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Contribution of this paper

Purpose/contribution is two-fold:

® Introduce to the econometrics literature
machine learning methodologies for
designing efficient Bayesian algorithms

® Adopt the framework of “factor graphs”, and
use the Generalized Approximate Message
Passing (GAMP) algorithm introduced in
signal extraction and compressive sensing

® Combine these algorithms with standard
Bayesian “sparse learning” priors that induce
shrinkage

@ Introduce to a novel interpretation and
treatment of the time-varying parameter
regression as a shrinkage problem.

® Do not rely on state-space methods, rather use
shrinkage to determine how “fast” or “slow”
parameters should move.

Factor graphs

Starting point is factor graphs,
passing, and the sum-product algorithm

message

e Factor graph: Bipartite graph that
represents the way a global distribution of
several random variables is decomposed into
a product of simpler functions (“factors”).

e Message passing: Dynamic programming
solutions, where a node collects a result
from a part of the graph and communicates
it to the next neighboring node via a
message.

e Sum-product algorithm: A rule
specifying the way each node collects all
messages in order to calculate the marginal
distribution of that message.

Simple example of factor graph:

Consider discrete variables * = (1, 29, x3)
and joint mass function p that can be
decomposed as
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Sum-product rule:
he message sent from variable x; to
factor node f; is equal to the product of all

messages arriving to node x; except from the
message coming from the target node f;:
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where N (x;) is the set of neighboring (factor)
nodes to x;. Similarly, the message sent from
factor node f; to variable node z; is given by
the sum over the product of the factor function
J; itself and all the incoming messages, except
the messages from the target variable node x;:
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where = \ x; is the set =«
with the element X; removed.

The marginal distribution of variable x; is
simply the product of all messages received
only from factor nodes that are connected to
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Time-varying parameter regression as a
high-dimensional problem

The starting point is the following time-varying

parameter regression with stochastic volatility of the

Yt = Ty + & (5)
where 1, is variable of interest, t = 1,...,7, x;isal Xp

form

vector of predictors, (; is a p X 1 vector of coefficients,
and &; ~ N (0, 07). The “static regression” form of this

y=XB+e, (6)
/ /
where y = |y1,...,yr| and € = |1, ...,e7| are column
vectors stacking the observations y; and &; respectively,

g = [6{,...,5}]/ is a T'p x 1 vector, and X is the
following T' x T'p matrix

model is
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Estimation

® The Gram matrix (X'X) is of rank T — OLS has

not a unique solution

e Standard approach: Use ‘hierarchical prior’

p(@tWt—l) ~ N (575—1, Q)

» This paper argues: estimate equation (6) using
regularization /shrinkage!

® Number of predictors in X grows both with p and
T (T = 700 and p = 50 gives ¢ = 35000
columns) — This is exactly where message
passing inference comes handy.

Combine the “static regression” likelihood in (6) with
the sparse Bayesian learning prior of Tipping (2001)

p(ﬁzk%) =N (07 Oé@'_l) ;
p(a;) = Gamma (le — 10, 1le — 10) .

Figure 1: Factor graph for the posterior distribution of

& We can now design the GAMP algorithm using the
regression likelihood and the sparse Bayesian learning
prior. Its output is the marginal posterior p (3|y).
Derivation of the algorithm is messy (see paper), but
its worst case complexity is O(T'q) for g predictors!
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Generic Form of Message Passing Algorithm
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Initialize 3\ = 0 and 7"

§§O) =0Vvt=1,...,T.
r=1
while ||3") — 3=Y|| = 0 do
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end while

Obtain mean and variance of 3 as 3 = (BY),... 3

= (700 ?qﬁv(?“))

...,q, and set

Expressions for g,,; and g;,, depend on form of prior and likelihood,
but are easy to derive.

Forecasting US Inflation

Forecasting model is of the form

h
7Tt+h — Ty — ¢t70 -+ ftet([/) —+ Aﬂ't’)/t([/) —+ EttLh, (10)
using the FRED-MD data (i.e. forecast exercise a-la
Stock and Watson (1999) JME).
Table 1: Forecast performance (MSFEs)
CPI PCE deflator
h=1 h=3 h=6 h=12 h=1h=3 h=6 h=12
KP-AR 0970 0.879  0.849"* 0.834™* 1018 0.845"* 0.806"* 0.783""
GK-AR 0999 1.008 1.009 1.005 0999 0.996  1.005 0.999
TVP-AR  0.949 0.867*** 0.828"** 0.837** 1.010 0.793*** 0.720*** 0.732"*
UCsv 1.027 0970 0911 0916* 1.064 0.841* 0.810** 0.761***
TVD 0.957 0.867*** 0.862"* 0.850"* 1.015 0.787** 0.744"* 0.742"
TVS 1175 0960 0963 1005  1.041 0.8578"* 0.817*** 0.814***
BMA 0.982* 0.588*** 0.542"* 0.531* 1.014 0.713** 0.663"* 0.654""
TVP-BMA 1.090 0.770*** 0.772** 0.629* 1158 0.842** 0.798" 0.812
TVP-GAMP 0.923* 0.461*** 0.421*** 0.413** 0.982 0.614*** 0.584*** 0.565"

Model acronyms are as follows: KP-AR: Koop and Potter (2007) structural breaks AR(p) model; GK-AR: Giordani and Kohn (2008)

structural breaks AR(p) model; TVP-AR: Pettenuzzo and Timmermann (2017) time-varying parameter AR(p) model; UCSV: Stock and

Watson (2007) unobserved components stochastic volatility; TVD: Chan et al. (2012) time-varying dimension regression TVS: Kalli and

Griffin (2014) time-varying sparsity regression BMA: George and McCulloch (1993) stochastic search variable selection regresison

TVP-BMA: Groen et al. (2012) time-varying Bayesian model averaging model TVP-GAMP: Shrinkage representation of time-varying

parameter regression, with message passing estimation.

Next to MSFE values the results of the Diebold-Mariano statistic are

presented, with * significance at the 10% level; ** at the 5% level; *** at the 1% level.

Table 2: Forecast performance (logPL)

CPI PCE deflator
h=1 h=3 h=6 h=12 h=1 h=3 h=06 h=12

KP-AR 0.060 0.135 -0.006 0.023 -0.033 0.0/71 0.044 0.016
GK-AR -0.027 0.033 0.025 -0.027 -0.066 0.000 0.009 0.009
TVP-AR  0.216 0.095 0.045 0.0/1 0.068 0.157 0.116 0.118
UCSV 0.184 0.031 0.033 -0.002 0.051 0.065 0.062 0.081
TVD -8.107 -2.665 -1.862 -1.859 -9.103 -2.887 -1.784 -1.559
TVS 0.032 0.154 0.100 0.058 0.004 0.149 0.167 0.103
BMA 0.019 0.303 0.279 0.292 -0.035 0.203 0.211 0.203
TVP-BMA 0.149 0.394 0.379 0.358 0.024 0.277 0.323 0.290
GAMP 0.017 0.528 0.422 0.381 0.046 0.258 0.279 0.266




