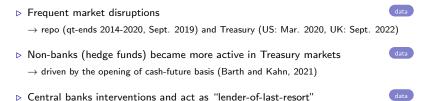
Central Bank's Balance Sheet and Treasury Market Disruptions

Adrien d'Avernas

Damon Petersen *MIT*


Quentin Vandeweyer University of Chicago

Stockholm School of Economics

ECB Conference on Money Markets 2023

Motivation

Drastic evolutions in Treasury and repo markets in the last decade:

ightarrow new facilities to support funding markets and difficulties unwinding balance sheet

This Paper

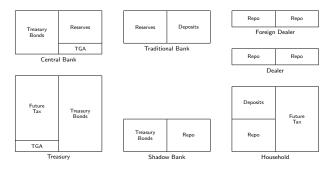
Goal: Propose a theory that jointly explains those facts with minimal assumptions \rightarrow learn about the mechanisms and policy implications (Lucas' Critique proof)

This Paper

Goal: Propose a theory that jointly explains those facts with minimal assumptions \rightarrow learn about the mechanisms and policy implications (Lucas' Critique proof)

Method: Dynamic intermediary AP model matching observations on three shocks:

▷ intermediation shock (e.g., quarter-ends, change in regulation, financial crisis)
▷ net repo supply shock (e.g., tax deadlines, preference shock, relative risk, CBDC)
▷ net treasury supply shock (e.g., issuances, QT, FX reserves rebalancing)

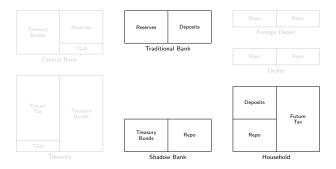

This Paper

Goal: Propose a theory that jointly explains those facts with minimal assumptions \rightarrow learn about the mechanisms and policy implications (Lucas' Critique proof)

Method: Dynamic intermediary AP model matching observations on three shocks: ▷ intermediation shock (e.g., quarter-ends, change in regulation, financial crisis) ▷ net repo supply shock (e.g., tax deadlines, preference shock, relative risk, CBDC) ▷ net treasury supply shock (e.g., issuances, QT, FX reserves rebalancing)

Results:

- Central bank balance sheet is the key state variable (both sides matter)
- \triangleright \exists a policy trade-off between shock frequency and intensity
- > shock duration determines if repo or Treasury market gets more affected
- b facility efficiency depends on specific design



Four frictions:

- > Repo and deposits are imperfect substitutes for households
- Intraday liquidity requirements (from RLAP)
 - \rightarrow Copeland, Duffie, Yang (2022); d'Avernas, Han, Vandeweyer (2022)
- Balance sheet cost (from leverage ratio)
 - → Du, Tepper, Verdelhan (2018); Anderson, Duffie, Song (2019); Du, Hébert, Li (2022);
- Treasury transaction cost

Multiple Shocks

Simplified Framework

Four frictions:

- > Repo and deposits are imperfect substitutes for households
- ▷ Intraday liquidity requirements → Copeland, Duffie, Yang (2022); d'Avernas, Han, Vandeweyer (2022)
- \triangleright Balance sheet cost \rightarrow traditional banks cannot borrow in repo
- Treasury transaction cost

$\frac{\text{Multiple shocks}}{\text{Multiple shocks}} \rightarrow \text{Single preference shock}$

Outline

3 Full Model

Simplified Model Description

General:

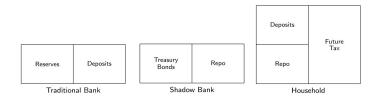
- three agents maximize lifetime utility from consumption
- $\bullet\,$ treasury bonds incur a transaction cost of $\nu\,$

Households:

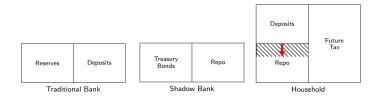
• utility derived from holding imperfect substitute repo and deposits:

$$h_t = d_t^{\alpha_t} p_t^{1-\alpha}$$

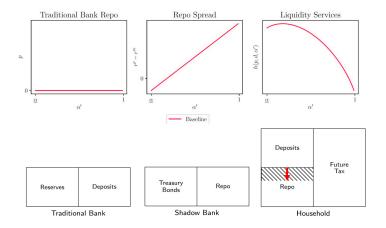
- Preference parameter α_t subject to Poisson shock
 - \rightarrow intensity λ for shock from α^s to $\alpha' \sim \mathcal{U}[\alpha^s, 1]$ and λ' for shock from α' to α^s

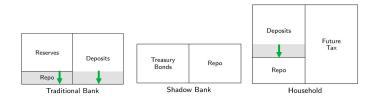

Traditional Bankers:

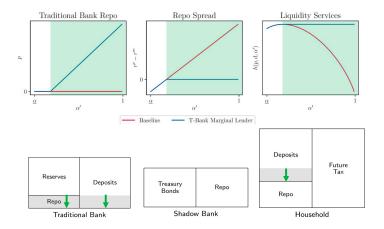
- solve portfolio problem: treasuries b_t , reserves m_t , repo p_t and deposit d_t
- are subject to intraday liquidity stress test (LST): $p_t < \kappa m_t$
- cannot borrow in repo (relaxed below)


Shadow Bankers:

- solve portfolio problem of holding Treasuries (\overline{b}_t) and borrowing in repo (\overline{p}_t)
- cannot issue deposits or hold reserves

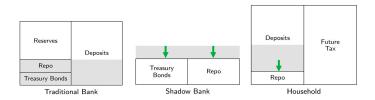

Perfectly Inflexible Benchmark

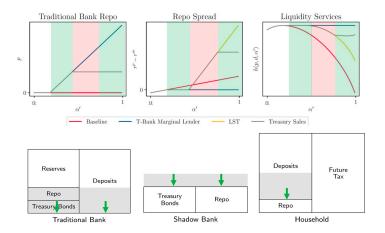

Perfectly Inflexible Benchmark

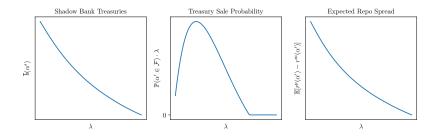

Perfectly Inflexible Benchmark

Banks as Lender-of-Next-to-Last-Resort


Banks as Lender-of-Next-to-Last-Resort


Liquidity Stress Test Regulation


Liquidity Stress Test Regulation


Treasury Sales

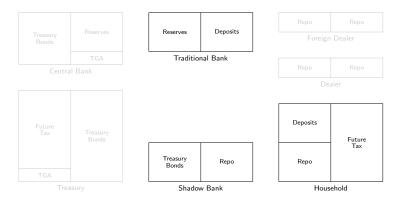
Treasury Sales

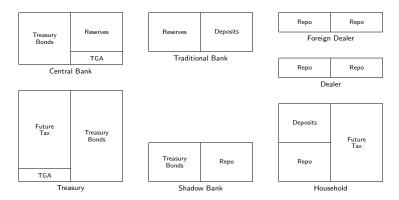
Volatility Paradox

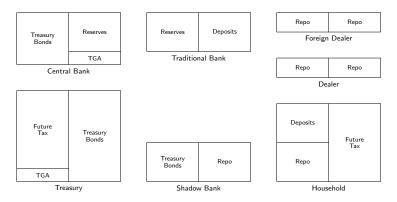
- Lower risk of funding shock (lower Poisson intensity λ):
 - \Rightarrow More shadow banks Treasury holdings and leverage ex-ante
 - \Rightarrow Higher chances of fire-sale
 - ⇒ Larger repo and Treasury spikes
 - \Rightarrow Similar to Brunnermeier and Sannikov (2014)
- More market intervention can increase fragility

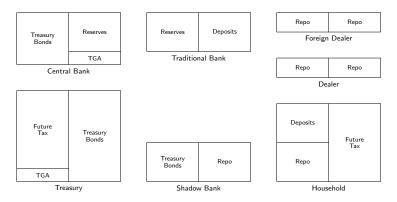
Shock Duration: Repo vs Treasury

- Higher shock duration (lower Poisson intensity λ'):
 - \Rightarrow Higher sale region and lower repo rate spike
 - $\Rightarrow\,$ Better to sell bonds than sustain losses for a long time
- September 2019 repo spike versus March 2020 Treasury spike


Outline




Simplified Wood



- \triangleright Traditional banks also borrow in repo but subject to balance sheet cost χ
- \triangleright Dealer subsidiaries does matched-book intermediation x_t and f_t
 - ightarrow between MMFs (triparty repo) and shadow banks (bilateral repo)

- \triangleright Traditional banks also borrow in repo but subject to balance sheet cost χ
- \triangleright Dealer subsidiaries does matched-book intermediation x_t and f_t
 - \rightarrow between MMFs (triparty repo) and shadow banks (bilateral repo)
- Three additional shocks:
 - \rightarrow Foreign dealer capacity
 - \rightarrow Treasury balance sheet
 - \rightarrow Central Bank balance sheet

Central Bank

> Control effective supply of reserves and Treasuries through its balance sheet

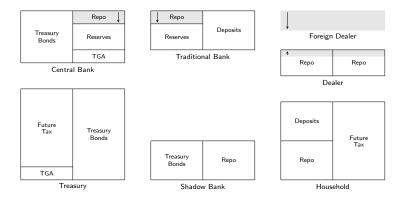
$$\underline{b} + rp_t = m_t + a + rrp_t$$

 m_t reserves available to banks, a Treasury account, \underline{b} Treasury bonds

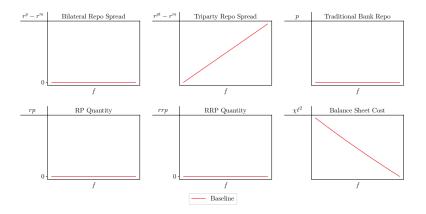
Central Bank

 $\triangleright\,$ Control effective supply of reserves and Treasuries through its balance sheet $b+rp_t=m_t+a+rrp_t$

 m_t reserves available to banks, a Treasury account, <u>b</u> Treasury bonds

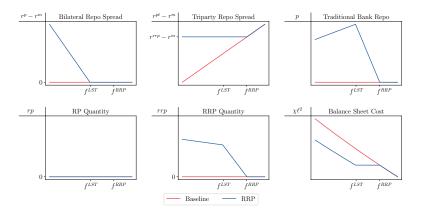

- \triangleright Repo (lending) rate r^{rp} with repo facility rp_t
- \triangleright Reverse repo (borrowing) rate r^{rrp} with reverse repo facility rrp_t

	Repo Rate	Interm. Spread	RRP vol.	TGA vol.
Quarter End	+	+	+	0
Tax Deadline	+	0	-	+
Treasury Issuance	+	+	0	+

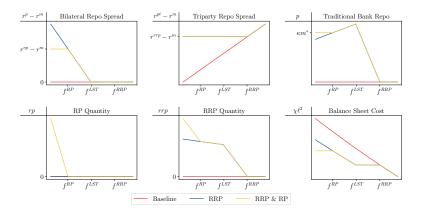

Data Qualitative Summary

- Shock: \downarrow foreign dealer balance sheet
- Captures quarter-end effect following window dressing by non-U.S banks
- > Anbil and Senyuz (2020): increase in reverse repo volumes and repo spreads
- ▷ Correa, Du, and Liao (2022): reserve-draining intermediation
- ▷ Diamond, Jiang, Ma (2022): reserves crowd out lending

Intermediation Shock



Intermediation Shock


• Reserve-draining intermediation not possible

Intermediation Shock: LST + Reverse Repo Facility

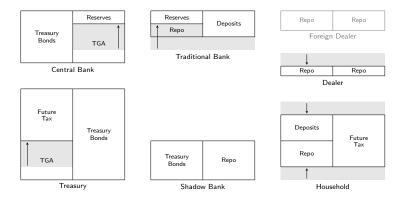
- RRP allows reserve-draining intermediation f^{RRP}
- $\bullet\,$ T-banks need to do matched-book intermediation once LST binds f^{LST}

Intermediation Shock: + Repo Facilities

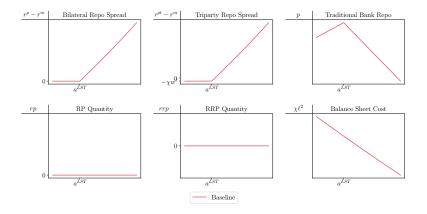
- Fed becomes repo dealer of last resort with RRP+RP facility
- Need to give access to s-banks o/w r^{rp} not a ceiling

Intermediation Shock: Spike Necessary Conditions

A repo or Treasury spike requires all four elements:

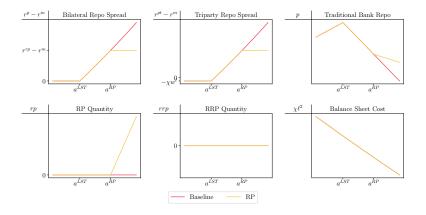

- A balance sheet cost
 - \rightarrow o/w traditional banks, funded with both deposits and repo, hold all Treasuries
- A liquidity stress test regulation (LST)
 - \rightarrow o/w arbitrage between repo and reserves
- A transaction cost
 - \rightarrow o/w shadow banks get rid of Treasuries and funding needs
- A reverse repo facility (RRP)
 - \rightarrow o/w repo spreads adjust through lower Triparty rates

	Repo Rate	Interm. Spread	RRP vol.	TGA vol.
Quarter End	+	+	+	0
Tax Deadline	+	0	-	+
Treasury Issuance	+	+	0	+


Data Qualitative Summary

- Shock: ↑ increase in TGA; ↓ reserves; ↓ repos from households
- Captures:
 - \rightarrow on tax deadlines, corporations move money from MMF to TGA
 - ightarrow September 2019 repo spike happened on a tax deadline
- Du, Liao, and Correa (2022): TGA increase removes reserves from banks

Tax Deadline Shock



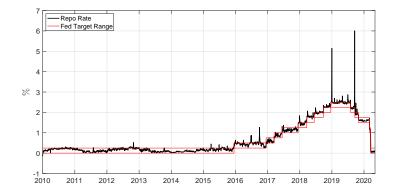
Tax Deadline Shock: Baseline with LST

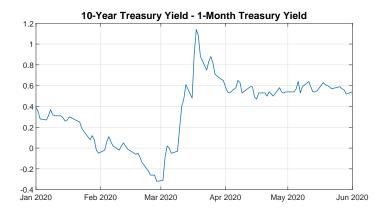
- Decline in repo funding forces banks to step in
- Decline in reserves creates balance sheet space
- MMFs need to provide more repo funding when LST binding

Tax Deadline Shock: RP Facility

- No RRP necessary
- RP could be open only to t-banks (balance sheet cost would not decrease)

	Repo Rate	Interm. Spread	RRP vol.	TGA vol.
Quarter End	+	+	+	0
Tax Deadline	+	0	-	+
Treasury Issuance	+	+	0	+

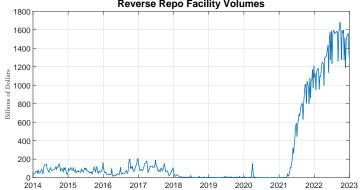

Data Qualitative Summary


- Shock: \downarrow reserves; \uparrow Treasuries
- Increases the demand for repo from shadow banks
- Decreases reserves available to meet LST requirements

Conclusion

- General equilibrium framework to understand Treasury and repo markets
 → accounting consistency is key (every financial asset is someone else's liability)
- Framework rationalize all recent market disruptions
- Facility access design matters for some shocks but not others
- Volatility paradox: importance of shock persistence and intervention expectations

APPENDIX



Barth and Kahn (2021)

Total Treasury Exposure (Hedge Funds)

- ⊳ Half of all hedge funds positions
- Positions funded using a quarter of all dealers' repo lending ⊳

Reverse Repo Facility Volumes

Households

ullet Households also value consumption c and liquidity services s

$$\max_{\{c_{\tau} \ge 0, p_{\tau} \ge 0, d_{\tau} \ge 0\}_{\tau=t}^{\infty}} \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho(u-t)} \Big(\log(c_u) + \beta \log(s_u) \Big) du \right]$$

$$s_t = d_t^{\alpha_t} p_t^{1-\alpha_t}$$

$$dn_t = (p_t r_t^{pt} + d_t r_t^d - c_t^h - r_t^\tau n_t) dt$$

$$p_t + d_t = n_t + \tau_t$$

- Net worth n_t , deposits d, repo p, tax liabilities τ_t
- Liquidity preference α_t subject to shocks
- Trade-off between optimal portfolio composition and rates of return

Banking Sector

$$\max_{\{c_{\tau} \ge 0, w_{\tau}^k \ge 0, w_{\tau}^p \ge 0, w_{\tau}^m \ge 0, w_{\tau}^p, w_{\tau}^x \ge 0, w_{\tau}^d \ge 0\}_{\tau=t}^{\infty}} \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho\tau} \log(c_{\tau} n_{\tau}) d\tau \right]$$

$$\begin{split} \frac{dn_t}{n_t} = & (w_t^k r_t^k + w_t^b r_t^b + w_t^m r_t^m + w_t^p r_t^p + w_t^x (r_t^p - r_t^{pt}) - w_t^d r_t^d - c_t) dt \\ & - \frac{\chi}{2} \ell_t^2 n_t dt + (e^{-\nu(|dw_t^k + |dw_t^b|)} - 1) n_t \\ & w_t^k + w_t^b + w_t^m + w_t^p = 1 + w_t^d \\ & \ell_t = w_t^d - \min\{0, w_t^p\} + w_t^x \end{split}$$

Banking Sector: Investing in Capital and Treasuries

$$\max_{\{c_{\tau} \geq 0, w_{\tau}^k \geq 0, w_{\tau}^b \geq 0, w_{\tau}^p \geq 0, w_{\tau}^p = 0, w_{\tau}^d \geq 0, w_{\tau}^d \geq 0\}_{\tau=t}^{\infty}} \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho\tau} \log(c_{\tau} n_{\tau}) d\tau \right]$$

$$\begin{aligned} \frac{dn_t}{n_t} = & (w_t^k r_t^k + w_t^b r_t^b + w_t^m r_t^m + w_t^p r_t^p + w_t^x (r_t^p - r_t^{pt}) - w_t^d r_t^d - c_t) dt \\ & - \frac{\chi}{2} \ell_t^2 n_t dt + (e^{-\nu(|dw_t^k + |dw_t^b|)} - 1) n_t \end{aligned}$$

$$w_t^k + w_t^b + w_t^m + w_t^p = 1 + w_t^d$$

 $\ell_t = w_t^d - \min\{0, w_t^p\} + w_t^x$

- n_t is the net worth of the banker
- $\bullet \ w^k_t$ and w^b_t are portfolio weight on capital and Treasury bonds
- Changing portfolio composition is costly due to transaction cost

Banking Sector: Issuing Deposits

$$\max_{\{c_{\tau} \ge 0, w_{\tau}^k \ge 0, w_{\tau}^m \ge 0, w_{\tau}^m \ge 0, w_{\tau}^p \ge 0, w_{\tau}^d \ge 0\}_{\tau=t}^{\infty}} \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho\tau} \log(c_{\tau} n_{\tau}) d\tau \right]$$

$$\begin{aligned} \frac{dn_t}{n_t} = & (w_t^k r_t^k + w_t^b r_t^b + w_t^m r_t^m + w_t^p r_t^p + w_t^x (r_t^p - r_t^{pt}) - w_t^d r_t^d - c_t) dt \\ & - \frac{\chi}{2} \ell_t^2 n_t dt + (e^{-\nu(|dw_t^k + |dw_t^b|)} - 1) n_t \\ & w_t^k + w_t^b + w_t^m + w_t^p = 1 + w_t^d \\ & \ell_t = w_t^d - \min\{0, w_t^p\} + w_t^x \end{aligned}$$

- $w_t^d \ge 0$ is the portfolio weight on deposits
- Balance sheet cost: levering up is costly

Banking Sector: Repo and Dealer Subsidiary

$$\max_{\{c_{\tau} \geq 0, w_{\tau}^k \geq 0, w_{\tau}^b \geq 0, w_{\tau}^m \geq 0, w_{\tau}^p > 0, w_{\tau}^p \geq 0, w_{\tau}^d \geq 0\}_{\tau=t}^{\infty}} \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho\tau} \log(c_{\tau} n_{\tau}) d\tau \right]$$

$$\begin{aligned} \frac{dn_t}{n_t} = & (w_t^k r_t^k + w_t^b r_t^b + w_t^m r_t^m + w_t^p r_t^p + w_t^x (r_t^p - r_t^{pt}) - w_t^d r_t^d - c_t) dt \\ & - \frac{\chi}{2} \ell_t^2 n_t dt + (e^{-\nu(|dw_t^k + |dw_t^b|)} - 1) n_t \\ & w_t^k + w_t^b + w_t^m + w_t^p = 1 + w_t^d \\ & \ell_t = w_t^d - \min\{0, w_t^p\} + w_t^x \end{aligned}$$

• ℓ_t is leverage

- w_t^p is lending or borrowing in bilateral repo with s-banks
- $w_t^x \ge 0$ is the intermediation of repo from households to s-banks (triparty)

return

Banking Sector: Reserves

$$\max_{\{c_{\tau} \ge 0, w_{\tau}^k \ge 0, w_{\tau}^b \ge 0, w_{\tau}^m \ge 0, w_{\tau}^p, w_{\tau}^x \ge 0, w_{\tau}^d \ge 0\}_{\tau=t}^{\infty}} \mathbb{E}_t \left[\int_t^{\infty} e^{-\rho\tau} \log(c_{\tau} n_{\tau}) d\tau \right]$$

$$\begin{aligned} \frac{dn_t}{n_t} = & (w_t^k r_t^k + w_t^b r_t^b + w_t^m r_t^m + w_t^p r_t^p + w_t^x (r_t^p - r_t^{pt}) - w_t^d r_t^d - c_t) dt \\ & - \frac{\chi}{2} \ell_t^2 n_t dt + (e^{-\nu(|dw_t^k + |dw_t^b|)} - 1) n_t \\ & w_t^k + w_t^b + w_t^m + w_t^p = 1 + w_t^d \\ & \ell_t = w_t^d + |[w_t^p]^-| + w_t^x \end{aligned}$$

- Liquidity stress test regulation: $w_t^p \leq \kappa w_t^m$
- Repo lending is costly in terms of liquidity

Banking Sector: Shadow Banks

ł

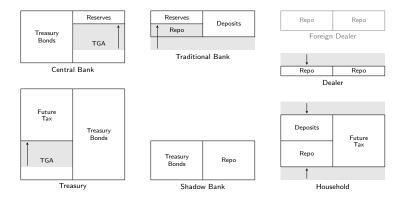
$$\max_{\{c_{\tau} \ge 0, w_{\tau}^{b} \ge 0, w_{\tau}^{p}\}_{\tau=t}^{\infty}} \mathbb{E}_{t} \left[\int_{t}^{\infty} e^{-\rho\tau} \log(c_{\tau} n_{\tau}) d\tau \right]$$

$$dn_t = (w_t^b r_t^b - w_t^p r_t^p - c_t)dt + (e^{-\nu(|dw_t^b|)} - 1)n_t$$

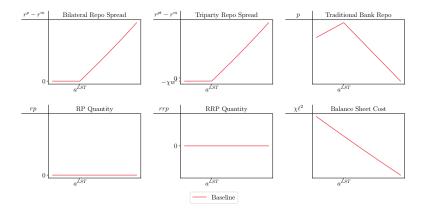
$$w_t^b = 1 + w_t^p$$

- No balance sheet cost and liquidity regulation on shadow banks
- Shadow banks use repo for funding (no deposits)

Full Regression

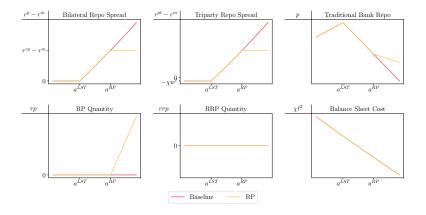

	(1)	(2)	(3)	(4)
	Δ TGCF-IOR	Δ TGCF-TGCR	ΔRRP	ΔŤĠΑ
Quarter End	9.625***	0.0693***	102.4***	29.53***
	(1.967)	(0.017)	(12.117)	(4.732)
Quarter End +1	-5.940	-0.0464	-118.7***	-40.93***
	(4.111)	(0.028)	(18.006)	(5.245)
Tax Deadline	2.739***	0.00929	-0.304	47.10***
	(0.446)	(0.006)	(3.002)	(6.614)
Tax Deadline $+1$	4.547	-0.00979	11.02***	14.57***
	(6.230)	(0.012)	(2.544)	(3.066)
Δ Treasury Issuance	0.0165***	0.0000882***	0.00256	0.0417***
	(0.003)	(0.000)	(0.008)	(0.007)
Constant	-0.275	0.000300	-0.511	-4.056***
	(0.210)	(0.001)	(0.499)	(0.363)
Ν	2,010	1,971	1,277	2,010
Adj. R^2				

	Repo Rate	Interm. Spread	RRP vol.	TGA vol.
Quarter End	+	+	+	+
Tax Deadline	+	0	-	+
Treasury Issuance	+	+	0	+


Data Qualitative Summary

- Shock: \uparrow increase in TGA; \downarrow reserves; \downarrow repos from households
- Captures:
 - \rightarrow on tax deadlines, corporations move money from MMF to TGA
 - ightarrow September 2019 repo spike happened on a tax deadline
- Du, Liao, and Correa (2022): TGA increase removes reserves from banks

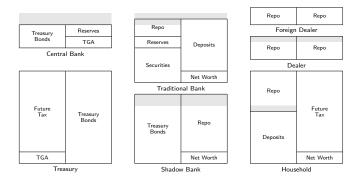
Tax Deadline Shock



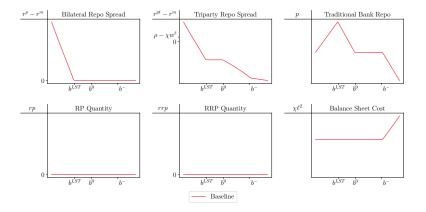
Tax Deadline Shock

- Decline in repo funding forces banks to step in
- Decline in reserves creates balance sheet space
- MMFs need to provide more repo funding when LST binding

Tax Deadline Shock

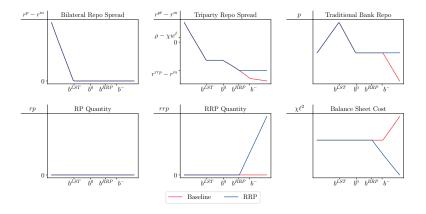

- No RRP necessary
- RP could be open only to t-banks (balance sheet cost would not decrease)

	Repo Rate	Interm. Spread	RRP vol.	TGA vol.
Quarter End	+	+	+	+
Tax Deadline	+	0	-	+
Treasury Issuance	+	+	0	+

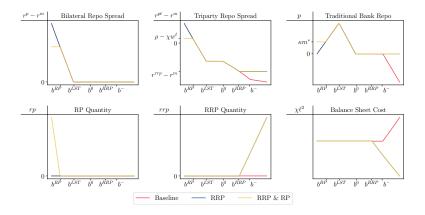

Data Qualitative Summary

- Shock: \downarrow reserves; \uparrow Treasuries
- Increases the demand for repo from shadow banks
- Decreases reserves available to meet LST requirements

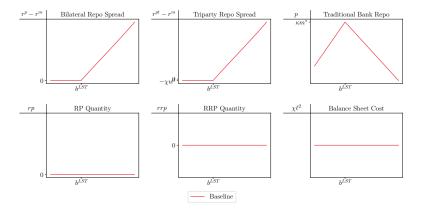
Quantitative Tightening/Easing



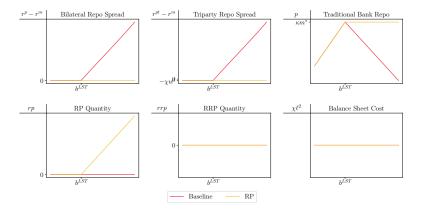
Quantitative Tightening/Easing


- No disruption when t-banks are marginal repo lenders (b_0 to b^{LST})
- Repo rates increase to attract MMFs when LST binding (below b^{LST})
- Higher reserves/bonds \rightarrow less repo demand from s-banks (above b_0)
- T-banks fund themselves in repo if triparty rate low enough

Quantitative Tightening/Easing: Reverse Repo Facility

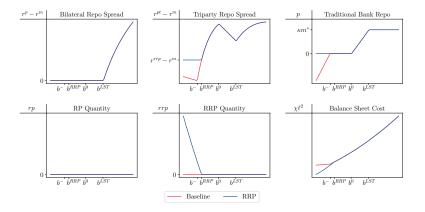

- RRP substitutes reserves for repo and puts a floor on triparty rates
- \bullet Less repo intermediated and less reserves \rightarrow balance sheet cost decrease

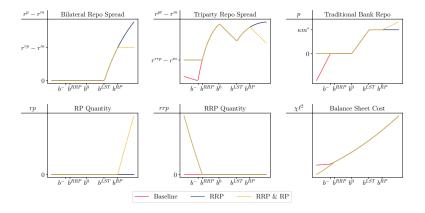
Quantitative Tightening/Easing: Reverse Repo + Repo Facilities



- RP takes care of the spike due to LST
- RRP and RP facilities active at opposite times

Fiscal Shock (Adjusting TGA)


Fiscal Shock (Adjusting TGA)


Fiscal Shock (Adjusting Future Tax)

Fiscal Shock (Adjusting Future Tax)

Fiscal Shock (Adjusting Future Tax)

