Common Factors, Trends, and Cycles in Large Datasets

Matteo Barigozzi

(London School of Economics)

Matteo Luciani

(Federal Reserve Board)

10th ECB Workshop on Forecasting Techniques: Economic Forecasting with Large Datasets June 18-19, 2018

Disclaimer: the views expressed in this paper are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

Measuring US Aggregate Output and Output Gap using Large Datasets

Matteo Barigozzi

(London School of Economics)

Matteo Luciani

(Federal Reserve Board)

10th ECB Workshop on Forecasting Techniques: Economic Forecasting with Large Datasets June 14-15, 2018

Disclaimer: the views expressed in this paper are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.

Two issues in macroeconomic:

Two issues in macroeconomic:

• Estimate aggregate output

Two issues in macroeconomic:

• Estimate aggregate output

Ø Decompose it into potential output and output gap

Two issues in macroeconomic:

• Estimate aggregate output

- Measuring aggregate output accurately is difficult.
- $GDP GDI \neq 0$

Observation Decompose it into potential output and output gap

Two issues in macroeconomic:

• Estimate aggregate output

- Measuring aggregate output accurately is difficult.
- $GDP GDI \neq 0$
- Observation Decompose it into potential output and output gap
 - ullet unobservable \Longrightarrow statistical/economic model to estimate them

Two issues in macroeconomic:

• Estimate aggregate output

- Measuring aggregate output accurately is difficult.
- $GDP GDI \neq 0$
- Ø Decompose it into potential output and output gap
 - ${\scriptstyle \bullet}$ unobservable \Longrightarrow statistical/economic model to estimate them

We tackle both issue by letting the data speak

Two issues in macroeconomic:

• Estimate aggregate output

- Measuring aggregate output accurately is difficult.
- $GDP GDI \neq 0$
- Ø Decompose it into potential output and output gap
 - ${\scriptstyle \bullet}$ unobservable \Longrightarrow statistical/economic model to estimate them

We tackle both issue by letting the data speak

• Non-Stationary Dynamic Factor Model for large datasets Barigozzi, Lippi & Luciani, 2016ab

Two issues in macroeconomic:

• Estimate aggregate output

- Measuring aggregate output accurately is difficult.
- $GDP GDI \neq 0$
- Ø Decompose it into potential output and output gap
 - ${\scriptstyle \bullet}$ unobservable \Longrightarrow statistical/economic model to estimate them

We tackle both issue by letting the data speak

- Non-Stationary Dynamic Factor Model for large datasets Barigozzi, Lippi & Luciani, 2016ab
- Non-parametric Trend-Cycle decomposition

Introduction

Aggregate output

Aggregate output

- Since 2015 growth was on average 0.4 p.p. higher than BEA's estimate
- Higher growth has been concentrated in Q1
- GDP Q1 weakness due to mismeasurement rather than seasonality

Aggregate output

- Since 2015 growth was on average 0.4 p.p. higher than BEA's estimate
- Higher growth has been concentrated in Q1
- GDP Q1 weakness due to mismeasurement rather than seasonality

Output gap

Aggregate output

- Since 2015 growth was on average 0.4 p.p. higher than BEA's estimate
- Higher growth has been concentrated in Q1
- GDP Q1 weakness due to mismeasurement rather than seasonality

Output gap

- Growth before the GFC was heavily boosted by temporary factors
- Growth after the financial crisis is due primarily to permanent factors
- Our estimate indicates that as of 2017:Q4 there is still slack

Outline

• The non-stationary Dynamic Factor Model

The non-stationary Dynamic Factor Model

Let $x_{it} \sim I(1)$

$$x_{it} = \chi_{it} + \xi_{it}$$

Let $x_{it} \sim I(1)$

$$x_{it} = \chi_{it} + \xi_{it}$$
$$\chi_{it} = d'_i(L) f_t$$
$$1 \times q q \times 1$$
$$\mathcal{A}(L) f_t = \mathbf{u}_t$$

$$\mathcal{A}(L) \mathbf{r}_t - \mathbf{u}_t$$
$$q \times q \ q \times 1 \qquad q \times 1$$

Let $x_{it} \sim I(1)$

$$\begin{aligned} x_{it} &= \chi_{it} + \xi_{it} \\ \chi_{it} &= d_i'(L) f_t \\ 1 \times q q \times 1 \end{aligned}$$
$$\mathcal{A}(L) f_t &= \mathbf{u}_t \\ q \times q q \times 1 \end{aligned}$$

• $f_t \sim I(1)$

Let $x_{it} \sim I(1)$

$$x_{it} = \chi_{it} + \xi_{it}$$
$$\chi_{it} = \mathbf{d}'_{i}(L) \mathbf{f}_{t}$$
$$_{1 \times q} \mathbf{q}_{\times 1}$$

$$\mathcal{A}(L) \mathop{\boldsymbol{f}}_{q \times q} \mathop{\boldsymbol{f}}_{q \times 1} = \mathop{\boldsymbol{\mathsf{u}}}_{q \times 1}$$

• $\mathbf{f}_t \sim I(1)$ and $\xi_{it} \sim I(1)$ for some i

Let $x_{it} \sim I(1)$

$$x_{it} = \chi_{it} + \xi_{it}$$
$$\chi_{it} = \mathbf{d}'_i(L) \mathbf{f}_t$$
$$1 \times q q \times 1$$

$$\mathcal{A}(L) \mathop{\boldsymbol{f}}_{q \times q} \mathop{\boldsymbol{f}}_{q \times 1} = \mathop{\boldsymbol{\mathsf{u}}}_{q \times 1}$$

•
$$\mathbf{f}_t \sim I(1)$$
 and $\xi_{it} \sim I(1)$ for some i

- q d "permanent shocks" and d "transitory shocks"
- q d common trends drive the dynamics of f_t
- *f*_t has cointegration rank *d*

Standard practice: estimate different representation

Standard practice: estimate different representation

$$\mathbf{x}_t = oldsymbol{D}(L) oldsymbol{f}_t + oldsymbol{\xi}_t$$
 $\mathcal{A}(L) oldsymbol{f}_t = oldsymbol{u}_t$
 $q imes 1$

Standard practice: estimate different representation

 $\mathbf{x}_{t} = \mathbf{D}(\mathcal{L}) \mathbf{f}_{t} + \mathbf{\xi}_{t} \qquad \mathbf{x}_{t} = \prod_{\substack{n \times r_{r} \times 1 \\ n \times q \ q \times 1}} \mathbf{F}_{t} + \mathbf{\xi}_{t}$ $\mathbf{A}(\mathcal{L}) \mathbf{f}_{t} = \mathbf{u}_{t} \qquad \mathbf{A}(\mathcal{L}) \mathbf{F}_{t} = \mathbf{G}_{r \times q} \mathbf{u}_{t}$ $r \times r \ r \times 1 = \mathbf{G}_{r \times q} \mathbf{u}_{t}$

Standard practice: estimate different representation

$$\mathbf{x}_{t} = \mathbf{D}(\mathcal{L}) \mathbf{f}_{t} + \mathbf{\xi}_{t} \qquad \mathbf{x}_{t} = \mathbf{\Lambda} \mathbf{F}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{\mathcal{A}}(\mathcal{L}) \mathbf{f}_{t} = \mathbf{u}_{t} \qquad \mathbf{A}(\mathcal{L}) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{\mathcal{A}}(\mathcal{L}) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{\mathcal{A}}(\mathcal{L}) \mathbf{\mathcal{F}}_{t} = \mathbf{G} \mathbf{u}_{t}$$

• static factors $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$ of dimension r = q(s+1) > q;

Standard practice: estimate different representation

$$\mathbf{x}_{t} = \mathbf{D}(L) \mathbf{f}_{t} + \mathbf{\xi}_{t} \qquad \mathbf{x}_{t} = \mathbf{\Lambda} \mathbf{F}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{\mathcal{A}}(L) \mathbf{f}_{t} = \mathbf{u}_{t} \qquad \mathbf{A}(L) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{\mathcal{A}}(L) \mathbf{F}_{t} = \mathbf{K}_{q \times 1} \qquad \mathbf{\mathcal{A}}(L) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{\mathcal{A}}(L) \mathbf{\mathcal{F}}_{t} = \mathbf{G} \mathbf{u}_{t}$$

• static factors $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$ of dimension r = q(s+1) > q;

• loadings $\Lambda = (D_0 \cdots D_s)' \mathsf{K}^{-1}$ with D_k the coefficients of D(L);

Standard practice: estimate different representation

$$\mathbf{x}_{t} = \mathbf{D}(L) \mathbf{f}_{t} + \mathbf{\xi}_{t} \qquad \mathbf{x}_{t} = \mathbf{\Lambda} \mathbf{F}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{\mathcal{A}}(L) \mathbf{f}_{t} = \mathbf{u}_{t} \qquad \mathbf{A}(L) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{\mathcal{A}}(L) \mathbf{F}_{t} = \mathbf{K}_{q \times 1} \qquad \mathbf{\mathcal{A}}(L) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{\mathcal{A}}(L) \mathbf{\mathcal{F}}_{t} = \mathbf{G} \mathbf{u}_{t}$$

- static factors $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$ of dimension r = q(s+1) > q;
- loadings $\Lambda = (D_0 \cdots D_s)' \mathsf{K}^{-1}$ with D_k the coefficients of D(L);
- A(L) is $r \times r$, and $G r \times q$ Stock & Watson, 2005; Bai & Ng, 2007; Forni, Giannone, Lippi & Reichlin, 2009; BLL, 2016b.

Standard practice: estimate different representation

$$\mathbf{x}_{t} = \mathbf{D}(\mathcal{L}) \mathbf{f}_{t} + \mathbf{\xi}_{t} \qquad \mathbf{x}_{t} = \mathbf{\Lambda} \mathbf{F}_{t} + \mathbf{\xi}_{t}$$
$$\mathbf{\mathcal{A}}(\mathcal{L}) \mathbf{f}_{t} = \mathbf{u}_{t} \qquad \mathbf{A}(\mathcal{L}) \mathbf{F}_{t} = \mathbf{G} \mathbf{u}_{t}$$
$$\mathbf{r \times r} \mathbf{r \times 1} = \mathbf{G} \mathbf{u}_{t}$$

- static factors $F_t = K(f'_t \cdots f'_{t-s})'$ of dimension r = q(s+1) > q;
- loadings $\Lambda = (D_0 \cdots D_s)' \mathsf{K}^{-1}$ with D_k the coefficients of D(L);
- A(L) is r × r, and G r × q
 Stock & Watson, 2005; Bai & Ng, 2007; Forni, Giannone, Lippi & Reichlin, 2009; BLL, 2016b.

Same constraints on the co-movement of the data

- ML estimation via EM algorithm with Kalman smoother. Doz, Giannone & Reichlin, 2011, 2012.
- Initialization: BLL, 2016b & Koopman, 1997

- ML estimation via EM algorithm with Kalman smoother. Doz, Giannone & Reichlin, 2011, 2012.
- Initialization: BLL, 2016b & Koopman, 1997

Constraints:

- ML estimation via EM algorithm with Kalman smoother. Doz, Giannone & Reichlin, 2011, 2012.
- Initialization: BLL, 2016b & Koopman, 1997

Constraints:

 $\mathbf{0} \ \lambda_{\rm GDP} = \lambda_{\rm GDI}$

- ML estimation via EM algorithm with Kalman smoother. Doz, Giannone & Reichlin, 2011, 2012.
- Initialization: BLL, 2016b & Koopman, 1997

Constraints:

- ML estimation via EM algorithm with Kalman smoother. Doz, Giannone & Reichlin, 2011, 2012.
- Initialization: BLL, 2016b & Koopman, 1997

Constraints:

- ML estimation via EM algorithm with Kalman smoother. Doz, Giannone & Reichlin, 2011, 2012.
- Initialization: BLL, 2016b & Koopman, 1997

Constraints:

- **2** The non-stationary ξ_{it} are additional states:

$$\xi_{it} = \rho_i \xi_{it-1} + e_{it}, \quad e_{it} \sim \mathcal{N}(0, \sigma_i^2), \ \rho_i = \begin{cases} 1 & \text{if} \quad \xi_{it} \sim I(1), \\ 0 & \text{if} \quad \xi_{it} \sim I(0). \end{cases}$$

Outline

• Model Set-up
Model set-up

- *n* = 103 US macroeconomic time series;
- quarterly from 1960:Q1 to 2017:Q4, sample size T = 232
- log of all variables in levels which are not p.p.
- variables that are I(1) are not transformed,
- variables that are I(2) are differenced once
- inflation rates, unemployment rate, interest rates are in levels;
- **x**_t are de-trended data—when necessary
- *q* = 3;
- q d = 1;
- *r* = 6.
- unit-root test on estimated idiosyncratic components;
- idiosyncratic of most aggregated variables are assumed I(0) GDP, GDI, UR, FFR, CPI inflation, PCE inflation.

Outline

Measures of aggregate output

Measures of aggregate output

Average GDP-GDI

Measures of aggregate output

• GDO = part of GDP and GDI driven by \mathbf{u}_t

- GDO = part of GDP and GDI driven by \mathbf{u}_t
- Estimation base on two assumptions:
 - **1** GDP and GDI respond to \mathbf{u}_t in the same way $\implies \chi_t^{GDP} = \chi_t^{GDI}$
 - **2** the long run dynamics of GDP and GDI are entirely driven by $\mathbf{u}_t \implies \xi_t^{GDP}, \xi_t^{GDI} \sim I(0)$

Our estimate does not show residual seasonality

Average quarterly annualized percentage change per quarter 2010-2016

Our estimate does not show residual seasonality

Average quarterly annualized percentage change per quarter 2010-2016

Our estimate does not show residual seasonality

Average quarterly annualized percentage change per quarter 2010-2016

US economy grew faster than NA statistics

Outline

Since $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$, then:

- F_t has (q d) unit roots
- F_t is with a rank of cointegration c, $d \leq c \leq (r-q+d)$ Barigozzi, Lippi & Luciani, 2016ab

Since $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$, then:

- F_t has (q d) unit roots
- F_t is with a rank of cointegration c, $d \leq c \leq (r-q+d)$ Barigozzi, Lippi & Luciani, 2016ab

Therefore, F_t admits the factor representation: Escribano & Peña, 1994; Gonzalo & Granger, 1995.

 $\mathsf{F}_t = \Phi \mathsf{T}_t + \Gamma_t$

Since $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$, then:

- F_t has (q d) unit roots
- F_t is with a rank of cointegration c, $d \leq c \leq (r-q+d)$ Barigozzi, Lippi & Luciani, 2016ab

Therefore, F_t admits the factor representation: Escribano & Peña, 1994; Gonzalo & Granger, 1995.

$$\mathsf{F}_t = \mathbf{\Phi}\mathsf{T}_t + \Gamma_t$$

• T_t is the vector of (q - d) common trends

Since $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$, then:

- F_t has (q d) unit roots
- F_t is with a rank of cointegration c, $d \leq c \leq (r-q+d)$ Barigozzi, Lippi & Luciani, 2016ab

Therefore, F_t admits the factor representation: Escribano & Peña, 1994; Gonzalo & Granger, 1995.

$$\mathsf{F}_t = \mathbf{\Phi}\mathsf{T}_t + \Gamma_t$$

T_t is the vector of (q - d) common trends
Φ is r × (q - d) with full column rank and

Since $\mathbf{F}_t = \mathbf{K}(\mathbf{f}'_t \cdots \mathbf{f}'_{t-s})'$, then:

- F_t has (q d) unit roots
- F_t is with a rank of cointegration c, $d \leq c \leq (r-q+d)$ Barigozzi, Lippi & Luciani, 2016ab

Therefore, F_t admits the factor representation: Escribano & Peña, 1994; Gonzalo & Granger, 1995.

$$\mathsf{F}_t = \mathbf{\Phi}\mathsf{T}_t + \Gamma_t$$

- T_t is the vector of (q d) common trends
- Φ is r imes (q-d) with full column rank and
- Γ_t is stationary

$$oldsymbol{\mathcal{S}} = rac{1}{\mathcal{T}^2}\sum_{t=1}^{\mathcal{T}}oldsymbol{\mathcal{F}}_toldsymbol{\mathcal{F}}_t'$$

$$oldsymbol{S} = rac{1}{\mathcal{T}^2}\sum_{t=1}^{\mathcal{T}}oldsymbol{\mathcal{F}}_toldsymbol{\mathcal{F}}_t'$$

• First q - d eigenvectors of $\boldsymbol{S} \longrightarrow \Phi$;

Peña & Poncela, 1997, 2006; Bai, 2004; Zhang, Yao & Robinson, 2016

$$oldsymbol{S} = rac{1}{T^2}\sum_{t=1}^Toldsymbol{F}_toldsymbol{F}_t'$$

• First q - d eigenvectors of $\boldsymbol{S} \longrightarrow \Phi$;

Peña & Poncela, 1997, 2006; Bai, 2004; Zhang, Yao & Robinson, 2016

$$\begin{split} \widehat{\mathbf{T}}_t &= \widehat{\mathbf{\Phi}}' \widehat{\mathbf{F}}_t \\ \widehat{\mathbf{\Gamma}}_t &= \widehat{\mathbf{\Phi}}_\perp \widehat{\mathbf{\Phi}}'_\perp \widehat{\mathbf{F}}_t = \widehat{\mathbf{\Phi}}_\perp \widehat{\mathbf{G}}_t \\ \widehat{\chi}_{it} &= \widehat{\boldsymbol{\lambda}}'_i \widehat{\mathbf{\Phi}} \widehat{\mathbf{T}}_t + \widehat{\boldsymbol{\lambda}}'_i \widehat{\mathbf{\Phi}}_\perp \widehat{\mathbf{G}}_t, \end{split}$$

Output gap: definition

Output gap: definition

Our measure

• Output gap = cyclical component of GDO

$$\widehat{\chi}_{GDO,t} = \widehat{\lambda}'_{GDO} \widehat{\Phi} \widehat{\mathsf{T}}_t + \widehat{\lambda}'_{GDO} \widehat{\Phi}_{\perp} \widehat{\mathsf{G}}_t$$

Output gap: definition

Our measure

• Output gap = cyclical component of GDO

$$\widehat{\chi}_{\textit{GDO},t} = \widehat{\lambda}_{\textit{GDO}}' \widehat{\Phi} \widehat{\mathsf{T}}_t + \widehat{\lambda}_{\textit{GDO}}' \widehat{\Phi}_{\perp} \widehat{\mathsf{G}}_t$$

Congressional Budget Office

- Output fap = GDP potential output
 - Solow growth model
 - Okun's law
 - NAIRU

Growth before the GFC was not sustainable

Growth before the GFC was not sustainable

Growth after the GFC is solid

Growth after the GFC is solid

Labor market sends different signal

Labor market sends different signal

Labor market sends different signal

Outline

• Summary and conclusions

Summary and conclusions

Aggregate output

Output gap

Summary and conclusions

 $\label{eq:actionary} \textbf{Aggregate output} \Rightarrow \textsf{Non-Stationary Dynamic Factor Model}$

Output gap \Rightarrow Non-parametric Trend-Cycle

Summary and conclusions

Aggregate output ⇒ Non-Stationary Dynamic Factor Model

- Since 2015 growth was on average 0.4 p.p. higher than GDP
- Higher growth has been concentrated in Q1
- GDP Q1 weakness due to mismeasurement rather than seasonality

Output gap \Rightarrow Non-parametric Trend-Cycle

- Growth before the GFC was heavily boosted by temporary factors
- Growth after the financial crisis is due primarily to permanent factors
- Our estimate indicates that as of 2017:Q4 there is still slack

Summary and conclusions

Measuring US Aggregate Output and Output Gap using Large Datasets

Matteo Barigozzi

(London School of Economics)

Matteo Luciani

(Federal Reserve Board)

10th ECB Workshop on Forecasting Techniques: Economic Forecasting with Large Datasets June 14-15, 2018

Disclaimer: the views expressed in this paper are those of the authors and do not necessarily reflect those of the Board of Governors or the Federal Reserve System.