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1 Introduction

The societal importance of sequential decision making in many areas has promoted developments
in time series modeling and forecasting to feed into decisions. In complex dynamic systems with
multiple, inter-related time series, the dependencies across series can critically impact on decisions,
policies, and their outcomes. In economic policy making, dependencies among macroeconomic
time series provide fundamental insights into the state of economy. The interest is to use such
relationships to improve forecasts over multiple horizons, to help to guide the policy decisions
and understand their impact. Central banks set national target interest rates based on (implicit or
explicit) utility/loss considerations that weigh future outcomes of inflation and other measures of
the real economy. Understanding the (time-varying) dependencies of these measures– especially
the dynamics over multiple horizons– is simply critical. Driven by this, multivariate models, ranging
from vector autoregressive models (VAR) to dynamic stochastic generalized equilibrium models
(DSGE), have been developed and used by researchers and policy makers. A huge literature reflects
the critical nature of the field, from the early works of, for example, Sims (1993), Stock and Watson
(1996), and Sims and Zha (1998), to more recent advances in dynamic Bayesian models in Cogley
and Sargent (2005), Primiceri (2005), Benati and Surico (2008), Koop et al. (2009), Koop et al.
(2010), Nakajima (2011), Nakajima and West (2013a,b), and Zhou et al. (2014), among others.

Concerned with accurate and useful forecasts, policy makers routinely rely on multiple sources,
employing multiple models, forecasters, and economists, to produce forecasts. To ensure appro-
priate normative decision making as well as reflecting increased uncertainty into the future, it has
become popular, particularly for central banks, to provide probabilistic (density) forecasts. For
example, forecasts reported in the monetary policy reports of the Bank of England, Norges Bank,
Swedish Riksbank, and recently also for the Federal Reserve Bank, have reflected this change. To re-
spond to this increased usage of density forecasts, there has been a recent resurgence in interest in
forecast comparison, calibration, and combination of density forecasts in macroeconomics, econo-
metrics, and statistics. These new developments range from combining predictive densities using
weighted linear combinations of prediction models, evaluated using various scoring rules (e.g.
Hall and Mitchell 2007; Amisano and Giacomini 2007; Jore et al. 2010; Hoogerheide et al. 2010;
Kascha and Ravazzolo 2010; Geweke and Amisano 2011, 2012; Aastveit et al. 2014), to more
complex combination approaches that allows for time-varying weights with possibly both learning
and model set incompleteness (e.g. Billio et al. 2013; Casarin et al. 2015; Aastveit et al. 2017b;
Pettenuzzo and Ravazzolo 2016; Del Negro et al. 2016).

The extensive literature on forecast combination has, for the most part, focused on forecasting
a single series. This is true from the seminal paper by Bates and Granger (1969) to applications
in business, economics, technology, meteorology, management science, military intelligence, seis-
mic risk, and environmental risk, among other areas (e.g. Clemen 1989; Clemen and Winkler
1999; Timmermann 2004; Clemen and Winkler 2007), as it is to the recent developments reported
above. In contrast, the literature on multivariate forecasting is dominated by traditional statistical
model comparison and variable selection (e.g. Chan et al. 2012; Korobilis 2013; Nakajima and West
2013a). Little attention has yet been given to forecast comparison, calibration, and combination
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in the context of forecasting multiple series. A few exceptions (e.g. Andersson and Karlsson 2008;
Amendola and Storti 2015; Amisano and Geweke 2017) recognize this, but restrict attention to di-
rect extensions of univariate methods, with models combined linearly using one metric for overall
performance. This is potentially limiting in several ways: in ignoring inter-dependencies among se-
ries that can be detrimental in informing decisions, in ignoring the reality that some models might
be good at forecasting one series but poor in another, and for the fact that some or all models maybe
be poor overall. Partly reflecting the lack of formal statistical frameworks for holistic multivariate
forecast model assessment and combination, economic policy makers use “ad hoc” strategies, which
either rely on the policy maker’s “favorite” model, or ignore inter-dependencies all together. The
need for coherent methodology that gives policy makers flexibility in incorporating multivariate
density forecasts from multiple sources cannot be understated.

The developments of the current paper address the above issues, challenges, and needs. The
new methodology and case study presented builds on theory and methods of dynamic Bayesian Pre-
dictive Synthesis (BPS) recently introduced in a univariate forecasting setting (McAlinn and West
2017). BPS is a coherent Bayesian framework for evaluation, calibration, comparison, and context-
and data-informed combination of multiple forecast densities. The approach applies whether fore-
cast densities arise from sets of models, forecasters, agencies, or institutions. As detailed in McAlinn
and West (2017) the framework includes, as special cases, a range of existing univariate density
forecasts combination methods. Our multivariate extensions here naturally allow modeling and
estimation of varying forecast biases and facets of miscalibration of individual forecast densities,
time-varying inter-dependencies among models or forecasters over multiple series, and addresses
the above noted problems in multivariate settings.

Section 2 summarizes the BPS framework and implications in terms of the broad class of im-
plied theoretical models for dynamic multivariate problems. Methodological details are developed
for one specific subclass of models– flexible dynamic latent factor models with seemingly-unrelated
regression structure (DFSUR models). In this setting, each individual model generating multivari-
ate forecast densities is linked to a set of multivariate dynamic latent factor processes– the relation-
ships across each set of latent factors are then a key focus in understanding and leading to forecast
combination that addresses interdependencies. In Section 3, analyses of U.S macroeconomic time
series illustrates and highlights the benefits of the new framework using the class of DFSUR models
in the BPS context. Additional comments in Section 4 conclude the main paper. An appendix of
detailed supplementary material summarizes Bayesian computational methods (MCMC) for fitting
and using DFSUR models in the BPS context, and contains more extensive graphical and tabular
summaries of results of the multiple BPS forecasting analyses from the case study.

Some notation: We use lower case bold font for vectors and upper case bold font for matrices.
Vectors are columns by default. Distributional notation y ∼ N(f, v), x ∼ N(a,A) and k ∼ G(a, b)

are for the univariate normal, multivariate normal and gamma distributions, respectively. We use,
for example, N(y|f, v) to denote the actual density function of y when y ∼ N(f, v). Index sets s:t
stand for s, s+ 1, . . . , t when s < t, such as in y1:t = {y1, . . . , yt}.
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2 Dynamic Multivariate BPS

The new developments forming the methodological core of this paper adapt and extend the basic
BPS framework of McAlinn and West (2017) to multivariate density forecast synthesis with prac-
tical decision goals in mind. McAlinn and West (2017) defined formal, coherent methodology for
integrating density forecasts from multiple, potentially competing statistical model– or forecasters,
or institutions– in a univariate time series setting. The dynamic BPS approach there has a founda-
tion in coherent Bayesian reasoning with predictive and decision analytic goals, based on historical
developments in assessing and combining subjective probabilities (Lindley et al. 1979; West 1984;
Genest and Schervish 1985; West 1988; West and Crosse 1992; West 1992; Dawid et al. 1995;
French 2011). Drawing on key theoretical results from that Bayesian “agent/expert opinion anal-
ysis” literature, McAlinn and West (2017) define a class of time-varying parameter, latent factor
models in which each of the univariate latent factors relates to one of the set of models or forecast-
ers generating predictions. The models are developed methodologically and shown to have promise
in understanding relationships among forecasting models, their biases and inter-dependencies over
time, and can improve short and medium term forecasting for univariate time series.

We now develop the new, multivariate extension of dynamic BPS, beginning with a brief sum-
mary of the key background theory free from the time series context.

2.1 BPS Background

Consider forecasting a q×1− dimensional vector of outcomes y. Outcomes are typically real-valued,
as is the case in our applications below, though the foundational theory is general. A Bayesian
decision maker D is to receive forecast distributions for y from each of J agents; in our application,
the agents are different Bayesian time series models, while in other contexts they may include
professional forecasters, or forecasting agencies, etc., labelled Aj , (j = 1:J). Then D aims to
incorporate the information provided by the set of agent forecast distributions in her thinking
and forecasting y and any resulting decisions. Agent Aj provides a probability density function
hj(y). These forecast densities represent the individual inferences from the agents, and define the
information set H = {h1(·), . . . , hJ(·)} now available to D. Formal subjective Bayesian analysis
dictates that, D will then use the information set H to predict y using the implied posterior p(y|H)

from a full Bayesian prior-to-posterior analysis.
To obtain a full Bayesian prior-to-posterior analysis, West (1992) extended prior theory (Genest

and Schervish 1985; West and Crosse 1992) to show that there is a subset of all Bayesian models
in which D’s posterior has the mathematical form

p(y|H) =

∫
X
α(y|X)

∏
j=1:J

hj(xj)dxj (1)

where each xj is a latent q×1−dimensional vector, X = [x1, . . . ,xJ ]′ collects these latent vectors
in a J×q−dimensional matrix, and α(y|X) is a conditional p.d.f. for y givenX. The interpretation
is as follows. First, in the subjective view of D there must exist latent factors xj potentially related
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to y and such that agent Aj ’s forecast density is that of xj . Second, conditional on learning H, the
D regards the latent factors as conditionally independent with xj ∼ hj(xj). Note that this does not
imply that D regards the forecasts as independent, since under her prior the hj(·) are uncertain
and likely highly inter-dependent, and the key element α(y|X) is how D expresses her views of
dependencies. Third, this key element α(y|X) isD’s regression model relating the xj as a collective
to the outcome y. Refer to α(y|X) as the BPS synthesis function, and to the xj as latent agent states.

The key eqn. (1) does define the functional form of α(y|X). McAlinn and West (2017) show
that, for scalar outcomes y = y, many forecast and model combination methods (e.g. Geweke
and Amisano 2011; Kapetanios et al. 2015; Pettenuzzo and Ravazzolo 2016; Aastveit et al. 2017b,
among others) can be considered as special cases of eqn. (1), realized via different choices of the
form of the BPS synthesis function α(·|·). For vector outcomes y, eqn. (1) similarly allows flexibility
for D to specify α(y|X) to reflect decision goals and incorporate views and historical information
about, for example, agent-specific biases, patterns of miscalibration, inter-dependencies among
agents, and their relative expertise and expected forecast accuracy. Any specific BPS model will be
created by assuming a specific model form for the synthesis p.d.f.

2.2 Dynamic Sequential Setting

For a q−vector time series yt, t = 1, 2, . . . , decision maker D receives forecast densities from
each agent sequentially over time. At time t − 1, D receives current forecast densities Ht =

{ht1(yt), . . . , htJ(yt)} from the set of agents and aims to forecast yt. The full information set
used by D at time t is thus {y1:t−1, H1:t}. As D observes more information, her views of the agent
biases and calibration characteristics, as well as of inter-dependencies among agents are repeat-
edly updated. A formal, parametrized Bayesian dynamic model is the vehicle for structuring this
sequential learning in a general state-space context. This defines the dynamic BPS framework.

The time series extension of eqn. (1) implies that D has a time t− 1 distribution for yt as

p(yt|Φt,y1:t−1,H1:t) ≡ p(yt|Φt,Ht) =

∫
αt(yt|Xt,Φt)

∏
j=1:J

htj(xtj)dxtj (2)

where Xt = [xt1, . . . ,xtJ ]′ is a J×q−dimensional matrix of latent agent states at time t, the con-
ditional p.d.f. αt(yt|Xt,Φt) is D’s synthesis p.d.f. for yt given Xt, and involves time-varying
parameters Φt for which D has current beliefs represented in terms of her (time t − 1) posterior
p(Φt|y1:t−1,H1:t−1).

This general framework defines the xtj as realizations of inherent dynamic latent factors– the
latent agent states at time t– and synthesis is achieved by relating these latent factor processes to
the time series yt via models of the time-varying synthesis function αt(yt|Xt,Φt). The foundational
theory does not specify this p.d.f., and methodology is based on specific chosen forms. For the mul-
tivariate extension of McAlinn and West (2017), we look to a specific class of models that extends
the traditional seemingly unrelated regression model (SUR; Zellner 1962) to a dynamic Bayesian
framework, as a first approach to defining a computationally accessible yet flexible framework for
dynamic multivariate BPS.
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2.3 Multivariate Latent Factor Dynamic Models

Consider a dynamic multivariate BPS synthesis function

αt(yt|Xt,Φt) = N(yt|F tθt,V t) (3)

with

F t =


1 f ′t1 0 0′ · · · · · · 0 0′

0 0′ 1 f ′t2
...

...
. . .

...
0 0′ · · · · · · · · · · · · 1 f ′tq

 and θt =


θt1
θt2
...
θtq

 (4)

where for each series r = 1:q, the J×1−vector f tr = (xtr1, xtr2, ..., xtrJ)′ is a realization of the
set of J latent agents states for series r, and the (J + 1)×1−vector θtr = (1, θtr1, θtr2, ..., , θtrJ)′

contains an intercept and coefficients representing time-varying bias/calibration weights of the J
latent agent states for series r. Note that F t has q rows and (J + 1)q columns, and θt is a column
(J + 1)q−vector. Observation noise is reflected in the– likely volatile– residual q×q variance matrix
V t, and the general time-varying parameter of eqn. (2) is set as Φt = {θt,V t}.

This defines the first component of a conditionally linear, conditionally normal dynamic mul-
tivariate model– a subclass of multivariate dynamic linear models but with latent factors as pre-
dictors. Modeling time evolution of the parameter processes Φt = (θt,V t) is needed to complete
model specification. We do this using the first step into dynamic models, with traditional random
walk models to allow for– but not anticipate direction in– stochastic changes over time in both
regressions θt and matrix volatilities V t, as is traditional in Bayesian time series literatures; see,
for example, West and Harrison (1997) (chap. 16) and Prado and West (2010) (chap. 10). Thus
we take

yt = F tθt + νt, νt ∼ N(0,V t), (5a)

θt = θt−1 + ωt, ωt ∼ N(0,W t) (5b)

where θt evolves in time according to a linear/normal random walk with innovations variance
matrixW t at time t, and V t is the residual variance in predicting yt based on past information and
the set of agent forecast distributions.

Model specification is completed using standard discount methods. As with the univariate
DLM, the time-varying intercept and agent coefficients θt follow the random walk evolution of
eqn. (5b) where W t is defined via a standard, single discount factor specification (Prado and West
2010, Chap 10). The residual variance matrix V t follows a standard inverse Wishart random walk
volatility model, also based on discounting with a second discount factor.

We now have a class of dynamic, multivariate latent factor models in which latent factors are
realized as draws from the set of agent densities htj(·), becoming available to D at t−1 for forecast-
ing yt. Thus, coupled with eqns. (5a,5b), we have the time t prior for the latent states– conditional
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on H1:t, as
p(Xt|Φt,Y 1:t−1,H1:t) ≡ p(Xt|Ht) =

∏
j=1:J

htj(xtj) (6)

with Xt,Xs conditionally independent for all t 6= s. Again it is important to stress that the con-
ditional independence of the xtj given the htj(·) must not be confused with the D’s modeling and
estimation of the dependencies among agents. This dependence is central and integral, and is
reflected through the effective dynamic parameters Φt = (θt,V t).

2.4 Bayesian Analysis and Computation

At any current time t, D has historical information {y1:t,H1:t} and the history of the BPS analysis
up until that point. This will have defined inferences on past latent agent states X∗ and the
dynamic BPS model parameters Φ∗ = (θ∗,V ∗). The former, importantly, provides insight into
the dependencies, biases, and other characteristics pertaining to y1:t, among agents and individual
agents. Posterior summaries for Xt over time inform on this– a key feature of BPS. This inference
is topical, as issues of herding (overlap and redundancies) among groups of agents (either models
or individuals) is of practical importance, and understanding how these characteristics change over
time and across series is key.

Posterior analysis is enabled by Markov chain Monte Carlo (MCMC) methods, followed by fore-
casting from time t onward utilizing theoretical and simulation-based extrapolation of the model.
D is interested in the inference on the full set of past latent agent states and dynamic parameters
{X1:t,Φ1:t}, as well as forward filtering to update posteriors for current values {Xt,Φt}. Posterior
MCMC-based computation uses nowadays traditional methods, and extends the MCMC method
used in McAlinn and West (2017) for the univariate case with several modifications.

Posterior Computations via MCMC. At a given current time t, the multivariate dynamic latent
factor model structure of eqns. (5a,5b,6) leads easily to a three-component block Gibbs sampler
for the latent agent states, dynamic coefficient parameters, and dynamic volatility parameters. The
components are iteratively resampled from the three conditional posteriors noted below, initialized
given agent states drawn independently from priors h∗(∗).

First, conditional on the agent states and residual volatility, the MCMC step draws new dynamic
coefficient parameters from p(θ1:t|X1:t,V 1:t,y1:t). This is the full (normal) posterior for the se-
quence of states in the implied conditional multivariate DLM, and is efficiently sampled using an
extension of the traditional forward filtering, backward sampling (FFBS) algorithm (e.g. Prado and
West 2010, chap 10).

Second, the MCMC step draws new dynamic volatility matrices V t from the full joint con-
ditional posterior p(V 1:t|X1:t,θ1:t,y1:t)– conditional on the agent states and dynamic coefficient
parameters. This employs the standard FFBS algorithm for inverse Wishart discount volatility mod-
els (Prado and West 2010, chap. 10)

Third, conditional on values of dynamic parameters Φ1:t = (θ1:t,V 1:t), the MCMC draws new
agent states from p(X1:t|Φ1:t,y1:t,H1:t). As with the univariate case, the Xt are conditionally in-
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dependent over time t in this conditional distribution, with time t conditionals p(Xt|Φt,yt,Ht) ∝
N(yt|F tθt,V t)

∏
j=1:J htj(xtj). In cases when all of the agents’ forecasts are multivariate normal,

the posterior is a multivariate normal that is trivially sampled using the properties of conditional
normal. For a more central and practically important case of forecasts being multivariate T distri-
bution, each htj(·) can be represented as a scale mixture of normals, and augmenting the posterior
MCMC to include the implicit underlying latent scale factors generates conditional multivariate
normals for each Xt coupled with conditional inverse gammas for those scales. In other cases,
augmenting the MCMC utilizing Metropolis-Hastings simulator or an augmentation can be used.
More discussion of these algorithmic details is given in Appendix A.

Forecasting 1-Step Ahead. At time t we forecast 1-step ahead by generating “synthetic futures”
from the BPS model, as follows. First, for each sampled Φt from the posterior MCMC above, draw
V t+1 from its discount volatility evolution model, and then θt+1 conditional on θt,V t+1 from the
evolution model eqn. (5b)– this gives a draw Φt+1 = {θt+1,V t+1} from p(Φt+1|y1:t,H1:t). Second,
draw Xt+1 via independent sampling of the ht+1,j(xt+1,j), (j = 1:J). Third, bring these samples
together and draw a synthetic 1-step outcome yt+1 from the conditional normal of eqn. (5a) given
these sampled parameters and agent states. Repeating this generates a random Monte Carlo sample
from the 1-step ahead forecast distribution for time t+ 1.

2.5 Multi-Step Ahead Forecasting

In many applications involving multivariate analysis, long term forecasting and analysis is often
of equal or greater importance than the basic 1-step ahead horizon. For example, in terms of
economic policy and macroeconomic time series– based on traditional monthly or quarterly data–
the most important horizons of interest are 1-3 years ahead. This is especially true when dealing
with monthly data, as knowing a month ahead has very little utility compared to understanding
the long term dynamics and structure over multiple years. Thus, economic policy makers advise
policy decisions based on inputs from their own forecast models, judgemental inputs, views of other
economists, and forecast over the next year or 2-3 years. However, forecast difficulty increases as
the horizon increases, especially when models are calibrated on the short-term basis. Traditional
statistical evaluation of time series models is inherently based on 1-step ahead forecasts, raising
interest in developing BPS to address longer-term forecasting goals.

BPS provides two methods for multi-step ahead forecasting, as laid out in McAlinn and West
(2017). The first method is direct sequential projection of Φt+1,Φt+2, . . . ,Φt+k, updating the pa-
rameters over time until it reaches t + k (k being the horizon of interest) and plugging in the
relevant forecasts, Xt+k, sampled from ht,1:J(xt+k). The second is denoted by BPS(k), referring
to applying the BPS model to synthesise k-step ahead forecasts directly, as expanded upon below.
BPS(k) often outperforms direct projection in terms of forecast accuracy. This is sensible, as we can
expect some agents to perform differently (relative to other agents) for different forecast horizons.
In the context of macroeconomic forecasts, we might observe that economists, who rely on quali-
tative information and policy experience, to outperform purely quantitative models on a long term
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basis and thus calibrating the forecasts on their short term predictive ability– for which quantitative
models often are superior– can be problematic.

BPS(k) for customized multi-step forecasting. BPS provides D a flexible strategy to focus on
the horizon k of interest as it is customizable to the forecasting goals. This involves a trivial mod-
ification of methodology in Section 2 in which the model at time t − 1 for predicting yt changes
as follows. For a specific forecast horizon k > 1, replace ht−k,j(xtj) with htj(xtj) so BPS is cali-
brated using the forecasts from t − k. Doing this results in dynamic model parameters {θt,V t}
to be explicitly geared to the k-step horizon, calibrating and “tuning” to the horizon k of interest.
Forecasting, then, simply follows the model extrapolation via simulation as in Section 2.4.

3 Case Study in US Macroeconomic Forecasting

3.1 Data, Forecasting Models and Implementation

Time Series Data We analyze monthly US macroeconomic data, focusing on forecasting six
macroeconomic time series with 1-, 12-, and 24-month ahead interests. The study involves the
following monthly macro series: annual inflation rate (p), wage (w), unemployment rate (u), con-
sumption (c), investment (i), and short-term nominal interest rate (r) in the US economy from
1986/1 to 2015/12, a context of topical interest (Cogley and Sargent 2005; Primiceri 2005; Koop
et al. 2009; Nakajima and West 2013a). The inflation rate is the consumer price index for all urban
consumers: all items less food and energy, not seasonally adjusted, wage is the average hourly
earnings of production and nonsupervisory employees: total private, not seasonally adjusted, the
unemployment rate is the civilian unemployment rate, seasonally adjusted, consumption is the
personal consumption expenditures, seasonally adjusted annual rate, investment is the ISM manu-
facturing: new orders index, and the interest rate is the effective federal funds rate, not seasonally
adjusted; the first four being annual changes, investment being monthly changes, and monthly
interest rates. Fig. 1 shows the data for the six series over the time span considered. We focus
on forecasting the six series, with an emphasis on inflation, using past values of the six series as
candidate predictors underlying a set of five time series models– the J = 5 agents– to be evaluated,
calibrated, and synthesized.

During the period of analysis, the sub-prime mortgage crisis and great recession of the late
2000s warrant special attention. This period involved a series of significant, unique shocks to the
US economy, so any analysis is challenged in terms of predictive ability in short and longer terms.
For any combination strategy to be effective and useful, its predictive performance must be robust
under these conditions. Additionally, due to the structural changes in the overall economy (e.g.
Aastveit et al. 2017a), there is also interest in understanding changes in the inter-dependencies
among series over the crisis periods. On this goal, multivariate analysis offers opportunity for
improved understanding that simple univariate analyses just cannot.

In our BPS(k) analyses, for k = 12 we take investment as the cumulative value of the previous
year of monthly differences, since investment measures monthly difference and forecasting the
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change from 11th to 12th month is of little relevance to the policy maker. Similarly, for k = 24,
investment is the cumulative value of the 24 months of monthly differences. Additionally, inflation,
wage, unemployment, and consumption are defined as changes from the current time. Agents
will produce forecasts according to the target value by either summing the forecasts to the target
horizon, or summing certain periods within the horizon. In this way, the target forecast is directly
in line with what policy makers are interested in and focus on for decision making.

Agent Models and BPS Specification. For the J = 5 agents we use time varying parameter vec-
tor autoregressive (TVP-VAR) models that cover multiple dynamic structures utilized in the litera-
ture (Cogley and Sargent 2005; Primiceri 2005; Koop et al. 2009; Nakajima and West 2013a) and
in practice. Labelled as M*, the agent models are: M1- VAR(1); M2- VAR(12); M3- VAR(3); M4-
VAR(1:3:9); M5- VAR(1:6:12). The numbers in parentheses are the lags and the number between
colons represent intervals (e.g. 1:3:9 uses lags of 1, 3, 6, and 9). Each M* is a standard TVP-VAR
model (or exchangeable time series; Prado and West 2010, Chap 10) with the residual volatility
following a matrix-beta/Wishart random walk so that model fitting and generation of forecasts is
routine. Though more recent variants of these core models– such as, for example, Bayesian latent
threshold TVP-VARs with stochastic volatility as in Nakajima and West (2013a)– might be consid-
ered, one benefit and appeal of forecast synthesis is making improvements over a set of relatively
simple models. That is, we explore BPS applied to rather standard, and currently accepted variants
of models that are traditional and whose basic model forms (up to assumptions about lags and
variables to include) are accepted in the applied macroeconomic forecasting community.

In the dynamic BPS models for forecast horizons k = 1, 12, 24, we take initial priors using inde-
pendence across series r and with θtr ∼ N(a0,R0) with a0 = (0,1′/J)′ and where R0 is diagonal
with diagonal elements of 1 apart from: (a) elements of 0.001 for the intercept coefficients; and (b)
elements of 0.1 for coefficients on investment. Coupled with this, we take V 0 ∼ IW (7, 7 ∗ 0.01I).
Discount factors in the BPS(1) model are set at (β, δ) = (0.99, 0.99), and variants for BPS(k) for
k = 12, 24-month ahead forecasting are as discussed in Section 2.5, though now we increase the
prior variance on the intercept from 0.001 to 0.01 and 0.1, for k = 12, 24, respectively, to reflect the
increased uncertainty about the relevance of the agent forecasts at longer horizons.

We have explored analyses across ranges of choices of initial priors and discount factors, and
chosen these values as they lead to good agent-specific and BPS forecasting accuracy; conclusions
about the main questions– how BPS can improve forecasts while generating insights into agent
characteristics and dependencies over time– to not change materially with different values close to
those chosen for the summary examples.

Data Analysis and Forecasting. The 5 agent models are analyzed and synthesized as follows.
First, the agent models are analyzed in parallel over 1986/1-1993/6 as a training period to calibrate
the VARs. This continues over 1993/7-2001/12 while at each month t during this period, the
MCMC-based BPS analysis is run in parallel using data from 1993/7 up to time t in an “expanding
window” fashion, adding data as we move forward in time. We do this for the traditional 1-step
focused BPS model, and– separately and in parallel– for the k = 12, 24-step ahead focused BPS(k)
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model as discussed in Section 2.5. This continues over the third period to the end of the series,
2001/1-2015/12, generating forecasts (for the agents and BPS) for each t until the end of the
testing period. This testing period spans over a decade and a half and includes 180 data points,
providing a good measure on how the agents and BPS perform under different economic situations;
most notably before, during, and after the sub-prime mortgage crisis. Out-of-sample forecasting is
thus conducted and evaluated in a way that mirrors the realities facing decision and policy makers.

Forecast Accuracy and Comparisons. Following the recent literature on macroeconomic fore-
casting, we compare both point and density forecasts to give a broader understanding of the pre-
dictive abilities of the agents and BPS. For the point forecasts, we compute and compare mean
squared forecast error (MSFE) over the forecast horizons of interest and for each series. For density
forecasts with BPS, we evaluate log predictive density ratios (LPDR); at horizon k and across time
indices t for the joint set of series, this is

LPDR1:t(k) =
∑
s=1:t

log{pj(ys+k|y1:s)/pBPS(ys+k|y1:s)}

where pj(ys+k|y1:s) is the predictive density under each agent indexed by j, at each time s over
the next k time points. The LPDR measures are, at each t, baselined against the corresponding BPS
forecasts over each horizon k. LPDR provides a direct statistical assessment of the distributional ac-
curacy of a forecast relative to, in this case, BPS for multiple horizons, extending the 1-step focused
Bayes’ factors. They compare the location and dispersion of the forecasts, giving an assessment of
risk, elaborating on MSFE measure, and have been increasingly used in broader model comparison
and forecast accuracy studies (e.g. Nakajima and West 2013a; Aastveit et al. 2017b).

3.2 Dynamic BPS and Forecasting

1-step ahead forecasting. Table 1 summarizes the predictive measures compared for the 1-step
ahead forecasts. Looking at point forecasts, BPS exhibits clear improvements over agent forecasts 5
out of the 6 series; the 5 are inflation, wage, consumption, investment, and interest rate. Even for
the series for which BPS does not show substantial improvement over the models, the difference
between the best model is within 1%. On the series BPS on which makes an improvement, the
gains are at least 2%, except compared to one model for interest rate. It is also notable that the
best model differs for each series. VAR(1:3:9) is best for inflation while it is the worst for wage,
for example. Under traditional model combination strategies, such as Bayesian model averaging
(BMA) in which each model is assessed only on 1-step ahead density forecast accuracy and for the
full multivariate forecast, accuracy is inherently aggregated over series. BPS, due to its flexible
synthesis function, is able to synthesize forecasts on each series, while retaining the inter-series
dependencies. This leads to BPS improving on multiple series without trading-off one over another.
In fact, the results in Table 1 shows that BPS exhibits improvements for all 6 series relative to BMA.

BPS demonstrates an ability to substantially improves characterization of forecast uncertainties
as well as adaptation in forecast locations, reflected in the LPDR measures. Note that the best
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model, in terms of LPDR, is only best for wage in terms of MSFE and performs average for the
other series. This indicates how LPDR measures for multiple series favor overall performance over
models that are good for some but bad for others. Model combination schemes that are dependent
on likelihood measures– such as BMA– heavily favor the average performing model (VAR(3) in the
case of 1-step ahead forecasts). In contrast, BPS dynamically synthesizes forecasts for each series,
while improving uncertainty assessment (per series and dependence between series), to improve
in terms of overall distribution forecasts as well as point forecasts. This feature of BPS is critical, as
D typically has priorities among the series being forecasted.

We next review summary graphs showing aspects of analysis evolving over time during the
testing period, a period that includes challenging economic times that impede good predictive
performance. Figs. 2–13 summarize sequential analysis for 1-step forecasting.

Fig. 2 shows the 1-step ahead measures MSFE1:t(1) over time t in forecasting inflation. The
other series are omitted for the sake of brevity, but the patterns in inflation are consistent (see
supplementary appendix material). Additionally, forecasting inflation is one of the most important
tasks for an economic policy maker, and therefore focusing on inflation is appropriate for this
example. While BPS does not outperform the other models over the whole testing period, we see
that it is on par with the best models considered. BPS ends up improving on the other models
based on its performance during and after the sub-prime mortgage crisis, demonstrating how BPS
dynamically adapts over time to produce robust forecasts over crisis periods and changing regimes.

Fig. 3 confirms that BPS performs uniformly better than the other models based on LPDR mea-
sures. The gradual decline in LPDR and a more drastic decline after the crisis is indicative of how
BPS dynamically adapts its location and uncertainty to improve its distribution forecasts.

One crucial aspect of the BPS model is that it can adapt coefficients specific to each series.
Figs. 4-9 are the on-line posterior means of BPS model coefficients for 1-step ahead forecasts for
each series. We first note how the coefficients for each series evolve and are different across series,
reflecting how different models are better at forecasting different series and how the relative accu-
racy differs in time. Additionally, we note that the dynamic coefficients can appear to be somewhat
erratic, which is reflective of the level of uncertainty in the latent agent states.

The somewhat erratic coefficient trajectories for the 1-step ahead forecasts–particularly com-
pared to those from the 12- and 24-step analyses (Figs. C16-C27)– arises due to a number of
factors. It is partly a result of the constraining initial prior on the intercept, heavily favoring small
values, so the on-line posteriors for the BPS coefficients adapt more dramatically than were the
intercept to be “freer” to move around. This is coupled with the generally strong positive inter-
dependencies among agent forecasts that lead to high collinearity. Coefficients trajectories are
most erratic during the stable pre-crisis period, where agent forecasts are particularly similar, and
less erratic when agent forecasts diverge more substantially post-crisis. For 12- and 24-step ahead
forecasts, while the agent forecasts are generally poorer, their inter-dependencies are much weaker
yielding more stable coefficient trajectories based on sustained differences in relative forecasting
accuracy across agents even in the context of high uncertainties.

For inflation (Fig. 4), the coefficients clearly exhibit a structural change after the sub-prime
mortgage crisis. VAR(1) and VAR(3), which are relatively simple models with short lags, have the
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highest coefficients up until the crisis, but quickly drop off, replaced by VAR(1:3:9) and VAR(1:6:12),
which are more complex models with longer lags. This can be viewed as a structural change where
simpler dynamics are being replaced by longer, more complex, dynamics after the crisis.

Coefficients of wage (Fig. 5), on the other hand, are relatively stable over time. The VAR(3)

model, using a quarters worth of lags, has the highest coefficient and that stays the highest through-
out. In comparison to inflation, VAR(1), the simplest model has limited impact, while the most
complex VAR(12) model has a persistent negative coefficient which, to some degree, balances the
impact of the simpler, short-lag models.

In Fig. 6, the estimated trajectory of coefficients for unemployment exhibits an increase for the
VAR(1) model and a gradual decrease for the more complex VAR(3) model after the sub-prime
mortgage crisis, as well as overall small effects from the other more complex models. Due to
unemployment being heavily impacted by the crisis, this characteristic is understandable. Long
term unemployment trends become irrelevant in light of the recent shock to the economy, and the
coefficients reflect that shift.

For consumption Fig. 7, we see a clear grouping of agents: that of VAR(1)-VAR(1:6:12) and that
of VAR(3)-VAR(12). Before the crisis, we see that these two groups converging to almost equal
weight (except for VAR(1:3:9), which is almost always negative), then quickly re-separating again
after the crisis. This suggests that consumption is mainly driven by biannual lags.

The coefficients for investment (Fig. 8) uses a more restrictive initial prior due to experience in
the training data period of extremely high uncertainty in the agent forecasts linked to the highly
volatile nature of this series. This results in relatively more stable coefficients trajectories, with all
being above zero and around equal weight. However, there are still clear patterns that emerge;
notably, we see an upward spike in VAR(1:6:12) at around 2003 and some fluctuations during the
subprime mortgage crisis.

For interest rate (Fig. 9) the coefficients favor more complex models with longer lags. Inter-
estingly, we see a gradual decrease in coefficients on the VAR(1) model up until the sub-prime
mortgage crisis, at which point it stays level. Long term dynamics, we can infer, were taking over
short term dynamics leading up to the crisis, bringing up interesting questions about lending and
credit characteristics pre-crisis. We also note that the introduction of zero interest rates after the
crisis does not seem to effect the coefficients at all.

Figs. 11-13 exhibit selected aspects of inferences on the trends in uncertainty and dependence
between series over time. The forecast standard deviation (the diagonal elements of the forecast
covariance matrix) displays how the uncertainty measures change over time; see Fig. 10. Complex
models for multiple series– that require estimation methods that are also complex– often produce
large forecast standard deviations coming from the model, data, estimation method, or all of the
above. Large VAR models are popular in practice, due to modeling flexibility and interpretability,
but naturally lead to inflated uncertainty measures due to large numbers of parameters, collinear-
ities and resulting estimation uncertainties. BPS, on the other hand, has smaller uncertainty in
synthesised forecasts, resulting in decreased forecast uncertainty relative to each of the agents.
This is a critical benefit of BPS. Though underestimating real risk is as dangerous as overestimating
it, the LPDR results indicate that the BPS uncertainty estimates are valid– point forecasts are gen-
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erally improved and lower predictive uncertainties couple with that to lead to a win-win analysis.
Finally, we move attention to posterior distributions on BPS parameters over time to explore

inter-dependencies among agent forecasts and their temporal evolutions. One set of numerical
summary of dependencies among agent forecasts is given by the on-line posterior covariance ma-
trices of θt in eqn. (5b). The posterior dependencies among agents are effectively transferred onto
the dynamic coefficients, thus inspecting the dependence structure of θt is in effect exploring the
latent dependencies among agents. For instance, high positive dependencies among agent forecasts
will generate high negative correlations among the corresponding dynamic regression coefficients
on the agent latent factors, and vice-versa. We look at these measures of dependence at 3 spe-
cific time points that represent different regimes in the testing period; pre-sub-prime mortgage
crisis (2003/10), immediately after the crisis (2009/3), and post-crisis (2014/6). Correlations are
arranged in order of series and then via agents within series. See Figs. 11-13.

At the beginning of the testing period where the series are relatively stable (Fig. 11), we note
a overall scattered dependence around zero across series (weak positive and negative dependence
without much pattern), with some negative correlation within series and some dependence be-
tween consumption and investment, and investment and interest rate. The negative correlation
within series is expected. If a model coefficient increases, the other model coefficients decrease
so the sum of coefficients stays stable from t to t + 1. Immediately after the crisis (Fig. 12), we
note some positive correlations appearing between consumption and interest rate across series, as
seen as the positive correlation (yellow) radiating from the two. Post crisis (Fig. 13), we see a new
dependence structure appearing, with almost no dependence across series, except for interest rate
positively dependent on everything else, and weaker dependencies among wage, consumption, and
investment compared to Fig. 12.

The patterns of changes in dependencies among agents and across series over time provide
insights into how the economy changes with respect to economic shocks defining different regimes.
Figs. 11 and 13 are both snapshots of relatively stable periods, yet the characteristics exhibited
through the estimated dependencies are different. These differences in economic structure are not
unexpected, though graphically visualizing the differences through the lens of agents and BPS-
defined inferences on inter-dependencies provides new insight and perceptions into the overall
change in economy.

k-step ahead forecasting. Long term forecasting for economic policy is far more important than
1-step ahead forecasting. For this study, we forecast 12- (one year) and 24- (two years) step ahead
to demonstrate the effectiveness of BPS over the set of agents at practically important horizons.

Tables 2 and 3 summarizes the predictive measures compared for the two forecast horizons.
For point forecasts, BPS(k) outperforms all other models for all series with the exception of wage
growth. The improvement hold for all k-step ahead forecasts considered and the improvements of
BPS(k) significantly increase with k. The improvements come from BPS(k) directly synthesizing the
k-step ahead forecasts from the agents, calibrating, adapting, and learning the latent dependencies
and biases over the k-step ahead quantity of interest. For 24-step ahead forecasts of inflation, one
of the most important series for a central bank when setting their key policy rate, BPS(k) greatly
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improves on the agent models, with massive gains over the best agent model. As with 1-step ahead
forecasting, it is also notable that agent model performances vary significantly across series. In
contrast to BPS, traditional model combination schemes, such as BMA, fail to improve over all
series by sacrificing improved accuracy for one series over others; in fact, for both 12- and 24-
step ahead forecasts, BMA-based analysis degenerates to the VAR(1) model. In addition, BPS(k)

significantly improves in quantifying uncertainty in forecasts, as evident in the comparison of LPDR.
Creating long-term forecasts for multiple time series is a very difficult problem due to the nature of
these models being built and trained on 1-step ahead forecasting metrics (likelihood) and failing to
propagate forward accurately. In contrast, BPS(k) synthesizes the k-step ahead forecasts directly,
adjusting and calibrating uncertainty according to the actual quantity of interest. Thus, no matter
how the agent uncertainty forecasts are over- or under-estimating, BPS(k) can re-adjust accordingly
by learning how the agents over- or under-estimate. The consistency of the LPDR improvements
over multiple k-steps demonstrate this key feature of BPS(k).

As with the sequential MSFE results for 1-step ahead forecasts, we focus now on multi-step
MSFE results for inflation. The characteristics of the results for inflation are similar to those of the
other series and are omitted for the sake of brevity. Figs. 14 and 16 exhibit MSFE comparisons for
inflation over the testing period for k = 12, 24-step ahead forecasts. Although the scale is different
for each k, there are notable common characteristics that characterize the BPS(k) results. For
example, agent models experience several large shocks in precision over the testing period; this
occurs, in particular, around the time of the advent of the sub-prime mortgage crisis in the late
2000s. These shocks particularly effect the precision of the agent forecasts, especially the 24-step
ahead forecasts. In comparison, BPS(k) stays relatively robust throughout multiple shocks and
structural breaks.

Looking at LPDR evolutions over time (Figs. 15 and 17), BPS(k) improves over the agent mod-
els over all of the time period considered, except for slight increases in favoring the simpler VAR(1)

model immediately post crisis. BPS(k) is able to adapt to maintain improved forecasting perfor-
mance both in terms of location and uncertainty assessment, a key positive feature for decision
makers tasked with forecasting risk and quantiles for long horizons under possible shocks and
regime change.

Figs. C22-C27 exhibit the on-line posterior means of BPS model coefficients for the 24-step
ahead forecasts. The coefficients for 6- and 12-step ahead forecasts are omitted– similar conclusions
arise in those analyses. Overall, the BPS(k) coefficients are relatively stable compared to the 1-step
ahead results, due somewhat to the lack of signal from the agent forecasts. The agent forecasts’
ability for 24-steps are considerably worse than from their 1-step ahead counterparts, leading to
less useful information to be synthesized by BPS(k). The lack of signal from all of the agent models
leads to less movement in the coefficients, and in turn, an increase in adaptability in the intercept.

4 Additional Comments

Our extensions and development of multivariate BPS define a theoretically and conceptually sound
framework to compare and synthesize multivariate density forecasts in a dynamic context. The
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approach will enable decision makers to dynamically calibrate, learn, and update predictions based
on ranges of forecasts from sets of models, as well as from more subjective sources such as in-
dividual forecasters or agencies. While it will be of interest to develop future studies in which
agents are represented by sets of more elaborate macroeconomic models– such as dynamic thresh-
old models and dynamic stochastic general equilibrium (DSGE) models– and to integrate forecasts
coming from professional forecasters and economists, the current case study already demonstrates
the real practical potential. In our sequential BPS analysis of multiple US macroeconomic series,
we have highlighted questions of forecast synthesis methodology with respect to forecasting goals:
interest in 12 or 24 month-ahead forecasting demands– from a formal Bayesian perspective– anal-
ysis customized to the horizon, and the results bear out the practical relevance of that perspective.
The studies show that the flexible and interpretable DFSUR models can (i) adapt to time-varying
biases and miscalibration of multiple models or forecasters, (ii) adaptively and practically account
for– while generating useful insights into– patterns of time-varying relationships and dependen-
cies among sets of models or forecasters, and (iii) improving forecast accuracy– in some cases,
most substantially– for each of several multiple macroeconomic series together, at multiple hori-
zons. The predictive performance of BPS is robust in times of severe economic distress, which
is important for practical applications. Additionally, inference on the inter-dependencies among
forecasting models– linked to the BPS foundational latent factor structure and aspects of inference
on time-varying parameters characterizing that structure– provides both illumination of the inter-
dependencies, and how they may vary across subsets of the multivariate series. This also provides
the decision maker with the opportunity to respond and change or intervene in the BPS modeling
for continued forecast synthesis into the future.

Multivariate BPS has further potential in applications to other fields and data where inter-
dependencies between series have impact on the decision making, and where multiple forecasts,
whether from forecasters or models, are available. Such applications include financial data, such
as stocks, indexes, and bonds with portfolio decisions in mind. Further methodological extensions
that warrant investigation include non-normal forecasts and discrete data, and missing or incom-
plete/partial forecasts. A second, major area for extension arises from the observation that our BPS
setting is not, in fact, as general as it could be in terms of building on the historical Bayesian agent
analysis literature. Referring back to Section 2.1, each agent Aj could provides a forecast density
hj(zj) for a set of outcomes zj that is not, in fact, exactly the outcome y of interest to D. For ex-
ample, zj may be a subset of the macroeconomic variables in y, but not all of them; and/or it may
include additional, relevant variables not included in y. The same foundational theory applies, and
this provides potential to explore BPS when different models or forecasters have differing areas of
expertise as well as different strategies in forecasting collections of related series.

Questions about the computational aspects of fitting and forecasting with BPS are also relevant.
The current analysis, as developed and exemplified in this paper, relies on repeat reanalysis using
MCMC for each time t. This is a common strategy in the application of Bayesian dynamic latent
factor models of other forms in a sequential forecasting context, and state-of-the-art as an approach
if full and accurate numerical Bayesian analysis is to be achieved. In the case study developed, the
computational burdens are not at all detrimental, and the potential improvements in forecasting
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accuracy and insights that our example illustrates outweighs the computational cost. In other con-
texts requiring fast data processing in sequential analyses, it may be that some form of sequential
Monte Carlo (SMC, e.g. Lopes and Tsay 2011) may prove useful, especially if enabled by decoupling
of multivariate series into small or univariate but linked subsets, within each of which customized
SMC methods might be more effective. This idea would aim to exploit and extend to a BPS frame-
work the concept of decouple/recouple in modeling increasingly high-dimensional time series in
other contexts (e.g. Gruber and West 2016; Chen et al. 2017; Gruber and West 2017). Further,
beyond our development of DFSUR models in the current study, some of these referenced mod-
eling approaches may be of interest in themselves as candidates for defining relationships among
outcome time series and the inherent latent factors in dynamic multivariate BPS models.
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Frühwirth-Schnatter, S. (1994), “Data augmentation and dynamic linear models,” Journal of Time
Series Analysis, 15, 183–202.

Genest, C. and Schervish, M. J. (1985), “Modelling expert judgements for Bayesian updating,”
Annals of Statistics, 13, 1198–1212.

Geweke, J. and Amisano, G. G. (2012), “Prediction with misspecified models,” The American Eco-
nomic Review, 102, 482–486.

Geweke, J. F. and Amisano, G. G. (2011), “Optimal prediction pools,” Journal of Econometrics, 164,
130–141.

Gruber, L. F. and West, M. (2016), “GPU-accelerated Bayesian learning in simultaneous graphical
dynamic linear models,” Bayesian Analysis, 11, 125–149.

17



— (2017), “Bayesian forecasting and scalable multivariate volatility analysis using simultaneous
graphical dynamic linear models,” Econometrics and Statistics, 3, 3–22, arXiv:1606.08291.

Hall, S. G. and Mitchell, J. (2007), “Combining density forecasts,” International Journal of Forecast-
ing, 23, 1–13.

Hoogerheide, L., Kleijn, R., Ravazzolo, F., Van Dijk, H. K., and Verbeek, M. (2010), “Forecast accu-
racy and economic gains from Bayesian model averaging using time-varying weights,” Journal of
Forecasting, 29, 251–269.

Jore, A. S., Mitchell, J., and Vahey, S. P. (2010), “Combining forecast densities from VARs with
uncertain instabilities,” Journal of Applied Econometrics, 25, 621–634.

Kapetanios, G., Mitchell, J., Price, S., and Fawcett, N. (2015), “Generalised density forecast combi-
nations,” Journal of Econometrics, 188, 150–165.

Kascha, C. and Ravazzolo, F. (2010), “Combining inflation density forecasts,” Journal of Forecasting,
29, 231–250.

Koop, G., Korobilis, D., et al. (2010), “Bayesian multivariate time series methods for empirical
macroeconomics,” Foundations and Trends in Econometrics, 3, 267–358.

Koop, G., Leon-Gonzalez, R., and Strachan, R. W. (2009), “On the evolution of the monetary policy
transmission mechanism,” Journal of Economic Dynamics and Control, 33, 997–1017.

Korobilis, D. (2013), “VAR forecasting using Bayesian variable selection,” Journal of Applied Econo-
metrics, 28, 204–230.

Lindley, D. V., Tversky, A., and Brown, R. V. (1979), “On the reconciliation of probability assess-
ments,” Journal of the Royal Statistical Society (Series A: General), 142, 146–180.

Lopes, H. F. and Tsay, R. S. (2011), “Particle filters and Bayesian inference in financial economet-
rics,” Journal of Forecasting, 30, 168–209.

McAlinn, K. and West, M. (2017), “Dynamic Bayesian predictive synthesis in time series forecast-
ing,” Journal of Econometrics, forthcoming, arXiv:1601.07463.

Nakajima, J. (2011), “Time-varying parameter VAR model with stochastic volatility: An overview
of methodology and empirical applications,” Monetary and Economic Studies, 29, 107–142.

Nakajima, J. and West, M. (2013a), “Bayesian analysis of latent threshold dynamic models,” Journal
of Business & Economic Statistics, 31, 151–164.

— (2013b), “Bayesian dynamic factor models: Latent threshold approach,” Journal of Financial
Econometrics, 11, 116–153.

Pettenuzzo, D. and Ravazzolo, F. (2016), “Optimal portfolio choice under decision-based model
combinations,” Journal of Applied Econometrics, 31, 1312–1332.

18



Prado, R. and West, M. (2010), Time Series: Modelling, Computation & Inference, Chapman &
Hall/CRC Press.

Primiceri, G. E. (2005), “Time varying structural vector autoregressions and monetary policy,” Re-
view of Economic Studies, 72, 821–852.

Sims, C. A. (1993), “A nine-variable probabilistic macroeconomic forecasting model,” in Business
Cycles, Indicators and Forecasting, eds. Stock, J. H. and Watson, M. W., University of Chicago
Press, pp. 179–212.

Sims, C. A. and Zha, T. (1998), “Bayesian methods for dynamic multivariate models,” International
Economic Review, 96, 949–968.

Stock, J. H. and Watson, M. W. (1996), “Evidence on structural instability in macroeconomic time
series relations,” Journal of Business & Economic Statistics, 14, 11–30.

Timmermann, A. (2004), “Forecast combinations,” in Handbook of Economic Forecasting, eds. El-
liott, G., Granger, C. W. J., and Timmermann, A., North Holland, vol. 1, chap. 4, pp. 135–196.

West, M. (1984), “Bayesian aggregation,” Journal of the Royal Statistical Society (Series A: General),
147, 600–607.

— (1988), “Modelling expert opinion (with discussion),” in Bayesian Statistics 3, eds. Bernardo,
J. M., DeGroot, M. H., Lindley, D. V., and Smith, A. F. M., Oxford University Press, pp. 493–508.

— (1992), “Modelling agent forecast distributions,” Journal of the Royal Statistical Society (Series
B: Methodological), 54, 553–567.

West, M. and Crosse, J. (1992), “Modelling of probabilistic agent opinion,” Journal of the Royal
Statistical Society (Series B: Methodological), 54, 285–299.

West, M. and Harrison, P. J. (1997), Bayesian Forecasting & Dynamic Models, Springer Verlag, 2nd
ed.

Zellner, A. (1962), “An efficient method of estimating seemingly unrelated regressions and tests for
aggregation bias,” Journal of the American Statistical Association, 57, 348–368.

Zhou, X., Nakajima, J., and West, M. (2014), “Bayesian forecasting and portfolio decisions using
dynamic dependent sparse factor models,” International Journal of Forecasting, 30, 963–980.

19



Multivariate Bayesian Predictive Synthesis
in Macroeconomic Forecasting

Kenichiro McAlinn, Knut Are Aastveit, Jouchi Nakajima & Mike West

Tables and Figures

Table 1: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead forecast evaluations for
monthly US macroeconomic series over the 15 years 2001/1-2015/12, comparing mean squared
forecast errors and log predictive density ratios for this T = 180 months. The column % denotes
improvements over the standard BPS model. Note: LPDR1:T is relative to the standard BPS model.

MSFE1:T

1-step Infl % Wage % Unemp %
VAR(1) 0.0141 −8.22 0.1444 −35.91 0.0206 0.74
VAR(12) 0.0160 −22.93 0.1110 −4.44 0.0230 −10.73
VAR(3) 0.0147 −13.24 0.1105 −3.96 0.0219 −5.67
VAR(1:3:9) 0.0135 −3.76 0.1198 −12.77 0.0222 −7.18
VAR(1:6:12) 0.0137 −5.14 0.1449 −36.40 0.0215 −3.70
BMA 0.0146 −12.20 0.1111 −4.53 0.0218 −5.26
BPS 0.0130 − 0.1063 − 0.0207 −

MSFE1:T

1-step Cons % Invest % Interest %
VAR(1) 0.3908 −3.50 13.2183 −2.99 0.0275 −35.07
VAR(12) 0.4697 −24.41 15.3571 −19.65 0.0246 −20.92
VAR(3) 0.3982 −5.48 13.3210 −3.79 0.0211 −3.74
VAR(1:3:9) 0.4049 −7.25 13.8918 −8.24 0.0204 −0.55
VAR(1:6:12) 0.3889 −3.02 13.4301 −4.64 0.0228 −12.02
BMA 0.3971 −5.18 13.2145 −2.96 0.0215 −5.80
BPS 0.3775 − 12.8346 − 0.0203 −

1-step LPDR1:T

VAR(1) −77.25
VAR(12) −103.82
VAR(3) −31.00
VAR(1:3:9) −34.22
VAR(1:6:12) −52.69
BMA −32.48
BPS −
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Table 2: US macroeconomic forecasting 2001/1-2015/12: 12-step ahead forecast evaluations for
monthly US macroeconomic series over the 15 years 2001/1-2015/12, comparing mean squared
forecast errors and log predictive density ratios for this T = 180 months. The column % denotes
improvements over BPS(12). Note: LPDR1:T is relative to BPS(12).

MSFE1:T

12-step Infl % Wage % Unemp %
VAR(1) 0.5317 −143.15 0.4453 19.50 1.2028 −10.66
VAR(12) 0.4272 −95.35 0.7750 −40.12 1.6918 −55.65
VAR(3) 0.5789 −164.74 0.5215 5.72 1.1788 −8.45
VAR(1:3:9) 0.4541 −107.69 1.1207 −102.62 1.6353 −50.46
VAR(1:6:12) 0.5342 −144.30 0.8934 −61.52 1.3585 −24.99
BPS(12) 0.2187 − 0.5531 − 1.0869 −

MSFE1:T

12-step Cons % Invest % Interest %
VAR(1) 7.2471 −23.21 7067.67 −65.55 5.5916 −68.74
VAR(12) 18.4145 −213.07 8824.02 −106.68 6.1707 −86.22
VAR(3) 7.3142 −24.35 6378.42 −49.40 4.8222 −45.52
VAR(1:3:9) 10.3823 −76.51 9111.99 −113.43 4.6622 −40.69
VAR(1:6:12) 10.1116 −71.91 10013.45 −134.54 7.4612 −125.16
BPS(12) 5.8818 − 4269.33 − 3.3137 −

12-step LPDR1:T

VAR(1) −119.05
VAR(12) −535.09
VAR(3) −366.85
VAR(1:3:9) −463.46
VAR(1:6:12) −361.20
BPS(12) −
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Table 3: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead forecast evaluations for
monthly US macroeconomic series over the 15 years 2001/1-2015/12, comparing mean squared
forecast errors and log predictive density ratios for this T = 180 months. The column % denotes
improvements over BPS(24). Note: LPDR1:T is relative to BPS(24).

MSFE1:T

24-step Infl % Wage % Unemp %
VAR(1) 3.9536 −331.10 2.4117 7.71 16.46 −55.68
VAR(12) 2.7373 −198.47 4.5054 −72.41 18.32 −73.28
VAR(3) 3.8504 −319.85 3.1877 −21.98 13.78 −30.35
VAR(1:3:9) 4.8627 −430.23 8.8723 −239.52 21.06 −99.17
VAR(1:6:12) 4.4141 −381.32 8.4162 −222.06 16.99 −60.65
BPS(24) 0.9171 − 2.6132 − 10.58 −

MSFE1:T

24-step Cons % Invest % Interest %
VAR(1) 56.27 −104.54 51937 −776.23 31.68 −480.56
VAR(12) 118.09 −329.23 38151 −543.65 25.89 −374.58
VAR(3) 46.80 −70.09 39671 −569.30 21.84 −300.31
VAR(1:3:9) 78.73 −186.15 80278 −1254.37 25.41 −365.71
VAR(1:6:12) 72.54 −163.67 86671 −1362.23 62.16 −1039.32
BPS(24) 27.51 − 5927 − 5.46 −

24-step LPDR1:T

VAR(1) −445.81
VAR(12) −489.98
VAR(3) −462.48
VAR(1:3:9) −808.31
VAR(1:6:12) −804.49
BPS(24) −
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Figure 1: US macroeconomic data 1986/1-2015/12: US macroeconomic time series (indices ×100
for % basis): annual inflation rate (p), wage (w), unemployment rate (u), consumption (c), invest-
ment (i), and short-term nominal interest rate (r).
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Figure 2: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step ahead forecast
errors MSFE1:t(1) of inflation (p) sequentially revised at each of the t = 1:180 months.

Figure 3: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead log predictive density
ratios LPDR1:t(1) sequentially revised at each of the t = 1:180 months. The baseline at 0 over all t
corresponds to the standard BPS model.
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Figure 4: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS model
coefficients for inflation (p) sequentially computed at each of the t = 1:180 months.

Figure 5: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS model
coefficients for wage (w)sequentially computed at each of the t = 1:180 months.
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Figure 6: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS model
coefficients for unemployment (u) sequentially computed at each of the t = 1:180 months.

Figure 7: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS model
coefficients for consumption (c) sequentially computed at each of the t = 1:180 months.
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Figure 8: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS model
coefficients for investment (i) sequentially computed at each of the t = 1:180 months.

Figure 9: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS model
coefficients for interest rate (r) sequentially computed at each of the t = 1:180 months.
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Figure 10: US macroeconomic forecasting 2001/1-2015/12: 1-step ahead forecast standard devia-
tions sequentially computed at each of the t = 1:180 months.
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Figure 11: US macroeconomic forecasting 2001/1-2015/12: On-line posterior correlation of BPS
model coefficients at 2003/10.

Figure 12: US macroeconomic forecasting 2001/1-2015/12: On-line posterior correlation of BPS
model coefficients at 2009/03.
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Figure 13: US macroeconomic forecasting 2001/1-2015/12: On-line posterior correlation of BPS
model coefficients at 2014/06.
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Figure 14: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step ahead forecast
errors MSFE1:t(12) of inflation (p) sequentially revised at each of the t = 1:180 months.

Figure 15: US macroeconomic forecasting 2001/1-2015/12: 12-step ahead log predictive density
ratios LPDR1:t(12) sequentially revised at each of the t = 1:180 months. The baseline at 0 over all t
corresponds to BPS(12).
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Figure 16: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-step ahead forecast
errors MSFE1:t(24) of inflation (p) sequentially revised at each of the t = 1:180 months.

Figure 17: US macroeconomic forecasting 2001/1-2015/12: 24-step ahead log predictive density
ratios LPDR1:t(24) sequentially revised at each of the t = 1:180 months. The baseline at 0 over all t
corresponds to BPS(24).
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Figure 18: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for inflation (p) sequentially computed at each of the t = 1:180 months.

Figure 19: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for wage (w)sequentially computed at each of the t = 1:180 months.
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Figure 20: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for unemployment (u) sequentially computed at each of the t = 1:180 months.

Figure 21: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for consumption (c) sequentially computed at each of the t = 1:180 months.
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Figure 22: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for investment (i) sequentially computed at each of the t = 1:180 months.

Figure 23: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for interest rate (r) sequentially computed at each of the t = 1:180 months.

35



Multivariate Bayesian Predictive Synthesis
in Macroeconomic Forecasting

Kenichiro McAlinn, Knut Are Aastveit, Jouchi Nakajima, & Mike West

Supplementary Material

A Appendix: Summary of MCMC for Dynamic BPS

A.1 Overview and Initialization

This appendix summarizes algorithmic details of implementation of the MCMC computations for
dynamic BPS model fitting of Section 2.4. This involves a standard set of steps in a customized
three-component block Gibbs sampler: the first component samples the latent agent states, the
second, the second samples the dynamic BPS model states/parameters, and the third component
samples the observation variance. The latter two involves a modified FFBS algorithm central to
MCMC in all conditionally normal DLMs (Frühwirth-Schnatter 1994; West and Harrison 1997, Sect
15.2; Prado and West 2010, Sect 4.5).

In our sequential learning and forecasting context, the full MCMC analysis is performed anew
at each time point as time evolves and new data are observed. We detail MCMC steps for analysis
based on data over times t = 1:T for any chosen T .

Standing at time t = 0, the decision maker has initial information summarized via in terms
of θ0 ∼ N(m0,C0) and V 0 ∼ IW (n0,D0), independently. Here the q × q variance matrix V 0

has the inverse Wishart distribution with n > 0 degrees of freedom and prior “sum-of-squares”
matrix D0. Equivalently, the precision matrix V −10 ∼ W (h0,D

−1
0 ), the Wishart distribution with

h0 = n0 + q − 1 and mean h0D−10 so that the initial estimate D0/h0 is the prior harmonic mean of
V 0. Model specification is completed with two chosen discount factors: β, defining the extent of
time variation in the evolution of the states θt, and δ defining levels of variation in the evolution of
the volatility matrices V t.

At time T, the decision maker has accrued information {y1:T ,H1:T }. The MCMC analysis is then
run iteratively as follows.

Initialization: First, initialize by setting

F t =


1 f ′t1 0 0′ · · · · · · 0 0′

0 0′ 1 f ′t2
...

...
. . .

...
0 · · · · · · · · · · · · · · · 1 f ′tq

 , (7)

for each t = 1:T , with elements set at some chosen initial values of the latent agent states. Initial
values can be chosen arbitrarily. One obvious and appropriate choice– our recommended default
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choice– is to simply generate agent states from their priors, i.e., from the agent forecast distribu-
tions, xtj ∼ htj(xtj) independently for all t = 1:T and j = 1:J . This is easily implemented in cases
when the agent forecasts are T or normal distributions, or can be otherwise directly sampled; we
use this in our analyses reported in the paper, and recommend it as standard. An obvious alterna-
tive initialization is to simply set xtj = yt for each t, j, though we prefer to initialize with some
inherent dispersion in starting values. Ultimately, since the MCMC is rapidly convergent, choice of
initial values is not critical. Given initial values of agent factor vector xtj = (xt1j , xt2j , ..., xtqj)

′ for
each agent j = 1:J and each time t, the F t matrices are initialized with series-specific row entries
from f tr = (xtr1, xtr2, ..., xtrJ)′ for each r = 1:q.

A.2 Three Sampling Steps in Each MCMC Iterate

Following initialization, the MCMC iterates repeatedly to resample three sets of conditional poste-
riors to generate the MCMC samples from the target posterior p(X1:T ,θ1:T ,V 1:T |y1:T ,H1:T ). These
conditional posteriors and algorithmic details of their simulation are as follows.

A.2.1 Per MCMC Iterate Step 1: Sampling BPS DLM parameters θ1:T

Conditional on any values of the latent agent states and observation error, we are in the setting of
a conditionally normal, multivariate DLM with the agent states as known predictors based on their
specific values. The BPS DLM form,

yt = F tθt + νt, νt ∼ N(0,V t),

θt = θt−1 + ωt, ωt ∼ N(0,W t),

has known elements F t,W t and specified initial prior at t = 0. The implied conditional posterior
for θ1:T then does not depend onH1:T , reducing to p(θ1:T |X1:T ,V 1:T ,y1:T ). This is simulated using
the efficient and standard FFBS algorithm (e.g. Frühwirth-Schnatter 1994; West and Harrison 1997,
Sect 15.2; Prado and West 2010, Sect 4.5). In detail, this proceeds as follows.

Forward filtering: For each t = 1:T in sequence, perform the standard one-step filtering
updates to compute and save the sequence of sufficient statistics for the on-line posteriors
p(θt|X1:t,V 1:t,y1:t) at each t. The summary technical details are as follows:

1. Time t− 1 posterior:

θt−1|X1:t−1,V 1:t−1,y1:t−1 ∼ N(mt−1,Ct−1),

with point estimate mt−1 of θt−1.

2. Update to time t prior:

θt|X1:t−1,V 1:t−1,y1:t−1 ∼ N(mt−1,Rt) with Rt = Ct−1/δ,
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with (unchanged) point estimates mt−1 of θt, but with increased uncertainty relative to
the time t−1 posteriors, the level of increased uncertainty being defined by the discount
factors.

3. 1-step predictive distribution: yt|X1:t,V 1:t,y1:t−1 ∼ Tβnt−1(f t,Qt) where

f t = F tmt−1 and Qt = F tRtF
′
t + V t.

4. Filtering update to time t posterior:

θt|V 1:t,X1:t,y1:t ∼ N(mt,Ct),

with defining parameters mt = mt−1 +Atet and Ct = Rt −AtQtA
′
t, based on 1-step

forecast error et = yt − f t and the state adaptive coefficient vector (a.k.a. “Kalman
gain”) At = RtF

′
tQ
−1
t .

Backward sampling: Having run the forward filtering analysis up to time T, the backward
sampling proceeds as follows.

a. At time T : Simulate θT from the final multivariate normal posterior

p(θT |X1:T ,V 1:T ,y1:T ) = N(mT ,CT ).

b. Recurse back over times t = T − 1, T − 2, . . . , 0 : At each time t, simulate the state
θt from the conditional posterior p(θt|θt+1,X1:t,V 1:t,y1:t); this is multivariate normal
with mean vector mt + δ(θt+1 −mt) and variance matrix Ct(1− δ).

A.2.2 Per MCMC Iterate Step 2: Sampling BPS DLM parameters V 1:T

Conditional on the sampled values of the BPS DLM parameters θ1:T and latent agent states X1:T ,
the next step in the MCMC iterate samples the full conditional posterior of the sequence of volatility
matrices, generating a draw from p(V 1:T |X1:T ,θ1:T ,y1:T ).

Forward filtering: For each t = 1:T in sequence, update and save the forward filtering
summaries (nt,Dt) of on-line posteriors

V t|X1:t,θ1:t,y1:t ∼ IW (nt,Dt),

given by nt = ht − q + 1 where ht = βht−1 + 1, and Dt = βDt−1 + (yt − F ′tθt)(yt − F ′tθt)′.

Backwards sampling: Having run the forward filtering analysis up to time T, the backward
sampling proceeds as follows.

a. At time T : Simulate V T from the final inverse Wishart posterior IW (nT ,DT ).
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b. Recurse back over times t = T −1, T −2, . . . , 0 : At time t, sample V t from the conditional
posterior p(V t|V t+1,X1:t,θ1:t,y1:t). Algorithmically, this is achieved via

V −1t = βV −1t+1 + Υt where Υt ∼W ((1− β)ht,D
−1
t ),

and where the Υt are independent over t.

A.2.3 Per MCMC Iterate Step 3: Sampling the latent agent states X1:T

Conditional on most recently sampled values of the BPS DLM parameters Φ1:T , the MCMC it-
erate completes with resampling of the latent agent states from their full conditional posterior
p(X1:t|Φ1:t,y1:t,H1:t). It is immediate that theXt are conditionally independent over time t in this
conditional distribution, with time t conditionals

p(Xt|Φt,yt,Ht) ∝ N(yt|F tθt,V t)
∏
j=1:J

htj(xtj). (8)

Several comments are relevant to studies with different forms of the agent forecast densities.

1. Multivariate normal agent forecast densities: In cases when each of the agent forecast densities
is normal, the posterior in eqn. (8) yields a multivariate normal distribution for vectorized
Xt. Computation of its defining parameters and then drawing a new sample vector Xt are
trivial.

2. In some cases, as in our study in this paper, the agent forecast densities will be those of
Student T distributions. In our case study the five agents represent conjugate exchangeable
dynamic linear models in which all forecast densities are multivariate T, with parameters
varying over time and with step-ahead forecast horizon. In such cases, standard Bayesian aug-
mentation methods apply to enable simulation. Each multivariate T distribution is expressed
as a scale mixture of multivariate normals, with the mixing scale parameters introduced as
inherent latent variables with inverse gamma distributions. This expansion of the parameter
space makes the multivariate T distributions conditional multivariate normals, and the mix-
ing scales are resampled (from implied conditional posterior inverse gamma distributions)
each MCMC iterate along with the agent states. This is again a standard MCMC approach
and much used in Bayesian time series, as in other areas (e.g. Frühwirth-Schnatter 1994;
West and Harrison 1997, Chap 15). Then, conditional on the current values of these latent
scales, sampling the Xt reduces technically to that conditional normals above.

Specifically, suppose that htj(xtj) is density of the normal Tntj (htj ,Htj); the notation means
that (xtj − htj)/

√
Htj has a standard multivariate Student T distribution with ntj degrees

of freedom. Then latent scale factors φtj exist such that: (i) conditional on φtj , latent
agent factor xtj has a conditional multivariate normal density xtj |φtj ∼ N(htj ,Htj/φtj)

independently over t, j; (ii) the φtj are independent over t, j with gamma distributions,
φtj ∼ G(ntj/2, ntj/2). Then, at each MCMC step, the above normal update for latent agent
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states is replaced by normal simulations conditional on the φtj . Following this, we resample
values of the φtj from their trivially implied conditional gamma posteriors.

3. In some cases, agent densities may be more elaborate mixtures of normals, such as (dis-
crete or continuous) location and/or scale mixtures that represent asymmetric distributions.
The same augmentation strategy can be applied in such cases, with augmented parameters
including location shifts in place of, or in addition to, scale shifts.

4. In other cases, we may be able to directly simulate the agent forecast distributions and eval-
uate forecast density functions at any point, but do not have access to analytic forms. One
class of examples is when the agents are simulation models, e.g., DSGE models. Another
involves forecasts in terms of histograms. In such cases, MCMC will proceed using some form
of Metropolis-Hastings algorithm, or accept/reject methods, or importance sampling for the
latent agent states.

For example, suppose we only have access to simulations from the agent forecast distribu-
tions, in terms of I independent draws from each collated in the simulated matrix X(i)

t for
i = 1:I. We can apply importance sampling as follows: (a) compute the marginal likelihood
values p(yt|Φt,X

(i)
t ,Ht) for each i = 1:I; (b) compute and normalize the implied importance

sampling weights wti ∝ N(yt|Φt,X
(i)
t ,Ht), and then (c) resample latent agent states for this

MCMC stage according to the probabilities these weights define.
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B Appendix: Additional Graphical Summaries from Macroeconomic
Analysis

This appendix lays out additional graphical summaries of results from the macroeconomic forecast-
ing analysis in the paper, providing material supplementary to that discussed in Section 3.

Figure C1: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step ahead forecast
errors MSFE1:t(1) of wage (w) sequentially revised at each of the t = 1:180 months.

Figure C2: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step ahead forecast
errors MSFE1:t(1) of unemployment rate (u) sequentially revised at each of the t = 1:180 months.
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Figure C3: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step ahead forecast
errors MSFE1:t(1) of consumption (c) sequentially revised at each of the t = 1:180 months.

Figure C4: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step ahead forecast
errors MSFE1:t(1) of investment (i) sequentially revised at each of the t = 1:180 months.
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Figure C5: US macroeconomic forecasting 2001/1-2015/12: Mean squared 1-step ahead forecast
errors MSFE1:t(1) of interest rate (r) sequentially revised at each of the t = 1:180 months.
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Figure C6: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step ahead forecast
errors MSFE1:t(12) of wage (w) sequentially revised at each of the t = 1:180 months.

Figure C7: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step ahead forecast
errors MSFE1:t(12) of unemployment rate (u) sequentially revised at each of the t = 1:180 months.
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Figure C8: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step ahead forecast
errors MSFE1:t(12) of consumption (c) sequentially revised at each of the t = 1:180 months.

Figure C9: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step ahead forecast
errors MSFE1:t(12) of investment (i) sequentially revised at each of the t = 1:180 months.
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Figure C10: US macroeconomic forecasting 2001/1-2015/12: Mean squared 12-step ahead fore-
cast errors MSFE1:t(12) of interest rate (r) sequentially revised at each of the t = 1:180 months.
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Figure C11: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-step ahead fore-
cast errors MSFE1:t(24) of wage (w) sequentially revised at each of the t = 1:180 months.

Figure C12: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-step ahead fore-
cast errors MSFE1:t(24) of unemployment rate (u) sequentially revised at each of the t = 1:180
months.
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Figure C13: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-step ahead fore-
cast errors MSFE1:t(24) of consumption (c) sequentially revised at each of the t = 1:180 months.

Figure C14: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-step ahead fore-
cast errors MSFE1:t(24) of investment (i) sequentially revised at each of the t = 1:180 months.
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Figure C15: US macroeconomic forecasting 2001/1-2015/12: Mean squared 24-step ahead fore-
cast errors MSFE1:t(24) of interest rate (r) sequentially revised at each of the t = 1:180 months.
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Figure C16: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(12)
model coefficients for inflation (p) sequentially computed at each of the t = 1:180 months.

Figure C17: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(12)
model coefficients for wage (w)sequentially computed at each of the t = 1:180 months.
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Figure C18: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(12)
model coefficients for unemployment (u) sequentially computed at each of the t = 1:180 months.

Figure C19: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(12)
model coefficients for consumption (c) sequentially computed at each of the t = 1:180 months.
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Figure C20: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(12)
model coefficients for investment (i) sequentially computed at each of the t = 1:180 months.

Figure C21: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(12)
model coefficients for interest rate (r) sequentially computed at each of the t = 1:180 months.
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Figure C22: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for inflation (p) sequentially computed at each of the t = 1:180 months.

Figure C23: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for wage (w)sequentially computed at each of the t = 1:180 months.
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Figure C24: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for unemployment (u) sequentially computed at each of the t = 1:180 months.

Figure C25: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for consumption (c) sequentially computed at each of the t = 1:180 months.
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Figure C26: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for investment (i) sequentially computed at each of the t = 1:180 months.

Figure C27: US macroeconomic forecasting 2001/1-2015/12: On-line posterior means of BPS(24)
model coefficients for interest rate (r) sequentially computed at each of the t = 1:180 months.
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