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Abstract
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state of the labor market at the time of the intervention. A contractionary shock has
a strong adverse effect on unemployment, larger than implied by linear estimates, but an
expansionary shock has only a small effect. When the labor market is tight, an expansionary
shock generates a burst of inflation and no significant change in unemployment. JEL
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1 Introduction

There now exists a broad consensus on the average effect of monetary policy on economic
activity, and it is widely accepted that a monetary contraction (expansion) leads to a persistent
decline (increase) in output.

However, there is still little agreement about possible asymmetric or non-linear effects
of monetary policy, and two questions at the core of monetary policy making are largely
unsettled.! First, does monetary policy have asymmetric effects on economic activity? As
captured by the string metaphor, does contractionary monetary policy have a much stronger
effect —being akin to pulling on a string— than an expansionary shock —being akin to pushing
on a string—? Second, does the effect of monetary policy vary with the state of the business
cycle? For instance, does the central bank have more room to stimulate economic activity
(without raising inflation) during recessions?

Providing answers to these questions has been difficult in part for one important technical
reason: the standard approach to identify the dynamic effect of shocks relies on structural
Vector-Autoregressions (VARs),? which are linear models. While VARs can accommodate
certain types of non-linearities, some questions, such as the asymmetric effect of a monetary
shock, cannot be easily answered within a VAR framework.

This paper proposes a new method to identify the (possibly non-linear) dynamic effects of
structural shocks. Instead of assuming the existence of a VAR representation, our approach
consists in working directly with the structural moving-average representation of the economy.
Then, to make the estimation of the moving-average representation feasible, we approximate
the impulse response functions with Gaussian basis functions.

Our approach builds on two premises: (i) any mean-reverting impulse response function can

be approximated to any degree of accuracy by a mixture of Gaussian basis functions, and (ii),

'For instance, while Cover (1992) finds evidence of asymmetric effects, Ravn and Sola (1996, 2004) and
Weise (1999) instead find nearly symmetric effects. And while Lo and Piger (2005) and Santoro et a. (2014)
conclude that monetary policy has stronger effects during recessions, Tenreyro and Thwaites (2015) conclude
the opposite.

2See e.g., Christiano, Eichenbaum, and Evans (1999) and Uhlig (2005).



in practice, only a very small number of Gaussian functions are needed to approximate a typ-
ical impulse response function. Intuitively, the impulse response functions of macroeconomic
variables are often found to be monotonic or hump-shaped (e.g., Christiano, Eichenbaum,
and Evans, 1999). In such cases, a single Gaussian function can already provide an excellent
approximation of the impulse response function.

Thanks to the small number of free parameters allowed by a Gaussian Mixture Approxi-
mation (GMA), it is possible to directly estimate the impulse response functions from the data
using Bayesian methods.? In turn, the parsimony of the approach allows us to estimate more
general non-linear models.

We conduct a number of Monte-Carlo simulations to illustrate the performance of our
approach in finite sample, first for linear models, then for non-linear models. In a linear
model, we show that a GMA model can generate more accurate impulse response estimates (in
a mean-squared error sense) than a well-specified VAR model. In a simulation with asymmetry
and state-dependence, we find that a GMA model can accurately detect the presence of non-
linearities and deliver good estimates of the magnitudes of the non-linearities.

We use our GMA approach to estimate the non-linear effects of monetary shocks identified

4 Consistent with the string metaphor, our findings

with a recursive identification scheme.
point towards the existence of strong asymmetries in the effects of monetary shocks. A con-
tractionary shock has a strong adverse effect on output, larger than implied by linear estimates,
but an expansionary shock has little effect on output. Interestingly, this asymmetry could be
due the presence of downward price/wage rigidities. Although the evidence for inflation is
more uncertain, we find that inflation displays a more marked price puzzle following a con-

tractionary shock than following an expansionary shock. Finally, we also find that the effect

of a monetary shock depends on the state of the business cycle at the time of the intervention:

3 Another advantage of using Gaussian basis functions is that prior elicitation can be much easier than with
Bayesian estimation of standard VARs, because the coefficients to be estimated are directly interpretable as
features of impulse responses.

4While we introduce our GMA method in the context of a recursive identification scheme, our method is
quite general and can also be applied to other population identification schemes, such as sign-restrictions (Uhlig,
2005) or long-run restrictions (Blanchard and Quah, 1989, Gali 1999).



An expansionary shock in a tight labor market generates no significant drop in unemployment
but leads to a burst of inflation, consistent with a standard Keynesian narrative.

Although our use of Gaussian basis functions to model and estimate impulse response
functions is new in the economics literature, our approach can be cast in the broader context
of the machine (supervised) learning literature in that we project the function to be estimated
onto the space spanned by a dictionary of basis functions (see Hastie, Tibshirani and Friedman,
2009). In basis functions methods, the number of basis functions is often too large for empirical
purposes, and the complexity of the model is typically controlled through a combination of
restriction, selection and/or regularization methods. Our approach, which consists in using
a limited number of optimally chosen basis functions, uses both selection and restriction to
control the complexity of the model.’

In economics, our parametrization of impulse responses relates to an older literature on
distributed lag models and in particular the Almon (1965) lag specification, in which the suc-
cessive weights, i.e., the impulse response function in our context, are given by a polynomial
function.® Our use of basis functions of a Gaussian type relates to a large literature that relies
on radial basis functions (of which Gaussian functions are one example) to approximate arbi-
trary multivariate functions (e.g., Buhmann, 2003) or to approximate arbitrary distributions
using a mixture of Gaussian distributions (Alspach and Sorenson 1971, 1972, McLachlan and
Peel, 2000). Although Gaussian basis functions provide a more natural and more parsimo-
nious way than polynomials to approximate mean-reverting impulse response functions, our
approach is general and other basis functions are possible. For instance, the inverse quadratic
function, which is also a popular radial basis function, could be used to parametrize impulse

response functions.” Finally, our approach shares with the non-parametric econometrics liter-

°It uses selection in the sense that our algorithm scans the dictionary of possible basis functions to find the
basis functions that best fit the data, and it uses restriction in the sense that we restrict ourselves to the class
of impulse response functions that can be generated by a few basis functions.

SRecently, Plagborg-Moller (2016) proposes a Bayesian method to directly estimate the structural moving-
average representation of the data by using prior information about the shape and the smoothness of the impulse
response.

"In fact, in a different context, Jorgenson (1966) suggested that ratios of polynomials, of which the inverse
quadratic function is one example, could be used to parametrize distributed lag functions.



ature (e.g., Racine, 2008) the insight that mixtures of Gaussian kernels can approximate very
general shapes, although we use that insight in a very different manner.

The economic literature has so far tackled the estimation of non-linear effects of shocks in
two main ways.®

A first approach estimates non-linear effects by regressing a variable of interest on con-
temporaneous and lagged values of the structural shocks while allowing for possible non-linear
effects. In the context of monetary policy, Cover (1992), DeLong and Summers (1988) and
Morgan (1993) proxy shocks with unanticipated money innovations (obtained from a money
supply process regression, following Barro, 1977) and test whether the impulse response func-
tion depends on the sign of the shock. This approach has been recently revived thanks to the
use of narratively identified shocks (Romer and Romer, 2002) and thanks to the Local Pro-
jection method pioneered by Jorda (2005). The narrative approach was precisely developed
in order to identify exogenous monetary innovations, and Jorda’s method can easily accom-
modate non-linearities in the response function.!® However, the Local Projection method is
limited by efficiency consideration. Indeed, while the Local Projection approach is intention-
ally model-free —not imposing any underlying dynamic system—, this can come at an efficiency
cost (Ramey, 2012), which makes inferences on a rich set of non-linearities (e.g., sign- and
state-dependence) difficult. In contrast, by positing that the response function can be approxi-
mated by one (or a few) Gaussian functions, our approach imposes strong dynamic restrictions
between the parameters of the impulse response function, which in turn allow us to estimate

a rich set of non-linearities.!! Another advantage of our approach is that it can be used for

8 A third non-linear approach was recently proposed by Angrist et al. (2013) who develop a semi-parametric
estimator to evaluate the (possibly asymmetric) effects of monetary policy interventions. They find asymmetric
effects of monetary shocks consistent with our findings.

9The combination of Jorda’s method with narratively identified shocks was first introduced in the context
of fiscal policy by Auerbach and Gorodnichenko (2013) in order to test for the existence of state dependence in
the effects of fiscal policy.

0Tenreyro and Thwaites (2013) and Santoro et al. (2014) use the Jorda method to estimate the extent of
state dependence in the effect of monetary policy.

UNaturally, this statement also implies that our results are valid under the assumption that response func-
tions can be well approximated by a few Gaussian functions. In this respect, our approach is best seen as
complementing the model-free approach of Jorda (2005).



model selection and model evaluation through marginal density comparisons.

A second strand in the literature has relied on regime-switching VAR models —notably
threshold VARs (e.g., Hubrich and Terasvirta, 2013) and Markov-switching VARs (Hamilton,
1989)- to capture certain types of non-linearities.'?''3 However, such non-linear models are ill
suited to identify how the impulse response to a structural shock depends on the value of that
shock. The threshold variable in a threshold VAR applies to a switching variable, which is
not the contemporaneous structural shock itself but instead a function of past shocks. In a
Markov-switching model the switching variable is an unobserved state, but Markov-switching
models are ill-suited to capture regime changes triggered by shocks. In contrast, our approach
allows us to estimate how the impulse response function varies with the contemporaneous
value of the shock. Our model with state dependence is a form of regime-switching model,
in that we allow the effect of a shock to depend on the state of the business cycle. However,
in our framework state dependence is a continuous function of an indicator variable, while
regime-switching models display discrete switches between a finite number of regimes.

Section 2 describes how we approximate impulse responses using mixtures of Gaussians,
Section 3 discusses the key steps of the estimation methodology; Section 4 generalizes our
approach to non-linear models; Section 5 presents Monte Carlo simulations to evaluate the
performance of our approach in finite sample, first for linear models, then for non-linear models;
Section 6 applies GMA to the study of the non-linear effects of monetary shocks using US data;

Section 7 concludes.

2 Gaussian Mixture Approximations

This section presents a new method to estimate impulse responses using Gaussian Mixture

Approximations (GMA) of the structural moving-average representation of the economy. Al-

2For examples in the monetary policy literature, see Beaudry and Koop (1993), Thoma (1994), Potter (1995),
Kandil (1995), Koop, Pesaran and Potter (1996), Koop and Potter, (1998), Ravn and Sola (1996, 2004), Weise
(1999), Lo and Piger (2005).

3 Another prominent class of non-linear VARs includes models with time-varying coefficients and/or time-
varying volatilities (e.g., Primiceri, 2005).



though the use of GMAs was motivated in the introduction by the need to model and estimate
certain types of non-linearities, the intuition and benefits of GMA models can be understood
in a linear context, and this section introduces GMAs in a linear context. We postpone the

modeling and estimation of non-linearities to Section 4.

2.1 A structural moving average representation

Our starting point is a structural moving-average description of the economy, in which the
behavior of a system of macroeconomic variables is dictated by its response to past and present
structural shocks. Specifically, denoting Y; a vector of stationary macroeconomic variables,

the economy is described by

K
Yt = Z ‘I’kEt,k (1)
k=0

where boldface letters indicate vectors or matrices, &; is the vector of structural innovations
with Fe; = 0 and Fewe} = I, and K is the number of lags, which can be finite or infinite. The
matrices {Wy} are the coefficients of the impulse response functions to shocks. For now, the
model is linear, and the {¥;} matrices are fixed.

If (1) is invertible and admits a VAR representation, the model can be estimated from a
VAR on Y; (provided some structural identifying assumption, such as the recursive ordering
of ¥(). However, assuming the existence of a VAR representation can be restrictive. In
particular, in a non-linear world where ¥ depends on the value of &;_j, (for instance, when
the impulse response function varies with the sign of the shock), the existence of a VAR is
compromised, because (1) is unlikely to be invertible. Thus, in this paper, we propose an
alternative method that side-steps the need to invert (1), i.e., that a method that side-steps

the need for a VAR representation.



2.2 Gaussian Mixture Approximations of impulse response functions

Rather than looking for a VAR representation of the dynamic system (1), our aim is to directly
estimate (1), the moving-average representation of the economy. Because the number of free
parameters {W} in (1) is very large or possibly infinite, our strategy consists in parameterizing
the impulse response functions, and more precisely in using mixtures of Gaussian functions to

approximate each impulse response function.

2.2.1 Theoretical background

Our parametrization of the impulse response functions builds on the following theorem, which
states that any integrable function can approximated with a sum of Gaussian functions.
Theorem 1: Let f be a bounded continuous function on R that satisfies [*_ f(z)%dz <

0. There exists a function fy defined by

with ay, by, ¢, € R for n € N, such that the sequence {fn} converges pointwise to f on
every interval of R.

Proof: See Appendix.

Motivated by Theorem 1, our approach will consist in approximating an impulse response

function ¢(.) with a sum of Gaussian functions, that is

with ay, bn, ¢, € R for k over some interval of R.
Since our strategy consists in approximating impulse response functions with mixtures of
Gaussians, we refer to this class of models as Gaussian Mixture Approximations (GMA), with

a GMA(N) denoting a GMA with N Gaussian basis functions.



2.2.2 Intuition and Motivation

Before describing the estimation of GMA models, it is instructive to first intuitively discuss
the benefits of our approach over traditional VARs.

The advantage of our approach, and its use for studying the (possibly non-linear) effects
of policy, will rest on the fact that, in practice, only a very small number of Gaussian basis
functions are needed to approximate a typical impulse response function, allowing for efficiency
gains and opening the door to estimating non-linearities.

Intuitively, impulse response functions of stationary variables are often found to be mono-
tonic or hump-shaped (e.g., Christiano, Eichenbaum, and Evans, 1999).1* And in such cases,
a single Gaussian function can already provide a good approximate description of the impulse
response. To illustrate this observation, Figure 1 plots the impulse response functions of unem-
ployment, the price level and the fed funds rate to a monetary shock estimated from a standard
VAR specification,'® along with the corresponding GM A(1), the Gaussian approximations with

only one Gaussian function, i.e., using the approximation

_(k=b)?

(k) ~ae” 2. (3)

We can see that a GM A(1) already does a good job at capturing the impulse responses implied
by the VAR.'® With a GM A(2), the impulse responses are virtually on top on those of the
VAR (Figure 1). For illustration, Figure 2 plots the Gaussian basis functions used for each
impulse response in the GMA(2) case.

In both cases, the number of free parameters is manageable. For instance, in this 3 variables

example, a GMA(1) only has 27 parameters (9 impulse responses times 3 parameters per

4This is also the case in theoretical models, e.g., New-Keynesian models, in which the impulse response
functions are generally monotonic or hump-shaped (see e.g., Walsh, 2010).

15See Section 6 for the exact specification of the SVAR behind Figure 1. The VAR is specified with unem-
ployment, PCE inflation and the fed funds rate. The impulse response for the price level is calculated from the
response of inflation.

16Tn Figure 1, the parameters of the GMA (the a, b and ¢ coefficients) were set to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.



impulse response, ignoring intercepts) to capture the whole set of impulse responses {\Ilk}szl,
while a GMA(2) has 48 free parameters (9 * 3 * 2 = 48).17

This relatively small number of free parameters has two main advantages. First, it allows
us to directly estimate the impulse response functions from the vector moving-average repre-
sentation (1), something that would otherwise be infeasible in finite sample (without additional
assumptions). This point is important, because being able to directly work with the moving-
average representation will allow us to estimate models in which shocks can have non-linear
effects. Second, the parsimonious representation offered by GMA models may offer efficiency
gains (relative to VARs) by tuning the bias-variance trade-off: GMA models aim to achieve
lower variance by restricting the dimension of the parameter space, while tolerating more bias
by restricting impulse response functions to belong to a certain class of functions.'® These
efficiency gains can be interesting not only in non-linear models but also in linear models.

To conclude this intuition section, we comment on a particularly interesting case: the
GM A(1) model, which has two additional advantages: (i) ease of interpretation, and (ii) ease
of prior elicitation.

In a GM A(1) model like (3), the a, b and ¢ coefficients can be easily interpreted, because
the impulse response function is summarized by three parameters —the peak effect, the time
to peak effect, and the persistence of the impulse response—, which are generally considered
the most relevant characteristics of an impulse response function.!? As illustrated in Figure 3,
parameter a is the height of the impulse-response, which corresponds to the maximum effect
of a unit shock, parameter b is the timing of this maximum effect, and parameter ¢ captures
the persistence of the effect of the shock, as the amount of time 7 required for the effect of a

shock to be 50% of its maximum value is given by 7 = ¢v/In 2.

YFor comparison, a corresponding quarterly VAR with 3 variables and 4 lags has 4 % 32 + 6 = 42 free
parameters, and a monthly VAR with 12 lags has 12 % 3% 4 6 = 114 free parameters.

8Note that a GMA model will only be more biased than a VAR model if the true data generating process is
actually a VAR. If the VAR is mis-specified or if the data generating process cannot be described by a VAR, a
GMA model could display both lower variance and lower bias.

9For instance, when comparing the effects of monetary shocks across different specifications, Coibion (2012)
focuses on the peak effect of the monetary shock, which in a GMA(1) model is simply parameter a.

10



Then, the ease of interpretation of the a, b and ¢ parameters in turn makes prior elicitation
easier than in standard VARs, in which the VAR coefficients have a less direct economic

interpretation.

3 Bayesian estimation

To estimate our model, we use a Bayesian approach, which is particularly well suited for
models that approximate the true DGP (Fernandez-Villaverde and Rubio-Ramirez, 2004). In
particular, Bayes factors will allow us to evaluate GMA models against VAR models, even
though the two classes of models are non-nested. Bayesian model comparison will also offer
us a natural way to select the order of the GMA model, i.e., the number of Gaussian basis
functions used in the approximation.

In this section, we describe the implementation and estimation of GMA models. We first
discuss the structural identifying assumption, then describe how we construct the likelihood
function by exploiting the prediction-error decomposition, discuss the estimation routine based
on a multiple-block Metropolis-Hasting algorithm, and finally discuss prior elicitation, deter-
mination of the order of the GMA and identification issues related to fundamentalness. We

conclude by discussing how to deal with non-stationary data.

3.1 Structural identifying assumption

Model (1) is under-identified without additional restrictions. As is common with structural
VARs, we will assume that the model is just-identified and that restrictions on the contem-

w additional restrictions. In fact, given

poraneous impact matrix Wq provide use with
our later focus on monetary policy, we will adopt a common recursive assumption, so that the
contemporaneous impact matrix ¥ is assumed to be lower triangular with positive entries on

the diagonal (a normalization).

11



3.2 Constructing the likelihood function

We now describe how to construct the likelihood function p(yT |6, ZT) of a sample of size T for
the moving-average model (1) with parameter vector 6 where superscripts denote the sample
of variables up to the date in the superscript.

To start, we use the prediction error decomposition to break up the density p(y’|0) as

follows:20

T

p(YT10) = ] p(Yel0, Y1), (4)

To calculate the one-step-ahead conditional likelihood function needed for the prediction
error decomposition, we assume that all innovations {e;} are Gaussian with mean zero and
variance one,?! and we note that the density p(Yy1Y?, 6) can be re-written as p(Y;4 1|0, Y?) =

p(Poer11]0,Y?) since
K

Woerr1 = Y1 — Z Wic k. (5)
k=0

Since the contemporaneous impact matrix is a constant, p(®oes41(0, YY) is a straightforward
function of the density of €441.

To recursively construct €41 as a function of § and Y, we need to uniquely pin down the
value of the components of ;4 1, that is we need that W is invertible, which is guaranteed by

the structural identification assumption discussed above (¥ is lower triangular).??

Finally, to initialize the recursion, we set the first K innovations {53‘}2:_ K to zero. 23,24

206 derive the conditional densities in decomposition (4), our parameter vector 6 thus implicitly also includes
the K initial values of the shocks: {e_k...e0}. We will keep those fixed throughout the estimation and discuss
alternative initializations below.

21The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.

22Importantly, we can see that our approach accommodates other structural identification schemes, as long
as Wy is invertible: short-run restrictions (restrictions on W), long-run restrictions (restrictions of the type

K
> g, = 0 for some (%, j), Blanchard and Quah, 1989, Gali 1999) or sign-restrictions (restrictions on the signs
k=0

of the coefficients of ¥y, e.g., Uhlig, 2005). Although a detailed exploration of such possibilities is left for other
applications, these identifying restrictions could be easily imposed in our MCMC estimation routine.

23 Alternatively, we could use the first K values of the shocks recovered from a structural VAR.

2“When K, the lag length of the moving average (1), is infinite, we truncate the model at some horizon K,
large enough to ensure that the lag matrix coefficients ¥y, are ”close” to zero. Such a K exists since the variables
are stationary.

12



3.3 Estimation routine

To estimate our model, we use a Metropolis-within-Gibbs algorithm (Robert & Casella 2004,
Haario et al., 2001) with the blocks given by the different groups of parameters in our model
(one block being composed of the a parameters, another composed of the b parameters and so
on).

To initialize the Metropolis-Hastings algorithm in an area of the parameter space that has
substantial posterior probability, we follow a two-step procedure: first, we estimate a standard
VAR using OLS on our data set, calculate the moving-average representation, and we use
the impulse response functions implied by the VAR as our starting point. More specifically,
we calculate the parameters of our GMA model to best fit the VAR-based impulse response
functions.?> Second, we use these parameters as a starting point for a simplex maximization

routine that then gives us a starting value for the Metropolis-Hastings algorithm.

3.4 Prior elicitation

We use (loose) Normal priors centered around the impulse response functions obtained from
the benchmark (linear) VAR. Specifically, we put priors on the a, b and c coefficients that are
centered on the values for a, b and ¢ obtained by matching the impulse responses obtained

from the VAR, as described in the previous paragraph.

0 19

0
i Oijn and c;

17,m°

Specifically, denote a n € {1, N} the values implied by fitting the

GMA(N) to the VAR-based impulse response of variable i to shock j. The priors for ajp,

0

0 0
b; im0

bijn and c¢;j, are centered on @isno bijin and ¢ and the corresponding standard-deviations
are set as follows: 0454 = |aijol, 045 = K and o045, = K? (recall that K is the length of the
moving-average). While there is clearly some arbitrariness in choosing the tightness of our
priors, it is important to note that they are sufficiently loose to let us explore a large class of

alternative specifications.

258pecifically, we set the parameters of our model (the a, b and c coefficients) to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.

13



The use of informative priors is not critical for our approach, but we do this for a number of
reason. First, since our current knowledge on the effect of monetary shocks is based to a large
extent on VAR evidence of the kind reported in figure 1, it seems natural (and consistent with
the Bayesian approach) to impose priors centered on our current state of knowledge. Second,
given the inherent difficulty in estimating moving-average models, the priors help discipline
the estimation by keeping the parameters in a reasonable set of the parameter space. Finally,
and while we could have used improper uniform prior, the use of proper priors allows us to
compute posterior odds ratio, which are important to select the order of the moving-average

and to compare different GMA models.

3.5 Choosing N, the number of Gaussian basis functions

To choose N, the order of the GMA model, we use posterior odds ratios (assigning equal
probability to any two model) to compare models with increasing number of mixtures. We

select the model with the highest posterior odds ratio.26

3.6 Fundamentalness

In a linear moving average model, different representations (i.e., different sets of coefficients
and innovation variances) can exhibit the same first two moments, so that with Gaussian-
distributed innovations, the likelihood can display multiple peaks, and the moving average
model is inherently underidentified. Since a GMA model works off directly with the moving-
average representation, it cannot distinguish between invertible (also called ”fundamental”)
and non-invertible representations. By using the VAR-based impulse responses as starting

values, we implicitly focus on the invertible part of the parameter space.27:28

26This approach can be seen as analogous to the choice of the parameter lag in VAR models. While the
Wold theorem shows that any covariance-stationary series can be written as a VAR(oco), one must select a
finite lag order p that reasonable approximate the VAR(co) (e.g., Canova, 2007). The usual approach is to use
information criteria such as AIC and BIC, which is similar to our present approach.

2TSince a VAR is obtained by inverting the fundamental moving-average representation, it automatically
selects the fundamental representation (e.g., Lippi and Reichlin, 1994).

28 An alternative estimation procedure to handle both invertible and non-invertible representations would be
to use the Kalman filter with priors on the K initial values of the shocks {e_k...0}, as recently proposed by

14



3.7 Dealing with non-stationary data

As can be seen from Theorem 1, GMA models can only capture impulse response functions
that are bounded and integrable, which restricts our approach to stationary series. If the
data are non-stationary, we can (i) allow for a deterministic trend in equation (1) and/or (ii)
first-difference the data, and then proceed exactly as described above.

If a deterministic trend is suspected, we allow for a polynomial trend in each series, and
we jointly estimate the parameters of the impulse responses (the ¥y coefficients) and the
polynomial parameters.

If a stochastic trend is suspected, we can transform the data into stationary series by
differencing the data. Importantly, and unlike with VARs, a GMA in first-difference is not
misspecified if some variables are co-integrated.?? After estimation, one can even test for co-
integration by testing whether the matrix sum of moving-average coefficients (f: Xk: W) is of

k=11=0
reduced rank (Engle and Yoo, 1987).

4 Gaussian Mixture Approximations of non-linear models

We now generalize the moving average model (1) by allowing for asymmetry and state-

dependence, and we show how GMA models can easily accommodate such non-linearities.

Plagborg-Moller (2016). However, unlike our proposed approach, this procedure would be difficult to implement
in non-linear models. Note also that the non-uniqueness of the moving average representation was proven for
linear models (under Gaussian shocks). When we consider non-linearities, the non-uniqueness of the moving-
average representation is not guaranteed anymore, and identification may be easier. In practice (and in Monte-
Carlo simulations), the likelihood did not display multiple peaks when we allowed for asymmetry or state-
dependence.

29The reason is that a GMA model directly works off of the moving-average representation and does not
require inversion of the moving-average, unlike VAR models.
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4.1 A non-linear moving-average model

In this section, we generalize model (1) by allowing the economy to respond non-linearly to

shocks, and we consider the model

oo
Y= Z Cr(e,_ Li—k)er_y, (6)
k=0

where ¢; is again the vector of structural innovations with Ee; = 0 and Eee; =1, and Z; is a
vector of macroeconomic variables that can be a function of past variables of Y or a function
of variables exogenous to Y.

Model (6) is a non-linear vector moving average representation of the economy, because in
contrast to (1), the matrix of lag coefficients Wy (e;_x, Zs_x), i.e., the impulse response functions
of the economy, are no longer constant. Instead, the coefficients of ¥y, can depend on the values
of the structural innovations €;_; and on the values of the macroeconomic variables Z;_y..

With ¥, a function of e;_j, the impulse response functions to a given structural shock
depend on the value of the shock at the time of shock. For instance, a positive shock may
trigger a different impulse response than a negative shock.

With ¥, a function of Z;_j, the impulse response functions to a structural shock depend
on the value of the macroeconomic variables Z at the time of that shock. For instance, the
response function may be different depending on the state of the business cycle (recession or
expansion) at the time of the shock.

Because of its non-linear nature (6) does not admit a VAR representation, and the model
cannot be recovered from a VAR. Instead, our GMA approach directly works off with the
moving-average representation and can accommodate non-linearities. Moreover, the parametriza-
tion offered by Gaussian mixture approximations will ensure that the dimensionality of the
problem remains reasonable. We now discuss in more details two cases of non-linear behavior

that a GMA model can easily handle: (i) asymmetry and (ii) state-dependence.
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4.1.1 Asymmetric effects of shocks

To allow for asymmetries, we let ¥, depend on the sign of the structural shock, i.e., we let ¥y
take two possible values: \Il; or ¥,". Specifically, a model that allows for asymmetric effect of

shocks would write

o
Y: = Z [‘Ifkklat—k>05t7k + W1, <08, 4 (7)
k=0

with \Il,j and W, the lag matrices of coefficients for, respectively, positive and negative
shocks.
Denoting zp;;(k), the i-row j-column coefficient of \IléIr (that is, the impulse response of

variable j to shock 7), a GMA(N) model would then write

N _<k—b2}yn>2
Vi) =Y af e \ e ) vE>0 (8)

+ ot of

with a; J» by, ¢; some constants to be estimated. A similar expression would hold for ¥ (k).

)

4.1.2 Asymmetric and state-dependent effects of shocks

With asymmetry and state dependence, \Il;r becomes \Ilz(zt_k), i.e., the impulse response to

a positive shock depends on the indicator variable z; (and similarly for ¥, ).

Using a GMA(N) model, the impulse response function following a positive innovation ( Z';)
can be parametrized as
o ()
Ui (k) = (L+ ) Y af e N o/ VE> 0,64 >0 (9)

n=1

+ b+

+
iimo Vi and c;

with 7;;-, a 1;.n Parameters to be estimated. An identical functional form holds
for zp;
In this model, the amplitude of the impulse response depends on the state of the business

cycle at the time of the shock. In (9), the amplitude of the impulse response is a function
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of the indicator variable z;. Such a specification allows us to test whether, for instance, an
expansionary policy has a stronger effect on output in a recession than in an expansion.

Note that in specification (9), the state of the cycle is allowed to stretch/contract the
impulse response, but the shape of the impulse response is fixed (because a, b and ¢ are all
independent of z;). While one could allow for a more general model in which all variables a, b
and ¢ depend on the indicator variable, specification (9) has two advantages. First, with limited
sample size, it will typically be necessary to impose some structure on the data, and imposing a
constant shape for the impulse response is a natural starting point.3° Second, specification (9)
generalizes trivially to GMAs of any order. The order of the GMA only determines the shape
of the impulse response with higher order allowing for increasingly complex shapes. Then, for
a given shape, the v coefficient can stretch or expand the impulse response depending on the

state of the cycle.3!

4.2 Bayesian estimation of non-linear GMA models

We now discuss how estimating non-linear GMA models is a simple extension of the linear
case. First, we present the construction of the likelihood, then we present the elicitation of

priors.

4.2.1 Constructing the likelihood function

We discuss the construction of the likelihood in the more general case with non-linearities, i.e.,
o

when we consider the model Yy = > Wy (e,_j,Zi—r)e,_j- The approach is identical to the
k=0

approach described in section 3 but with two differences.

First, when the model allows for state dependence, the likelihood also depends on the

30Importantly, this assumption is easy to relax or to evaluate by model comparison using posterior odds ratios.

31Note the parallel and difference between (9) and a wvarying coefficient model. A varying coefficient model
(e.g., Hastie and Tibshirani, 1993) is a (locally) linear model, whose coefficients are allowed to vary smoothly
with some third variable z:. In (9), the use of a finite sum of Gaussian basis functions (independent of z:) plays
a similar role to smoothness in varying coefficient models by restricting the shape of the impulse response and
disciplining the estimates. Then, the effect of the third variable z; is captured by letting the scale of the impulse
response be a linear function of z;.

18



value of the indicator vector Z;. Technically, constructing the likelihood of this specification
is a straightforward extension of the linear case, when Z; is a function of lagged values of Y.
To see that, note that we use the prediction-error decomposition to construct the likelihood
function. Thus, we build a sequence of densities for Z; that condition on past values of Z;,
which includes past values of Y;. Thus, conditional on past values of Yy, Z; is known.??
Second, with ¥ a function of €;_j (as in the case with asymmetry), one needs to make
sure that the contemporaneous shocks are uniquely identified given a series of past shocks and
given a set of model parameters. In other words, with the contemporaneous matrix depending

on the value of the shock, it is important that there is a one to one mapping from structural

to reduced form errors. Considering equation (5) in the non-linear case, we have

K

‘I'(j)E(EtH)EtH =Y — Z e g, (10)
k=0

and we need to ensure that \Ilg (€/41)€,4 1s only satisfied by a unique value €441 given the model
parameters. However, this is always the case when \Ila—L is lower triangular, i.e., with a recursive
identification scheme. To see that, consider the bivariate case with e;11 = (€141, 527t+1)’ and
denote w&ij(etH) the (4,7) elements of the contemporaneous impact matrix ¥{ (e, ;). We

have

Vi (E1e41) 0
UE(epy) = M : (11)

¢§21(51,t+1) w()i,zz(52,t+1)

where the sign of w(:fii is fixed and independent of €; ;1. Through a normalization, the elements
on the diagonal are set to be always positive.

From (11) and (10), it is easy to show that the vector €;11 is uniquely identified. The first

32If we wanted to use an indicator function that was not part of the vector of endogenous variables Yy, this
would also be possible by using a quasi-likelihood approach. That is, we would build a likelihood function that
not only conditions on the parameters, but also the sequence of indicators Z;. This would in general not be
efficient because the joint density of Z; and Y; could carry more information about the parameters in our model
than the conditional density we advocate using. As long as Z; is highly correlated with elements of (functions
of) Y, this loss in efficiency will likely be small.
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component €141 is given by the first equation with

Y

Elp+l = —p————
Vo1 (2t41)

which is uniquely identified since ¢éf11(517t+1) > 0. Then, the second component €21 is given
by
Y, — Vg1 (E1,6+1)1,641

77Z)()i,22 (e2,41)

E2t+1 =

which is uniquely identified since wat,zQ(Zt_i_l) > 0. We can proceed similarly in a higher dimen-
sional case.

Finally, to write down the one-step ahead forecast density p(Y|#, Y!~1) as function of past
observations and model parameters, we use the standard result (see e.g., Casella-Berger, 2002)

that for ¥( a function of €441, we have

p(‘I’O(et+1)5t+1|‘9a yt) = Jip1p(et41)

where J;11 is the Jacobian of the mapping from e;11 to Wo(e,, ;)e,,; and where p(g441) is the

density of ;41.33

4.2.2 Starting values and prior elicitation

As initial guesses, we set the parameters capturing asymmetry and state dependence to zero
(i.e., no non-linearity).* This approach is consistent with the starting point (the null) of this
paper: structural shocks have linear effects on the economy, and we are testing this null against
the alternative that shocks have some non-linear effects. We then center the priors for these

parameters at zero with loose priors.

33In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at
e = 0. Since we will never exactly observe ¢ = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.

34 An alternative would be to obtain initial estimates about possible non-linear effects. One option could be
to combine Jorda’s (2005) local projection method (which can accommodate non-linearities) with the structural
shocks recovered from the VAR in order to get first estimates of the non-linear impulse responses.
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5 Monte Carlo simulations

In this section, we conduct a number of Monte-Carlo simulations to illustrate the working of
GMA models as well as to evaluate their performances in finite sample. We first evaluate the
performances of GMA models in the linear case, and we then evaluate the ability of GMA
models to detect (i) asymmetry alone and (ii) asymmetry and state-dependence.

Importantly, in all our Monte Carlo exercises, the estimated GMA models will be misspec-
ified and only approximate the true Data Generating Process (DGP). We follow this strategy
for two reasons. First, we want to be conservative and stack the odds against our proposed
method. Second, this strategy is consistent with the idea that a GMA is meant to approximate
the true DGP. By focusing on the approximate shape of the impulse response and thereby
economizing on degrees of freedom, a GMA may (i) provide better estimates of the impulse
responses in short sample, —a classical example of the bias-variance trade-off-, and (ii) be able
to detect non-linearities. One goal of these simulation exercises is to evaluate whether this is
indeed the case.

To simulate data, we proceed as follows. We first estimate a structural VAR on US data,

N o)
invert it to obtain a set of impulse responses {\Pk}k , and we modify these baseline impulse

responses to introduce non-linearities, in particular asymmetry or state dependence. From

these impulse responses, we generate simulated data from

oo
Y. = Z ‘i’k(gt_kv Zik)e, g (12)
k=0

with &; Normally distributed, Fe; = 0 and Fee} = 1.
In each scenario, we use 50 Monte-Carlo replications with a sample size T' = 200, which

roughly corresponds to the sample size available for the US.
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5.1 Linear model

Our first simulation is meant to illustrate the working of Gaussian mixture approximations in
the linear case. While we do not claim that GMAs are superior to VARs, we want to convey
that GMAs can provide a useful alternative approach, especially in short samples.

The DGP is obtained from estimating the quarterly VAR(4) considered previously with
the unemployment rate, the PCE inflation rate and the federal funds rate over 1959-2007. The
impulse response functions to a monetary shock can be seen in Figure 1.

For each simulated dataset, we estimate (i) a GMA(2), and (ii) a VAR(4), and we evaluate
the Mean-Square Error (MSE) of the estimated impulse response function over the horizons
H = 1...25.3% Importantly, we stack the odds in favor of the VAR and against the GMA model,
because the estimated VAR is a well specified model.

The first row of Table 1 presents the average MSEs over the simulations. For unemployment
and inflation, the GMA(2) is respectively 25 percent and 50 percent more accurate on average
than the VAR. For the fed funds rate, the MSE is small in both cases, but again with a
slight advantage for the GMA .36 Table 1 also presents the average length and coverage rate of
the confidence bands capturing the 95 percent posterior probability and compares it with the
confidence bands implied by a Bayesian VAR with loose, but proper, Normal-Whishart priors.
We report the average length and coverage rate at the time of the peak effect of the shock of
the variable of interest. We can see that the average lengths are smaller for the GMA than for

the VAR, while the coverage rate of the GMA remains good.

5.2 Non-linear models

We now evaluate the performances of GMA models in detecting non-linearities. For the DGP,

we start from a VAR with (log) GDP, inflation and the fed funds rate, where we detrend

35Specifically, we report MSE = Zi‘il(zﬂk — x)? where v, is the estimated impulse response function and
1y is the true function.

36Intuitively, the reason for the superior performances of GMA is the fact that the VAR often shows counter-
factual oscillation patterns. In contrast, the GMA(2) is disciplined by its stricter parametrization.
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GDP with a quadratic trend. Although we could have used the same VAR as previously, we
preferred this one, because the price puzzle is more substantial in this specification (Figure
4), so that the Monte-Carlo exercise will be a more stringent test on a GMA(1) model that
cannot capture the oscillating pattern in inflation. Again, the goal of the exercise is to assess
whether a GMA model that only approximates the main feature of the impulse responses can

still recover non-linearities.

Asymmetry

We first consider a DGP where the impulse response functions to monetary shocks depend on

oo

the sign of the shock. To introduce asymmetry, we modify the impulse responses {‘ilk}k:()
to make them depend on the sign of the monetary shock, and Figure 4 plots the asymmetric
impulse response functions. For realism, the level of asymmetry that we simulate is chosen to
roughly match the magnitude of the asymmetry we later find in US data. Note that we do
not impose asymmetry for the response of the fed funds rate. This is done to test whether our
procedure incorrectly reports the existence of asymmetry when there is none.

We estimate a GMA (1) with asymmetry on each set of simulated data, and Table 2 presents
summary statistics for a™ — a~, which captures the amount of peak asymmetry for each one
of the three variables in the model.

A number of results emerge. First, as shown by the frequency of rejection of zero coefficient
for a™ — a~, the algorithm can detect asymmetry when it exists (case of output and inflation,
first row of Table 2), even when the impulse response is not generated by one Gaussian, and
even when, as with inflation, there is a strong oscillating pattern that cannot not captured
by a one Gaussian approximation.3” This is encouraging, because it supports our motivating
idea that by approximating the most important feature of an impulse response, one can detect
important non-linearities. Moreover, the algorithm does not detect asymmetry when there

is none (case of the fed funds rate). Second, looking at the mean and standard-deviation of

37Specifically, the 90 percent posterior probability of a* —a™ excludes zero for output and inflation respectively
94 and 90 percent of the time.
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the estimates across Monte-Carlo replications (second row of Table 2), we can see that the
algorithm under-estimates the amount of asymmetry (both for output and inflation). This
indicates that in our empirical application on US data, our algorithm may under-estimate
the magnitude of asymmetry present in the data. Third, the dispersion (third row) in the
estimates across the Monte-Carlo replications is reasonably small, while the coverage rate of
the posterior distribution — the frequency with which the true value lies within 90 percent of

the posterior distribution—, is also good (fourth row).

Asymmetry and state dependence

We now consider a DGP where the impulse response functions to monetary shocks depend
on the sign of the shock as well as the state of the business cycle. We introduce asymmetry
exactly as in the previous exercise, but in addition, we posit that there is state dependence
for output in response to a positive shock, i.e., 75 # 0 in (9), where the indicator variable z
is the US unemployment rate.?® Again, the value of 7; is chosen to be of the same order of
magnitude as our later empirical findings with US data, and we set 'yiﬁ =1

We estimate a GMA(1) with asymmetry and state dependence on each set of simulated
data, and Table 3 summarizes the results. A number of results emerge. First, the algorithm is
very successful at detecting state dependence in output and the fact that fy;ﬁ # 7y (first set of
columns in Table 3). In the 50 Monte-Carlo replications, we detect ’y;r # 7y in all samples but
one (first row). The algorithm also estimates the values of 'y;ﬁ — vy without bias (second row),
with reasonable dispersion (third row) and with good coverage (fourth row). Importantly, the
algorithm detects no state dependence when there is none (case of inflation), as can be seen
from the close to zero frequency of rejection of zero coefficient. Second, the algorithm can

+

still pick up the existence of asymmetry for output and inflation (o™ — a~ # 0, second set of

columns). With a larger number of free parameters, estimation is more uncertain, but we can

38We could have used any indicator, but we wanted an indicator that has the same time series properties as
the one we use on US data. We thus chose to use the US unemployment rate, which is the indicator we used in
the application section.
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still detect the existence of asymmetry in more than 80 percent of cases. Finally, looking at the
estimates for ’y;ﬁ and vy separately, the algorithm estimates the value of ’y;/L —the magnitude of
the non-linearity— with a downward bias, which seems to translate into an upward bias for -y,
although that bias is not significant over the 50 Monte-Carlo replications (last four columns of

Table 3).

6 Application: the non-linear effects of monetary shocks

In this section, we apply our proposed GMA approach and study the non-linear effects of
monetary shocks. We consider a small-scale model of the US economy in the spirit of Primiceri
(2005), where Y includes the unemployment rate, the PCE inflation rate and the federal funds
rate. As in Primiceri (2005), monetary policy affects the economy with a lag, and the matrix
W, is assumed to be lower-triangular. The data cover 1959Q1 to 2007Q4, and we exclude
the latest recession where the fed funds rate was constrained at zero and no longer captured
variations in the stance of monetary policy.3?4° When constructing the likelihood, we consider
a moving-average model with K = 45, chosen to be large enough such that the lag matrix
coefficients Wy, are close enough to zero for k > K.

As a preliminary test, we start by checking that a linear GMA model performs well against
a standard VAR model. Then, we present the non-linear impulse response functions obtained
from a non-linear GMA with asymmetry alone first, and then with asymmetry and state

dependence.

39As an alternative, we could include data from the latest recession if we used the one-year or two-year
government bond rate as the policy indicator (Gertler and Karadi, 2015). The one-year government bond rate
remained positive until 2011 and it was argued that the zero lower bound was not a constraint on the Federal
Reserve’s ability to manipulate the two-year rate (Swanson and Williams, 2014). Results in terms of asymmetry
and state dependence were similar.

40While we use quarterly data as in Primiceri (2005), we also conducted our estimation using monthly data.
Results were very similar.

41 As a robustness check, we consider a higher moving-average lag-length with K = 55. Results were identical.
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6.1 The linear case: VAR versus GMA

First, we evaluate our GMA approach by doing a simple model comparison between a linear
GMA(1) and a regular VAR with 4 lags.

Table 4 reports the (log) marginal densities for the GMA and the VAR, so that a model
comparison can be readily obtained by computing the Bayes factor (obtained by taking the
exponential of the difference in (log) marginal densities) after positing equal priors for the two
competing models. Encouragingly for our approach, Bayesian model comparison favors the

more parsimonious GMA(1) with a Bayes factor of about 400.

6.2 The asymmetric effects of monetary shocks

We now estimate an asymmetric GMA model in which the impulse responses to monetary
shocks depend on the sign of the shock.#?43 As detailed in the methodology section, to choose
the appropriate order of the GMA model, we consider models with an increasing number
of Gaussian basis functions. As shown in columns (3) to (5) of Table 4, Bayesian model
comparison favors a GMA(2) , and from now on we will report and discuss the results obtained
using a GMA(2).

We can see that Bayesian model comparison strongly favors a model with asymmetry in the
impulse responses to monetary shocks: the (log) marginal density of an asymmetric GMA(2)
is about 20 log-points larger than the linear GMA(1), which implies a Bayes factor of about
10%. Against the VAR, the Bayes factor is 10'!.

Figure 5 plots the impulse responses (in percentage points) of unemployment, the price

“2The impulse responses to the other shocks were modeled with linear (i.e., not asymmetric) GMAs. As a
robustness check, we verified that our findings are not driven by this restriction by estimating a model with
non-linearity in response to all shocks.

43 As another robustness check, we evaluated the presence of asymmetry using monetary shocks identified
through the narrative approach by Romer and Romer (2004) and extended until 2007 by Coibion et al. (2012).
Encouragingly, despite very different identification methodologies, the correlation between the (median) shocks
recovered with the recursively identified asymmetric GMA and the Romer and Romer shocks is at high at 0.62
over 1966q1-2007q4. We estimated an asymmetric GMA model with 4 variables included in the following order:
the Romer and Romer shocks, unemployment, inflation and the fed funds rate, and we studied the asymmetric
impulse responses to the first shock. The evidence for asymmetry was very similar to the one found with the
recursive identification scheme.
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level and the federal funds rate to a one standard-deviation monetary shock. The thick lines
denote the impulse response functions implied by the posterior mode, and the error bands are
the 5th and 95th posterior percentiles.

The evidence for asymmetry is striking: following a contractionary monetary shock, which
represents a 70 basis points increase in the fed funds rate, unemployment increases by about
0.15 percentage points (ppt), whereas a (linear) VAR implies only a 0.10 ppt increase. In
contrast, following an expansionary monetary shock (a 70 basis points decrease in the fed
funds rate), the response of unemployment is small (a decline of 0.04 percentage points) and
non-significantly different from zero. Figure 6 plots the posterior distribution of the difference
in impulse responses between positive and negative shocks. This figure can be seen as a point-
wise test of difference in impulse responses at different horizons. The 90 percent posterior
interval of the difference in impulse responses of unemployment is substantially above zero for
horizons 3 to 10, in line with the conclusion from the Bayes factors that the data support a
model with asymmetric impulse responses to monetary shocks.*4

Although the error bands are too large to be conclusive, the response of the price level also
displays an interesting asymmetric pattern: the price level appears more sticky following a
contractionary shock —displaying a larger price puzzle— than following an expansionary shock
for which the price level drops on impact and displays no price puzzle. This is exactly the pat-
tern one would expect if downward price (or wage) rigidity was responsible for the asymmetric
response of unemployment.*3

Finally, we also find asymmetry in the response of the fed funds rate to a monetary shock.
A monetary shock generates a slightly more persistent increase in the fed funds rate than its
expansionary counterpart. This can be seen in the bottom right panel where the response of

the fed funds rate is more short-lived following an expansionary shock, or in Figure 6 where

“4In the case of the GMA(1) model, an alternative test for asymmetry is a Wald-type test on a™ — ™. This
test (not shown) gives a similar conclusion: for unemployment, the 90 percent posterior interval of a* — a~
excludes zero.

45The existence of downward wage rigidity is supported empirically by the scarcity of nominal wage cuts
relative to nominal wage increases (e.g., Card and Hyslop, 1997).
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the posterior distribution of the differences in the responses of the fed funds rate exclude zero

from horizons 1 to 3.46

6.3 The asymmetric and state-dependent effects of monetary shocks

In this section, we enrich our model by allowing the effect of monetary policy to depend on
both the state of the business cycle and the sign of the shock. Intuitively, we would like to test
whether monetary policy is more powerful at stimulating the economy in a period of economic
slack, and whether an expansionary shock is more likely to generate inflation in a tight labor
market.

We thus estimate model (9) with a GMA(2), and we use last period’s unemployment rate
as cyclical indicator (z;).*” Table 4 shows that Bayes model comparison strongly favors the
model with asymmetry and state dependence over all the other models.

To visualize the effects of the state of the cycle on the impulse responses, Figure 8 shows
how the peak effect of a monetary shock on unemployment or inflation depends on the state
of the business cycle at the time of the shock, and to put results into perspective, Figure 7
plots the unemployment rate (i.e., the indicator variable z;) along with the identified monetary
shocks.

The first two rows plot the peak responses of respectively unemployment and inflation to
contractionary and expansionary shocks, while the last row plots histograms of the distributions

of respectively contractionary shocks and expansionary shocks over the business cycle. The

460ne way to gauge how much of the asymmetric response of unemployment can be explained by the asym-
metric response of the fed funds rate is to proceed as in the government spending multiplier literature (e.g.,
Ramey and Zubairy, 2014) and to compute the total change in unemployment relative to the total change in

K
> 1/)}: T for respectively positive and negative shocks. After
k=0

“controlling” for the total change in the fed funds rate, the asymmetry is still present with m™ = .24 > m™ = .12.

4"This approach has the advantage of being self contained in that the unemployment rate is itself an endoge-
nous variable whose behavior is described by (9). As an alternative, we also experienced with (i) the average
growth rate of GDP over a one year period centered on the current quarter, and (ii) the unemployment rate
detrended with an HP-filter (A = 10°). The latter specification was used to make sure that our results were
not driven by slow moving trends (e.g., due to demographics) in the unemployment rate, which could make the
unemployment rate a poor indicator of the amount of economic slack (see e.g. Barnichon and Mesters, 2015).
Both specifications gave similar conclusions.

K
the fed funds rate, that is to compute m = > F /
k=0
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last row of Figure 8 has two purposes: (i) make sure that our results are not driven by an
unusual distribution of shocks over the business cycle, say with more contractionary shocks in
expansions than in recessions (which could happen in a short sample), (ii) get a sense of the
range of unemployment rates over which we identify the coefficients capturing state dependence.
Regarding (i), Figure 8 shows not marked difference in the distributions of positive and negative
shocks over the business cycle.*® Regarding (ii), most of the unemployment variations used to
infer state dependence occur between 5 and 7 percent.

We first discuss the response of unemployment. The upper-left quadrant in Figure 8 depicts
how the peak effect of a contractionary shock on unemployment varies as we move from a
tight labor market (unemployment at 4 percent) to a slack labor market (unemployment at 8
percent). The thick dashed line represents the VAR estimate. Since the VAR is linear, that
latter estimate is constant as the peak effect of monetary policy is independent of the state of
the business cycle. The thick blue line depicts estimates from our non-linear framework. We
can notice that the effect of a contractionary policy increases with the unemployment rate,
being about 30 percent larger at a business cycle trough than at a business cycle peak.

For expansionary shocks (bottom left quadrant), the evidence is not as strong, but our
estimates suggest some mild state dependence: the higher the unemployment rate, the larger
the real effect of an expansionary policy. In fact, the 90th posterior probability bands start
including the VAR estimate when the unemployment rate rises above 7 percent. That being
said, the asymmetry between expansionary and contractionary interventions remains, and an
expansionary policy is always considerably less potent than its contractionary counterpart.

We now turn to the response of inflation, depicted in the right-hand column of Figure
8. While we do not find any evidence of state dependence for contractionary shock, we find
strong evidence that expansionary shocks generate a substantial rise in inflation when the
unemployment rate is low. Interestingly, this finding is consistent with a standard Keynesian

narrative, according to which a monetary authority trying to expand an economy already above

48 A Kolmogorov-Smirnov test confirms this visual inspection, as we cannot reject the null that the two
distributions are identical.
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potential would only achieve higher inflation through increased price/wage pressures.

7 Conclusion

This paper proposes a new method to identify the (possibly non-linear) dynamic effects of
structural shocks by using Gaussian basis functions to approximate impulse response functions.
We apply our approach to the study of monetary policy and find that the effect of a monetary
intervention depends strongly on the sign of the intervention. A contractionary shock has a
strong adverse effect on output, larger than implied by linear estimates, but an expansionary
shock has, on average, no significant effect on output. Interestingly, and while the evidence
for inflation is relatively uncertain, the behavior of the inflation is consistent with asymmetry
emerging (at least in part) out of downward price/wage rigidities: inflation displays a more
marked price puzzle following a contractionary shock than following an expansionary shock.
Finally, the effect of a monetary shock also depends on the state of the business cycle at the time
of the intervention: An expansionary shock during a time a low unemployment generates not
significant drop in unemployment but leads to a burst of inflation, consistent with a standard
Keynesian narrative.

Although this paper studies non-linearities in the effect of monetary policy, Gaussian Mix-
ture Approximations of the impulse responses may be useful in many other contexts. First,
as a direct extension of the current paper, our method could be used to estimate the non-
linear effects of other important shocks where the existence of asymmetry or state-dependence
remains an important and unresolved question; notably fiscal policy shocks (Auerbach and
Gorodnichenko, 2012, Ramey and Zubairy, 2014) or credit supply shocks (Gilchrist and Zakra-
jsek, 2012). Second, while we presented our method in the context of a recursive identification
scheme, our method is quite general and can also be applied to other popular identification
schemes, such as sign-restrictions (Uhlig, 2005) or long-run restrictions (Blanchard and Quah,
1989, Gali 1999). Finally, the parametrization offered by GMA models and the associated

efficiency gains may be useful even for linear models, where the sample size is small and/or
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the data are particularly noisy.
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Appendix: Proof of Theorem 1

Following Alspach and Sorenson (1971, 1972) in the context of approximating distributions, the
problem of approximating a function f can be considered within the context of delta families
of positive types.

Delta families are families of functions which converge to a delta function as a parameter
characterizing the family converges to a limit value.

Let {05} be a family of functions on the interval | — 0o, +00[ which are integrable over every
interval. {d)} forms a delta family of positive type if the following conditions are satisfied:

1. For every constant v > 0, 0, tends to zero uniformly for v < |z| < oo as A — Ao

2. There exist s in R so that f_ss dx(z)der — 1 as A tends to some limit value \g

3. 0x(z) > 0 for all z and A

Defining
51(2) = Galx) = e3e, (13)

it is easy to see that the Gaussian functions {G} form a delta family of positive type as A — 0
(i.e., Ao = 0). That is, the Gaussian function tends to the delta function as the variance tends
to zero.??

We can then make use of the following theorem.

Theorem: The sequence { f)} which is formed by the convolution of d) and f

+o0
Auazjj 5x(x — u) f(u)du (14)

—0o0

converges uniformly to f as A — A¢ for x on every interval [z, x1] of R.

Proof: see Korevaar (1968).

4*Note that this proof can be easily applied to other functions (such as the inverse quadratic function x —

@) that form a delta family of a positive type, so that our approach is not restricted to Gaussian functions.
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Using (13) in (14), the function fy given by

filx) = o Gz —u) f(u)du (15)

—00

converges uniformly to f as A — 0 for z in some arbitrary interval [xg, z1] of R.

Next, we want to approximate (15) with a Riemann sum. To do so, first rewrite f as

A = [ - uf@dis [ G- wiwdes [ Gae—wfde  (16)

— 00 —S S

for s > 1.

Note that for any s > 1, we have

+oo
Ga(u)du

o
IN

S

1 oo . ,
/ e~ 32 du since u? > v for any u in [s, +oo[, s > 1
S

V2 A2

e L
V212 . 27 A0

which shows that Vs > 1, )\limo f:oo G (u)du = 0. Symmetrically, we can show /\limo f:oso Gi(u)du =
—S —>
0.
Going back to (16), we have

osmeSM/_wa

where M = sup|f(z)|. Since x € [zg, z1], we can choose an s > 1 such that x —s < —1, so
zeR

that we can apply the previous result and get

lim |B(A =0. 1
lim [ B\ )] = 0 (7)
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im [A(\, z)| = 0.

Proceeding symmetrically, we have /{ 1
ﬁ

Finally, since the function u — G (z—u) f(u) is continuous over [—s, s|, we can approximate

[72 Ga(x — u) f(u)du with a Riemann sum. Denoting

N
fA,N(x) = Z Gr(z — &) f(&n) (§n — &n—1)
n=1

where &, = —s + n%, we get that

+s
Jim fun(@) = [ Gy —u)f(u)du. (18)

—S

Denoting a, = f(&,) (§n — &n—1), bn = &, and ¢, = A, using (18), (17) in (16) and combining
with (15), we get that

tig (Jin_ (o)) = f(2)

which completes the proof .
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Figure 1: Impulse response functions (in ppt) of the unemployment rate, the (log) price level
and the federal funds rate to a one standard-deviation monetary shock. Impulse responses esti-
mated with a VAR (dashed-line) or approximated using one Gaussian basis function (GMA(1),
left-panel, thick line) or two Gaussian basis functions (GMA(2), right panel thick line). Esti-
mation using data covering 1959-2007.
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Figure 2: Gaussian basis functions (dashed lines) used by a GMA(2) to approximate the
responses of unemployment, inflation and the fed funds rate to a monetary shock. The basis
functions are appropriately weighted so that their sum gives the GMA(2) parametrization of
the impulse response functions (solid lines).
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Figure 4: Asymmetric impulse response functions to a monetary shock. The thick green line
reports the impulse response to a positive shock, and the thick blue line reports the impulse
response to a negative shock (with sign flipped for clarity of exposition). The dashed lines are
the impulse responses estimated from a VAR.
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Figure 5: Impulse response functions (in ppt) of the unemployment rate, the (log) price level
and the federal funds rate to a one standard-deviation monetary shock. Estimation from a
VAR (dashed-line) or from a GMA(2) with asymmetry (plain line). Shaded bands denote the
5th and 95th posterior percentiles. For ease of comparison, responses to the expansionary
shock are multiplied by -1. Estimation using data covering 1959-2007.
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Figure 6: Differences in impulse response functions (in ppt) of the unemployment rate, the
(log) price level and the federal funds rate to a one standard-deviation monetary shock. Shaded
bands denote the 5th and 95th posterior percentiles. Estimation using data covering 1959-2007.
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Figure 7: Unemployment rate —the business cycle indicator (solid line, left scale)—, and esti-
mated monetary shocks (circles, right scale) with larger circles indicating larger shocks.
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Figure 8: Peak effect of monetary policy on unemployment and inflation (in percentage points)
as a function of the state of the business cycle (measured with the unemployment rate) for one
standard deviation contractionary monetary shocks (left panel) and expansionary monetary
shocks (right panel). The dashed lines represent the 5th and 95th posterior percentiles. The
thick-dashed line is the linear VAR estimate. The bottom panel plots the distribution of (re-
spectively) contractionary shocks and expansionary shocks over the business cycle. Estimation
using data covering 1959-2007.
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Table 1: Summary statistics for Monte Carlo simulation with a linear model

U - ffr

VAR GMA | VAR GMA | VAR GMA
MSE 0.057 0043 | 0077 0041 |  0.003 0.002
Avg length 0.16 013 | 027 011 | 005 0.03
(at peak effect) ! ;
: :
Coverage rate 0.94 0.83 i 1 0.78 : 0.94 0.93
(at peak effect) | !

Note: Summary statistics over 50 Monte-Carlo replications. MSE is the mean-squared error of the estimated impulse response function over horizons 1 to 25. Avg length is the
average distance between the lower (2.5%) and upper (97.5%) confidence bands at the time of peak effect of the monetary shock. The coverage rate is the frequency with which
the true value lays within 95 percent of the posterior distribution. The VAR estimates and confidence bands are obtained from a Bayesian VAR with Normal-Whishart priors. U,
T and ffr denote respectively unemployment, inflation and the fed funds rate.

Table 2: Summary statistics for Monte Carlo simulation with asymmetry

a'-a
y T ffr

Frequency o_f rejection 0.94 0.90 008
of zero coefficient

Mean -0.82 -0.50 0.03
(true value) (-1.00) (-0.60) (0.00)
Std-dev 0.28 0.17 0.12
Coverage rate 0.82 0.86 0.88

Note: Summary statistics over 50 Monte-Carlo replications. For each coefficient of interest, "Frequency
of rejection of zero coefficient” is the frequency that O lies outside 90 percent of the posterior
distribution, and "Coverage rate" is the frequency with which the true value lies within 90 percent of the
posterior distribution. y, = and ffr denote respectively output, inflation and the fed funds rate.



Table 3: Summary statistics for Monte Carlo simulation with asymmetry and state dependence

- ; + - ; + ; -

Ty : a'-a : Y : Y

<
A

______;_____
A

.____.____.;_____
A

______;_____
A

Frequency of 5 5 5
rejection of 0.96 0.03 ' 0.82 0.80 : 0.87 0.06 ! 0.20 0.05
zero coefficient :

|

|
Mean 0.96 0.02 -0.78 048 | 071 0.00 -0.21 -0.00
(true value) (1.00) (0.00) (-1.00) (-0.60) | (1.00) (0.00) (0.00) (0.00)
Std-dev 0.26 017 | 037 023 | 031 019 | 023 0.19
Coverage rate 0.84 092 | 071 070 | 0.68 092 | 065 0.90

Note: Summary statistics over 50 Monte-Carlo replications. For each coefficient of interest, "Frequency of rejection of zero coefficient" is the frequency that 0 lies
outside 90 percent of the posterior distribution, and "Coverage rate" is the frequency with which the true value lies within 90 percent of the posterior distribution.
y and 7 denote respectively output and inflation.

Table 4: Marginal densities, BIC and AIC

GMA(1) GMA(2) GMA(3) GMA(1)
VAR GMA(1) Asymmetry Asymmetry Asymmetry Asymmetry
State dep.
M) ) ©) (4) ®) (6)
(log) marginal density 112 118 127 138 107 158

Note: Trivariate models with unemployment, PCE inflation and the fed funds rate estimated over 1959-2007. The VAR estimates and confidence bands are obtained from a Bayesian
VAR with Normal-Whishart priors.



