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Abstract

This paper proposes a new method to identify the (possibly non-linear) dynamic effects

of structural shocks by using Gaussian basis functions to approximate impulse response

functions. We apply our approach to the study of monetary policy and find that the effect

of a monetary intervention depends strongly on the sign of the intervention and on the

state of the labor market at the time of the intervention. A contractionary shock has

a strong adverse effect on unemployment, larger than implied by linear estimates, but an

expansionary shock has only a small effect. When the labor market is tight, an expansionary

shock generates a burst of inflation and no significant change in unemployment. JEL

classifications: E24, E32
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1 Introduction

There now exists a broad consensus on the average effect of monetary policy on economic

activity, and it is widely accepted that a monetary contraction (expansion) leads to a persistent

decline (increase) in output.

However, there is still little agreement about possible asymmetric or non-linear effects

of monetary policy, and two questions at the core of monetary policy making are largely

unsettled.1 First, does monetary policy have asymmetric effects on economic activity? As

captured by the string metaphor, does contractionary monetary policy have a much stronger

effect –being akin to pulling on a string– than an expansionary shock –being akin to pushing

on a string–? Second, does the effect of monetary policy vary with the state of the business

cycle? For instance, does the central bank have more room to stimulate economic activity

(without raising inflation) during recessions?

Providing answers to these questions has been difficult in part for one important technical

reason: the standard approach to identify the dynamic effect of shocks relies on structural

Vector-Autoregressions (VARs),2 which are linear models. While VARs can accommodate

certain types of non-linearities, some questions, such as the asymmetric effect of a monetary

shock, cannot be easily answered within a VAR framework.

This paper proposes a new method to identify the (possibly non-linear) dynamic effects of

structural shocks. Instead of assuming the existence of a VAR representation, our approach

consists in working directly with the structural moving-average representation of the economy.

Then, to make the estimation of the moving-average representation feasible, we approximate

the impulse response functions with Gaussian basis functions.

Our approach builds on two premises: (i) any mean-reverting impulse response function can

be approximated to any degree of accuracy by a mixture of Gaussian basis functions, and (ii),

1For instance, while Cover (1992) finds evidence of asymmetric effects, Ravn and Sola (1996, 2004) and
Weise (1999) instead find nearly symmetric effects. And while Lo and Piger (2005) and Santoro et a. (2014)
conclude that monetary policy has stronger effects during recessions, Tenreyro and Thwaites (2015) conclude
the opposite.

2See e.g., Christiano, Eichenbaum, and Evans (1999) and Uhlig (2005).
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in practice, only a very small number of Gaussian functions are needed to approximate a typ-

ical impulse response function. Intuitively, the impulse response functions of macroeconomic

variables are often found to be monotonic or hump-shaped (e.g., Christiano, Eichenbaum,

and Evans, 1999). In such cases, a single Gaussian function can already provide an excellent

approximation of the impulse response function.

Thanks to the small number of free parameters allowed by a Gaussian Mixture Approxi-

mation (GMA), it is possible to directly estimate the impulse response functions from the data

using Bayesian methods.3 In turn, the parsimony of the approach allows us to estimate more

general non-linear models.

We conduct a number of Monte-Carlo simulations to illustrate the performance of our

approach in finite sample, first for linear models, then for non-linear models. In a linear

model, we show that a GMA model can generate more accurate impulse response estimates (in

a mean-squared error sense) than a well-specified VAR model. In a simulation with asymmetry

and state-dependence, we find that a GMA model can accurately detect the presence of non-

linearities and deliver good estimates of the magnitudes of the non-linearities.

We use our GMA approach to estimate the non-linear effects of monetary shocks identified

with a recursive identification scheme.4 Consistent with the string metaphor, our findings

point towards the existence of strong asymmetries in the effects of monetary shocks. A con-

tractionary shock has a strong adverse effect on output, larger than implied by linear estimates,

but an expansionary shock has little effect on output. Interestingly, this asymmetry could be

due the presence of downward price/wage rigidities. Although the evidence for inflation is

more uncertain, we find that inflation displays a more marked price puzzle following a con-

tractionary shock than following an expansionary shock. Finally, we also find that the effect

of a monetary shock depends on the state of the business cycle at the time of the intervention:

3Another advantage of using Gaussian basis functions is that prior elicitation can be much easier than with
Bayesian estimation of standard VARs, because the coefficients to be estimated are directly interpretable as
features of impulse responses.

4While we introduce our GMA method in the context of a recursive identification scheme, our method is
quite general and can also be applied to other population identification schemes, such as sign-restrictions (Uhlig,
2005) or long-run restrictions (Blanchard and Quah, 1989, Gali 1999).
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An expansionary shock in a tight labor market generates no significant drop in unemployment

but leads to a burst of inflation, consistent with a standard Keynesian narrative.

Although our use of Gaussian basis functions to model and estimate impulse response

functions is new in the economics literature, our approach can be cast in the broader context

of the machine (supervised) learning literature in that we project the function to be estimated

onto the space spanned by a dictionary of basis functions (see Hastie, Tibshirani and Friedman,

2009). In basis functions methods, the number of basis functions is often too large for empirical

purposes, and the complexity of the model is typically controlled through a combination of

restriction, selection and/or regularization methods. Our approach, which consists in using

a limited number of optimally chosen basis functions, uses both selection and restriction to

control the complexity of the model.5

In economics, our parametrization of impulse responses relates to an older literature on

distributed lag models and in particular the Almon (1965) lag specification, in which the suc-

cessive weights, i.e., the impulse response function in our context, are given by a polynomial

function.6 Our use of basis functions of a Gaussian type relates to a large literature that relies

on radial basis functions (of which Gaussian functions are one example) to approximate arbi-

trary multivariate functions (e.g., Buhmann, 2003) or to approximate arbitrary distributions

using a mixture of Gaussian distributions (Alspach and Sorenson 1971, 1972, McLachlan and

Peel, 2000). Although Gaussian basis functions provide a more natural and more parsimo-

nious way than polynomials to approximate mean-reverting impulse response functions, our

approach is general and other basis functions are possible. For instance, the inverse quadratic

function, which is also a popular radial basis function, could be used to parametrize impulse

response functions.7 Finally, our approach shares with the non-parametric econometrics liter-

5It uses selection in the sense that our algorithm scans the dictionary of possible basis functions to find the
basis functions that best fit the data, and it uses restriction in the sense that we restrict ourselves to the class
of impulse response functions that can be generated by a few basis functions.

6Recently, Plagborg-Moller (2016) proposes a Bayesian method to directly estimate the structural moving-
average representation of the data by using prior information about the shape and the smoothness of the impulse
response.

7In fact, in a different context, Jorgenson (1966) suggested that ratios of polynomials, of which the inverse
quadratic function is one example, could be used to parametrize distributed lag functions.
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ature (e.g., Racine, 2008) the insight that mixtures of Gaussian kernels can approximate very

general shapes, although we use that insight in a very different manner.

The economic literature has so far tackled the estimation of non-linear effects of shocks in

two main ways.8

A first approach estimates non-linear effects by regressing a variable of interest on con-

temporaneous and lagged values of the structural shocks while allowing for possible non-linear

effects. In the context of monetary policy, Cover (1992), DeLong and Summers (1988) and

Morgan (1993) proxy shocks with unanticipated money innovations (obtained from a money

supply process regression, following Barro, 1977) and test whether the impulse response func-

tion depends on the sign of the shock. This approach has been recently revived thanks to the

use of narratively identified shocks (Romer and Romer, 2002) and thanks to the Local Pro-

jection method pioneered by Jorda (2005).9 The narrative approach was precisely developed

in order to identify exogenous monetary innovations, and Jorda’s method can easily accom-

modate non-linearities in the response function.10 However, the Local Projection method is

limited by efficiency consideration. Indeed, while the Local Projection approach is intention-

ally model-free –not imposing any underlying dynamic system–, this can come at an efficiency

cost (Ramey, 2012), which makes inferences on a rich set of non-linearities (e.g., sign- and

state-dependence) difficult. In contrast, by positing that the response function can be approxi-

mated by one (or a few) Gaussian functions, our approach imposes strong dynamic restrictions

between the parameters of the impulse response function, which in turn allow us to estimate

a rich set of non-linearities.11 Another advantage of our approach is that it can be used for

8A third non-linear approach was recently proposed by Angrist et al. (2013) who develop a semi-parametric
estimator to evaluate the (possibly asymmetric) effects of monetary policy interventions. They find asymmetric
effects of monetary shocks consistent with our findings.

9The combination of Jorda’s method with narratively identified shocks was first introduced in the context
of fiscal policy by Auerbach and Gorodnichenko (2013) in order to test for the existence of state dependence in
the effects of fiscal policy.

10Tenreyro and Thwaites (2013) and Santoro et al. (2014) use the Jorda method to estimate the extent of
state dependence in the effect of monetary policy.

11Naturally, this statement also implies that our results are valid under the assumption that response func-
tions can be well approximated by a few Gaussian functions. In this respect, our approach is best seen as
complementing the model-free approach of Jorda (2005).
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model selection and model evaluation through marginal density comparisons.

A second strand in the literature has relied on regime-switching VAR models –notably

threshold VARs (e.g., Hubrich and Terasvirta, 2013) and Markov-switching VARs (Hamilton,

1989)– to capture certain types of non-linearities.12,13 However, such non-linear models are ill

suited to identify how the impulse response to a structural shock depends on the value of that

shock. The threshold variable in a threshold VAR applies to a switching variable, which is

not the contemporaneous structural shock itself but instead a function of past shocks. In a

Markov-switching model the switching variable is an unobserved state, but Markov-switching

models are ill-suited to capture regime changes triggered by shocks. In contrast, our approach

allows us to estimate how the impulse response function varies with the contemporaneous

value of the shock. Our model with state dependence is a form of regime-switching model,

in that we allow the effect of a shock to depend on the state of the business cycle. However,

in our framework state dependence is a continuous function of an indicator variable, while

regime-switching models display discrete switches between a finite number of regimes.

Section 2 describes how we approximate impulse responses using mixtures of Gaussians,

Section 3 discusses the key steps of the estimation methodology; Section 4 generalizes our

approach to non-linear models; Section 5 presents Monte Carlo simulations to evaluate the

performance of our approach in finite sample, first for linear models, then for non-linear models;

Section 6 applies GMA to the study of the non-linear effects of monetary shocks using US data;

Section 7 concludes.

2 Gaussian Mixture Approximations

This section presents a new method to estimate impulse responses using Gaussian Mixture

Approximations (GMA) of the structural moving-average representation of the economy. Al-

12For examples in the monetary policy literature, see Beaudry and Koop (1993), Thoma (1994), Potter (1995),
Kandil (1995), Koop, Pesaran and Potter (1996), Koop and Potter, (1998), Ravn and Sola (1996, 2004), Weise
(1999), Lo and Piger (2005).

13Another prominent class of non-linear VARs includes models with time-varying coefficients and/or time-
varying volatilities (e.g., Primiceri, 2005).
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though the use of GMAs was motivated in the introduction by the need to model and estimate

certain types of non-linearities, the intuition and benefits of GMA models can be understood

in a linear context, and this section introduces GMAs in a linear context. We postpone the

modeling and estimation of non-linearities to Section 4.

2.1 A structural moving average representation

Our starting point is a structural moving-average description of the economy, in which the

behavior of a system of macroeconomic variables is dictated by its response to past and present

structural shocks. Specifically, denoting Yt a vector of stationary macroeconomic variables,

the economy is described by

Yt =
K∑
k=0

Ψkεt−k (1)

where boldface letters indicate vectors or matrices, εt is the vector of structural innovations

with Eεt = 0 and Eεtε
′
t = I, and K is the number of lags, which can be finite or infinite. The

matrices {Ψk} are the coefficients of the impulse response functions to shocks. For now, the

model is linear, and the {Ψk} matrices are fixed.

If (1) is invertible and admits a VAR representation, the model can be estimated from a

VAR on Yt (provided some structural identifying assumption, such as the recursive ordering

of Ψ0). However, assuming the existence of a VAR representation can be restrictive. In

particular, in a non-linear world where Ψk depends on the value of εt−k (for instance, when

the impulse response function varies with the sign of the shock), the existence of a VAR is

compromised, because (1) is unlikely to be invertible. Thus, in this paper, we propose an

alternative method that side-steps the need to invert (1), i.e., that a method that side-steps

the need for a VAR representation.
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2.2 Gaussian Mixture Approximations of impulse response functions

Rather than looking for a VAR representation of the dynamic system (1), our aim is to directly

estimate (1), the moving-average representation of the economy. Because the number of free

parameters {Ψk} in (1) is very large or possibly infinite, our strategy consists in parameterizing

the impulse response functions, and more precisely in using mixtures of Gaussian functions to

approximate each impulse response function.

2.2.1 Theoretical background

Our parametrization of the impulse response functions builds on the following theorem, which

states that any integrable function can approximated with a sum of Gaussian functions.

Theorem 1: Let f be a bounded continuous function on R that satisfies
∫∞
−∞ f(x)2dx <

∞. There exists a function fN defined by

fN (x) =
N∑
n=1

ane
−(x−bn

cn
)2

with an, bn, cn ∈ R for n ∈ N, such that the sequence {fN} converges pointwise to f on

every interval of R.

Proof: See Appendix.

Motivated by Theorem 1, our approach will consist in approximating an impulse response

function ψ(.) with a sum of Gaussian functions, that is

ψ(k) '
N∑
n=1

ane
−( k−bn

cn
)2 (2)

with an, bn, cn ∈ R for k over some interval of R+.

Since our strategy consists in approximating impulse response functions with mixtures of

Gaussians, we refer to this class of models as Gaussian Mixture Approximations (GMA), with

a GMA(N) denoting a GMA with N Gaussian basis functions.
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2.2.2 Intuition and Motivation

Before describing the estimation of GMA models, it is instructive to first intuitively discuss

the benefits of our approach over traditional VARs.

The advantage of our approach, and its use for studying the (possibly non-linear) effects

of policy, will rest on the fact that, in practice, only a very small number of Gaussian basis

functions are needed to approximate a typical impulse response function, allowing for efficiency

gains and opening the door to estimating non-linearities.

Intuitively, impulse response functions of stationary variables are often found to be mono-

tonic or hump-shaped (e.g., Christiano, Eichenbaum, and Evans, 1999).14 And in such cases,

a single Gaussian function can already provide a good approximate description of the impulse

response. To illustrate this observation, Figure 1 plots the impulse response functions of unem-

ployment, the price level and the fed funds rate to a monetary shock estimated from a standard

VAR specification,15 along with the corresponding GMA(1), the Gaussian approximations with

only one Gaussian function, i.e., using the approximation

ψ(k) ' ae−
(k−b)2

c2 . (3)

We can see that a GMA(1) already does a good job at capturing the impulse responses implied

by the VAR.16 With a GMA(2), the impulse responses are virtually on top on those of the

VAR (Figure 1). For illustration, Figure 2 plots the Gaussian basis functions used for each

impulse response in the GMA(2) case.

In both cases, the number of free parameters is manageable. For instance, in this 3 variables

example, a GMA(1) only has 27 parameters (9 impulse responses times 3 parameters per

14This is also the case in theoretical models, e.g., New-Keynesian models, in which the impulse response
functions are generally monotonic or hump-shaped (see e.g., Walsh, 2010).

15See Section 6 for the exact specification of the SVAR behind Figure 1. The VAR is specified with unem-
ployment, PCE inflation and the fed funds rate. The impulse response for the price level is calculated from the
response of inflation.

16In Figure 1, the parameters of the GMA (the a, b and c coefficients) were set to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.
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impulse response, ignoring intercepts) to capture the whole set of impulse responses {Ψk}Kk=1,

while a GMA(2) has 48 free parameters (9 ∗ 3 ∗ 2 = 48).17

This relatively small number of free parameters has two main advantages. First, it allows

us to directly estimate the impulse response functions from the vector moving-average repre-

sentation (1), something that would otherwise be infeasible in finite sample (without additional

assumptions). This point is important, because being able to directly work with the moving-

average representation will allow us to estimate models in which shocks can have non-linear

effects. Second, the parsimonious representation offered by GMA models may offer efficiency

gains (relative to VARs) by tuning the bias-variance trade-off: GMA models aim to achieve

lower variance by restricting the dimension of the parameter space, while tolerating more bias

by restricting impulse response functions to belong to a certain class of functions.18 These

efficiency gains can be interesting not only in non-linear models but also in linear models.

To conclude this intuition section, we comment on a particularly interesting case: the

GMA(1) model, which has two additional advantages: (i) ease of interpretation, and (ii) ease

of prior elicitation.

In a GMA(1) model like (3), the a, b and c coefficients can be easily interpreted, because

the impulse response function is summarized by three parameters –the peak effect, the time

to peak effect, and the persistence of the impulse response–, which are generally considered

the most relevant characteristics of an impulse response function.19 As illustrated in Figure 3,

parameter a is the height of the impulse-response, which corresponds to the maximum effect

of a unit shock, parameter b is the timing of this maximum effect, and parameter c captures

the persistence of the effect of the shock, as the amount of time τ required for the effect of a

shock to be 50% of its maximum value is given by τ = c
√

ln 2.

17For comparison, a corresponding quarterly VAR with 3 variables and 4 lags has 4 ∗ 32 + 6 = 42 free
parameters, and a monthly VAR with 12 lags has 12 ∗ 32 + 6 = 114 free parameters.

18Note that a GMA model will only be more biased than a VAR model if the true data generating process is
actually a VAR. If the VAR is mis-specified or if the data generating process cannot be described by a VAR, a
GMA model could display both lower variance and lower bias.

19For instance, when comparing the effects of monetary shocks across different specifications, Coibion (2012)
focuses on the peak effect of the monetary shock, which in a GMA(1) model is simply parameter a.
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Then, the ease of interpretation of the a, b and c parameters in turn makes prior elicitation

easier than in standard VARs, in which the VAR coefficients have a less direct economic

interpretation.

3 Bayesian estimation

To estimate our model, we use a Bayesian approach, which is particularly well suited for

models that approximate the true DGP (Fernandez-Villaverde and Rubio-Ramirez, 2004). In

particular, Bayes factors will allow us to evaluate GMA models against VAR models, even

though the two classes of models are non-nested. Bayesian model comparison will also offer

us a natural way to select the order of the GMA model, i.e., the number of Gaussian basis

functions used in the approximation.

In this section, we describe the implementation and estimation of GMA models. We first

discuss the structural identifying assumption, then describe how we construct the likelihood

function by exploiting the prediction-error decomposition, discuss the estimation routine based

on a multiple-block Metropolis-Hasting algorithm, and finally discuss prior elicitation, deter-

mination of the order of the GMA and identification issues related to fundamentalness. We

conclude by discussing how to deal with non-stationary data.

3.1 Structural identifying assumption

Model (1) is under-identified without additional restrictions. As is common with structural

VARs, we will assume that the model is just-identified and that restrictions on the contem-

poraneous impact matrix Ψ0 provide use with N(N−1)
2 additional restrictions. In fact, given

our later focus on monetary policy, we will adopt a common recursive assumption, so that the

contemporaneous impact matrix Ψ0 is assumed to be lower triangular with positive entries on

the diagonal (a normalization).
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3.2 Constructing the likelihood function

We now describe how to construct the likelihood function p(yT |θ, ZT ) of a sample of size T for

the moving-average model (1) with parameter vector θ where superscripts denote the sample

of variables up to the date in the superscript.

To start, we use the prediction error decomposition to break up the density p(yT |θ) as

follows:20

p(YT |θ) =
T∏
t=1

p(Yt|θ,Yt−1). (4)

To calculate the one-step-ahead conditional likelihood function needed for the prediction

error decomposition, we assume that all innovations {εt} are Gaussian with mean zero and

variance one,21 and we note that the density p(Yt+1|Yt, θ) can be re-written as p(Yt+1|θ,Yt) =

p(Ψ0εt+1|θ,Yt) since

Ψ0εt+1 = Yt+1 −
K∑
k=0

Ψkεt−k. (5)

Since the contemporaneous impact matrix is a constant, p(Ψ0εt+1|θ,Yt) is a straightforward

function of the density of εt+1.

To recursively construct εt+1 as a function of θ and Yt, we need to uniquely pin down the

value of the components of εt+1, that is we need that Ψ0 is invertible, which is guaranteed by

the structural identification assumption discussed above (Ψ0 is lower triangular).22

Finally, to initialize the recursion, we set the first K innovations {εj}0j=−K to zero.23,24

20To derive the conditional densities in decomposition (4), our parameter vector θ thus implicitly also includes
the K initial values of the shocks: {ε−K ...ε0}. We will keep those fixed throughout the estimation and discuss
alternative initializations below.

21The estimation could easily be generalized to allow for non-normal innovations such as t-distributed errors.
22Importantly, we can see that our approach accommodates other structural identification schemes, as long

as Ψ0 is invertible: short-run restrictions (restrictions on Ψ0), long-run restrictions (restrictions of the type
K∑
k=0

ψk,ij = 0 for some (i, j), Blanchard and Quah, 1989, Gali 1999) or sign-restrictions (restrictions on the signs

of the coefficients of Ψ0, e.g., Uhlig, 2005). Although a detailed exploration of such possibilities is left for other
applications, these identifying restrictions could be easily imposed in our MCMC estimation routine.

23Alternatively, we could use the first K values of the shocks recovered from a structural VAR.
24When K, the lag length of the moving average (1), is infinite, we truncate the model at some horizon K,

large enough to ensure that the lag matrix coefficients Ψk are ”close” to zero. Such a K exists since the variables
are stationary.
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3.3 Estimation routine

To estimate our model, we use a Metropolis-within-Gibbs algorithm (Robert & Casella 2004,

Haario et al., 2001) with the blocks given by the different groups of parameters in our model

(one block being composed of the a parameters, another composed of the b parameters and so

on).

To initialize the Metropolis-Hastings algorithm in an area of the parameter space that has

substantial posterior probability, we follow a two-step procedure: first, we estimate a standard

VAR using OLS on our data set, calculate the moving-average representation, and we use

the impulse response functions implied by the VAR as our starting point. More specifically,

we calculate the parameters of our GMA model to best fit the VAR-based impulse response

functions.25 Second, we use these parameters as a starting point for a simplex maximization

routine that then gives us a starting value for the Metropolis-Hastings algorithm.

3.4 Prior elicitation

We use (loose) Normal priors centered around the impulse response functions obtained from

the benchmark (linear) VAR. Specifically, we put priors on the a, b and c coefficients that are

centered on the values for a, b and c obtained by matching the impulse responses obtained

from the VAR, as described in the previous paragraph.

Specifically, denote a0ij,n, b0ij,n and c0ij,n, n ∈ {1, N} the values implied by fitting the

GMA(N) to the VAR-based impulse response of variable i to shock j. The priors for aij,n,

bij,n and cij,n are centered on a0ij,n, b0ij,n and c0ij,n, and the corresponding standard-deviations

are set as follows: σij,a = |aij,0|, σij,b = K and σij,c = K2 (recall that K is the length of the

moving-average). While there is clearly some arbitrariness in choosing the tightness of our

priors, it is important to note that they are sufficiently loose to let us explore a large class of

alternative specifications.

25Specifically, we set the parameters of our model (the a, b and c coefficients) to minimize the discrepancy
(sum of squared residuals) between the two sets of impulse responses.
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The use of informative priors is not critical for our approach, but we do this for a number of

reason. First, since our current knowledge on the effect of monetary shocks is based to a large

extent on VAR evidence of the kind reported in figure 1, it seems natural (and consistent with

the Bayesian approach) to impose priors centered on our current state of knowledge. Second,

given the inherent difficulty in estimating moving-average models, the priors help discipline

the estimation by keeping the parameters in a reasonable set of the parameter space. Finally,

and while we could have used improper uniform prior, the use of proper priors allows us to

compute posterior odds ratio, which are important to select the order of the moving-average

and to compare different GMA models.

3.5 Choosing N , the number of Gaussian basis functions

To choose N , the order of the GMA model, we use posterior odds ratios (assigning equal

probability to any two model) to compare models with increasing number of mixtures. We

select the model with the highest posterior odds ratio.26

3.6 Fundamentalness

In a linear moving average model, different representations (i.e., different sets of coefficients

and innovation variances) can exhibit the same first two moments, so that with Gaussian-

distributed innovations, the likelihood can display multiple peaks, and the moving average

model is inherently underidentified. Since a GMA model works off directly with the moving-

average representation, it cannot distinguish between invertible (also called ”fundamental”)

and non-invertible representations. By using the VAR-based impulse responses as starting

values, we implicitly focus on the invertible part of the parameter space.27,28

26This approach can be seen as analogous to the choice of the parameter lag in VAR models. While the
Wold theorem shows that any covariance-stationary series can be written as a VAR(∞), one must select a
finite lag order p that reasonable approximate the VAR(∞) (e.g., Canova, 2007). The usual approach is to use
information criteria such as AIC and BIC, which is similar to our present approach.

27Since a VAR is obtained by inverting the fundamental moving-average representation, it automatically
selects the fundamental representation (e.g., Lippi and Reichlin, 1994).

28An alternative estimation procedure to handle both invertible and non-invertible representations would be
to use the Kalman filter with priors on the K initial values of the shocks {ε−K ...ε0}, as recently proposed by
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3.7 Dealing with non-stationary data

As can be seen from Theorem 1, GMA models can only capture impulse response functions

that are bounded and integrable, which restricts our approach to stationary series. If the

data are non-stationary, we can (i) allow for a deterministic trend in equation (1) and/or (ii)

first-difference the data, and then proceed exactly as described above.

If a deterministic trend is suspected, we allow for a polynomial trend in each series, and

we jointly estimate the parameters of the impulse responses (the Ψk coefficients) and the

polynomial parameters.

If a stochastic trend is suspected, we can transform the data into stationary series by

differencing the data. Importantly, and unlike with VARs, a GMA in first-difference is not

misspecified if some variables are co-integrated.29 After estimation, one can even test for co-

integration by testing whether the matrix sum of moving-average coefficients (
K∑
k=1

k∑
l=0

Ψl) is of

reduced rank (Engle and Yoo, 1987).

4 Gaussian Mixture Approximations of non-linear models

We now generalize the moving average model (1) by allowing for asymmetry and state-

dependence, and we show how GMA models can easily accommodate such non-linearities.

Plagborg-Moller (2016). However, unlike our proposed approach, this procedure would be difficult to implement
in non-linear models. Note also that the non-uniqueness of the moving average representation was proven for
linear models (under Gaussian shocks). When we consider non-linearities, the non-uniqueness of the moving-
average representation is not guaranteed anymore, and identification may be easier. In practice (and in Monte-
Carlo simulations), the likelihood did not display multiple peaks when we allowed for asymmetry or state-
dependence.

29The reason is that a GMA model directly works off of the moving-average representation and does not
require inversion of the moving-average, unlike VAR models.
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4.1 A non-linear moving-average model

In this section, we generalize model (1) by allowing the economy to respond non-linearly to

shocks, and we consider the model

Yt =
∞∑
k=0

Ψk(εt−k,Zt−k)εt−k (6)

where εt is again the vector of structural innovations with Eεt = 0 and Eεtε
′
t = I, and Zt is a

vector of macroeconomic variables that can be a function of past variables of Y or a function

of variables exogenous to Y.

Model (6) is a non-linear vector moving average representation of the economy, because in

contrast to (1), the matrix of lag coefficients Ψk(εt−k,Zt−k), i.e., the impulse response functions

of the economy, are no longer constant. Instead, the coefficients of Ψk can depend on the values

of the structural innovations εt−k and on the values of the macroeconomic variables Zt−k.

With Ψk a function of εt−k, the impulse response functions to a given structural shock

depend on the value of the shock at the time of shock. For instance, a positive shock may

trigger a different impulse response than a negative shock.

With Ψk a function of Zt−k, the impulse response functions to a structural shock depend

on the value of the macroeconomic variables Z at the time of that shock. For instance, the

response function may be different depending on the state of the business cycle (recession or

expansion) at the time of the shock.

Because of its non-linear nature (6) does not admit a VAR representation, and the model

cannot be recovered from a VAR. Instead, our GMA approach directly works off with the

moving-average representation and can accommodate non-linearities. Moreover, the parametriza-

tion offered by Gaussian mixture approximations will ensure that the dimensionality of the

problem remains reasonable. We now discuss in more details two cases of non-linear behavior

that a GMA model can easily handle: (i) asymmetry and (ii) state-dependence.
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4.1.1 Asymmetric effects of shocks

To allow for asymmetries, we let Ψk depend on the sign of the structural shock, i.e., we let Ψk

take two possible values: Ψ+
k or Ψ−k . Specifically, a model that allows for asymmetric effect of

shocks would write

Yt =
∞∑
k=0

[
Ψ+
k 1εt−k>0εt−k + Ψ−k 1εt−k<0εt−k

]
(7)

with Ψ+
k and Ψ−k the lag matrices of coefficients for, respectively, positive and negative

shocks.

Denoting ψ+
ij(k), the i-row j-column coefficient of Ψ+

k (that is, the impulse response of

variable j to shock i), a GMA(N) model would then write

ψ+
ij(k) =

N∑
n=1

a+ij,ne
−
(
k−b+

ij,n

c+
ij,n

)2

, ∀k > 0 (8)

with a+ij , b
+
ij , c

+
ij some constants to be estimated. A similar expression would hold for ψ−ij(k).

4.1.2 Asymmetric and state-dependent effects of shocks

With asymmetry and state dependence, Ψ+
k becomes Ψ+

k (zt−k), i.e., the impulse response to

a positive shock depends on the indicator variable zt (and similarly for Ψ−k ).

Using a GMA(N) model, the impulse response function following a positive innovation (ψ+
ij)

can be parametrized as

ψ+
ij(k) = (1 + γ+ijzt−k)

N∑
n=1

a+ij,ne
−
(
k−b+

ij,n

c+
ij,n

)2

, ∀k > 0, εt−k > 0 (9)

with γ+ij , a
+
ij,n, b+ij,n and c+ij,n parameters to be estimated. An identical functional form holds

for ψ−ij .

In this model, the amplitude of the impulse response depends on the state of the business

cycle at the time of the shock. In (9), the amplitude of the impulse response is a function
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of the indicator variable zt. Such a specification allows us to test whether, for instance, an

expansionary policy has a stronger effect on output in a recession than in an expansion.

Note that in specification (9), the state of the cycle is allowed to stretch/contract the

impulse response, but the shape of the impulse response is fixed (because a, b and c are all

independent of zt). While one could allow for a more general model in which all variables a, b

and c depend on the indicator variable, specification (9) has two advantages. First, with limited

sample size, it will typically be necessary to impose some structure on the data, and imposing a

constant shape for the impulse response is a natural starting point.30 Second, specification (9)

generalizes trivially to GMAs of any order. The order of the GMA only determines the shape

of the impulse response with higher order allowing for increasingly complex shapes. Then, for

a given shape, the γ coefficient can stretch or expand the impulse response depending on the

state of the cycle.31

4.2 Bayesian estimation of non-linear GMA models

We now discuss how estimating non-linear GMA models is a simple extension of the linear

case. First, we present the construction of the likelihood, then we present the elicitation of

priors.

4.2.1 Constructing the likelihood function

We discuss the construction of the likelihood in the more general case with non-linearities, i.e.,

when we consider the model Yt =
∞∑
k=0

Ψk(εt−k,Zt−k)εt−k. The approach is identical to the

approach described in section 3 but with two differences.

First, when the model allows for state dependence, the likelihood also depends on the

30Importantly, this assumption is easy to relax or to evaluate by model comparison using posterior odds ratios.
31Note the parallel and difference between (9) and a varying coefficient model. A varying coefficient model

(e.g., Hastie and Tibshirani, 1993) is a (locally) linear model, whose coefficients are allowed to vary smoothly
with some third variable zt. In (9), the use of a finite sum of Gaussian basis functions (independent of zt) plays
a similar role to smoothness in varying coefficient models by restricting the shape of the impulse response and
disciplining the estimates. Then, the effect of the third variable zt is captured by letting the scale of the impulse
response be a linear function of zt.
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value of the indicator vector Zt. Technically, constructing the likelihood of this specification

is a straightforward extension of the linear case, when Zt is a function of lagged values of Yt.

To see that, note that we use the prediction-error decomposition to construct the likelihood

function. Thus, we build a sequence of densities for Zt that condition on past values of Zt,

which includes past values of Yt. Thus, conditional on past values of Yt, Zt is known.32

Second, with Ψk a function of εt−k (as in the case with asymmetry), one needs to make

sure that the contemporaneous shocks are uniquely identified given a series of past shocks and

given a set of model parameters. In other words, with the contemporaneous matrix depending

on the value of the shock, it is important that there is a one to one mapping from structural

to reduced form errors. Considering equation (5) in the non-linear case, we have

Ψ±0 (εt+1)εt+1 = Yt+1 −
K∑
k=0

Ψ±k εt−k, (10)

and we need to ensure that Ψ±0 (εt+1)εt+1 is only satisfied by a unique value εt+1 given the model

parameters. However, this is always the case when Ψ±0 is lower triangular, i.e., with a recursive

identification scheme. To see that, consider the bivariate case with εt+1 = (ε1,t+1, ε2,t+1)
′ and

denote ψ+
0,ij(εt+1) the (i, j) elements of the contemporaneous impact matrix Ψ+

0 (εt+1). We

have

Ψ±0 (εt+1) =

 ψ±0,11(ε1,t+1) 0

ψ±0,21(ε1,t+1) ψ±0,22(ε2,t+1)

 , (11)

where the sign of ψ±0,ii is fixed and independent of εi,t+1. Through a normalization, the elements

on the diagonal are set to be always positive.

From (11) and (10), it is easy to show that the vector εt+1 is uniquely identified. The first

32If we wanted to use an indicator function that was not part of the vector of endogenous variables Yt, this
would also be possible by using a quasi-likelihood approach. That is, we would build a likelihood function that
not only conditions on the parameters, but also the sequence of indicators Zt. This would in general not be
efficient because the joint density of Zt and Yt could carry more information about the parameters in our model
than the conditional density we advocate using. As long as Zt is highly correlated with elements of (functions
of) Yt, this loss in efficiency will likely be small.
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component ε1,t+1 is given by the first equation with

ε1,t+1 =
Y1,t

ψ±0,11(zt+1)

which is uniquely identified since ψ±0,11(ε1,t+1) > 0. Then, the second component ε2,t+1 is given

by

ε2,t+1 =
Y2,t − ψ±0,21(ε1,t+1)ε1,t+1

ψ±0,22(ε2,t+1)

which is uniquely identified since ψ±0,22(zt+1) > 0. We can proceed similarly in a higher dimen-

sional case.

Finally, to write down the one-step ahead forecast density p(Yt|θ,Yt−1) as function of past

observations and model parameters, we use the standard result (see e.g., Casella-Berger, 2002)

that for Ψ0 a function of εt+1, we have

p(Ψ0(εt+1)εt+1|θ, y
t) = Jt+1p(εt+1)

where Jt+1 is the Jacobian of the mapping from εt+1 to Ψ0(εt+1)εt+1 and where p(εt+1) is the

density of εt+1.
33

4.2.2 Starting values and prior elicitation

As initial guesses, we set the parameters capturing asymmetry and state dependence to zero

(i.e., no non-linearity).34 This approach is consistent with the starting point (the null) of this

paper: structural shocks have linear effects on the economy, and we are testing this null against

the alternative that shocks have some non-linear effects. We then center the priors for these

parameters at zero with loose priors.

33In our case with asymmetry, this Jacobian is simple to calculate, but the mapping is not differentiable at
ε = 0. Since we will never exactly observe ε = 0 in a finite sample, we can implicitly assume that in a small
neighborhood around 0, we replace the original mapping with a smooth function.

34An alternative would be to obtain initial estimates about possible non-linear effects. One option could be
to combine Jorda’s (2005) local projection method (which can accommodate non-linearities) with the structural
shocks recovered from the VAR in order to get first estimates of the non-linear impulse responses.
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5 Monte Carlo simulations

In this section, we conduct a number of Monte-Carlo simulations to illustrate the working of

GMA models as well as to evaluate their performances in finite sample. We first evaluate the

performances of GMA models in the linear case, and we then evaluate the ability of GMA

models to detect (i) asymmetry alone and (ii) asymmetry and state-dependence.

Importantly, in all our Monte Carlo exercises, the estimated GMA models will be misspec-

ified and only approximate the true Data Generating Process (DGP). We follow this strategy

for two reasons. First, we want to be conservative and stack the odds against our proposed

method. Second, this strategy is consistent with the idea that a GMA is meant to approximate

the true DGP. By focusing on the approximate shape of the impulse response and thereby

economizing on degrees of freedom, a GMA may (i) provide better estimates of the impulse

responses in short sample, –a classical example of the bias-variance trade-off–, and (ii) be able

to detect non-linearities. One goal of these simulation exercises is to evaluate whether this is

indeed the case.

To simulate data, we proceed as follows. We first estimate a structural VAR on US data,

invert it to obtain a set of impulse responses
{

Ψ̂k

}∞
k=0

, and we modify these baseline impulse

responses to introduce non-linearities, in particular asymmetry or state dependence. From

these impulse responses, we generate simulated data from

Yt =

∞∑
k=0

Ψ̂k(εt−k,Zt−k)εt−k (12)

with εt Normally distributed, Eεt = 0 and Eεtε
′
t = I.

In each scenario, we use 50 Monte-Carlo replications with a sample size T = 200, which

roughly corresponds to the sample size available for the US.
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5.1 Linear model

Our first simulation is meant to illustrate the working of Gaussian mixture approximations in

the linear case. While we do not claim that GMAs are superior to VARs, we want to convey

that GMAs can provide a useful alternative approach, especially in short samples.

The DGP is obtained from estimating the quarterly VAR(4) considered previously with

the unemployment rate, the PCE inflation rate and the federal funds rate over 1959-2007. The

impulse response functions to a monetary shock can be seen in Figure 1.

For each simulated dataset, we estimate (i) a GMA(2), and (ii) a VAR(4), and we evaluate

the Mean-Square Error (MSE) of the estimated impulse response function over the horizons

H = 1...25.35 Importantly, we stack the odds in favor of the VAR and against the GMA model,

because the estimated VAR is a well specified model.

The first row of Table 1 presents the average MSEs over the simulations. For unemployment

and inflation, the GMA(2) is respectively 25 percent and 50 percent more accurate on average

than the VAR. For the fed funds rate, the MSE is small in both cases, but again with a

slight advantage for the GMA.36 Table 1 also presents the average length and coverage rate of

the confidence bands capturing the 95 percent posterior probability and compares it with the

confidence bands implied by a Bayesian VAR with loose, but proper, Normal-Whishart priors.

We report the average length and coverage rate at the time of the peak effect of the shock of

the variable of interest. We can see that the average lengths are smaller for the GMA than for

the VAR, while the coverage rate of the GMA remains good.

5.2 Non-linear models

We now evaluate the performances of GMA models in detecting non-linearities. For the DGP,

we start from a VAR with (log) GDP, inflation and the fed funds rate, where we detrend

35Specifically, we report MSE =
∑25
h=1(ψ̂k − ψk)2 where ψ̂k is the estimated impulse response function and

ψk is the true function.
36Intuitively, the reason for the superior performances of GMA is the fact that the VAR often shows counter-

factual oscillation patterns. In contrast, the GMA(2) is disciplined by its stricter parametrization.
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GDP with a quadratic trend. Although we could have used the same VAR as previously, we

preferred this one, because the price puzzle is more substantial in this specification (Figure

4), so that the Monte-Carlo exercise will be a more stringent test on a GMA(1) model that

cannot capture the oscillating pattern in inflation. Again, the goal of the exercise is to assess

whether a GMA model that only approximates the main feature of the impulse responses can

still recover non-linearities.

Asymmetry

We first consider a DGP where the impulse response functions to monetary shocks depend on

the sign of the shock. To introduce asymmetry, we modify the impulse responses
{

Ψ̂k

}∞
k=0

to make them depend on the sign of the monetary shock, and Figure 4 plots the asymmetric

impulse response functions. For realism, the level of asymmetry that we simulate is chosen to

roughly match the magnitude of the asymmetry we later find in US data. Note that we do

not impose asymmetry for the response of the fed funds rate. This is done to test whether our

procedure incorrectly reports the existence of asymmetry when there is none.

We estimate a GMA(1) with asymmetry on each set of simulated data, and Table 2 presents

summary statistics for a+ − a−, which captures the amount of peak asymmetry for each one

of the three variables in the model.

A number of results emerge. First, as shown by the frequency of rejection of zero coefficient

for a+ − a−, the algorithm can detect asymmetry when it exists (case of output and inflation,

first row of Table 2), even when the impulse response is not generated by one Gaussian, and

even when, as with inflation, there is a strong oscillating pattern that cannot not captured

by a one Gaussian approximation.37 This is encouraging, because it supports our motivating

idea that by approximating the most important feature of an impulse response, one can detect

important non-linearities. Moreover, the algorithm does not detect asymmetry when there

is none (case of the fed funds rate). Second, looking at the mean and standard-deviation of

37Specifically, the 90 percent posterior probability of a+−a− excludes zero for output and inflation respectively
94 and 90 percent of the time.
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the estimates across Monte-Carlo replications (second row of Table 2), we can see that the

algorithm under-estimates the amount of asymmetry (both for output and inflation). This

indicates that in our empirical application on US data, our algorithm may under-estimate

the magnitude of asymmetry present in the data. Third, the dispersion (third row) in the

estimates across the Monte-Carlo replications is reasonably small, while the coverage rate of

the posterior distribution – the frequency with which the true value lies within 90 percent of

the posterior distribution–, is also good (fourth row).

Asymmetry and state dependence

We now consider a DGP where the impulse response functions to monetary shocks depend

on the sign of the shock as well as the state of the business cycle. We introduce asymmetry

exactly as in the previous exercise, but in addition, we posit that there is state dependence

for output in response to a positive shock, i.e., γ+Y 6= 0 in (9), where the indicator variable zt

is the US unemployment rate.38 Again, the value of γ+Y is chosen to be of the same order of

magnitude as our later empirical findings with US data, and we set γ+Y = 1.

We estimate a GMA(1) with asymmetry and state dependence on each set of simulated

data, and Table 3 summarizes the results. A number of results emerge. First, the algorithm is

very successful at detecting state dependence in output and the fact that γ+Y 6= γ−Y (first set of

columns in Table 3). In the 50 Monte-Carlo replications, we detect γ+Y 6= γ−Y in all samples but

one (first row). The algorithm also estimates the values of γ+Y − γ
−
Y without bias (second row),

with reasonable dispersion (third row) and with good coverage (fourth row). Importantly, the

algorithm detects no state dependence when there is none (case of inflation), as can be seen

from the close to zero frequency of rejection of zero coefficient. Second, the algorithm can

still pick up the existence of asymmetry for output and inflation (α+ − α− 6= 0, second set of

columns). With a larger number of free parameters, estimation is more uncertain, but we can

38We could have used any indicator, but we wanted an indicator that has the same time series properties as
the one we use on US data. We thus chose to use the US unemployment rate, which is the indicator we used in
the application section.

24



still detect the existence of asymmetry in more than 80 percent of cases. Finally, looking at the

estimates for γ+Y and γ−Y separately, the algorithm estimates the value of γ+Y –the magnitude of

the non-linearity– with a downward bias, which seems to translate into an upward bias for γ−Y ,

although that bias is not significant over the 50 Monte-Carlo replications (last four columns of

Table 3).

6 Application: the non-linear effects of monetary shocks

In this section, we apply our proposed GMA approach and study the non-linear effects of

monetary shocks. We consider a small-scale model of the US economy in the spirit of Primiceri

(2005), where Yt includes the unemployment rate, the PCE inflation rate and the federal funds

rate. As in Primiceri (2005), monetary policy affects the economy with a lag, and the matrix

Ψ0 is assumed to be lower-triangular. The data cover 1959Q1 to 2007Q4, and we exclude

the latest recession where the fed funds rate was constrained at zero and no longer captured

variations in the stance of monetary policy.39,40 When constructing the likelihood, we consider

a moving-average model with K = 45, chosen to be large enough such that the lag matrix

coefficients Ψk are close enough to zero for k > K.41

As a preliminary test, we start by checking that a linear GMA model performs well against

a standard VAR model. Then, we present the non-linear impulse response functions obtained

from a non-linear GMA with asymmetry alone first, and then with asymmetry and state

dependence.

39As an alternative, we could include data from the latest recession if we used the one-year or two-year
government bond rate as the policy indicator (Gertler and Karadi, 2015). The one-year government bond rate
remained positive until 2011 and it was argued that the zero lower bound was not a constraint on the Federal
Reserve’s ability to manipulate the two-year rate (Swanson and Williams, 2014). Results in terms of asymmetry
and state dependence were similar.

40While we use quarterly data as in Primiceri (2005), we also conducted our estimation using monthly data.
Results were very similar.

41As a robustness check, we consider a higher moving-average lag-length with K = 55. Results were identical.
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6.1 The linear case: VAR versus GMA

First, we evaluate our GMA approach by doing a simple model comparison between a linear

GMA(1) and a regular VAR with 4 lags.

Table 4 reports the (log) marginal densities for the GMA and the VAR, so that a model

comparison can be readily obtained by computing the Bayes factor (obtained by taking the

exponential of the difference in (log) marginal densities) after positing equal priors for the two

competing models. Encouragingly for our approach, Bayesian model comparison favors the

more parsimonious GMA(1) with a Bayes factor of about 400.

6.2 The asymmetric effects of monetary shocks

We now estimate an asymmetric GMA model in which the impulse responses to monetary

shocks depend on the sign of the shock.42,43 As detailed in the methodology section, to choose

the appropriate order of the GMA model, we consider models with an increasing number

of Gaussian basis functions. As shown in columns (3) to (5) of Table 4, Bayesian model

comparison favors a GMA(2) , and from now on we will report and discuss the results obtained

using a GMA(2).

We can see that Bayesian model comparison strongly favors a model with asymmetry in the

impulse responses to monetary shocks: the (log) marginal density of an asymmetric GMA(2)

is about 20 log-points larger than the linear GMA(1), which implies a Bayes factor of about

108. Against the VAR, the Bayes factor is 1011.

Figure 5 plots the impulse responses (in percentage points) of unemployment, the price

42The impulse responses to the other shocks were modeled with linear (i.e., not asymmetric) GMAs. As a
robustness check, we verified that our findings are not driven by this restriction by estimating a model with
non-linearity in response to all shocks.

43As another robustness check, we evaluated the presence of asymmetry using monetary shocks identified
through the narrative approach by Romer and Romer (2004) and extended until 2007 by Coibion et al. (2012).
Encouragingly, despite very different identification methodologies, the correlation between the (median) shocks
recovered with the recursively identified asymmetric GMA and the Romer and Romer shocks is at high at 0.62
over 1966q1-2007q4. We estimated an asymmetric GMA model with 4 variables included in the following order:
the Romer and Romer shocks, unemployment, inflation and the fed funds rate, and we studied the asymmetric
impulse responses to the first shock. The evidence for asymmetry was very similar to the one found with the
recursive identification scheme.
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level and the federal funds rate to a one standard-deviation monetary shock. The thick lines

denote the impulse response functions implied by the posterior mode, and the error bands are

the 5th and 95th posterior percentiles.

The evidence for asymmetry is striking: following a contractionary monetary shock, which

represents a 70 basis points increase in the fed funds rate, unemployment increases by about

0.15 percentage points (ppt), whereas a (linear) VAR implies only a 0.10 ppt increase. In

contrast, following an expansionary monetary shock (a 70 basis points decrease in the fed

funds rate), the response of unemployment is small (a decline of 0.04 percentage points) and

non-significantly different from zero. Figure 6 plots the posterior distribution of the difference

in impulse responses between positive and negative shocks. This figure can be seen as a point-

wise test of difference in impulse responses at different horizons. The 90 percent posterior

interval of the difference in impulse responses of unemployment is substantially above zero for

horizons 3 to 10, in line with the conclusion from the Bayes factors that the data support a

model with asymmetric impulse responses to monetary shocks.44

Although the error bands are too large to be conclusive, the response of the price level also

displays an interesting asymmetric pattern: the price level appears more sticky following a

contractionary shock –displaying a larger price puzzle– than following an expansionary shock

for which the price level drops on impact and displays no price puzzle. This is exactly the pat-

tern one would expect if downward price (or wage) rigidity was responsible for the asymmetric

response of unemployment.45

Finally, we also find asymmetry in the response of the fed funds rate to a monetary shock.

A monetary shock generates a slightly more persistent increase in the fed funds rate than its

expansionary counterpart. This can be seen in the bottom right panel where the response of

the fed funds rate is more short-lived following an expansionary shock, or in Figure 6 where

44In the case of the GMA(1) model, an alternative test for asymmetry is a Wald-type test on a+ − a−. This
test (not shown) gives a similar conclusion: for unemployment, the 90 percent posterior interval of a+ − a−
excludes zero.

45The existence of downward wage rigidity is supported empirically by the scarcity of nominal wage cuts
relative to nominal wage increases (e.g., Card and Hyslop, 1997).
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the posterior distribution of the differences in the responses of the fed funds rate exclude zero

from horizons 1 to 3.46

6.3 The asymmetric and state-dependent effects of monetary shocks

In this section, we enrich our model by allowing the effect of monetary policy to depend on

both the state of the business cycle and the sign of the shock. Intuitively, we would like to test

whether monetary policy is more powerful at stimulating the economy in a period of economic

slack, and whether an expansionary shock is more likely to generate inflation in a tight labor

market.

We thus estimate model (9) with a GMA(2), and we use last period’s unemployment rate

as cyclical indicator (zt).
47 Table 4 shows that Bayes model comparison strongly favors the

model with asymmetry and state dependence over all the other models.

To visualize the effects of the state of the cycle on the impulse responses, Figure 8 shows

how the peak effect of a monetary shock on unemployment or inflation depends on the state

of the business cycle at the time of the shock, and to put results into perspective, Figure 7

plots the unemployment rate (i.e., the indicator variable zt) along with the identified monetary

shocks.

The first two rows plot the peak responses of respectively unemployment and inflation to

contractionary and expansionary shocks, while the last row plots histograms of the distributions

of respectively contractionary shocks and expansionary shocks over the business cycle. The

46One way to gauge how much of the asymmetric response of unemployment can be explained by the asym-
metric response of the fed funds rate is to proceed as in the government spending multiplier literature (e.g.,
Ramey and Zubairy, 2014) and to compute the total change in unemployment relative to the total change in

the fed funds rate, that is to compute m =
K∑
k=0

ψUk /
K∑
k=0

ψffrk for respectively positive and negative shocks. After

“controlling” for the total change in the fed funds rate, the asymmetry is still present withm+ = .24 > m− = .12.
47This approach has the advantage of being self contained in that the unemployment rate is itself an endoge-

nous variable whose behavior is described by (9). As an alternative, we also experienced with (i) the average
growth rate of GDP over a one year period centered on the current quarter, and (ii) the unemployment rate
detrended with an HP-filter (λ = 105). The latter specification was used to make sure that our results were
not driven by slow moving trends (e.g., due to demographics) in the unemployment rate, which could make the
unemployment rate a poor indicator of the amount of economic slack (see e.g. Barnichon and Mesters, 2015).
Both specifications gave similar conclusions.
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last row of Figure 8 has two purposes: (i) make sure that our results are not driven by an

unusual distribution of shocks over the business cycle, say with more contractionary shocks in

expansions than in recessions (which could happen in a short sample), (ii) get a sense of the

range of unemployment rates over which we identify the coefficients capturing state dependence.

Regarding (i), Figure 8 shows not marked difference in the distributions of positive and negative

shocks over the business cycle.48 Regarding (ii), most of the unemployment variations used to

infer state dependence occur between 5 and 7 percent.

We first discuss the response of unemployment. The upper-left quadrant in Figure 8 depicts

how the peak effect of a contractionary shock on unemployment varies as we move from a

tight labor market (unemployment at 4 percent) to a slack labor market (unemployment at 8

percent). The thick dashed line represents the VAR estimate. Since the VAR is linear, that

latter estimate is constant as the peak effect of monetary policy is independent of the state of

the business cycle. The thick blue line depicts estimates from our non-linear framework. We

can notice that the effect of a contractionary policy increases with the unemployment rate,

being about 30 percent larger at a business cycle trough than at a business cycle peak.

For expansionary shocks (bottom left quadrant), the evidence is not as strong, but our

estimates suggest some mild state dependence: the higher the unemployment rate, the larger

the real effect of an expansionary policy. In fact, the 90th posterior probability bands start

including the VAR estimate when the unemployment rate rises above 7 percent. That being

said, the asymmetry between expansionary and contractionary interventions remains, and an

expansionary policy is always considerably less potent than its contractionary counterpart.

We now turn to the response of inflation, depicted in the right-hand column of Figure

8. While we do not find any evidence of state dependence for contractionary shock, we find

strong evidence that expansionary shocks generate a substantial rise in inflation when the

unemployment rate is low. Interestingly, this finding is consistent with a standard Keynesian

narrative, according to which a monetary authority trying to expand an economy already above

48A Kolmogorov-Smirnov test confirms this visual inspection, as we cannot reject the null that the two
distributions are identical.
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potential would only achieve higher inflation through increased price/wage pressures.

7 Conclusion

This paper proposes a new method to identify the (possibly non-linear) dynamic effects of

structural shocks by using Gaussian basis functions to approximate impulse response functions.

We apply our approach to the study of monetary policy and find that the effect of a monetary

intervention depends strongly on the sign of the intervention. A contractionary shock has a

strong adverse effect on output, larger than implied by linear estimates, but an expansionary

shock has, on average, no significant effect on output. Interestingly, and while the evidence

for inflation is relatively uncertain, the behavior of the inflation is consistent with asymmetry

emerging (at least in part) out of downward price/wage rigidities: inflation displays a more

marked price puzzle following a contractionary shock than following an expansionary shock.

Finally, the effect of a monetary shock also depends on the state of the business cycle at the time

of the intervention: An expansionary shock during a time a low unemployment generates not

significant drop in unemployment but leads to a burst of inflation, consistent with a standard

Keynesian narrative.

Although this paper studies non-linearities in the effect of monetary policy, Gaussian Mix-

ture Approximations of the impulse responses may be useful in many other contexts. First,

as a direct extension of the current paper, our method could be used to estimate the non-

linear effects of other important shocks where the existence of asymmetry or state-dependence

remains an important and unresolved question; notably fiscal policy shocks (Auerbach and

Gorodnichenko, 2012, Ramey and Zubairy, 2014) or credit supply shocks (Gilchrist and Zakra-

jsek, 2012). Second, while we presented our method in the context of a recursive identification

scheme, our method is quite general and can also be applied to other popular identification

schemes, such as sign-restrictions (Uhlig, 2005) or long-run restrictions (Blanchard and Quah,

1989, Gali 1999). Finally, the parametrization offered by GMA models and the associated

efficiency gains may be useful even for linear models, where the sample size is small and/or
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the data are particularly noisy.
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Appendix: Proof of Theorem 1

Following Alspach and Sorenson (1971, 1972) in the context of approximating distributions, the

problem of approximating a function f can be considered within the context of delta families

of positive types.

Delta families are families of functions which converge to a delta function as a parameter

characterizing the family converges to a limit value.

Let {δλ} be a family of functions on the interval ]−∞,+∞[ which are integrable over every

interval. {δλ} forms a delta family of positive type if the following conditions are satisfied:

1. For every constant γ > 0, δλ tends to zero uniformly for γ ≤ |x| ≤ ∞ as λ→ λ0

2. There exist s in R so that
∫ s
−s δλ(x)dx −→ 1 as λ tends to some limit value λ0

3. δλ(x) ≥ 0 for all x and λ

Defining

δλ(x) ≡ Gλ(x) =
1√

2πλ2
e−

x2

λ2 , (13)

it is easy to see that the Gaussian functions {Gλ} form a delta family of positive type as λ→ 0

(i.e., λ0 = 0). That is, the Gaussian function tends to the delta function as the variance tends

to zero.49

We can then make use of the following theorem.

Theorem: The sequence {fλ} which is formed by the convolution of δλ and f

fλ(x) =

∫ +∞

−∞
δλ(x− u)f(u)du (14)

converges uniformly to f as λ→ λ0 for x on every interval [x0, x1] of R.

Proof : see Korevaar (1968).

49Note that this proof can be easily applied to other functions (such as the inverse quadratic function x →
1

1+( xλ )2
) that form a delta family of a positive type, so that our approach is not restricted to Gaussian functions.
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Using (13) in (14), the function fλ given by

fλ(x) =

∫ +∞

−∞
Gλ(x− u)f(u)du (15)

converges uniformly to f as λ→ 0 for x in some arbitrary interval [x0, x1] of R.

Next, we want to approximate (15) with a Riemann sum. To do so, first rewrite fλ as

fλ(x) =

∫ −s
−∞

Gλ(x− u)f(u)du︸ ︷︷ ︸
=A(λ,x)

+

∫ +s

−s
Gλ(x− u)f(u)du+

∫ +∞

s
Gλ(x− u)f(u)du︸ ︷︷ ︸

=B(λ,x)

(16)

for s > 1.

Note that for any s > 1, we have

0 ≤
∫ +∞

s
Gλ(u)du

≤ 1√
2πλ2

∫ +∞

s
e−

u
λ2 du since u2 > u for any u in [s,+∞[, s > 1

≤
[
−λ2√
2πλ2

e−
u
λ2

]+∞
s

=
|λ|√
2π
e−

s
λ2 −→

λ→0
0

which shows that ∀s > 1, lim
λ−>0

∫ +∞
s Gλ(u)du = 0. Symmetrically, we can show lim

λ−>0

∫ −s
−∞Gλ(u)du =

0.

Going back to (16), we have

0 ≤ |B(λ, x)| ≤M
∫ x−s

−∞
Gλ(t)dt

where M = sup
x∈R
|f(x)| . Since x ∈ [x0, x1], we can choose an s > 1 such that x − s < −1, so

that we can apply the previous result and get

lim
λ→0
|B(λ, x)| = 0. (17)
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Proceeding symmetrically, we have lim
λ→0
|A(λ, x)| = 0.

Finally, since the function u 7→ Gλ(x−u)f(u) is continuous over [−s, s], we can approximate∫ +s
−s Gλ(x− u)f(u)du with a Riemann sum. Denoting

fλ,N (x) =

N∑
n=1

Gλ(x− ξn)f(ξn) (ξn − ξn−1)

where ξn = −s+ n2s
N , we get that

lim
N→∞

fλ,N (x) =

∫ +s

−s
Gλ(x− u)f(u)du. (18)

Denoting an = f(ξn) (ξn − ξn−1), bn = ξn and cn = λ, using (18), (17) in (16) and combining

with (15), we get that

lim
λ→0

(
lim
N→∞

fλ,N (x)

)
= f(x)

which completes the proof .
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Figure 1: Impulse response functions (in ppt) of the unemployment rate, the (log) price level
and the federal funds rate to a one standard-deviation monetary shock. Impulse responses esti-
mated with a VAR (dashed-line) or approximated using one Gaussian basis function (GMA(1),
left-panel, thick line) or two Gaussian basis functions (GMA(2), right panel thick line). Esti-
mation using data covering 1959-2007.
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Figure 2: Gaussian basis functions (dashed lines) used by a GMA(2) to approximate the
responses of unemployment, inflation and the fed funds rate to a monetary shock. The basis
functions are appropriately weighted so that their sum gives the GMA(2) parametrization of
the impulse response functions (solid lines).
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Figure 3: Interpreting an impulse response function with a GMA(1) model.
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Figure 5: Impulse response functions (in ppt) of the unemployment rate, the (log) price level
and the federal funds rate to a one standard-deviation monetary shock. Estimation from a
VAR (dashed-line) or from a GMA(2) with asymmetry (plain line). Shaded bands denote the
5th and 95th posterior percentiles. For ease of comparison, responses to the expansionary
shock are multiplied by -1. Estimation using data covering 1959-2007.
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Figure 8: Peak effect of monetary policy on unemployment and inflation (in percentage points)
as a function of the state of the business cycle (measured with the unemployment rate) for one
standard deviation contractionary monetary shocks (left panel) and expansionary monetary
shocks (right panel). The dashed lines represent the 5th and 95th posterior percentiles. The
thick-dashed line is the linear VAR estimate. The bottom panel plots the distribution of (re-
spectively) contractionary shocks and expansionary shocks over the business cycle. Estimation
using data covering 1959-2007.
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Table 1: Summary statistics for Monte Carlo simulation with a linear model 

 U 𝛑 ffr 

 VAR GMA VAR GMA VAR GMA 

       

MSE 0.057 0.043 0.077 0.041 0.003 0.002 

 
Avg length 
(at peak effect) 

0.16 0.13 0.27 0.11 0.05 0.03 

 
Coverage rate 
(at peak effect)  

0.94 0.83 1 0.78 0.94 0.93 

       
Note: Summary statistics over 50 Monte-Carlo replications. MSE is the mean-squared error of the estimated impulse response function over horizons 1 to 25. Avg length is the 
average distance between the lower (2.5%) and upper (97.5%) confidence bands at the time of peak effect of the monetary shock. The coverage rate is the frequency with which 
the true value lays within 95 percent of the posterior distribution. The VAR estimates and confidence bands are obtained from a Bayesian VAR with Normal-Whishart priors. U, 
𝛑 and ffr denote respectively unemployment, inflation and the fed funds rate. 

 
 
 
 
Table 2: Summary statistics for Monte Carlo simulation with asymmetry 

 a+-a- 

 y 𝛑 ffr 

    

Frequency of rejection 
of zero coefficient 0.94 0.90 0.08 

Mean  
(true value) 

-0.82 
(-1.00) 

-0.50 
(-0.60) 

0.03 
(0.00) 

Std-dev  0.28 0.17 0.12 

Coverage rate  0.82 0.86 0.88 

    
Note: Summary statistics over 50 Monte-Carlo replications. For each coefficient of interest, "Frequency 
of rejection of zero coefficient" is the frequency that 0 lies outside 90 percent of the posterior 
distribution, and "Coverage rate" is the frequency with which the true value lies within 90 percent of the 
posterior distribution. y, 𝜋 and ffr denote respectively output, inflation and the fed funds rate.  

 
 
 
 
 



 
 
Table 3: Summary statistics for Monte Carlo simulation with asymmetry and state dependence 

 γ+-γ- α+-α- γ+ γ- 

 y 𝛑 y 𝛑 y 𝛑 y 𝛑 

 
        

 
Frequency of 
rejection of 
zero coefficient 
 

0.96 0.03 0.82 0.80 0.87 0.06 0.20 0.05 

Mean 
(true value) 

0.96 
(1.00) 

0.02 
(0.00) 

-0.78 
(-1.00) 

-0.48 
(-0.60) 

0.71 
(1.00) 

0.00 
(0.00) 

-0.21 
(0.00) 

-0.00 
(0.00) 

Std-dev 0.26 0.17 0.37 0.23 0.31 0.19 0.23 0.19 

Coverage rate  0.84 0.92 0.71 0.70 0.68 0.92 0.65 0.90 

   
      

Note: Summary statistics over 50 Monte-Carlo replications. For each coefficient of interest, "Frequency of rejection of zero coefficient" is the frequency that 0 lies 
outside 90 percent of the posterior distribution, and "Coverage rate" is the frequency with which the true value lies within 90 percent of the posterior distribution. 
y and 𝜋 denote respectively output and inflation. 

 
 
 
 
Table 4: Marginal densities, BIC and AIC 

 VAR GMA(1) GMA(1) 
Asymmetry 

GMA(2) 
Asymmetry 

GMA(3) 
Asymmetry 

 
GMA(1) 

Asymmetry 
State dep. 

 (1) (2) (3) (4) (5) (6) 

       
(log) marginal density 112 118 127 138 107 158 

       
Note: Trivariate models with unemployment, PCE inflation and the fed funds rate estimated over 1959-2007. The VAR estimates and confidence bands are obtained from a Bayesian 
VAR with Normal-Whishart priors. 

 


