Forecasting with many predictors using message passing algorithms

Dimitris Korobilis

Department of Finance, Essex Business School, United Kingdom

Contribution of this paper

Purpose/contribution is two-fold: Introduce to the econometrics literature machine learning methodologies for designing efficient Bayesian algorithms

- Adopt the framework of "factor graphs", and use the Generalized Approximate Message Passing (GAMP) algorithm introduced in signal extraction and compressive sensing
- Combine these algorithms with standard Bayesian "sparse learning" priors that induce shrinkage

Introduce to a novel interpretation and treatment of the time-varying parameter regression as a shrinkage problem. • Do not rely on state-space methods, rather use shrinkage to determine how "fast" or "slow" parameters should move.

Time-varying parameter regression as a high-dimensional problem

The starting point is the following time-varying parameter regression with stochastic volatility of the form

 $y_t = x_t \beta_t + \varepsilon_t$

(5)

(7)

where y_t is variable of interest, t = 1, ..., T, x_t is a $1 \times p$ vector of predictors, β_t is a $p \times 1$ vector of coefficients, and $\varepsilon_t \sim N(0, \sigma_t^2)$. The "static regression" form of this model is

$$u = \chi \beta + \varepsilon$$
.

Generic Form of Message Passing Algorithm

1: Initialize
$$\beta_{j}^{(0)} = 0$$
 and $\tau_{j}^{\beta,(0)} = 100 \ \forall j = 1, ..., q$, and set
 $s_{l}^{(0)} = 0 \ \forall t = 1, ..., T$.
2: $r = 1$
3: while $\|\beta^{(r)} - \beta^{(r-1)}\| \to 0$ do
4: 1) OUTPUT MESSAGES STEP:
5: for $t = 1$ to T do
6: $c_{t}^{(r)} = r_{j-1}^{q} \chi_{l,j} \beta_{j}^{(r-1)} - s_{t}^{(r-1)} * \tau_{t}^{c,(r)}$
7: $\tau_{t}^{c,(r)} = r_{j-1}^{q} \chi_{l,j}^{2} \tau_{j}^{\beta,(r-1)}$
8: $s_{l}^{(r)} = g_{out} (c_{l}^{(r)}, \tau_{t}^{c,(r)}, y_{l})$
9: $\tau_{l}^{s,(r)} = -\frac{\partial}{\partial c} g_{out} (c_{l}^{(r)}, \tau_{t}^{c,(r)}, y_{t})$
10: end for
11: 2) INPUT MESSAGES STEP:
12: for $j = 1$ to q do
13: $d_{j}^{(r)} = \beta_{j}^{(r-1)} + \tau_{j}^{d,(r)} \tau_{t-1}^{T} \chi_{l,j} s_{t}^{(r)}$
14: $\tau_{j}^{d,(r)} = (r_{t-1}^{T} \chi_{t,j}^{2} \tau_{t}^{s,(r)})^{-1}$
15: $\beta_{j}^{(r)} = g_{in} (d_{j}^{(r)}, \tau_{j}^{d,(r)})$
16: $\tau_{j}^{\beta,(r)} = \tau_{j}^{d,(r)} \frac{\partial}{\partial d} g_{in} (d_{j}^{(r)}, \tau_{j}^{d,(r)})$
17: end for
18: $r = r + 1$
19: end while
20: Obtain mean and variance of β as $\beta = (\beta_{1}^{(r)}, ..., \beta_{q}^{(r)})$ and $\tau^{\beta} = (\tau_{1}^{\beta,(r)}, ..., \tau_{q}^{\beta,(r)})$

Factor graphs

Starting point is factor graphs, message passing, and the sum-product algorithm • Factor graph: Bipartite graph that

represents the way a global distribution of several random variables is decomposed into a product of simpler functions ("factors"). • Message passing: Dynamic programming solutions, where a node collects a result from a part of the graph and communicates it to the next neighboring node via a message.

• Sum-product algorithm: A rule specifying the way each node collects all messages in order to calculate the marginal

(6)where $y = [y_1, ..., y_T]'$ and $\varepsilon = [\varepsilon_1, ..., \varepsilon_T]'$ are column vectors stacking the observations y_t and ε_t respectively, $\beta = [\beta'_1, ..., \beta'_T]'$ is a $Tp \times 1$ vector, and \mathfrak{X} is the following $T \times Tp$ matrix

$$\mathfrak{X} = \begin{bmatrix} x_1 & 0_{1 \times p} & \dots & 0_{1 \times p} & 0_{1 \times p} \\ 0_{1 \times p} & x_2 & \dots & 0_{1 \times p} & 0_{1 \times p} \\ \vdots & \ddots & \ddots & \vdots \\ 0_{1 \times p} & 0_{1 \times p} & \dots & x_{T-1} & 0_{1 \times p} \\ 0_{1 \times p} & 0_{1 \times p} & \dots & 0_{1 \times p} & x_T \end{bmatrix}.$$

Estimation

- The Gram matrix $(\mathfrak{X}'\mathfrak{X})$ is of rank $T \to \mathsf{OLS}$ has not a unique solution
- Standard approach: Use 'hierarchical prior' $p\left(\beta_t | \beta_{t-1}\right) \sim N\left(\beta_{t-1}, Q\right)$
- This paper argues: estimate equation (6) using regularization/shrinkage!
- Number of predictors in $\mathfrak X$ grows both with p and T (T = 700 and p = 50 gives q = 35000columns) \rightarrow This is exactly where *message* passing inference comes handy.

Expressions for g_{out} and g_{in} depend on form of prior and likelihood, but are easy to derive.

Forecasting US Inflation

distribution of that message.

Simple example of factor graph: Consider discrete variables $x = (x_1, x_2, x_3)$ and joint mass function p that can be decomposed as

 $p(x_1, x_2, x_3, x_4) = f_a(x_1) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3), \quad (1)$

Sum-product rule:

 x_i

The message sent from variable x_i to factor node f_i is equal to the product of all messages arriving to node x_i except from the message coming from the target node f_i :

$$\mu_{x_i \to f_j} = \prod_{k \in N(x_i), k \neq j} \mu_{f_k \to x_i}, \qquad (2)$$

where $N(x_i)$ is the set of neighboring (factor) nodes to x_i . Similarly, the message sent from factor node f_i to variable node x_i is given by the sum over the product of the factor function f_i itself and all the incoming messages, except the messages from the target variable node x_i :

Combine the "static regression" likelihood in (6) with the sparse Bayesian learning prior of Tipping (2001) $p\left(\beta_{i}|\alpha_{i}\right) = N\left(0,\alpha_{i}^{-1}\right),$ (8) $p(\alpha_i) = Gamma(1e - 10, 1e - 10).$ (9)

Figure 1: Factor graph for the posterior distribution of β

Forecasting model is of the form

 $\pi_{t+h}^h - \pi_t = \phi_{t,0} + f_t \theta_t(L) + \Delta \pi_t \gamma_t(L) + e_{t+h},$ (10)the FRED-MD data (i.e. forecast exercise a-la using Watson (1999)JME). Stock and

	CPI					PCE deflator				
	h = 1	h = 3	h = 6	h = 12	h = 1	h = 3	h = 6	h = 12		
KP-AR	0.970	0.879	0.849***	0.834***	1.018	0.845***	0.806***	0.783***		
GK-AR	0.999	1.008	1.009	1.005	0.999	0.996	1.005	0.999		
TVP-AR	0.949	0.867***	0.828***	0.837***	1.010	0.793***	0.720***	0.732***		
UCSV	1.027	0.970	0.911**	0.916*	1.064	0.841***	0.810***	0.761***		
TVD	0.957	0.867***	0.862***	0.850***	1.015	0.787***	0.744***	0.742***		
TVS	1.175	0.960	0.963	1.005	1.041	0.8578***	0.817***	0.814***		
BMA	0.982*	0.588***	0.542***	0.531***	1.014	0.713***	0.663***	0.654***		
TVP-BMA	1.090	0.770***	0.772**	0.629**	1.158	0.842**	0.798*	0.812		
TVP-GAMP	0.923**	0.461***	0.421***	0.413***	0.982	0.614***	0.584***	0.565***		
lodel acronyms are as uctural breaks $AR(p)$			·	,		- /		`		
atson (2007) unobserv Griffin (2014) time-v	·		·				· ·			
VP-BMA: Groen et a	al. (2012) tii	me-varying Ba	yesian model	averaging mode	TVP-G	AMP: Shrinkag	ge representati	on of time-var		

 $\mu_{f_j \to x_i} = \sum_{x \setminus x_i} f_j(x) \prod_{l \in N(x_i), l \neq i} \mu_{x_l \to f_j}, \quad (3)$ x_i is the set xwhere ${\mathcal X}$ with the element removed. x_i

The marginal distribution of variable x_i is simply the product of all messages received only from factor nodes that are connected to

 $p(x_i) \propto \prod_{m \in N(x_i)} \mu_{f_m \to x_i}$

(4)

 $p\left(y_T|\beta\right)$ $p\left(\beta_{p}\right)$

• We can now design the GAMP algorithm using the regression likelihood and the sparse Bayesian learning prior. Its output is the marginal posterior $p(\beta|y)$. Derivation of the algorithm is messy (see paper), but its worst case complexity is $\mathcal{O}(Tq)$ for q predictors!

presented, with * significance at the 10% level; ** at the 5% level; *** at the 1% level.

Table 2: Forecast performance (logPL)												
	С	PI		PCE deflator								
h = 1	h = 3	h = 6	h = 12	h = 1	h = 3	h = 6	h = 12					
0.060	0.135	-0.006	0.023	-0.033	0.071	0.044	0.016					
-0.027	0.033	0.025	-0.027	-0.066	0.000	0.009	0.009					
0.216	0.095	0.045	0.071	0.068	0.157	0.116	0.118					
0.184	0.031	0.033	-0.002	0.051	0.065	0.062	0.081					
-8.107	-2.665	-1.862	-1.859	-9.103	-2.887	-1.784	-1.559					
0.032	0.154	0.100	0.058	0.004	0.149	0.167	0.103					
0.019	0.303	0.279	0.292	-0.035	0.203	0.211	0.203					
0.149	0.394	0.379	0.358	0.024	0.277	0.323	0.290					
0.017	0.528	0.422	0.381	0.046	0.258	0.279	0.266					
	h = 1 0.060 -0.027 0.216 0.184 -8.107 0.032 0.019 0.149	h = 1 $h = 3$ 0.060 0.135 -0.027 0.033 0.216 0.095 0.184 0.031 -8.107 -2.665 0.032 0.154 0.019 0.303 0.149 0.394	CPI $h = 1$ $h = 3$ $h = 6$ 0.0600.135-0.006-0.0270.0330.0250.2160.0950.0450.1840.0310.033-8.107-2.665-1.8620.0320.1540.1000.0190.3030.2790.1490.3940.379	CPI $h = 1$ $h = 3$ $h = 6$ $h = 12$ 0.0600.135-0.0060.023-0.0270.0330.025-0.0270.2160.0950.0450.0710.1840.0310.033-0.002-8.107-2.665-1.862-1.8590.0320.1540.1000.0580.0190.3030.2790.2920.1490.3940.3790.358	CPI $h = 1$ $h = 3$ $h = 6$ $h = 12$ $h = 1$ 0.0600.135-0.0060.023-0.033-0.0270.0330.025-0.027-0.0660.2160.0950.0450.0710.0680.1840.0310.033-0.0020.051-8.107-2.665-1.862-1.859-9.1030.0320.1540.1000.0580.0040.0190.3030.2790.292-0.0350.1490.3940.3790.3580.024	CPIPCE of $h = 1$ $h = 1$ $h = 3$ $h = 6$ $h = 12$ $h = 1$ $h = 3$ 0.060 0.135 -0.006 0.023 -0.033 0.071 -0.027 0.033 0.025 -0.027 -0.066 0.000 0.216 0.095 0.045 0.071 0.068 0.157 0.184 0.031 0.033 -0.002 0.051 0.065 -8.107 -2.665 -1.862 -1.859 -9.103 -2.887 0.032 0.154 0.100 0.058 0.004 0.149 0.019 0.303 0.279 0.292 -0.035 0.203 0.149 0.394 0.379 0.358 0.024 0.277	CPIPCE deflator $h = 1$ $h = 3$ $h = 6$ $h = 12$ $h = 1$ $h = 3$ $h = 6$ 0.0600.135-0.0060.023-0.0330.0710.044-0.0270.0330.025-0.027-0.0660.0000.0090.2160.0950.0450.0710.0680.1570.1160.1840.0310.033-0.0020.0510.0650.062-8.107-2.665-1.862-1.859-9.103-2.887-1.7840.0320.1540.1000.0580.0040.1490.1670.0190.3030.2790.292-0.0350.2030.2110.1490.3940.3790.3580.0240.2770.323					