show that the usual targeted steady state is locally stable under learning,

i.e. there is convergence to the intended steady state under learning from

nearby initial expectations, and indeed the basin of attraction is quite large.

In contrast, the unintended steady state emphasized by Benhabib, Schmitt-

Grohe, and Uribe (2001b) is not locally stable under learning: for nearby

initial expectations there will either be convergence to the intended steady

state or expectations will evolve toward lower expected inflation and output.

Expectations then are driven down to the stagnation steady state, which is

also locally stable under learning.7

7In his August 13, 2015 conference speech “Neo-Fisherianism” (available on the FRB

St. Louis website) at the University of Oregon Conference on “Expectations in Dy-

namic Macroeconomic Models,” James Bullard suggested that instability of the unintended

low steady state under learning goes against the empirical evidence of major developed

economies, in recent times, which are close to the ZLB and the unintended inflation steady

state. In contrast we find that this instability can lead to convergence to a stagnation

steady state at the ZLB with approximately the same inflation rate, but significantly
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The key point of the AL literature is that the low output and inflation

during the period of exogenous discount rate or credit shocks, may have made

agents generally more pessimistic about the future, and that these pessimistic

expectations may well continue for a time after the exogenous shocks have

ceased. In effect expectations have been re-initialized by the severe recession

and if these expectations are sufficiently pessimistic then they may have taken

the economy out of the basin of attraction of the targeted steady state.

The possibility of a stagnation steady state raises the question of whether

policy can return the economy to the better steady state associated with

output, inflation and interest rates at their normal levels. In particular, can

fiscal policy prevent the economy from converging to stagnation, and if the

economy has settled into stagnation, with deflation and interest rates at the

ZLB, can fiscal policy dislodge the economy from stagnation and return it

to the steady state targeted by monetary policy? To emphasize this issue,

when we take up fiscal policy at the ZLB in Section 4.2 we will abstract from

credit-spread shocks on the assumption that any such shocks have already

dissipated.

We study the impact of government spending increases in our extended

NKmodel when agents make forecasts using AL. Earlier work has shown that

the fiscal policy effects under AL can sometimes be significantly different from

those based on the RE assumption.8 In undertaking this study it is clearly

crucial to take into account both the monetary policy regime and the state

of the economy. For example, under RE it has been shown that government

spending multipliers are generally much larger when interest rates are fixed,

as they are at the ZLB. Furthermore, as noted above the ZLB has arisen

primarily in economies that have undergone severe recessions, as in the Great

Recession.

The AL approach used in the current paper is implemented as follows.

Because we consider temporary changes in fiscal policy like the stimulus

measures adopted in practice in recent recessions, we use the general infinite-

horizon approach advocated by Preston (2005) and Eusepi and Preston (2010),

but modified for policy changes as discussed in Evans, Honkapohja, and Mi-

lower output, which better matches the recent experience of major economies.
8The Great Recession and the ZLB have led to renewed interest in fiscal policy and

a fairly voluminous recent literature in which the discussion has often been conducted in

terms of the magnitude of the multiplier; see for instance Hall (2009), Barro and Redlick

(2011), Ramey (2011b), Ramey (2011a), Leeper, Traum, and Walker (2011), Coenen et al.

(2012), and Ravn, Schmitt-Grohe, and Uribe (2012).
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tra (2009) and Mitra, Evans, and Honkapohja (2013). Agents are assumed

to incorporate the announced path of future government spending and taxes

into their intertemporal budget constraint, and thus take into account the

known direct impact of the policy. At the same time, agents are assumed

not to know the general equilibrium effects of the temporary change in fis-

cal policy, and to use adaptive learning to forecast future values of output

and inflation. Under AL agents update each period their estimates of the

coefficients in their forecast model, and the evolution of these parameters

over time modulates the impact of fiscal policy under learning vis-a-vis the

impacts under rational expectations.

As mentioned above, we also explicitly impose inflation and consump-

tion lower bounds, which can be relevant when expectations are pessimistic.

The inflation lower bound is motivated by empirical experience that finds a

smaller reduction in inflation rates at very low levels of output than would

have been expected from the standard NK Phillips curve. See for example

Ball and Mazumder (2011) and IMF (2013). We also introduce a consump-

tion lower bound that would plausibly arise when consumption is substan-

tially below the level corresponding to the usual steady state. Although in

normal times the inflation and consumption lower bounds are not relevant,

they play an important role during times of deep recession.

The structure of our paper is as follows. In Section 2 we present the

Rotemberg adjustment-cost version of the NK model when the ZLB and

other lower bounds are not applicable. In this setting we obtain the house-

hold and firm decision rules, the temporary equilibrium equations, and the

updating rules for agents’ forecast rules. In Section 3 we extend the model

to include lower bounds for interest-rates, inflation and consumption. Be-

cause monetary policy is assumed transparent, household forecasts of future

interest rates must allow for the possibility of the ZLB binding. This Sec-

tion obtains the key existence and learning stability results for the different

steady states, in the model with lower bounds, demonstrating in particular

the possibility of a stagnation steady state, with low output and moderate

deflation, and showing that it is locally stable under learning.

In Section 4 we compare fiscal policy under RE and AL both in normal

times and when the ZLB may be binding. In Section 4.1 we find that the

overall size of the output multipliers for government spending under AL and

RE are about the same, but the AL multipliers are front-loaded, i.e. the

bulk of the impact on output occurs during the early part of the stimulus,

whereas under RE the output effect is greater near the end of the stimulus.

10



Section 4.2 turns to numerical results for fiscal policy when expectations

are sufficiently pessimistic that they imply a high likelihood under unchanged

policy of the economy converging to stagnation. We examine the impact of

a fiscal stimulus, in which government purchases are increased for a tempo-

rary stated period of time, and we show that in this situation the impact of

fiscal policy is nonlinear. For a given duration, a small stimulus can fail to

prevent convergence to the stagnation state, while a sufficiently large tempo-

rary stimulus can be very effective in returning the economy to the targeted

steady state. In either case the size of the multipliers is large compared to

normal times when none of the lower bounds apply, but in these settings a

large stimulus can have an extremely large cumulative output multiplier.

These results imply that multipliers are both state-dependent and nonlin-

ear. They are also stochastic. For a given initial state, in which expectations

are pessimistic, and a given announced fiscal stimulus, the convergence to

the targeted steady state will depend on the sequence of stochastic shocks.

We give numerical results for the proportion of times stagnation is avoided

for different magnitudes and horizons of fiscal stimulus.

Section 5 considers some extensions. Fiscal policy is most effective when

it is implemented early. We also consider worst-case situations in which the

economy has converged to and fully adapted to a stagnation steady state.

We show numerically that even in this case there are fiscal policies that in

the majority of cases will dislodge the economy from the stagnation state

and return it over time to the targeted steady state.

Finally, we discuss the connection between the discount factor and the

magnitude of the deflation rate in the stagnation state. While in our bench-

mark simulations we use a standard calibration of the discount factor, there

are reasons for thinking the relevant discount rate is much lower. This would

imply a critical deflation rate that is smaller in magnitude and thus increase

the likelihood of experiencing deep recessions or depressions with mild defla-

tion.

2 New Keynesian Model

We use a NK model with households and firms following the method de-

veloped in Eusepi and Preston (2010) and Evans and Honkapohja (2010).

Our version of the NK model uses the Rotemberg adjustment cost version of

the pricing friction, which we adopt because of its analytical convenience in
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looking at global dynamics. We index households by  and firms by , but in

the temporary equilibrium dynamics that we study all households and firms

will make identical decisions. We start with the households. We assume a

cashless limit and that households are Ricardian. In Section 2 it is assumed

that the ZLB on interest rates is never binding. The ZLB and other bounds

are introduced in Section 3.

2.1 Households

The objective for agent  is to maximize expected, discounted utility subject

to a standard flow budget constraint:

 ̂0

∞X
=0

 ( ) (1)

s.t.  +  +Υ = −1
−1
 −1 +  (2)

where  is the Dixit-Stiglitz consumption aggregator,  is the labour

input into production,  denotes the real quantity of risk-free one-period

nominal bonds held by the agent at the end of period , Υ is the lump-

sum tax collected by the government, −1 is the nominal interest rate factor
between periods − 1 and ,  is the aggregate price level and the inflation

rate is  = −1. Consumers’ income is denoted by  where

 =




 + Ω


 is the nominal wage and Ω
 denotes profits from holding shares in equal

part of each firm. The subjective discount factor is denoted by . The utility

function has the parametric form

 = log − 
1+

1 + 


where   0. The household decision problem is also subject to the usual ‘no

Ponzi game’ condition.

There is a static FOC for the household concerning labor-leisure choice,

which is




=  (3)
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To derive the linearized consumption function, we first linearize the Euler

equation

−1 = ̂

¡
−1+1

−1
+1

¢
(4)

to get

̃ = ̂̃+1 − ̄̂̃+1 (5)

where tilde indicates deviation from the steady state, e.g. ̃ =  − ̄,

and the bar denoting the deterministic steady state. Here

+1 ≡ 

+1


As shown in Appendix 1, the linearized lifetime budget constraint of the

household is ∞X
=0

̃+ =

∞X
=0

(̃+ − ̃+)

Here  is the level of government purchases, assumed exogenous, and we are

assuming Ricardian households with identical taxes so that for each agent

we may set Υ = .

Iterating the Euler equation gives

̂ = ̂̂+ − ̂

X
=1

̂+

where we have used −1 = ̄ and a hatted variable indicates proportional

deviations from its mean. e.g.

̂ =
 − ̄

̄
and ̂+1 =

+1 − ̄

̄


Combining the lifetime budget constraint and the iterated Euler equation and

using the representative agent assumption ̂ = ̂, ̂ = ̂ and ̂ = ̂

yields

̂ = (1− )

"
̂¡

̄̄
¢ − ̂¡

̄̄
¢ + ∞X

=1

̂

Ã
̂+¡
̄̄

¢ − ̂+¡
̄̄

¢)!#

−̂

∞X
=1

̂+ (6)
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2.2 Firms

The production function for each firm, producing good , is given by

 = 



where  = 1 and  is a random productivity shock with mean ̄. Output is

differentiated and firms operate under monopolistic competition. Each firm

faces a downward-sloping demand curve given by

 =

µ




¶−1
 (7)

Here  is the profit maximizing price set by firm  consistent with its

production  (this optimization will be done below). The parameter  is

the elasticity of substitution between two goods and is assumed to be greater

than one.  is assumed to be a random stationary process with mean . 
is aggregate output, which is exogenous to the firm. The firms’ problem is

 ̂

∞X
=

Ω

where, due to log utility,  = − 


, for  ≥ , where

Ω = (1− )




 − 



 − 

2
(


−1
− ∗)2

and where  is the revenue tax rate to eliminate the steady state distortion

in output caused by monopolistic competition. Here ∗ is the (gross) rate
of inflation  = −1 that is targeted by policymakers. Thus firms view
it as costly to change prices by an amount that differs from the monetary

policymaker target ∗. We interpret the quadratic term as reflecting the

costs of justifying to consumers price increases at a rate higher than the

target rate and the additional marketing costs of making customers aware of

price increases below the target rate.9

9Benhabib, Schmitt-Grohe, and Uribe (2001b) and Benhabib and Eusepi (2005) use

this formulation of price adjustment costs, though they do so in the context of the utility

loss of household firms. Eusepi and Preston (2010) also use this formulation but set ∗ = 1.
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The first-order condition for the firm’s choice of  is given by

0 = (1− )(1− )

µ




¶−
 + 

µ




¶(−)−1
(8)

− 

−1

µ


−1
− ∗

¶
+ ̂+1

+1




+1



µ
+1



− ∗
¶


Here we use  = 1 and

 =



=





 (9)

is the real marginal cost. It’s useful to define the mark-up  by

 =


 − 1 . (10)

The steady state at ∗ satisfies

(1− )(1− ) + ̄ = 0

In the steady state, of course,  = ( − 1)−1. From above steady state real

marginal cost is

̄ =
( − 1)(1− )


= (1− )−1 (11)

We make the assumption that the target inflation rate is −1 = ∗ ≥ 1,
i.e. the net inflation rate may be positive. As discussed above, we are

making the assumption that price adjustment costs are quadratic in terms

of the deviation from the target inflation rate and this is also analytically

convenient. The market clearing condition is

 =  + +
1

2
( − ∗)2 (12)

We need to linearize around the steady state ∗ ̄  ̄ ̄ ̄ ̄. Clearly ̄ =

∗ is the steady state value of +1 and ̄ is given above. From (12) with

 = ∗ we have ̄ = ̄ + ̄. Finally, in a steady state (9) and (3) can be

combined to give

̄ = −1̄1+̄ (13)
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Equation (13) together with the steady-state production function ̄ = ̄,

market-clearing ̄ = ̄ + ̄ and (11) determines steady values of ̄  ̄ ̄ ̄

at the targeted steady state ∗.
We assume that firms use a decision-rule for price setting based on a

linearization around the targeted steady state. Appendix 1 shows how to

obtain the infinite horizon linearized New Keynesian Phillips curve

(1− 1)̂ − 2̂ = 1

∞X
=1

(1)
̂̂+ + 2

∞X
=1

(1)
̂̂+

−3
∞X
=0

(1)
̂̂+ − 4

∞X
=0

(1)
̂̂+

+5

∞X
=0

(1)
̂̂+ (14)

where the coefficients 1  5 and 1 are defined in the Appendix.

The interpretation of equation (14) is as follows. As is standard higher

expected future inflation and higher current and expected future aggregate

output lead to higher current inflation. Current inflation is also increased

when future monopoly power is expected to be higher. The remaining terms

reflect the impact of productivity and government spending on real marginal

cost. When expected future productivity is high this lowers expected future

marginal costs and hence reduces inflation. Finally, conditional on expected

future output, higher current and expected future government spending is

associated with lower consumption, higher labor supply (conditional on real

wages) and hence lower real wages, which leads to lower inflation.

2.3 Temporary equilibrium and learning

We can now define the temporary equilibrium which is given by the Phillips

curve (14), the NK IS curve and the interest rate rule. To get the IS curve,

we combine the consumption function (6) with the market clearing condition

̂ =
̄
̄
̂ +

̄
̄
̂, or

̂ = (1− ̄)̂ + ̄̂ (15)
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where ̄ = ̄
̄
.10 This yields

̂ = ̄̂+(1−)
"
̂ − ̄̂ +

∞X
=1

̂

³
̂+ − ̄̂+

´#
−(1−̄)̂

∞X
=1

̂+

Note that from +1 ≡ 

+1
we have

̂+1 = ̂ − ̂+1 (16)

The equation for ̂ can be rewritten as

̂ = ̄̂ + (1− )−1
∞X
=1

̂̂+ − (1− )̄−1
∞X
=1

̂̂+

−(1− ̄)(̂ − ̂̂+1)− (1− ̄)

∞X
=2

−1̂̂+ (17)

To complete the model one must specify an interest rate rule, for example,

 = −1
³
∗ + ( − ∗) + ̃( − ̄ )

´


which in log-linearized form becomes

̂ = ̂ + ̂ (18)

where ̂ = ( − ̄)̄, and  =
̃̄

∗ . We also assume a government fiscal

policy in which government spending is financed by lump-sum taxes. Here

we are assuming that the ZLB is not violated. In the next section we allow

for cases in which the ZLB is binding.

The shocks to  and  are assumed to follow exogenous AR(1) processes

given by

̂ = ̂−1 +  (19)

̂ = ̂−1 +  (20)

where 0     1 and the shocks  and  are iid normal variables with

zero mean and constant variances 2 and 
2
. This completes the description

of the model apart from a specification of how expectations are formed.

10As in the Appendix to Eusepi and Preston (2010), the adjustment costs drop out from

the log-linearized market clearing equation.
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Under RE the solution technique is standard. See Appendix 1 for details.

Under adaptive learning, agents need to form forecasts of future inflation,

output and, when a fiscal policy change occurs, of government spending and

taxes. We assume that agents know the interest rate rule and that the ZLB

is never binding.

Agents are assumed to have perceived laws of motion (PLMs) of the same

form as the RE solution of the economy under standard policy. To allow for

the indirect general-equilibrium impact of a policy change on future output

and inflation, agents use constant-gain learning, as discussed below. There

is a stochastic steady state of the form

̂ =  + ̂ + ̂ (21)

̂ =  +  ̂ +  ̂ (22)

where ̂ ̂ are observable processes (with known coefficients) given by (19)

and (20). Under adaptive learning agents estimate the coefficients of (21)-

(22). Given their time  estimates of the coefficients , , ,  ,  ,

  forecasts ̂+ and ̂̂+ are given by

̂̂+ =  + 

̂ + 


̂

̂̂+ =  +  

̂ +  


̂

These forecasts can then be inserted into the model (14)-(17), and the infinite

series summed, to determine the temporary equilibrium at time . When

there is no fiscal policy, government spending is constant and ̂ = ̂̂+ =

0 and the corresponding terms in (14)-(17) are zero.

Finally we describe the least-squares updating rule for the forecast rule

coefficients of ̂ and ̂. Agents are assumed to use constant gain recursive

least squares (RLS). The parameter estimates based on data through time 

are

 =

⎛⎝ 



⎞⎠   =

⎛⎝ 
 
 

⎞⎠   =

⎛⎝ 1

̂

̂

⎞⎠ 

The RLS formulae corresponding to estimates of equations (21)-(22) are

 = −1 + R−1 ( − −1)

 = −1 + R−1 ( − −1)

R = R−1 + (
0
 −R−1)
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Here 0    1 is the “gain” parameter that discounts old data at rate 1−

per period (taken to be one quarter), to allow for adaptation of parameters to

structural changes like policy changes. We assume that parameter estimates

under learning are updated at the end of the period. Thus in time , when

expectations are formed, agents observe the current value of the exogenous

variables ̂ and ̂ but use estimates −1, −1 in making forecasts. The
initial values of all parameter estimates  and R are set to the initial steady

state values under RE.

3 Model with Lower Bounds

We now extend the temporary equilibrium framework of the model under

learning to allow for the ZLB. In this section our focus is on AL when the

initial expectations are sufficiently pessimistic that the ZLB is binding or is

expected to be binding. We remark that in contrast to much of the litera-

ture on the liquidity trap, and in particular most of the literature on fiscal

multipliers at the ZLB assuming RE, in our framework the ZLB is primar-

ily driven by a pessimistic expectations shock rather than by fundamental

exogenous shocks to preferences (or natural interest rate shocks). Following

the seminal paper of Eggertsson and Woodford (2003), much of the literature

has assumed that low inflation and output at the ZLB are triggered by an

exogenous preference shock that shifts the targeted RE equilibrium in such

a way that the ZLB becomes a constraint for that equilibrium.11 The shock

is assumed to vanish according to a Markov process with known transition

probability and an absorbing state, leading to a return to the intended steady

state. Under RE the path of the economy with and without fiscal policy is

largely determined by these exogenous preference shocks.

In contrast, the approach followed here focuses directly on a pessimistic

shock to expectations. Although in our numerical analysis we do allow for

exogenous shocks, as in the first part of the paper, we do not need to intro-

duce an exogenous Markov preference shock or beliefs influenced by a sunspot

that drive the recession and its recovery. Instead we assume an initial pes-

11In this approach global indeterminacy is ignored even though models describe mon-

etary policy in terms of a Taylor rule subject to the ZLB. For example, see Chris-

tiano, Eichenbaum, and Rebelo (2011) and Woodford (2011). Aruoba, Cuba-Borda, and

Schorfheide (2014) and Mertens and Ravn (2014) focus attention on sunspot solutions that

are constructed using the indeterminacy.
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simistic expectations shock that, under learning, has the capacity to drive

the economy to low levels of output and inflation and become self-sustaining.

It is known from earlier work on AL in the New Keynesian model that

there is the possibility of deflation traps that cannot be overcome by mon-

etary policy due to the ZLB and which push the economy along divergent

trajectories.12 We think that in these circumstances other bounds may also

be important, which will act to stabilize the economy along an otherwise

divergent trajectory. We begin with a discussion of these bounds and their

implications for the possible steady states in the model.

3.1 Lower bounds on   and 

A zero lower bound on net nominal interest rates correspond to a bound

on the gross nominal one-period interest rate  ≥ 1. In practice central

banks prefer not to reduce net interest rates below a small positive number

  0 and we thus impose the lower bound  ≥ 1 + .13 At the global level

we also now introduce two other lower bounds that will plausibly arise in

extreme circumstances: an inflation lower bound  and a consumption lower

bound . An inflation lower bound was discussed in Benhabib, Evans, and

Honkapohja (2014) and Evans (2013). It is empirically appealing because

the extent of deflation appears bounded even at very low levels of aggregate

output. See for example Ball andMazumder (2011), IMF (2013), and Coibion

and Gorodnichenko (2015). Possible explanations include downward wage

rigidity or money illusion, as discussed in Akerlof, Dickens, and Perry (1996),

Akerlof, Dickens, and Perry (2000), Akerlof and Dickens (2007) and Akerlof

and Shiller (2009)). We capture these factors through the simple device of

an inflation lower bound , which we usually take to correspond to a modest

rate of deflation.14 The value of  may vary over time and across countries.

We assume   ∗, where ∗ is the inflation rate targeted by monetary
policy. A consumption lower bound would plausibly arise when consumption

approaches the (perhaps socially determined) subsistence level. Below we

12See Evans, Guse, and Honkapohja (2008), Evans and Honkapohja (2010) and Ben-

habib, Evans, and Honkapohja (2014). An earlier discussion of deflation traps in a

backward-looking model was provided by Reifschneider and Williams (2000).
13This is also convenient theoretically because it ensures money demand is finite at the

lower bound.
14As shown in Benhabib, Evans, and Honkapohja (2014), one can justify  formally by

introducing an asymmetry into the inflation adjustment cost term.
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assume that the bound  is significantly below the targeted steady state.

The spirit of this bound is similar to the subsistence level parameter used in

Stone-Geary preferences; see, for example King and Rebelo (1993) and Ravn,

Schmitt-Grohe, and Uribe (2008).15 Although in normal times these bounds

would not be apparent, they can play a role in stabilizing the economy at

low levels of output at the ZLB.

We begin with a discussion of the steady states that may arise when these

lower bounds may be binding. In this section it is convenient to simplify the

monetary policy rule, so that the Taylor-type rules responds only to inflation.

Together with the interest-rate lower bound we have

∗ = −1( − ∗) + −1∗ with   1, and

 = max(∗  1 + )

Here the parameterization is consistent with our earlier log linearization ̂ =

̂ at the intended steady state. Throughout this Section it is convenient

to abstract from the intrinsic random productivity and mark-up shocks.

To analyze the possible non-stochastic steady states we can focus atten-

tion on the Euler equations for consumption and price setting. These will

hold with equality unless constrained by the consumption or inflation lower

bounds. Setting  = +1 =  and  = , it follows from (4) that the

Fisher equation

 = −1

holds, unless consumption is at its lower bound. Figure 3, which shows this

relationship together with the steady state interest rate rule

 = max
¡
−1( − ∗) + −1∗ 1 + 

¢


illustrates the usual indeterminacy result that in addition to the intended

steady state at  = ∗ there is an unintended steady state at  =  ≡
(1 + ). Figure 3 also shows the additional stagnation steady state that

arises when both inflation and consumption are constrained at their lower

bounds.

We assume throughout that 0    −1−1 so that the interest rate lower
bound below the level implied by the Fisher equation at ∗, and then   1

15Our procedure for incorporating the consumption lower bound differs somewhat from

using Stone-Geary preferences, but is convenient given our treatment of the two other lower

bounds. Changing to Stone-Geary preferences would give the same qualitative results.
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implies the existence of the unintended deflation steady state at   1.

This multiplicity issue was analyzed in detail, under the RE assumption, in

Benhabib, Schmitt-Grohe, and Uribe (2001b) and Benhabib, Schmitt-Grohe,

and Uribe (2001a). Bullard (2010) gave a forceful argument that the pattern

of inflation and interest rates in Japan and the US was cause for concern

that the US experience might converge to a Japanese style stagnation with

steady mild deflation.

Figure 3: Existence of multiple steady states.

The remaining steady state equation is obtained from the NK Phillips rela-

tionship (8), setting  =   =   =  ,  =   =  +1 =

 =  and +1 = . This gives

0 = (1− )(1− )+  − ( − ∗) + ( − ∗)
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Using (3) and (9) gives  = −11+, which leads to16

( − ∗)(1− ) =




£
1+ − (1− )(1− −1)

¤
 (23)

This is the steady-state NK Phillips curve equation, which must hold unless

inflation is constrained by its lower bound. We will also need the GDP steady

state accounting identity

 =  ++


2
( − ∗)2 (24)

As we have noted, the above steady-state Phillips curve and Fisher equa-

tions hold unless inflation or consumption are constrained by their lower

bounds. The inflation lower bound  holds if (23) would otherwise lead to

an inflation rate lower than this bound, and similarly the consumption lower

bound holds if otherwise we would have   . Taking into account these

bounds, the Euler equations thus lead to the inequalities

 ≥ −1 and  ≥ , with c.s., (25)

which one could call the Fisher inequality, and the Phillips curve inequality

( − ∗)(1− ) ≥ 



£
1+ − (1− )(1− −1)

¤
(26)

and  ≥ , with c.s.

Here c.s. denotes that these inequalities hold with complementary slackness,

i.e. if either inequality holds strictly then the other holds with equality. We

can also write the interest-rate rule subject to its lower bound as

 ≥ −1( − ∗) + −1∗ and  ≥ 1 + , with c.s. (27)

Using the three inequalities (25), (26), (27) we can examine the possible

steady states. We assume throughout that   0 and it is convenient to

strengthen this slightly and assume that     0 where  is specified

below. In addition we assume that the consumption lower bound  is not

too large, as further specified below.

16The steady-state Phillips curve equation here differs from the one in Evans, Guse, and

Honkapohja (2008). The latter paper uses a representative household-firm in which the

price-adjustment costs are quadratic in utility. In the current set-up households and firms

are distinct. With utility log() this leads to a multiplicative factor  on the right-hand

side of (23) not present in Evans, Guse, and Honkapohja (2008).
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3.2 Steady states

The number of steady states in the economy will depend critically on the in-

flation lower bound   1, specifically on whether     =  or   .

Full analytical results are available for cases in which price adjustment costs

are small. The steady state results are given in the following proposition:

Proposition 1 Suppose that   . Then for   0 sufficiently small,

there are exactly three steady states:

(i)  = ∗, with  = −1∗ and  uniquely determined by (23) and (24),

(ii)  = , with  = 1 +  and  uniquely determined by (23) and (24),

(iii)  = , with  = 1 +  and  = 

If     1 then there is a unique steady state at  = ∗ , with  = −1∗

and  uniquely determined by (23)-(24).

If  =  then for   0 sufficiently small there is a steady state at  = ∗,
with  = −1∗ and  uniquely determined by (23)-(24) and a continuum of

steady states at  = , with  = 1 +  and with  satisfying  ≤  ≤ ,

where  is uniquely determined by (23)-(24)

The proofs of all propositions are given in Appendix 2.

3.3 Local stability of steady states under learning

We now consider the stability under AL of the steady states just described.

As is well known, the local stability of an RE solution under least-squares

learning, of the type outlined in Section 2.3 is determined by expectational

stability, or “E-stability” conditions, as discussed, for example in Evans and

Honkapohja (2001). Although one could allow for the inclusion of exogenous

productivity and mark-up shocks in this analysis, local stability in the current

setting is governed by the intercepts of the forecast rules. We therefore

simplify the theoretical stability results by assuming that the PLM for both

output and inflation takes the form of an unknown constant plus a perceived

white noise disturbance. Furthermore, for theoretical convenience in this

section, we assume a forward-looking interest-rate rule in which  depends

on expected inflation.

The local stability results are given by the following proposition.

Proposition 2 If    then the steady state at 
∗ is locally E-stable and

the steady state at  is locally E-stable, while the steady state at  is locally
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E-unstable for  sufficiently small. If    then the (unique) steady state

at ∗ is locally E-stable.

Figure 4 below illustrates the E-stability dynamics that give the mean

dynamics under constant gain learning with small constant gain, based on

linearized decision rules subject to the lower-bound constraints, but incorpo-

rating the nonlinear market clearing condition (24).17 In this figure we use

standard calibrated values for the structural parameters given below in Sec-

tion 4.1, and we set the interest rate rule parameters at  = 15  = 00001.

For convenience we set ∗ = 1. Finally, we set the lower bound for consump-
tion at 10% below the intended steady state and the lower bound for (net)

inflation at −13%i.e.  = −0013.
The origin of Figure 4 represents the targeted steady state ̂ = ̂ = 0,

i.e.   are in proportional deviation from targeted steady state form. The

unintended low steady state has an output level very close to the targeted

steady state; specifically, it is only −00397% below the value of output

at the targeted steady state. The corresponding (net) inflation rate at the

unintended steady state is −09901% i.e. ̂ = −0009901. Finally the

stagnation trap steady state, corresponding to  = −0013 has an output
level equal to 692% below the value of output at the targeted steady state.

It can be seen that the intended steady state at ̂ = ̂ = 0 is locally stable

under learning (with the dynamics locally cyclical). The unintended steady

state created by the ZLB is locally unstable (the dynamics are a saddle) and

the trap steady state is locally stable. It can be seen that if  is sufficiently

pessimistic then under learning the economy converges to the trap steady

state with low output and mild deflation.

There has been considerable concern among US and European policy-

makers about deflation and the possibility of their economies, following the

financial crisis of 2007-9, becoming enmeshed in a long period of stagnation

with mild deflation, similar to that experienced by Japan since the mid 1990.

This concern has been a large part of the motivation for setting and keep-

ing policy interest rates near zero, and for innovative monetary policies like

“quantitative easing” and “forward guidance.” The above analysis shows that

under adaptive learning this concern is acute if the inflation lower bound 

is below the unintended steady state inflation rate . There is then a stable

17We also impose an upper bound to inflation to ensure existence of a temporary equi-

librium. This is not needed in the linearized model with market clearing linearized around

the targeted steady state.
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deflation-trap steady state at  =  and a low level of output underpinned

by the consumption lower bound. Because in the deflation-trap steady state

interest rates are at the ZLB, conventional monetary policy cannot move the

economy back to the targeted steady state. The effectiveness of fiscal policy

in this setting is then of particular interest.
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Figure 4: E-stability dynamics with forward looking Taylor rule in the case

of three steady states. Here  and  denote expectations as proportional

deviations from the targeted steady state, i.e. ̂  and ̂

In turning to an examination of fiscal policy we do not mean to suggest

that monetary policy is not crucial in the face of large pessimistic shocks.

For example the speed with which the policy rate is reduced can be critical.

In addition, quantitative easing arising from purchases of a broad range of

assets can affect a spectrum of interest rates. Finally, both forward guidance

concerning future interest rates and explicit inflation targets may be impor-
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tant in affecting how household and firm expectations respond to observed

data. We study fiscal policy in this setting primarily in order to examine

its effectiveness as an alternative or supplement to unconventional monetary

and financial policy when conventional monetary policy appears insufficient

to guarantee avoiding convergence to stagnation.

4 Fiscal Policy

We turn now to fiscal policy. A growing literature has been reconsidering

the effects of fiscal policy in light of the relatively large fiscal stimuli adopted

in various countries in the aftermath of the Great Recession. For example,

Christiano, Eichenbaum, and Rebelo (2011), Corsetti, Kuester, Meier, and

Muller (2010) and Woodford (2011) demonstrate the effectiveness of fiscal

policy in models with monetary policy when the zero lower bound on nominal

interest rate is reached. For a contrary view see Mertens and Ravn (2014).

Most of this literature explicitly makes the RE assumption. The AL literature

has shown that quite different results can arise both in NK and Real Business

Cycle models; see Evans, Guse, and Honkapohja (2008), Benhabib, Evans,

and Honkapohja (2014), Mitra, Evans, and Honkapohja (2013), Gasteiger

and Zhang (2014) and Mitra, Evans, and Honkapohja (2015).

In this Section we examine fiscal policy under AL, and it is convenient to

study its impact first in normal times, when the economy is near the targeted

steady state, and then turn to cases in which the economy would otherwise

be at risk of falling into the stagnation steady state or even have already

converged to the stagnation steady state.

Because we assume Ricardian households, we examine the impact of

changes in the level of government purchases, and we focus on temporary

increases in the level of government spending on goods and services. When

there is a change in fiscal policy, agents will take account of the tax effects of

the announced path of policy. Given the Ricardian assumption, we can as-

sume balanced budget increases in spending so that the path of taxes matches

the path of government spending. We assume that initially, at  = 0, we are

in the stochastic steady state corresponding to  = ̄, and that at  = 1 the

government announces an increase in government spending for  periods, i.e.

 =   =

½
̄0,  = 1  
̄,  ≥  + 1
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Thus government spending and taxes are changed in period  = 1 and this

change is reversed at a later period +1. We assume that the announcement

is fully credible and actually implemented. These assumptions could, of

course, be relaxed.

Denoting the change in government spending by ∆ (= ̄0−̄ ) we have

̂ =

½
∆
̄
,  = 1  

0,  ≥  + 1

It is straightforward to compute
P∞

=0(1)
̂̂+ and

P∞
=0 

̂̂+, which

will depend on calendar time, and include these terms in (14)-(17) when de-

termining the temporary equilibrium.

It is useful to begin with looking at the fiscal multiplier in normal times,

when the ZLB does not bind, and then move on to the more general case

when the ZLB and the inflation and consumption lower bounds may be bind-

ing. In both cases we will provide information on the output multipliers for

changes in government spending, and we show both the multiplier viewed

as a distributed lag response and the cumulative multiplier over time. The

cumulative multipliers are computed as a discounted sum using the discount

factor . Specifically, we compute

 =
 − ̄

̄0 − ̄
and  =

P

=1 
−1( − ̄ )¡

̄0 − ̄
¢P−1

=1 −1
 for  = 1 2 3    

Because of discounting the cumulative multiplier will be finite even in those

cases considered below in which policy leads to a permanent change in the

level of output.

4.1 Fiscal policy in normal times

In this section we start with the set-up of Section 2 and compute numerically

government spending multipliers during normal times when the ZLB does not

bind. In Section 4.2 we extend the analysis to the role of fiscal policy and

the size of government spending multipliers when there are large pessimistic

shocks.

To illustrate we consider the temporary policy change discussed above

with  = 10 The baseline parameters used in the simulations in both this
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and the following section are

 = 099  = 767  = 0  = 2  = 1  = 1288

̄ = 02  =  = 095  =  = 00007

 = 1085 is chosen so that output is approximately one; precisely  =

10081We interpret the parameters as corresponding to a quarterly calibra-

tion. The gain parameter  of agents in this section is set equal to 004. For

the inflation target we set ∗ = 1005 For quarterly data this corresponds to
an annual rate of inflation of 2% which is a frequently used target for mone-

tary policymakers. The value for  is based on a 15% markup of prices over

marginal cost suggested in Leeper, Traum, and Walker (2011) (see their Ta-

ble 2) and the price adjustment costs estimated from the average frequency

of price reoptimization at intervals of 15 months (see Table 1 in Keen and

Wang (2007)). We remark that the numerical simulations in this section use

the linearized system of equations given in the previous sections. It would be

possible to combine the linearized decision rules for consumption and price

setting with the non-linear equations for market clearing, production, factor

prices and labor supply, but this adds considerable computational complex-

ity.18

In the examples we set  = 0 to prevent monetary policy from directly

acting against the output effects of fiscal policy. However we set   1 in

line with the Taylor principle, in order to ensure both that the economy is

determinate and that it is stable under least-squares learning.

Figure 5 shows the output and inflation paths under learning (solid line)

and RE (dotted line) and the output multipliers (impact and cumulative) for

a surprise temporary policy change with  = 10 Initial beliefs of agents and

the values of the exogenous variables are at the steady state. For this exam-

ple we set  = 15 and  = 0 and consider an increase in  of 5%. The

Figure shows the mean values of percent deviations of inflation and output

from the steady state over 10 000 simulations. For this setting the ZLB is

never violated.

18In Mitra, Evans, and Honkapohja (2015) we found in an RBC model that including

nonlinear temporary equilibrium equations made little difference, even when the shocks

were large or we were changing steady states. However, the computations were 150 times

slower.

29



10 20 30 40
t

1.0

0.5

0.5

1.0

yt

10 20 30 40
t

0.10

0.05

0.05

0.10

0.15

0.20

0.25
t

10 20 30 40
t

1.2

1.0

0.8

0.6

0.4

0.2

0.2

ct

10 20 30
t

0.1

0.1

0.2

RRt

10 20 30 40
t

1.0

0.5

0.0

0.5

1.0

ymt

10 20 30 40
t0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ycmt

Figure 5: The upper panel shows the paths of output and inflation under

RE (dotted line), learning (solid line) for a temporary policy change with

 = 10. The middle panel shows the paths of the corresponding

consumption and ex ante one period real rate of interest (̂− ̂+1). The

lower panel shows the distributed lag and cumulative output multipliers for

the policy change. Here and in subsequent figures ̂ is used for ̂

The most notable results are that the output and multiplier effects are

larger under learning in early periods of policy, compared to RE. Under

learning the maximum positive output effect is at the beginning of the policy,

while under RE the maximum effect is in the last period of policy. Once the

policy ends, the output effects are reversed under learning, with negative

deviations for several periods after the stimulus ends. This contraction is the

result of the higher expected inflation of agents, developed during the policy
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implementation, which leads agents to anticipate higher future real interest

rates in accordance with the active Taylor rule.

To understand these results, we first examine the path under RE, which is

fairly complex, and best analyzed starting from the last period of the policy.

From  =  + 1 = 11, because there are no endogenous predetermined

state variables in the NK model, the economy will return to the initial RE

stochastic steady state. Consider next the economy at  =  = 10. The extra

government spending∆ at  = 10 has an impact on aggregate demand that

is much larger than the small reduction in consumption resulting from the

corresponding one-period tax increase. Because of consumption smoothing

the reduction in consumption at  = 10 turns out to be relatively small. The

high level of output and employment at  = 10 leads to higher real wages, and

thus higher marginal costs and higher inflation through the Phillips curve.

This in turn leads to high nominal and real interest rates through the Taylor

rule. Now consider the economy at earlier dates   10. The reduction in

consumption is greater in earlier periods and largest at  = 1. This is because

households anticipate both a longer period of higher taxes and a longer period

of higher real interest rates. It follows that under RE the increase in output

is smallest at  = 1, due to the crowding out, and also that the impact on

inflation is low in early periods. Under RE the largest impact of fiscal policy

is at the end of the period of increases government spending.

Consider in contrast the path under learning. This path is best under-

stood beginning with the impact effect at  = 1. Firms, anticipating lower

future levels of household consumption due to crowding out from the higher

government spending, expect future labor supply to be higher, reducing fu-

ture real marginal costs. This leads firms to reduce price increases at  = 1,

and the lower inflation leads the central bank at  = 1 to reduce interest

rates. The resulting lower real interest rate leads initially to a small increase

in consumption despite the higher taxes households know they will pay for

ten periods. There continues to be a modest increase in consumption for a

few periods as households become optimistic about expected future incomes.

However, the higher future output expected by firms soon becomes decisive.

This leads firms to set higher prices, increasing inflation during the period

of policy implementation, resulting in higher nominal interest rates set by

policymakers. The high actual and expected real interest rates during the

second part of the policy period leads households to sharply reduce consump-

tion. Finally, at  = 11, when the policy ends, there is a substantial drop

in output because the reduction in government spending is not offset by an
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increase in consumption, which remains low due to pessimistic expectations.

The low output levels for   10 continue for a period of time until inflation

expectations, in response to observed low inflation rates, return to the steady

state level. Thus under learning the largest impact of fiscal policy is at the

start of the policy, and is significantly offset following the end of the policy.

Similar results are obtained if, continuing to assume that the exogenous

variables are initially at their steady state levels, one now assumes that initial

beliefs of inflation and output are lower than steady state values, but not so

low that the ZLB will ever be obtained. Simulation results (not reported)

show that this alters the path of the economy, both with and without the

change in fiscal policy, but the distributed lag and cumulative output mul-

tipliers as broadly similar. The cumulative output multipliers are higher

under AL than under RE during the policy implementation period, with the

impact, relative to RE, concentrated in the early part of the policy. The

maximum output effect of the fiscal policy under learning is in the early part

of the policy, while the maximum output effect under RE occurs as the policy

ends. The additional output increase under learning during the policy period

is offset by lower levels of output after the policy ends.

4.2 Fiscal policy when the ZLB may be binding

As extensively discussed in the recent literature on fiscal policy in New Key-

nesian models, the size of the multipliers can be very sensitive to the response

of monetary policy: fiscal multipliers are smaller when the induced changes

in inflation and output lead to increases in interest rates through the mone-

tary policy rule. A particular case in which the multiplier can be expected

to be large is when interest rates are at or near the zero-lower bound (ZLB),

so that they are unresponsive to fiscal policy changes.

4.2.1 Preliminary considerations

A zero lower bound on net nominal interest rates corresponds to a bound on

the gross nominal one-period interest rate  ≥ 1. Recall that the steady
state real interest rate factor is ̄ = −1. When the target inflation rate is
∗ ≥ 1, the steady state nominal interest-rate factor is ̄ = −1∗. Because
̂ = ( − ̄)̄ = () 

∗ − 1, it follows that at the ZLB we have

̂ = ∗ − 1.
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In practice, in our numerical simulations, much like the actual monetary

policy followed in the US and the UK in the 2008 - 2015 period, we will

assume net interest rates are bounded by some small value   0. Thus the

ZLB is defined by the bound

̂ ≥ (1 + )

∗
− 1.

We continue to assume that in normal times the interest-rate policy is

given by the Taylor rule. With the ZLB added policy takes the form

̂ = max

½
̂∗ 

(1 + )

∗
− 1
¾
 where

̂∗ = ̂ + ̂.

We first note that the New Keynesian Phillips curve (14) is unaffected be-

cause it does not depend on the interest rate. However, the New Keynesian

IS equation (17) is altered because both expected future real interest rates

and the current interest rate may be subject to the ZLB.

Whether agents expect the ZLB to bind in the future depends both on the

fundamental shocks and the beliefs of agents as measured by their estimates

of the parameters of the PLM. There are actually four cases to consider

depending on whether the ZLB is expected to bind in all future periods, no

future periods, after a finite number of periods or up to some date. Case

1 corresponds to normal times in which the ZLB is not expected to hold in

the future. Case 2 corresponds to very pessimistic inflation expectations,

in which the ZLB is expected to hold throughout the future. In Case 3

expectations are pessimistic but offset for an initial period because of current

  shocks, and in Case 4 expectations are not too pessimistic but the ZLB

is expected to hold for an initial period because of unfavorable current  
shocks.19

These cases are discussed in detail in Appendix 3. The condition deter-

mining the applicable case depends in part on the parameters  and ,

and for analytical convenience we restrict attention to the case  = .

For each case we must also allow for the possibility of the ZLB binding in

the temporary equilibrium. Note that the model of Section 2 corresponds to

19Related ideas have been discussed in Williams (2010) in the context of price-level

targeting under imperfect knowledge and learning.
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normal times in which the ZLB never holds either in expectation or in the

temporary equilibrium.

In this section we make the additional assumptions that inflation and

consumption are also subject to lower bounds, as described in Section 3.1. We

normally take  to correspond a modest rate of deflation. The lower bounds 

and  come into play when expectations are very pessimistic and can become

binding in the “deflation trap” regions, emphasized by Benhabib, Evans,

and Honkapohja (2014), in which adaptive learning can produce otherwise

divergent paths with falling inflation and output. In Section 2 we implicitly

assumed paths in which the consumption and inflation lower bounds were

never violated.

4.2.2 Simulation results

The impact of fiscal policy will depend sensitively on the values of  and 

and the nonstochastic component of the initial expectations ̂(0) = (0)

and ̂ (0) =  (0). There are cases in which without policy the economy

will converge to a stagnation steady state rather than to the targeted steady

state. If initial expectations are close to the edge of the deflation trap region,

fiscal policy may be able to shift the path to the targeted steady state. In

cases involving possible convergence to the stagnation regime, the impact of

fiscal policy may depend critically on the size and length of fiscal policy.

Before turning to simulations, we note that there are three possible steady

states when the inflation lower bound  is below  = (1 + ). In propor-

tional deviation form this corresponds to ̂  ̂ where ̂ = ∗ − 1 and
̂ = (1 + )∗ − 1. The first steady state is the targeted steady state at
 = ∗ i.e. at ̂ = 0 There is a second steady state at ̂ = ̂ with ̂  ̂.

This steady state, however, is unstable under learning. Finally, there is the

deflation trap steady state at ̂ = ̂ and ̂ = ̂.

If instead ̂  ̂ then the usual targeted steady state is the unique steady

state, and if ̂ = ̂ there will also be a continuum of steady states at ̂ = ̂

with ̂  ̂.

For our parameterization with  = 099 and  = 00001, the critical value

 for the inflation bound is approximately −00099. This is a deflation rate
of 099% per period, which we take to be a quarter, i.e. just under 4% per

annum. In our simulations below we set ̂ = −0017 or ̂ = −001475 The
inflation lower bound ̂ = −0017, which corresponds to about −121% per

quarter, leads to three steady states, while the lower bound ̂ = −001475,
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which corresponds to about −098% per quarter, leads to a unique steady

state.

For the consumption lower bound we set ̂ = −03, which corresponds to
a 30% reduction in consumption from the targeted steady state and which in

turn corresponds to a drop of roughly 24% in aggregate output in our model.

Thus the level of output in the stagnation state corresponds roughly to the

output drop in the Great Depression in the United States in the 1930s.20

This is a fairly extreme assumption, and it would straightforward to examine

calibrations consistent with stagnation steady states more in line with the

Great Recession. We choose the setting ̂ = −03 in order to consider the
effectiveness of fiscal policy even in extreme cases in which the economy has

settled into a persistent stagnation with output far below normal levels.

In this Section we set the benchmark gain to 010 because we consider

expectations that are sometimes far from rational values. In these circum-

stances agents have an incentive to adjust expectations relatively quickly to

eliminate systematic forecast errors.21

Figure 6 sets ̂ = −0017 and shows the results for initial  = −0016
and  = −002. With an inflation target of ∗ = 2%, and since steady state
output is approximately ̄ = 111, these values for  and  correspond to

initial inflation expectations of a little over−11% per quarter (an annual rate
of −44%) and output expectations 1% below the level of the targeted steady
state (assuming the exogenous shocks are at their mean values). This setting

can be thought as follows. At the beginning of time  = 1 the economy suf-

fers a pessimistic expectation shock, which resets mean expectations to levels

below the targeted steady state, specifically ̂ = −0016 and ̂  = −002.
We then contrast the evolution of the economy under learning when fiscal

policy is unchanged with the evolution of the economy under learning when

at  = 1 a temporary fiscal stimulus is initiated of known duration.22

20In our simulations we continue to use the linearized model, for the reasons given

earlier, but now the relevant equations are subject to the lower bounds on the interest

rate, inflation and consumption.
21The qualitative features are fairly robust to the value of the learning gain parameter

, but quantitative results may be affected by .
22Thus on this interpretation in Figures 5 (and 6) we set the  = 0 variables at their

steady state values. An alternative possible interpretation of these simulations is that due

to past (unmodeled) shocks and the recent path of the economy, expectations have evolved

to the pessimistic values given, and we study the impact of fiscal policy introduced at  = 1

to counteract this. On this alternative interpretation the  = 0 variables would differ from

steady state values.
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Figure 6: Small policy change. The upper panel shows the paths of output

and inflation under learning with policy change (solid line) and learning

without policy change (dashed line) for a temporary policy change with

 = 40. The lower panel shows the distributed lag and cumulative output

multipliers for the policy change.

Without fiscal policy these initial expectations are sufficiently pessimistic

so that inflation at  = 1 falls immediately to the lower bound ̂ = −0017.
This is accompanied by small reductions in consumption and output, and

the interest rate falls to the ZLB. Because of the ZLB, and with inflation at

its (negative) lower bound, current and expected future real interest rates

are positive and approximately equal to the deflation rate. Using the tempo-

rary consumption function and market clearing equations, with inflation and

expected inflation at the lower bound, it is shown at the end of Appendix 3

that

̂ =  −∆, where ∆ =
(1− ̄) ( − )

(1− )∗
 0,

and ̂ = (1 − ̄)−1̂. Thus at each time  output is lower than expected
output. This results in expected output falling over time. More specifically,
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it can be shown that the RLS updating equation for  in Section 2.3 can

be approximated by +1 =  + 
³
̂ − 

´
=  − ∆, with also

    → 0. It follows that ̂+ =  ̂ and ̂ will steadily fall over

time until ̂ is constrained by the consumption lower bound, at which point

the economy reaches and stays in the stagnation steady state. The paths

of key variables are illustrated in Figure 6 by the dot-dashed lines. With

no fiscal policy change the initial pessimistic expectations lead the economy

into a deflation trap at  with output approximately 24% below the targeted

steady state.

Consider now the effectiveness fiscal policy. Figure 6 shows the impact

of a small fiscal stimulus with a duration of  = 40 periods with the results

based on 10 000 simulations. Under a fiscal policy that increases  by 10%,

from  = 02 to  = 022, there are positive multipliers during the policy

period, with a cumulative multiplier of around 12, after 100 periods, which

is mostly reached by period 40. However, the economy sinks back into the

deflation trap around period 40.

In contrast, when  is changed by a sufficiently large amount the econ-

omy can be shifted to the targeted steady state. In Figure 7 we start with

the same initial beliefs as in Figure 6, but we consider a policy that increases

government spending from = 02 to = 028 for a period of  = 4 periods.

In approximately 60% of the simulations there is convergence to the intended

steady state under this fiscal policy. Figure 7 illustrates the results based on

10 000 simulations. The top panel shows the mean paths of output and in-

flation for the paths for which fiscal policy is effective in the sense that it

leads to convergence to the intended steady state.23 The middle panel shows

that in the approximately 37% of the simulations in which the economy fails

to escape the deflation trap, fiscal policy still has substantial positive effects

on output. The bottom panel shows the distributed lag and cumulative out-

put multipliers averaged over all 10 000 simulations. Output and inflation

increase monotonically during the period of the stimulus,  = 1     4.

23Recall that in Figures 6 and 7 the  = 0 values shown are for the steady state.
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Figure 7: Large policy change. The top two panels show the paths of

output and inflation under learning with policy change (solid line) and

without policy change (dashed line) for  = 4. Top panel: means of paths

with convergence to targeted steady state under policy. Middle panel:

means of paths with convergence to deflation trap despite policy. Bottom

panel: distributed lag and cumulative output multipliers across all paths.

The intuition for the results in which there is convergence to the intended

steady state under policy is as follows. In period  = 1 pessimistic expec-

tations for inflation and output are predetermined. The increase in  has

a large effect on output because there is only a small crowding out effect

on consumption. Although there is deflation and interest rates are near the

ZLB, the high level of output in period  = 1 increases inflation above its
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expected level. Consequently in the following period inflation and output

expectations are both revised upward. The higher inflation and output ex-

pectations and continued high  lead in period  = 2 to even higher output

and to inflation close to the target level. Beginning in period  = 3, inflation

has risen above target. The high output and inflation levels in period  = 3 4

result in inflation and output expectations being large enough so that when

the government stimulus is removed in  = 5, output falls back close to nor-

mal levels, though inflation remains above target for a sustained period of

time. Because expectations of inflation are above target levels, it still takes

significant time for the economy to converge to the targeted steady state,

but expectations are now within the stable basin of attraction and there is

asymptotic convergence to the targeted steady state.

In summary, temporary increases in  are effective in raising output.

Small temporary increases in  lead only to temporary increases in , but

large temporary increases in  can shift the economy back to the targeted

steady state resulting in a permanent increase in output. It is important

to note that whether or not the fiscal policy is successful in pushing the

economy back to the targeted steady state depends in part on the sequence

of stochastic shocks hitting the economy over time. Table 1 illustrates these

results, and Table 2 shows the cumulative multipliers as of  = 40 i.e. 10

years after the policy has been implemented. These results are based on 100

simulations.

In Figure 8 we consider the case in which the inflation lower bound is high

enough so that there is a unique steady state. In this case the low level trap

does not exist and the targeted steady state is unique. Initial pessimistic

expectations can still lead to a very long transition to the targeted steady

state and effectiveness of fiscal policy is of interest.
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\ 1 2 3 5 6 8 10

023 4 24 34 25 24 17 8

025 22 61 62 63 62 50 38

027 62 68 73 61 62 61 55

028 68 71 70 64 58 60 57

0.29 71 70 72 65 60 61 53

030 70 74 72 63 64 54 59

0.31 72 74 69 62 65 56 55

0.32 73 68 67 60 59 55 55

035 72 70 61 53 52 47 53

040 67 65 58 48 44 42 43

050 66 65 55 45 42 29 24

060 60 60 48 36 24 21 12

Table 1: Percentage of simulations in which fiscal policy successfully re-

sults in convergence to the targeted steady state starting from pessimistic

expectations. Based on 100 simulations.

\ 1 2 3 5 6 8 10

023 15.2 36.5 30.9 16.3 13.0 7.6 4.1

025 37.8 47.1 32.6 20.0 16.0 10.4 7.3

027 67.4 36.3 24.3 14.4 11.8 8.8 7.0

028 63.4 31.8 21.0 12.5 10.3 7.7 6.1

0.29 56.4 28.4 18.6 11.0 9.0 6.7 5.3

030 57.3 29.2 19.5 11.4 9.4 6.8 5.3

0.31 46.6 23.3 15.2 8.8 7.2 5.2 4.2

0.32 42.7 21.4 13.8 7.9 6.5 4.7 3.8

035 34.1 17.1 10.9 6.1 4.9 3.5 2.8

040 25.6 12.6 7.9 4.1 3.3 2.3 1.8

050 16.9 7.9 4.7 2.1 1.7 1.2 1.0

060 12.5 5.5 3.1 1.2 0.9 0.8 0.8

Table 2: Cumulative multipliers through  = 40 for fiscal policies starting

from pessimistic expectations. Based on 100 simulations.
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Figure 8 shows the impact on output and inflation of an increase in 

from 020 to 022 for  = 8 periods with the results based on 10 000 simula-

tions. For this policy experiment agents are assumed to use a gain parameter

115 = 667% For these simulations we set ̂ = −001475, i.e. just above
the level needed to avoid the low-level trap. As before, initial expectations

following a large pessimistic shock are set at ̂ = −0016 and ̂ = −002.
The cumulative multipliers here appear to be smaller than those found in

Table 2. However, they are substantially larger than those seen in Figure

5. This is because, although there is a unique steady state, the economy is

initially in a liquidity trap. Consequently the multipliers are higher than in

the first section of the paper in which fiscal policy was conducted in normal

times.
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Figure 8: Small policy change when there is a unique steady state with

learning gain parameter equal to 10%. Top panel: output and inflation

paths under learning with policy change (solid line) and without policy

change (dashed line) for temporary policy change. Bottom panel:

distributed lag and cumulative output multipliers.
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This last example shows that even in cases in which there is a unique

steady state, fiscal policy can be important when there is a sufficiently large

pessimistic expectations shock that drives the economy into recession and

deflation and monetary policy to the ZLB. However the most dramatic results

arise when the inflation lower bound is low enough to create the possibility

of an additional stagnation steady state.

5 Further Results and Discussion

Our results raise two key questions. In the preceding Section we looked at the

effectiveness of fiscal policy when expectations were subject to a pessimistic

shock that would lead to convergence to the stagnation trap equilibrium

in the absence of fiscal policy. Suppose, however, that fiscal policy is not

contemplated until the economy has already converged to the trap. Can a

fiscal stimulus still be effective is extracting the economy from the stagnation

trap and returning it to the targeted steady state? The second question we

consider is the size of the critical deflation rate below which a stagnation trap

exists. Under our calibration this corresponds to an annual deflation rate of

about 4% per year. Are there circumstances in which milder deflation can

result in a stagnation trap?

5.1 Escape from stagnation

Can a suitable fiscal stimulus return the economy to the targeted steady state

if, as a result of a large pessimistic shock it has been allowed to converge to

the stagnation steady state? This is clearly a worst-case setting given the

parameters since we are also assuming that expectations have fully adapted

to the stagnation steady state. To examine this question we use numerical

simulations using the calibration of the previous Section, but now set the

intercepts of the forecast rules so that mean forecasts correspond to mean

inflation and output rates at the stagnation steady states. As in Table 1 we

consider combinations of increased government spending levels  and policy

length 

From Table 3 it can be seen that a fiscal stimulus can be successful in

extracting the economy from the stagnation trap even if expectations have

settled into levels consistent with the trap. However, the size of the stimulus

is now very large — much larger than was required in Tables 1 and 2, when
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expectations were less pessimistic — and it has a modest chance of full success.

The policy with the highest probability of success, around 33%, is a fiscal

expansion that is both relatively short and big, e.g. a five-quarter stimulus

at  = 09, a more than four-fold increase in . A less huge, but still very

large, stimulus of  = 07 for eight quarters, has a 21% chance of success.

Table 3 shows a general trade-off between magnitude and duration, but there

are also some intriguing nonlinearities.24

\ 1 2 3 4 5 6 8 12

05 0 0 0 0 0 0 1 0

06 0 0 0 0 0 1 9 13

07 0 0 0 1 4 7 21 24

08 0 0 2 4 12 22 28 18

09 0 1 5 13 33 31 20 17

10 0 2 10 25 30 26 14 10

13 1 15 31 23 11 9 10 7

14 1 17 31 16 9 4 2 6

16 1 24 23 12 5 5 4 4

Table 3: Percentage of simulations in which fiscal policy successfully re-

sults in convergence to the targeted steady state starting from stagnation

expectations. Based on 100 simulations.

The main conclusion of this exercise is that while a sufficiently large stim-

ulus can extract the economy from a stagnation trap, even after expectations

have adapted to the trap, this probability is no longer high.25 A much higher

probability of avoiding the stagnation trap can be achieved, and with a much

smaller stimulus, if the policy is implemented earlier, when expectations are

less pessimistic.

24There is no reason a priori to restrict the fiscal stimulus to be of fixed size over time

until termination. We have not investigated other time profiles.
25Of course our numerical results are sensitive to the parameterization used. The results

for policy in the current section might be substantially more optimistic if the consumption

lower bound corresponded to a less drastically reduced level of output in the stagnation

steady state.
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5.2 Deflation and calibration of the discount factor

The results of the previous Section emphasize the importance of the level

of the inflation lower bound for the existence of a stagnation steady state.

This brings us to a delicate issue, which is the appropriate calibration of the

discount factor . Our numerical results have used the standard quarterly

calibration of  = 099. While this value is fairly standard, there are good

reason to consider alternative, higher, values. The historical average realized

net real interest rate on US Treasuries bills is not more than 1% per annum.

In an economy without growth this would correspond to a discount factor

of about  = 09975 Presumably one major reason that the lower discount

factor  = 099 is often used in calibrated models is that the average net real

rate of return on equities is much higher (e.g. 7% p.a.). With no consensus

on how to resolve the equity premium puzzle, a value of  = 099 might be

viewed as a rough and ready compromise value.

However, in the context of liquidity traps, the ZLB and the existence of

deflation traps with stagnation steady state, the calibration of  plays an

important role and must be faced. Furthermore, for many households the

risk-free interest rate may be the key rate of return in determining their

consumption plans.

For  = 099 the critical , when  = 0, corresponds to 1% deflation

per quarter, i.e. to 4% per year Because actual deflation rates in Japan and

Europe (as well as the US even in 2009-2010) have been above these values,

this suggests either that the inflation lower bound  is above  or that

policy has prevented inflation from falling below the critical level. On the

other hand if  = 0995 or  = 09975 is the appropriate value to use in the

consumption Euler equation, then the critical deflation rate is around 2% or

1% per year, in line with values that have occasionally been observed, e.g.,

in Japan in various periods since the 1990s.26 The possibility of deflation

falling below these levels would appear to be a serious concern, for example,

in at least some countries in Europe in 2015 if the euro-area entered renewed

recession.

26We note that Eggertsson (2010) uses a calibration of  = 0997 in a model of the

US economy during the Great Depression. During the Great Depression deflation reached

10% per year during the trough.
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Figure 9: High discount factor,  = 0995. The top two panels show paths

under learning with policy change (solid line) and without policy change

(dashed line). Top panel: means of paths with eventual convergence to

targeted steady state under policy. Middle panel: mean paths with eventual

convergence to deflation trap despite policy. Bottom panel: distributed lag

and cumulative output multipliers across all paths.

In Figure 9 we redo the simulations using the higher discount factor of

 = 0995 with the results based on 10 000 simulations. For this policy

experiment agents are assumed to use a gain parameter 10% For these simu-

lations we set ̂ = −0011, i.e. which is somewhat below the critical value, so
that there are three steady states, including a low-level trap. For this value

of ̂ in the stagnation steady state deflation is about 24% per annum. As

in Figures 6 and 7 we set ̂ = −03 which corresponds to a 30% reduction in
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consumption from the targeted steady state. Initial expectations following a

presumed large pessimistic shock are set at ̂ = −0011 and ̂  = −001.
From Figure 9 one can see that in the absence of fiscal policy the economy

would fall into a stagnation state with deflation. For these parameters a short

but very aggressive fiscal stimulus is needed to avoid stagnation. In these

simulations we consider an increase in  from 020 to 040 for  = 2 periods.

As in the case of Figure 7, our fiscal policy does not guarantee that

the stagnation state will be avoided. In fact, for these parameters, based

on 10 000 simulations, 23% of the with-policy simulations converged to the

intended steady state, 41% eventually sank to the stagnation steady state,

while 36% had not yet converged. In Figure 9 the top panel shows the mean

paths of those simulations that under the policy converge to the intended

steady state. The middle panel shows the mean paths of those paths that

eventually under the policy converge to the stagnation steady state. For

these cases we note that the process is typically very slow.

The bottom panel shows the multipliers averaged over all simulations.

We remark that the cumulative multipliers are very high, even though the

policy does not guarantee escape from eventual stagnation and deflation.

An interesting avenue for future research would be the design of optimal

fiscal and monetary policy under learning in our framework. Another less

ambitious task would be finding a mix of policies that maximizes the chance

of escaping the stagnation trap.

5.3 Wage and profit forecasting

TBA: alternative specification of consumption decision rule based on wage

and profit forecasts.

5.4 Credit spreads

TBA: version allowing for credit spreads

6 Conclusions

Sluggish real economic performance under long-lasting ZLB regimes for mon-

etary policy has made the possibility of secular stagnation a popular topic

in discussions among economists. Our first objective in this paper was to
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extend a standard NK model in a way that makes stagnation at the ZLB

with a low level of aggregate output a possible steady state outcome for the

economy. The model can have multiple equilibria and stagnation arises when

economic agents have pessimistic expectations about the economy.

The dynamics of the economy, including specifically the dynamics of ex-

pectations, are modeled by using the AL approach for expectations formation

by the economic agents rather than using the standard the RE hypothesis.

The RE assumption assumes a great deal of knowledge on the part of agents

and implicitly also assumes coordination of agents on these expectations.

These criticisms of RE are particularly forceful when the economy is in an

unusual situation, i.e. outside the usual regime of positive inflation and in-

terest rates. In such circumstances the government may need to consider

policies outside of the usual range of experience.

It should be emphasized that the AL approach is consistent with the

RE assumption as the RE steady states are potential fixed points of agents’

learning. Existence of multiple RE equilibria is a conundrum for the RE

approach and AL can provide a selection criterion among the REE. Thus,

we impose the stability criterion that steady states of economic interest are

locally stable outcomes of the AL dynamics. We show that both the targeted

and stagnation steady state meet this requirement. Additionally, AL can

provide useful perspectives on the short- and medium run dynamics of the

economy.

A second objective of our paper has been to consider the impact of fiscal

policy in the extended NKmodel when expectations are formed using AL.We

studied fiscal policy when agents take account of the announced policy but

when RE is replaced by the assumption that agents use AL to forecast future

values of endogenous market variables, i.e., future inflation and aggregate

output.27

Impacts of fiscal policy depend sensitively on whether we are considering

fiscal policy in normal times, when the ZLB on interest rates does not bind, or

at times of low inflation and output when the ZLB binds. For normal times

there are significant but relatively minor differences between AL and RE:

under AL the impact of the fiscal policy is front-loaded compared to RE, i.e.

the strongest effects are towards the beginning of the policy. Furthermore,

the positive effects during the policy implementation period are partially

offset by negative output effects when the policy comes to an end.

27This approach was initiated by Evans, Honkapohja, and Mitra (2009).
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However, outside normal times, when inflation and output may be very

low, the impact of fiscal policy under AL can be dramatic. In addition

to incorporating impose lower bounds on inflation and consumption in our

extended model, we of course allow for the possibility that agents anticipate

that future interest rates will be at the ZLB. We show that if expectations

of inflation and output enter a deflation trap region, then they will tend to

converge to the stagnation steady state.

There is thus the possibility that a large pessimistic expectation shock

(due, say, to a recent financial crisis) can push the economy to the ZLB and

along a path to steady state stagnation and deflation. In this setting a fiscal

stimulus can be particularly potent. We have seen that a sufficiently large

temporary increase in government spending can increase output and inflation

enough to prevent the economy being pulled into deflation and stagnation.

The chances of policy success are significantly greater if the policy is im-

plemented early, before expectations deteriorate greatly. However, even if

expectations have adapted to the stagnation trap a large short fiscal stimu-

lus may be able to dislodge the economy from a stagnation trap.

Despite the many simplifications of the standard New Keynesian model

that formed the basis for our extended model, the framework is quite rich

in terms of the possible economic outcomes that can arise when there is a

large pessimistic shock to expectations following an event like the financial

crisis that pushes policy and the economy to the ZLB. If the inflation lower

bound is below the critical rate then, depending on the extent to which

expectations have deteriorated, paths under normal policy can either lead

back to the targeted steady state or descend into stagnation and deflation.

If instead the inflation lower bound is just slightly above the critical value,

so that there is a unique steady state, a large pessimistic shock can still lead to

an extended period of low output and inflation before the economy eventually

climbs its way back to the targeted steady state. An extended period of low

output and inflation can also arise in the case of multiple steady states if

the initial pessimistic shock places expectations near the unintended locally

unstable steady state. In this case expectations will adjust very slowly before

eventually “declaring” themselves to be within either the corridor of stability

for the targeted steady state or the deflation trap region.

In addition to the precise level of the inflation lower bound, the magni-

tudes of initial shocks to output and inflation expectations, the size of the

gain parameter controlling the speed with which expectations adapt to ob-

served data, and the sequence of random fundamental shocks, the path of
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the economy will depend on the policy response, including both monetary

and fiscal policy. Here we have emphasized the potentially important role

for fiscal policy, and we have seen that whether a policy enables the economy

to avoid a stagnation trap, and the speed with which an economy returns

to the targeted stead state, can depend on the size and duration of a fiscal

stimulus and whether the fiscal stimulus is implemented early or later.

From these observations it can be seen that the framework of the paper

can encompass a wide range of outcomes arising from a large pessimistic

shock to expectations. Using this framework to explain recent (and future)

events for the different major economies in the wake of the 2007-9 financial

crisis is reserved for future research.
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Appendix 1: Model details

We develop here the model outlined in Section 2 following the analysis of

Eusepi and Preston (2010).

Consumers

Next use the flow budget constraint and the NPG (no Ponzi game) con-

dition to obtain an intertemporal budget constraint. Write

 = −1 + 

where  = −1 and

 =  −  − (28)

In (28) consumers are assumed to know that the government will run a

balanced budget policy. Iterating (28) forward and imposing

lim
→∞

̂(+)
−1+ = 0 (29)

where

+ =

Y
=1

+

with + = +−1+ We obtain the life-time budget constraint of the
household

0 = ∆−1 +  +

∞X
=1

̂(+)
−1+

where ∆−1 = −1 and

+ = + − + −+ (30)

Because there is zero net government debt and we have representative agents,

it follows that ∆−1 = −1 = 0 for all agents. Thus

0 =  +

∞X
=1

̂(+)
−1+ (31)
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Linearizing (31) we have

0 = ̃ +

∞X
=1

̃+ − ̄

∞X
=1

+1
X

=1

̃+

̃+ = ̃+ − ̃+ − ̃+

where tilde denotes deviation from the non-stochastic steady state for each

variable, for example, ̃+ = + − ̄  Note that here ̄ = 0 by market

clearing, so that

∞X
=0

̃+ =

∞X
=0

(̃+ − ̃+)

The next step is iterate the linearized Euler equation forward. We have

̃ = ̂̃+1 − ̄̂̃+1 and

̃ = ̂̃+ − ̄̂

X
=1

̃+ (32)

where ̃ =  − ̄ and ̃+ = + − ̄. This can also be written as

̂ = ̂̂+1 − ̂̂+1, where

̂ =
 − ̄

̄
and ̂+1 =

+1 − ̄

̄


which yields

̂ = ̂̂+ − ̂

X
=1

̂+

where we have used −1 = ̄.

Combining (32) with the linearized budget constraint in expectational

form we get:

0 = ̃ − ̃ − ̃ +

∞X
=1

̂(̃+ − ̃+)

−
∞X
=1

̃ − ̄

∞X
=1

̂

X
=1

̃+
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This yields the consumption function for consumer 

̃ = (1− )[̃ − ̃ +

∞X
=1

̂(̃+ − ̃+)]

−̄̂

∞X
=1

̃+

This can also be written in proportional form yielding

̂ = (1− )

"
̂¡

̄̄
¢ − ̂¡

̄̄
¢ + ∞X

=1

̂

Ã
̂+¡
̄̄

¢ − ̂+¡
̄̄

¢)!#

−̂

∞X
=1

̂+

which is (6) making use of the representative agent assumption.

The market clearing condition is

 =  + +


2
( − ∗)2

which at the targeted steady state  = ∗ is

̄ = ̄ + ̄

It follows that the linear approximation around the targeted steady state is

̂ = (1− ̄)̂ + ̄̂

̄ ≡ ̄

̄
and

̄

̄
= 1− ̄

We thus have

̂ = (1− ) (1− ̄)
−1

̂ + (1− ) (1− ̄)
−1

∞X
=1

̂̂+

−(1− )̄ (1− ̄)
−1

̂ − (1− )̄ (1− ̄)
−1

∞X
=1

̂̂+

−̂ − ̂

∞X
=1

̂+ + ̂

∞X
=1

̂+ (33)
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For the contemporaneous interest rate rule ̂ = ̂ + ̂ we have

̂ =
¡
(1− ) (1− ̄)

−1 − 
¢
̂ +

¡
(1− ) (1− ̄)

−1 − 
¢ ∞X
=1

̂̂+

−̂ + (1− )

∞X
=1

̂̂+

−(1− )̄ (1− ̄)
−1

̂ − (1− )̄ (1− ̄)
−1

∞X
=1

̂̂+ (34)

Firms

As in the text

(1− )(1− )̄ + ̄̄  = 0 or

(1− )(1− ) + ̄ = 0

We need to linearize around steady state ̄  ̄ ∗ ̄ where ̄ is the steady

state value of +1 Note that ̄ = ∗.
It is useful to define the mark-up  by equation (10). In the steady state

 = ( − 1)−1. Log-linearizing (10) gives
̂ = −( − 1)−1̂

From above the mean real marginal cost is

̄ =
( − 1)(1− )


= (1− )−1

Next, we linearize (8) and obtain

0 = (1− )(1− )̃ − (1− )(1− )̄

µ




− 1
¶
− (1− )̄ ̃ +

̄ ̃ + ̄̃ − ̄̄ (1 + )

µ




− 1
¶
+ ̄̄ ̃ −

∗

µ


−1
− ∗

¶
+ (∗)2 ̂

∙
̄

µ
+1



− ∗
¶¸



where ̃ =  − , ̃ =  − ̄  etc. Also, to the first order

+1



− 1 = ̃+1 − ̃
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where ̃ ≡ ln − (∗ − 1) and ̃ ≡ ln − (∗ − 1). It follows that

0 = (1− )(1− )̂ − (1− )(1− ) (̃ − ̃)− (1− )̃ +

̃ + ̄̂ − ̄(1 + ) (̃ − ̃) + ̄̃ −
∗̄ −1 (̃ − ̃−1) + ̂

£
̄̄ −1 (∗)2  (̃+1 − ̃)

¤


In this expression the terms involving ̂ drop out because of the steady

state relations. Then combine the terms involving ̃− ̃ and rearrange the

coefficients using the steady state relations. Also combine the terms involving

̃ and use the log-linearization between ̂ and ̂. This yields the result

̃ − ̃−1 = ̂(̃+1 − ̃) +


̄
(̃ − ̃) +

̄ ̄

̄
(̂ + ̂) (35)

where  = ̄ ̄ and ̄ = ∗

Here

̂ =
 − ̄

̄
 ̂ =

 − 




Next, we use the back-shift operator technique on (35) (see pp. 393-5 of

Sargent (1987)).28 Taking expectations ̂ of (35) and rearranging we get∙
1−

µ
1 + −1 +



̄

¶
 + −12

¸
̂ ̃+1 = ̂

∙
− 

̄
̃ − ̄ ̄

̄
(̂ + ̂)

¸


The quadratic in  can be factored into the product (1−1)(1−2) with
roots 0  1  1  2 satisfying

12 = −1 and 1 + 2 = −1(1 +  + ̄
−1
).

We write

(1− 1)(1− 2) ̃+1 = ̂

∙
− 

̄
̃ − ̄ ̄

̄
(̂ + ̂)

¸
or

(−1 − 1)(
−1 − 2) ̃−1 = ̂

∙
− 

̄
̃ − ̄ ̄

̄
(̂ + ̂)

¸


28where −1−1+ = −1++1 As emphasized by Sargent, it is legitimate to
operate on both sides of an equation by polynomials involving non-positive powers of 
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Operating on both sides by (−1 − 2)
−1 we get

(−1 − 1) ̃−1 =
1

(−1 − 2)
̂

∙
− 

̄
̃ − ̄ ̄

̄
(̂ + ̂)

¸
=

−12
(1− −12 −1)

̂

∙


̄
̃ +

̄ ̄

̄
(̂ + ̂)

¸


Writing (1− −12 −1)−1 = 1+ −12 −1+ −22 −2+    and also using 12 =

−1 we obtain

̃ = 1̃−1 +
1

̄

Ã ∞X
=0

−2 ̂

h
̃+ + ̄ ̄(̂+ + ̂+)

i!
 (36)

as the evolution of the optimal price of firm 

We now define ̃ = ̃ − ̃−1. Note that ̃ is the rate of inflation net of
the target rate ∗. Using

∞X
=0

−2 ̂̃+ =

∞X
=0

−2 ̂ ̃+ −
∞X
=0

−2 ̂ ̃+−1

and ∞X
=0

−2 ̂ ̃+−1 = ̃−1 + −12

∞X
=0

−2 ̂ ̃+

we obtain
∞X
=0

−2 ̂ ̃+ = (1− −12 )
−1

∞X
=0

−2 ̂̃+ + (1− −12 )
−1̃−1

Plugging into (36) we obtain

̃ = 1̃−1 +
1

̄(1− 1)
̃−1 +

1

̄(1− 1)

∞X
=0

(1)
̂̃+ +

1̄ ̄

̄

∞X
=0

(1)
̂(̂+ + ̂+)

Subtracting ̃−1 from both sides and collecting terms, and imposing the

representative agent assumption, the coefficient of ̃−1 becomes

(1 − 1) +
1

̄(1− 1)
=

(1 − 1)(1− 1) + (̄)1
1− 1

=
1(̄ +  + 1− 1)− 1

1− 1
=

12 − 1
1− 1

= 0
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Note that

1 = 1−
1

̄(1− 1)
 (37)

Using the representative agent assumption the resulting equation becomes

̃ =
1

̄(1− 1)

∞X
=0

(1)
̂̃+ +

1̄ ̄

̄

∞X
=0

(1)
̂(̂+ + ̂+) (38)

Next, we work out the relationship between ̂ and ̂, which will yield

the Phillips curve. Using (3), (9) and the production function one obtains

 = (1− )
1+
 

−(1+)
 

so that

̂ = (1 + ) (̂ − ̂)− ̄

1− ̄
̂

Since

̂ = ̂ − ̂

it follows that

̂ = (1 + ) (̂ − ̂)− ̄

1− ̄
(̂ − ̂) (39)

Letting ̂ ≡ ̃
∗ and substituting into (38) we finally obtain the

Phillips curve

̂ = 1

∞X
=0

(1)
̂̂+ + 2

∞X
=0

(1)
̂̂+ − 3

∞X
=0

(1)
̂̂+

−4
∞X
=0

(1)
̂̂+ + 5

∞X
=0

(1)
̂̂+ (40)

where the coefficients  are defined as:

1 =
1

̄(1− 1)
; 2 =

1̄ ̄

̄∗

µ
1 + +

̄

1− ̄

¶
;

3 =
(1 + )1̄ ̄

̄∗
; 4 =

̄1̄ ̄

(1− ̄)̄∗
; 5 =

1̄ ̄

̄∗


Note that by (37) we have 1 = 1− 1. Rearrange the above equation to get

(14).
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Temporary equilibrium

The IS curve under the contemporaneous interest-rate rule is obtained

from combining the consumption function (34) with the market-clearing

equation ̂ = (1− ̄)̂ + ̄̂. This yields

(1− ̄)̂ +
¡
 + (1− ̄)

¢
̂

= [(1− ̄)(1− )]

∞X
=1

̂̂+ + [(1− )− (1− ̄)]

∞X
=1

̂̂+

+̄̂ − (1− )̄

∞X
=0

̂̂+ (41)

Henceforth, we use the following short-hand notation

1 ≡ (1− ̄)(1− )

2 ≡ (1− )− (1− ̄)

Let us now write the price setting equation (14) and the demand equation

(41) (under subjective expectations) in matrix form. Let

 =

µ
1− 1 −2

(1− ̄)  + (1− ̄)

¶
(42)

Then



µ
̂

̂

¶
=

∞X
=1

µ
1(1)

 2(1)


1
 2



¶µ
̂̂+

̂̂+

¶
+

µ −4
̄

¶
̂ +

∞X
=0

µ −3(1) 5(1)


0 0

¶µ
̂̂+

̂̂+

¶
+

∞X
=1

µ −4(1)
−(1− )̄

¶
̂̂+

57



For the shock terms above we get

∞X
=0

µ −3(1) 5(1)


0 0

¶µ
̂

̂

¶

=

⎛⎜⎝
∞X
=0

³
−3(1)̂ + 5(1)

̂

´
0

⎞⎟⎠
=

⎛⎜⎝
∞X
=0

³
−3(1)̂ + 5(1)

̂

´
0

⎞⎟⎠
=

µ −3(1− 1)
−1̂ + 5(1− 1)

−1̂
0

¶


Consider a change in government spending that is known to be temporary.

We assume that initially, at  = 0, we are in the steady state corresponding to

 = ̄, and consider the following policy experiment, assumed fully credible

and announced at the start of period 1:

 =   =

½
̄0,  = 1  
̄,  ≥  + 1

(43)

i.e., government spending and taxes are changed in period  = 1 and this

change is reversed at a later period  +1. Thus, the experiment is one where

the policy change is announced in period 1 to take place in the future for a

fixed number  of periods. Denote the change in government spending by

∆ (= ̄0 − ̄ ) so that

̂ =

½
∆
̄
,  = 1  

0,  ≥  + 1

We first consider the evolution of the learning economy during the period

when the policy increase is in effect i.e. for periods  = 1   Then we
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have

∞X
=1

µ −4(1)
−(1− )̄

¶
̂̂+ =

−X
=1

µ −4(1)
−(1− )̄

¶
∆

̄
=⎛⎜⎜⎜⎜⎝

−4
−X
=1

(1)


−(1− )̄

−X
=1



⎞⎟⎟⎟⎟⎠ ∆

̄
=

Ã
−41 1−(1)

−

1−1
−(1− )̄ 1−

−
1−

!
∆

̄


Write the final form of the model when agents are learning in the following

matrix form (which is true for 1 ≤  ≤  )



µ
̂

̂

¶
=

∞X
=1

µ
1(1)

 2(1)


1
 2



¶µ
̂̂+

̂̂+

¶
+µ

−3(1− 1)
−1̂ + 5(1− 1)

−1̂
0

¶
+Ã

−41 1−(1)
−

1−1
−(1− )̄ 1−

−
1−

!
∆

̄
+

µ −4
̄

¶
∆

̄
 (44)

Note that when    the model evolution under learning is governed by



µ
̂

̂

¶
=

∞X
=1

µ
1(1)

 2(1)


1
 2



¶µ
̂̂+

̂̂+

¶
+µ

−3(1− 1)
−1̂ + 5(1− 1)

−1̂
0

¶
 (45)

since ̂ = 0 when    .

We consider PLMs of the same form as the MSV solution of the economy.

One can solve the model under RE with fixed  to get a stochastic steady

state of the form

̂ =  + ̂ + ̂

̂ =  +  ̂ +  ̂

where ̂ ̂ are observable processes (with known coefficients) given by (19)

and (20). These can be used to construct forecasts ̂+ and ̂̂+ which
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are then inserted into the model (44) to govern the evolution of the economy

for the first  periods (and by (45) for periods after  ).

Using the MSV form of the PLM we get

̂̂+ =  + ̂̂+ + ̂̂+

=  + 

̂ + 


̂

Similarly,

̂̂+ =  +  

̂ +  


̂

Consider the term below that needs to be evaluated in the first row of (44)

1

∞X
=1

(1)
̂̂+ + 2

∞X
=1

(1)
̂̂+

= 1

∞X
=1

(1)
( + ̂̂+ + ̂̂+)

+2

∞X
=1

(1)
( +  


̂ +  


̂)

= (1 + 2 )
1

1− 1
+ (1 + 2 )

1
1− 1

̂

+(1 + 2 )
1

1− 1
̂

Similarly consider the term below that is required to be evaluated in the

second row of (44)

1

∞X
=1

̂̂+ + 2

∞X
=1

̂̂+

= 1

∞X
=1

( + ̂̂+ + ̂̂+)

+2

∞X
=1

(1)
( +  


̂ +  


̂)

= (1 + 2 )


1− 
+ (1 + 2 )



1− 
̂

+(1 + 2 )


1− 
̂
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We can obtain a mapping from the PLM to the ALM from (44) for the first

 periods (and from (45) for periods after  ).

We now combine terms of the right hand side of (44). The first row on

the right hand side of (44) is given by

(1 + 2 )
1

1− 1
+ (1 + 2 )

1
1− 1

̂

+(1 + 2 )
1

1− 1
̂ − 3(1− 1)

−1̂

+5(1− 1)
−1̂ − 4(1

1− (1)−
1− 1

+ 1)
∆

̄


The second row on the right hand side of (44) is given by

(1 + 2 )


1− 
+ (1 + 2 )



1− 
̂

+(1 + 2 )


1− 
̂ − ̄[(1− )

1− −

1− 
− 1]∆

̄


This process gives us the mapping for the T-map as below.

We collect the terms for the intercept in preceding two equations. This

gives two equations (46) and (47) to solve for the T-map for the intercept

terms   :

(1− 1) − 2 = (1 + 2 )
1

1− 1
− 4(1

1− (1)−
1− 1

+ 1)
∆

̄


(46)

(1− ̄) + ( + (1− ̄)) = (1 + 2 )


1− 
(47)

−̄[(1− )
1− −

1− 
− 1]∆

̄


Similarly, consider the terms involving ̂

(1− 1)− 2  = (1+ 2 )
1

1− 1
− 3(1− 1)

−1 (48)

(1− ̄) + ( + (1− ̄))  = (1 + 2 )


1− 
 (49)
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Equations (48) and (49) are solved for the coefficients  and  . Finally,

consider terms involving ̂

(1− 1) − 2  = (1 + 2 )
1

1− 1
+ 5(1− 1)

−1 (50)

(1− ̄) + ( + (1− ̄))  = (1 + 2 )


1− 
 (51)

and equations (50)-(51) are solved for the coefficients  and  .

These six equations (46), (47), (48), (49), (50), and (51) yield the mapping

(        )→ (        )

from the PLM to the ALM in parameter space and the fixed points of the

map correspond to the MSVREE solution. This is the T-mapping for periods

1      For periods    the same equations, together with the requirement

∆ = 0 give the T-map.

RE Solution with policy change

We need to compute the RE solution when the fiscal policy changes. To

compute the effect of policy changes under RE, the Euler equation approach

seems preferable owing to its simplicity.29 We, therefore, compute the Euler

equations for this framework. We first consider the IS curve equation. Im-

posing symmetry in equation (5), we obtain

 − ̄

̄
= (

+1 − ̄

̄
)−(

+1 − ̄

−1
)

or in proportional deviation form

̂ = ̂+1 −̂+1

where

̂+1 =
+1 − ̄

̄
; ̄ = −1

29Note that the effect of policy changes under RE in the New Keynesian model is easier

to work out compared to the RBC model since the baseline New Keynesian framework

does not have any lagged endogenous variables.
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Then using (15), we obtain

̂ = ̂+1 − ̄

̄
̂+1 +

̄

̄

³
̂ −̂+1

´
(52)

as the IS curve in (proportional) deviation form. If we use the interest rate

rule (18) in (52) above we obtain

(1 +
̄

̄
)̂ +

̄

̄
̂ = ̂+1 +

̄

̄
̂+1 +

̄

̄

³
̂ −̂+1

´
(53)

Since
̄

̄
= 1− ̄

̄
≡ 1− ̄

we can rewrite (53) as¡
1 + (1− ̄)

¢
̂+(1− ̄)̂ = ̂+1+(1− ̄)̂+1+ ̄

³
̂ −̂+1

´
(54)

We now compute the one-step forward looking Phillips curve. From (35) we

obtain (imposing symmetry)

̂ = ̂+1 +
̄ ̄

̄
(̂ + ̂)

Using (39) this may be rewritten as

̂ = ̂+1 +
(1 + )̄ ̄

̄
̂ +

̄ ̄

̄
(̂ − (1 + )̂)− ̄ ̄

̄

̄

1− ̄
̂ (55)

Using

̂ = ̂ − ̂

(55) reduces to

̂ = ̂+1+
̄ ̄

̄

µ
1 + +

̄

1− ̄

¶
̂+

̄ ̄

̄
(̂−(1+)̂)−̄ ̄

̄

̄

1− ̄
̂

(56)
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Writing (54) and (56) in matrix form we get30Ã
1 −̄ ̄

̄

³
1 + + ̄

1−̄

´
(1− ̄) 1 + (1− ̄)

!µ
̂

̂

¶

=

µ
 0

1− ̄ 1

¶µ
̂+1

̂+1

¶
+

Ã
̄ ̄
̄
− (1+)̄ ̄

̄

0 0

!µ
̂
̂

¶

+

Ã −̄ ̄
̄

̄

1−̄ ̂

̄
³
̂ −̂+1

´ ! 

Inverting the matrix on the left hand side of the above system we can obtain

the systemµ
̂

̂

¶
= Ψ

µ
̂+1

̂+1

¶
+z

µ
̂
̂

¶
+ Γ

Ã −̄ ̄
̄

̄

1−̄ ̂

̄
³
̂ −̂+1

´ !  (57)

which can used to compute numerically the RE solution with the fiscal policy

change. Thus, (57) gives the system under RE when the Taylor rule (18) is

followed. We will be using this system to compute the RE solution when

there is a change in government purchases (and a balanced budget).

We get µ
̂

̂

¶
=

∞X
=0

Ψ

µ
z

µ
̂+
̂+

¶
+ Γ+

¶
, where

 =

Ã −̄ ̄
̄

̄

1−̄ ̂

̄
³
̂ −̂+1

´ ! 

which can be written asµ
̂

̂

¶
=

∞X
=0

Ψz
µ

 0

0 

¶µ
̂
̂

¶
+

∞X
=0

ΨΓ+ (58)

The first term on the right-hand side of (58) is the MSV solution when

government spending is constant. It takes the formµ
̂

̂

¶


=

µ
̄
̄ 

¶
̂ +

µ
̄
̄ 

¶
̂

30Note that ̄ ̄


=
(−1)̄ (1−)


which is denoted by  (with  = 0) in Eusepi-Preston

(2010) and is set equal to 006 in footnote 11, p. 243, of their paper.
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where µ
̄
̄ 

¶
= ( −)

−1µ
̄
̄ 

¶
= ( −)

−1

and

 =

Ã
1

1
1−1 2

1
1−1

1


1− 2


1−

!
,  =

µ −3(1− 1)
−1

0

¶


 =

Ã
1

1
1−1 2

1
1−1

1


1− 2


1−

!
,  =

µ
5(1− 1)

−1

0

¶


The second term gives the modification due to changes in government spend-

ing and it is calculated as follows. For  = 1 we have

1 ≡
∞X
=0

ΨΓ1+ =

−2X
=0

ΨΓ̄1 +Ψ−1Γ̄2

= (1−Ψ−1)(1−Ψ)−1̄1 +Ψ−1Γ̄2, where

̄1 =

µ −̄ ̄
̄

∆
1−̄

0

¶
and ̄2 =

µ −̄ ̄
̄

∆
1−̄

−∆

¶


In general,

 = (1−Ψ−)(1−Ψ)−1̄1 +Ψ−Γ̄2

for  = 1      − 1. For  =  we have

 = Γ̄2

and

 =

µ
0

0

¶
for  ≥  + 1.

In total, the RE solution is the sum of the MSV solution with constant

government spending plus the term .
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Appendix 2: Details of model with lower bounds
Proofs of Propositions

The proof of the Proposition 1 uses the following result:

Lemma 3 Let

(; ) = −(1+)
µ
 ++



2
( − ∗)2

¶1+
−(1− )(1− −1)

µ
 ++



2
( − ∗)2

¶


Let  =
¡
()(1− )(1− −1)

¢ 1
1+ . Then provided   , there exists

̌  0 such that for all 0    ̌ the function (; ) is strictly

monotonically increasing in  and for given    ̌ and    we have

lim→∞ (; ) = +∞

Proof of Lemma 3: Computing the derivative we have





¯̄̄̄
=0

= 
1 + 



¡
−1( +)

¢
+ −1( +)1+

−(1− )(1− −1)

If    then 



¯̄
=0

 0 for all  ≥ 0. Since  is continuous in ,

then result follows. ¥

Proof of Proposition 1: First suppose the inflation lower bound sat-

isfies   . (i)  = ∗, with  = −1∗ satisfy (25) and (27). From (23)

and (24) we have 0 = (;∗ ). We have (0;∗ ) = −(1− )(1−
−1)  0. Since we are assuming    it follows from the Lemma that

there is a unique  = ̄ that solves (23) and (24).

(ii)  = , with  = 1 +  satisfy (25) and (27). From (23) and (24)

we have ( − 1)(1 − )−1 = (; ). For  sufficiently small

the term (− 1)(1− )−1 can be made arbitrarily close to zero. Since
(0; ) = −(1− )(1− −1)

¡
+ 

2
( − ∗)2

¢
 0, the Lemma again

applies and there is a unique  =  that solves (23) and (24).

(iii)  =  with  = 1+ satisfy (25) and (27) provided  = We thus

need to establish that (26) holds with strict inequality, i.e. that

( − 1)(1− )−1  (; )
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As in part (ii) the Lemma implies that, given    and  sufficiently small,

there exists ̃  0 such that

( − 1)(1− )−1 = (̃; )

Thus for consumption lower bound   ̃ (26) holds with strict inequality.

It is straightforward to see that there is no other steady state. Suppose

first that there is a steady state at  with      or   ∗. Then
  −1. By (25) this implies  = . But there exists  such that

(23) is satisfied and since we can assume    it follows from the Lemma

that (26) holds with strict inequality. However this implies  = , which

contradicts our assumption. If instead     ∗. Then   −1. But
this contradicts (25).

Next, suppose If     ∗. By (26) there cannot be a steady state
at   . Clearly there is again a steady state at  = ∗ ≥ 1. This is the
unique steady state since steady states  with     ∗ or   ∗ can be
ruled out using the above arguments. ¥

Proof of Proposition 2: For the consumption function we employ

equation (33), which with +, held constant can be written in the form

̂ =

µ
1− 

1− ̄

¶"
̂ +

∞X
=1

̂̂+

#
−
"
̂ + 

∞X
=1

̂̂+

#
+

" ∞X
=1

̂̂+

#


Assuming steady-state learning, we have ̂̂+ =  and ̂̂+ = .

With the forward looking interest rate rule ̂ = ̂̂+1 we also have

̂ = ̂̂+ =  for all  locally near the targeted steady state. Thus

near the targeted steady state

̂ =

µ
1− 

1− ̄

¶µ
̂ +



1− 


¶
−  −

2

1− 
 +



1− 
 (59)

Assuming that government spending and the shocks are constant in equation

(14), the Phillips curve is

(1− 1)̂ − 2̂ = 1

∞X
=1

(1)
̂̂+ + 2

∞X
=1

(1)
̂̂+

= 1
1

1− 1
+ 2

1
1− 1


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The third equation is the linearized market-clearing condition (15). It can

be noted that at the steady state 1 = 1− 1. For steady state learning, the

system giving the temporary equilibrium map (̂ ̂ ) =  (  ) takes the

linearized form with coefficient matrix  at the targeted steady state given

by31µ
̂

̂

¶
= 

µ



¶
, where

 =

Ã
2− 1−

1−1 + ̄( − 1)−  1 + (−1 + 2
1−1 )

(−1)(̄−1)
1− 1

!


E-stability is determined by the eigenvalues of  −  and holds if these

have negative real parts. It is easily verified that ( − )  0 and

det( − )  0 when  is sufficiently large, which implies E-stability of

the targeted steady state.

Next, consider the steady state . The lower bound on the interest rate

is binding locally near , so we impose the constraint ̂ = 0 and evaluate

the other variables at their low steady state values and impose  = 0. Local

stability of the low steady state is determined by the eigenvalues of  at

the steady state. It can be computed that

 =

Ã
2(1−̄)

(1−)(1−1) +
11

(1−1)(1−1)
2

(1−1)(1−1)
1−̄
1− 1

!
and that det( − )  0 since 2  0 and 0   1 1 ̄  1. By

continuity of eigenvalues, it follows that the low steady state  is unstable

also for sufficiently small   0.

Next, consider the trap steady state, where the bounds  and  are

strictly binding as described in part (iii) of Proposition 1. Clearly, from the

interest rate rule (see Figure 3) ∃̆ such that ̂ =  for all  ≤  ≤ ̆.

Now also ∃̆ such that ̂ =  for  ≤  ≤ ̆ and  ≤  ≤ ̆ By

market clearing, ̂ = (1 − ̄) + (2)2 in this region. It follows that

̂ = ̂ = 0 and ̂ = ̂ = 0 implying E-stability of

the trap steady state. ¥

We remark that det( − )  0 implies that the  steady state has

local dynamics under learning that take the form of a saddle.32

31Mathematica routine for the details is available on request.
32Stability of the targeted steady state and instability of the  steady state have also
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Construction of Phase Diagram of Global E-stability Dynam-
ics

We here give the additional details for constructing and interpreting Fig-

ure 4. In constructing this Figure we ignore the impact of exogenous shocks,

so that we set ̂ = ̂ = 0. Consequently, the forecast rule coefficients

 and  consist only of the two intercepts  and  , which allows us

to illustrate global learning dynamics using a 2-dimensional figure. Under

real-time learning the least-square updating equations at the end of Section

2.3 simplify and are replaced by

 = −1 +  ( − −1)

 = −1 +  ( − −1) 

It is know that these real-time learning dynamics are, for small gains   0,

approximated by the E-stability equations given below.

The nonlinear market-clearing equation, where variables are expressed in

terms of proportional deviations from the targeted steady state, is given by

̂ = (1− ̄)̂ +


2̄
̂2  (60)

We use this rather than the linearized market-clearing equation because we

are looking at global dynamics that include regions around all three of the

steady states. In Figure 4 we set ∗ = 1 and thus ̂ =  − 1. In the
absence of lower bound constraints the temporary equilibrium equation for

the Phillips curve is given by

(1− 1)̂ − 2̂ = (1 + 2 )
1

1− 1
 (61)

where ̂ =  and ̂  = . Similarly, in the absence of lower bound

constraints, the temporary equilibrium equation for consumption is given

by (59), with the one change that ̂ is replaced by output net of price

adjustment costs ̂ − 

2̄
̂2 . These adjustment costs are zero, to first order,

near the targeted steady state.

been observed for the version of the model in which price adjustment costs are formulated

in terms of utility losses. See, for example, Benhabib, Evans, and Honkapohja (2014).
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To allow for the lower bound constraints, consider first the incorporation

of the ZLB into the consumption function. This gives

̂ =

µ
1− 

1− ̄

¶µ
̂ − 

2̄
̂2

¶
+



1− ̄
 − max[  − 1] (62)

− 2

1− 
max[  − 1] +



1− 


The temporary equilibrium for (̂ ̂ ̂) is given by equation (60) together

with (61) and (62), where the latter two equations are interpreted as inequal-

ities subject to lower bound constraints and holding with complementary

slackness. That is, (61) holds unless ̂  , in which case ̂ = , and (62)

holds unless ̂  , in which case ̂ = .

In defining the temporary equilibrium map we incorporate one additional

constraint: an upper bound on , which is needed to ensure existence of

a unique temporary equilibrium. This is needed because of the quadratic

market-clearing equation. For given ̂ there are two solutions, provided ̂ 

is not too large, and we choose the one with the smaller inflation rate, which

is the economically relevant solution: this is the solution in which higher

̂  gives higher ̂ and ̂. If instead ̂  is sufficiently large no temporary

equilibrium solution exists to our equations. To cover this case we then

replace (61) with ̂ = sup. In Figure 2 we choose sup = 005.

This procedure defines the temporary equilibrium map³
̂ ̂

´
= 

³
̂ ̂ 

´
giving the realized values of ̂ and ̂ given expectations ̂

 and ̂ . The

three steady states correspond to the fixed points of this map. E-stability

dynamics are given by





³
̂ ̂ 

´
= 

³
̂ ̂ 

´
−
³
̂ ̂ 

´


where  represents ”notional” time, which can, however, be linked to real

time  according to the equation  ≈  Figure 2 plots the vector field

generated by 
³
̂ ̂ 

´
−
³
̂ ̂ 

´
. This vector field shows the paths of

expectations
³
̂ ̂ 

´
= (  ) under the simple learning rule given above.
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Appendix 3: Temporary equilibria with lower bounds

We here develop the model details when the economy with exogenous

shocks is subject to interest rate, inflation and output lower bounds, and

fiscal policy is included. We start by focusing on the interest rate lower bound

(ZLB). The Phillips curve is unaffected by the ZLB. Using the calculations

after (45) in Appendix 1 we have, using the first row of (44), the Phillips

Curve

(1− 1)̂ − 2̂ = (1 + 2 )
1

1− 1
(63)

+

∙
(1 + 2 )

1
1− 1

− 3

1− 1

¸
̂

+

∙
(1 + 2 )

1

1− 1
+

5

1− 1

¸
̂

−4(1
1− (1)−
1− 1

+ 1)
∆

̄


where the term in ∆
̄
is set to zero for    . It is convenient to write this

as

(1− 1)̂ − 2̂ = (  ̂ ̂ )

where 0 = (     ) and  0 = (  ).
For the IS curve we start by combining (33) with ̂ = (1− ̄)̂ + ̄̂,

which yields

̂ = ̄̂ + (1− )

∞X
=1

̂̂+ − (1− )̄

∞X
=0

̂̂+

−(1− ̄)

∞X
=1

̂(̂+−1 − ̂+)

We write this as

̂ + (1− ̄)̂ =  +  +  (64)
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where

 = (1− )

∞X
=1

̂̂+ + (1− ̄)

∞X
=1

̂̂+

 = ̄̂ − (1− )̄

∞X
=0

̂̂+

 = −(1− ̄)

∞X
=2

̂̂+−1

 and  are given by

 =
(1− ̄)

1− 
 +  + ((1− ̄) + (1− ) )



1− 
̂

+((1− ̄) + (1− ) )


1− 
̂

and

 =

½
∆− (1− −)∆ if  ≤ 

0 if  ≥  + 1

For  we need to determine when agents expect the ZLB to apply in

the future. For simplicity we assume  =  =  and 0 ≤   1. It then

can be shown that there are four cases, depending on ̂ and ̂. Let

 = ̂( +   ) + ̂( +   )

 =
(1 + )

∗
− 1−  −   

Note that  depends on ̂ and ̂ and that under learning both  and 

depend on the PLM parameter estimates, which are evolving over time.

The ZLB  ≥ 1+  binds if and only if the forecasted interest rate based

on the Taylor rule satisfies

̂̂
∗
+ = ̂̂+ +  ̂̂+ ≤ (1 + )

∗
− 1

It is then easy to see that this holds when  ≤ . There are four cases:

1. The ZLB never binds (in anticipation) if   . This happens when

 ≥ 0   0 or if   0 and    or if  = 0  6= 0 or if   0

and  = 0.

72



2. The ZLB holds for all  ≥ 1 if  ≤ 0  ≥ 0 or   0  ≤ .

3. The ZLB holds for all  ≥ ̂, where ̂ is the smallest integer below

̂∗ = ln() ln(), if   0    .

4. The ZLB holds for all 1 ≤  ≤ ̂ if   0  ≤ .

The value of  depends on the case. Let

 = −(1− ̄)×  in case  = 1 2 3 4.

In case 1 we have

1 =


1− 

h
̂( +   ) + ̂( +   )

i
+( +   )

2

1− 


In case 2 we have

2 =
2

1− 

µ

(1 + )

∗
− 1
¶


In case 3 we have

3 =
2

¡
1− ()̂−1¢
1− 

h
̂( +   ) + ̂( +   )

i
+( +   )

(1− ̂−1)
1− 

+

µ

(1 + )

∗
− 1
¶

̂+1

1− 


In case 4 we have

4 =
()̂

1− 

h
̂( +   ) + ̂( +   )

i
+( +   )

 ̂+1

1− 
+

2

1− 

µ

(1 + )

∗
− 1
¶
(1− ̂−1)

We can now solve for the tentative temporary equilibrium values ̂  ̂ 


for ̂ ̂ that would obtain if none of the lower bounds at time  apply. These

are given by

(1− 1)̂

 − 2̂


 = (  ̂ ̂ )

(1− ̄)̂

 + (1 +  (1− ̄))̂ 

 = (  ̂ ̂ )
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where (  ̂ ̂ ) =  +  +  and  =  for

case  = 1 2 3 4. Under real-time learning we use the time  estimates of

  .

We next need to incorporate the lower bounds on inflation, consumption

and interest rate in the time  temporary equilibrium. The consumption

lower bound gives an output lower bound. In proportional terms the lower

bound  is ̂inf =
−̄
̄
. From ̂ = (1− ̄)̂+ ̄̂ this gives the lower bound

on ̂ of

̂  = (1− ̄)̂inf + ̄̂, or

̂  = (1− ̄)̂inf +
 − ̄

̄


Note that ̂  = (1− ̄)̂inf after the fiscal policy stimulus has ended.

First we check for the ZLB at time . Assuming ̂

 + ̂


 ≥ (1+

)− 1 so that the ZLB at  does not bind then set  = ̂    = ̂ 


and  = ̂

 +  ̂


 . If instead ̂


 +  ̂


  (1 + ) − 1

then we set  = (1 + )− 1 and set   and  to solve

(1− 1) − 2  = (  ̂ ̂ ) (65)

(1− ̄) ((1 + )− 1) +   = (  ̂ ̂ ) (66)

Next, if    (“situation 1”) then we calculate    and 

by simultaneously solving (64) with ̂ =    and  =  +

   . If   (1+)−1 then the situation 1 step has ended and
we set  = ,   =    and  = . If instead  ≤
(1+)−1 then set  =    is set to solve (66), and  = (1+)−1
If now    ̂  then  =    = ̂  and  = max(+ ̂  (1+

)− 1).
It remains to consider situation 2 in which  ≥  and    ̂ .

33 We

set   = ̂ ,  to solve (65) with   = ̂ , and  = max( +

 ̂  (1 + )− 1).
The resulting values for    and  are the temporary equilibrium

values for ̂ ̂ and ̂. We remark that we have not assumed that firms

and households restrict forecasts to obey the consumption and inflation lower

bounds. This seems natural since households may not be aware of these

33It is assumed below that 2  0 and 0  1  1. This is satisfied in the calibrated

cases and ensures that   .
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aggregate lower bound constraints. Under adaptive learning expectations of

future inflation and output will have to eventually obey these lower bounds.

Consumption and output at the inflation lower-bound: If inflation

and inflation expectations are at the inflation lower bound, i.e. ̂ = ̂̂+ =

̂, where   , then interest rates and expected interest rates are also at

their lower bound, i.e. ̂ = ̂̂+ =
(1+)

∗ − 1 ≡ ̂. Inserting these

into the consumption function (33) we obtain

(1− )̂ = (1− )̂ +  − (1− ̄)

1− 
(̂ − ̂).

Here we have simplified by ignoring the impact on expected output of the

exogenous shocks ̂ ̂, i.e. we are setting ̂+ = . This approximation

is reasonable since in the temporary equilibrium at the inflation lower bound

the shocks do not affect output. Combining this equation with the linearized

market-clearing equation ̂ = (1− ̄)̂ gives

̂ =  − 1− ̄

1− 
(̂ − ̂) where

̂ − ̂ =
(1 + )− 

∗
=

 − 

∗
 0

since we assume   .
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