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Abstract:  Theory implies that the economy responds differently to technology shocks that 

affect the production of consumption versus investment goods.  We estimate industry-level 
technology innovations and use the input-output tables to relax the typical assumptions in the 
investment-specific technical change literature—assumptions that, we find, do not hold in the data.  
We find that investment-technology improvements are sharply contractionary for hours, 
investment, consumption, and output.  Consumption-technology improvements, on the contrary, 
are generally expansionary.  Thus, disaggregating technology shocks into consumption and 
investment-specific changes yields two shocks that both produce business-cycle comovement, and 
also explain a large fraction of annual changes in GDP and its components.  Most of the responses 
we find are consistent with the predictions of simple two-sector models with sticky prices. 
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I. Introduction 

What shocks drive business cycles?  At a minimum, such shocks must move output, 

consumption, investment and hours worked in the same direction, as this positive comovement is a 

defining characteristic of business cycles.  Technology shocks are attractive candidates, because 

they can reproduce this comovement in simple, general-equilibrium models of fluctuations.  But in 

the data, technology shocks identified using restrictions from one-sector models do not produce 

positive comovement.  In particular, Gali (1999) and Basu, Fernald and Kimball (2006) find that 

technology shocks often raise output and consumption, but lower hours worked.  Reviewing this 

evidence, Francis and Ramey (2005) conclude “the original technology-driven … business cycle 

hypothesis does appear to be dead.” 

We revisit the issue of technology shocks and business-cycle comovement because there is 

no consensus in the literature on other shocks that could plausibly account for the bulk of the 

fluctuations that we observe.  (For example, monetary shocks produce the right comovements, but 

are generally estimated to account for a very small fraction of economic volatility.)  Our goal is to 

see whether the conclusions about technology shocks reached earlier might be due to imposing the 

restrictions of a one-sector model of growth and fluctuations in a world where they do not apply.  If 

there are multiple technologies, each affecting a different type of good, might it be the case that 

each type of shock individually generates the proper comovements even though their average does 

not? 

We first show that our hypothesis has a firm basis in economic theory.  Theory tells us that 

the composition of technological change, in terms of the type of final good whose production is 

affected, matters for the dynamics of the economy’s response to technology shocks.  For example, 

we show that a shock to the technology for producing consumption goods has no interesting 
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business-cycle effects in a standard RBC model.  All of the dynamics of hours and investment 

stressed by RBC theory come from shocks to the technology for producing investment goods.2  In 

an open economy, terms-of-trade shocks affect the economy’s ability to provide consumption and 

investment goods for final use, even if no domestic producer has had a change in technology. 

We then present a new and more robust method for estimating sector-specific technical 

change.  Existing methods for investigating the importance of sector-specific technology are based 

primarily on relative movements in the price deflators for investment and consumption goods, an 

approach pioneered in an important paper by Greenwood, Hercowitz and Krusell (1997; henceforth 

GHK).  Our evidence, in contrast, is based on an augmented growth-accounting approach, where 

we estimate technology change at a disaggregated industry level and then use the input-output 

tables to aggregate these changes.   

Our approach offers several advantages.  First, we can relax and, indeed, test many of the 

assumptions necessary for relative-price movements to correctly measure relative changes in 

domestic technological change.  For example, suppose different producers have different factor 

shares or face different input prices; or suppose markups change over time.  Then relative prices do 

not properly measure relative technical change.3  Second, we discuss extensions to the open 

economy, where the ability to import and export means that relative investment prices need not 

measure relative technologies in terms of domestic production. 

We view our ability to allow for differences in sectoral factor shares as the most important 

advantage of our method.  All methods that use relative price changes to identify technology 

shocks (with either short- or long-run restrictions) require that all final-use sectors have the same 

                                                 

2 Greenwood, Hercowitz and Krusell (2000) provide an insightful approach to business-cycle modeling with 
sector-specific technical change.  However, they used a normalization for sector-specific technology that did not have a 
pure consumption-augmenting shock, and thus did not uncover this neutrality result. 

3 We can also test the orthogonality restrictions used in the structural VAR approach of Fisher (2006), who 
also uses relative price data but with a long-run restriction. 
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factor shares.  We are able to calculate these final-use shares using our method, and find that they 

differ significantly across sectors, which means that we should not estimate investment-specific 

technical change using relative prices. 

Applying our method to sectoral US data, we find that consumption-specific and 

investment-specific technology shocks have very different economic effects.  In particular, 

consumption-specific technology improvements are generally expansionary for all important 

business-cycle variables (although hours worked rise significantly only with a lag).  By contrast, 

investment-specific technology improvements are contractionary for all important business-cycle 

variables.  Importantly, both shocks induce positive comovement among the key business-cycle 

variables, including output, consumption, investment and hours. 

As we show in the next section, however, neither set of responses is consistent with RBC 

theory.  Clearly RBC theory would not predict a decline in GDP, consumption, hours and even 

investment following an investment technology improvement.  Perhaps more suprisingly, the fact 

that hours and investment rise after a positive consumption technology investment is also evidence 

against the RBC model.  However, Basu and Fernald (2010) show that these responses are 

generally consistent with the predictions of simple two-sector sticky-price models. 

In conjunction, the theory and empirical work in our paper suggests that we need to revisit 

several influential empirical literatures using multi-sector economic models.  For example, papers 

in the large literature on the macroeconomic effects of technology shocks typically examine the 

responses of macroeconomic variables to aggregate measures of technical change.4  But if 

consumption- and investment-specific shocks are expected to have different economic effects, 

aggregating the two into a single measure can introduce significant measurement error in an 

                                                 

4 An exception is Fisher (2006). 
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explanatory variable.  (Interestingly, the strong dichotomy between the effects of the two types of 

shocks typically does not hold in models with sticky prices.  Thus, similarities or differences in the 

economy’s response to consumption- and investment-specific shocks may also cast light on the 

importance of price stickiness in the macroeconomy.) 

To take another example, many papers follow the suggestion of Cochrane (1994) and take 

the consumption-output ratio to be a measure of permanent income relative to current income.  In a 

general-equilibrium model, the gap is usually due to (expected) changes in productivity.  

Rotemberg and Woodford (1996) use this interpretation to fashion an empirical critique of RBC 

models by comparing the expected transitory changes in macroeconomic variables in the data to 

those predicted by a one-sector RBC model.  But the correlation between expected changes in 

consumption, output and other variables can be quite different depending on whether the shock 

affects consumption technology, investment technology, or both.  Thus, it may be necessary to 

revisit Rotemberg and Woodford’s influential critique by comparing the data to the predictions of 

multi-sector RBC models. 

Our approach to the data also forces us to think about the role of the open economy in 

economic fluctuations.  That is, our approach requires that we take a stand on the “technology” for 

producing net exports.  Thus, we need to decide whether to take a narrow or broad view of 

technology.  The narrow view is to say that “technology” is just something that shifts a domestic 

production function.  We choose to take a broader view, and define technology from the 

consumption possibilities frontier: At least in a neoclassical model where there are stable 

preferences and no distortions, technology is anything that changes consumption for given levels of 

capital, investment and hours worked.  Technology thus defined therefore incorporates changes in 

the terms of trade.  It is clear, of course, that terms of trade changes do not shift domestic 
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production functions, and thus are not technology shocks in the narrow sense.5  But it is also true 

that domestic technology shocks are not the only sources of changes in consumption and welfare, 

even in a fully neoclassical model.  Understanding the behavior of consumption in both the short 

and long run requires us to take an open-economy, multi-sector approach. 

The paper is structured as follows.  After this introduction, we provide a simple theoretical 

example that illustrates that consumption- and investment-specific shocks should have very 

different economic effects.  This example motivates us to write down a macroeconomic model to 

guide our empirical work.  Specifically, the model shows how to map from “messy” 

microeconomic production and international trade data into simple macroeconomic aggregates.  

We then discuss the data, present results, and draw conclusions. 

II. Consumption-Technology Neutrality 

The character of both growth and business cycles depends on the sectoral distribution of 

technical change. In the neoclassical growth model, capital accumulation arises only if technical 

change expands the possibilities for producing capital goods. Indeed, as shown by Kimball (1994), 

with balanced growth, technology change that affects the consumption-producing sector alone has 

no impact on employment or capital accumulation at all.  Hence, the nature of growth is tightly 

connected to the sectoral distribution of technical change.   

The response of a real business cycle model economy to an exogenous technology shock 

also depends on the sectors of the economy it affects. Hours and investment responses to a 

pervasive, sector-neutral, positive technology shock are well understood. They follow from the 

intertemporal substitution of current leisure and consumption for future consumption. The 

household is willing to do this because of the high returns to working and saving. These effects are 

                                                 

5 See Kehoe and Ruhl (2006). 
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amplified when technical change affects the investment sector alone, because current consumption 

is even more expensive relative to future consumption in this case (e.g., Fisher, 2005).  

Consumption-sector shocks have smaller effects on intertemporal substitution and so have much 

less effect on decision rules. As Fisher (1994, 1997) and Kimball (1994) discuss, if preferences are 

logarithmic, then the decision rules for investment and hours, as well as the allocation of capital 

and labor across producing consumption and investment goods, are invariant to the stochastic 

process of consumption-specific technology. More generally, for preferences that are consistent 

with balanced growth, hours and investment and factor allocations do not respond to a technology 

shock, if that shock is permanent, unanticipated, and affects only the consumption sector. So the 

nature of business cycles is also tied to the sectoral distribution of technical change. 

We now present a simple model to illustrate these points.  We then discuss other recent 

macroeconomic work that has focused on the final-goods sector in which technical change occurs.  

The empirical evidence has been drawn almost exclusively from aggregate data, with heavy 

reliance on relative prices. 

Consider the two-sector closed-economy neoclassical growth model.  Suppose one sector 

produces consumption goods C, the other sector produces investment goods, J (We use J to 

differentiate investment from the identity matrix, which we use extensively later).  Both sectors 

produce output by combining capital K and labor L with the same function F but separate Hicks-

neutral technology parameters, ZC  and ZJ.  

In particular, consider the social planner’s problem for the following problem, where utility 

is logarithmic: 
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We omit (most) time subscripts for simplicity.  This setup appears in the recent literature in 

various places.  For example, this is a two-sector version of the model in Greenwood, Hercowitz, 

and Krusell (GHK, 1997); Whelan (2000) discusses the mapping to GHK in greater detail.  There 

are various ways to normalize the technology shocks.  For example, GHK define ZJ = ZCq, where q 

= ZJ/ZC,.   GHK label ZC as “neutral” technology and q as “investment specific,” a labeling that has 

been widely followed since.  A shock that raises ZC but leaves q unchanged is neutral in that both 

ZC  and ZJ increase equally.   

For the purposes of discussing consumption-technology neutrality, a different normalization 

is more natural.  In particular, suppose we define A = ZC/ZJ  as “consumption-specific” technology.  

Then the problem in  (1) can be expressed as a special case of the following problem, where we 

have expressed the problem with a single aggregate budget constraint: 
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 X is an index of inputs devoted to consumption (in the previous example, it would 

correspond to the production function ZJ F(KC, LC).  Since X=C/A, and A  corresponds (in the 

decentralized equilibrium) to the relative price of investment to consumption, we can interpret X as 

consumption in investment-goods units (i.e., nominal consumption deflated by the investment 

deflator).  This is essentially the same approach taken by GHK, except that given their 
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normalization, they express everything (investment and output, in particular) in consumption units.   

But given logarithmic utility, we can express this problem as:  
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Consumption-technology neutrality follows directly from this expression of the problem.  

In particular, because ln(A) is an additively separable term, any stochastic process for A has no 

effect on the optimal decision rules for L, X, or J.  They do not induce capital-deepening or any of 

the “expected” RBC effects; e.g., employment doesn’t change.  Consumption jumps up, which 

immediately moves the economy to its new steady state.6  They affect only real consumption and 

the relative price of consumption goods.  In contrast, investment-sector technology shocks would 

have much more interesting dynamics.  They induce long-run capital-deepening, and even in the 

short-run affect labor supply and investment dynamics. 

Thus, consumption-sector technology shocks are “neutral.” .This consumption-technology 

neutrality proposition has been implicit in two-sector formulations for a long time; the first explicit 

references we are aware of are Kimball (1994) and Fisher (1994).  Nevertheless, it appears to be a 

little-known result.  One reason is that the seminal work by Greenwood, Hercowitz, and Krusell 

(1997) used a different normalization, as noted above; they focused on the response of the 

economy to “investment specific” shocks.  A shock to consumption technology alone (leaving 

                                                 

6 Kimball (1994) discusses this case further, as well as the extension to King-Plosser-Rebelo (1988) 
preferences. 
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investment technology unchanged) would then involve a positive neutral shock, combined with a 

negative investment-specific shock.7   

The theoretical motivation for studying sectoral technical change is bolstered by a nascent 

empirical literature. Most of this literature has followed the GHK normalization of “neutral” and 

“investment specific” shocks.  GHK used data on real equipment prices and argued that 

investment-specific, not sector-neutral, technical change, is the primary source of economic 

growth, accounting for as much as 60% of per capita income growth. Cummins and Violante 

(2000) also find that investment-specific technical change is a major part of growth using more 

recent data.  Several papers also highlight the potential role sector-specific technology shocks in 

the business cycle.  Greenwood, Hercowitz and Huffman (1988) were the first to consider 

investment-specific shocks in a real business cycle model. Other papers studying investment-

specific shocks within the context of fully-specified models are Campbell (1998), Christiano and 

Fisher (1998), Fisher (1997), and Greenwood, Hercowitz and Krusell (2000). These authors 

attribute 30-70% of business cycle variation to permanent investment-specific shocks. In the  

structural VAR literature, Fisher (2006), extending the framework used by Gali (1999) to the case 

of investment-specific shocks, finds that investment-specific shocks explain 40-60% of the short-

run variation in hours and output.8  

This prior work is based on a “top-down” measurement strategy that relies on investment 

and consumption deflators (either directly from the BEA, or augmented with equipment deflators 

from Gordon (1990), and Cummins-Violante (2002). Our paper contributes to the literature by 

providing new measures of sector-specific technical change that, in principle, are more robust. 

                                                 

7 Equivalently, a positive shock to investment-specific technology (with neutral technology unchanged) or a 
positive shock to neutral technology (leaving investment-specific technology unchanged) would both raise investment-
technology in the two-sector formulation, and hence would lead to dynamic responses in the frictionless model. 

8 Fisher’s impulse response functions look similar to the subperiod results in Gali, Lopez-Salido, and Valles 
(2002), with technology shocks reducing hours worked in the pre-1979 period and raising them thereafter. 
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These new measures of technical change can be used to assess the veracity of the existing 

literature’s findings.  The next section describes the theoretical framework underlying our 

measurement. 

III. Theoretical Framework 

We now describe the framework we use to identify sector-specific technology shocks. This 

framework shows how to map from complicated industry-level data on production and trade to key 

macroeconomic aggregates.  Most importantly it embodies the industry/commodity input-output 

structure of US production, including the activities of exporting and importing, and the fact that the 

same commodity can be produced domestically and be imported. We assume only three 

domestically produced final goods, but the model is easily extended to the larger number we use in 

our empirical work. In addition, here we assume perfect competition with constant-returns-to-scale 

production, but we consider the implications of extensions to this baseline in our empirical work.9 

The economy comprises three final goods, consumption, investment and exports, and Φ  

commodities which are produced domestically and can also be imported. Domestically produced 

and imported commodities must be combined to produce a usable commodity before they can be 

used as inputs to the production of the final goods or as an intermediate input to the domestic 

production of commodities. Domestic production of commodities involves capital, labor and 

intermediate inputs. There is a representative agent who consumes the consumption good, supplies 

labor, owns the capital stock and engages in borrowing and lending on international capital 

markets. For simplicity we assume capital and labor are homogenous and that net exports, the 

terms-of-trade and the world interest rate are exogenously given. 

                                                 

9 Not in this draft, though. 
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Competitive equilibrium allocations are obtained as the solution to the following planning 

problem: 
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Here ,C J  and X  denote the final goods consumption, investment and net exports; ΛΩ , 

= , , ,C J XΛ  ,iF  = 1,...,i Φ  and Ψ  are constant-returns-to-scale production functions; itToT  

denotes the terms-of trade for importing commodity ; d
itY  and f

itY  denote the domestic production 

and imports of foreign produced commodity i ; itZ  is total factor productivity (TFP) associated 
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with the domestically produced commodity i ; itY  is the production of usable commodity i ; ijtM  

denotes intermediate input of commodity j  used in the production of commodity ;i  itK  and itL  

are capital and labor inputs to the production of domestic commodities; tK  and tL  are the 

aggregate stocks of capital and labor;. and Xr  is the world interest and tB  is net foreign lending 

(which evolves exogenously because net exports X  is exogenous.) 

Our aggregation converts the commodity TFPs itZ  into final good TFP. The aggregation is 

exact for the case where all the production functions are Cobb-Douglas and yields growth rates for 

TFP that are correct up to second-order approximations of the production functions. To be clear on 

what our aggregation achieves, we now state the social planners problem in terms of final goods 

only. This problem yields identical allocations for the final goods and factor inputs if the 

production functions are all Cobb-Douglas. The reduced form planning problem in terms of final 

goods only is: 
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As before the terms-of-trade, net exports and the world interest rate are exogenous. The 

third equation shows the production function for producing foreign consumption and investment 

goods (as well as net exports, which show up in the wealth-accumulation equation).  Foreign goods 

are produced with domestic resources and a domestic technology X
tZ . 

In the appendix we show how to construct the final-good sector-specifc technologies ,C
tZ  

J
tZ  and X

tZ  as weighted averages of domestic commodity TFP and terms-of-trade, where the 

weights are given by underlying shares in final goods production of domestic and foreign 

commodities. These final-good-sector technologies are the focus of our empirical work. Factor 

inputs and factor shares in the production of the final goods are similarly defined share-weighted 

averages of factor shares and commodity shares associated with final goods production. 

Leaving aside open-economy issues for a moment, the key to all of the equations for boiling 

down a model with many sectors into a boiled-down aggregative model with a few sectors 

corresponding to the consumption, investment and net exports (and with an easy extension, to 

government purchases), is the input-output matrix B giving the intermediate-input shares for each 

commodity—that is, the matrix indicating the extent to which each commodity is produced by 

means of other commodities as well as capital and labor. The first step is to calculate how to 
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produce each commodity in a vertically integrated way from capital and labor alone. The vector of 

capital’s shares for the vertically integrated production of each commodity is given by the vector 

α = [I − B]−1a
K

= [I + B + B2 + B3 + ...]a
K
 where Ka is the vector of direct capital’s shares in 

commodity gross output Yi. The capital share for the vertically-integrated production of a 

commodity is the direct capital’s share for that commodity, plus the contribution from the capital’s 

shares of the materials needed to produce that commodity (the term in the expansion involving B), 

plus the contribution from the materials needed to make those materials (the term in the expansion 

involving B2, and so on.  Similarly, the vertically integrated labor share for the vertically integrated 

production of each commodity is given by 11 [ ] LI B aα −− = − .   

Capital’s share for consumption or investment is then given by taking a weighted average 

across the commodities that make up consumption or investment.  Let hb , for { },h C J⊂ be a row 

vector where the elements are the nominal expenditure shares of each commodity in total 

expenditure; for example, a typical elements of Cb is the share of food or gasoline in total final 

consumption.  Then:   

 1 2 3[ ] [ ...]h h K h Kb I B a b I B B B aα −= − = + + + +  (5) 

This formula works whether or not production is Cobb-Douglas, but does assume finite, 

nonzero elasticities of factor substitution (that is, being strictly between Leontieff and linear 

production). 

The aggregation of commodity-level technology shocks is very similar. The effective 

technology shocks for the vertically integration of a commodity is the direct technology shock for 

that commodity, plus the contribution of the technology shocks for producing the materials needed 

for that commodity, plus the contribution of the technology shocks for production materials needed 

in the production of materials, etc.  Let dz is a vector of technology shocks.  Then for { },h C J⊂ : 
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 1( )h hdz b I B dz−= −  (6) 

The same basic equation holds in the open economy.  The practical extension is that we 

have domestic commodities, the corresponding foreign commodities, the corresponding composites 

if foreign and domestic commodities that are used as materials or as components of final goods, 

and one final additional commodity: exports. If there were balanced trade, the only change would 

be a bigger B* matrix playing the role the B matrix alone plays above. Of course, with this 

expanded set of commodities, a change in the terms of trade for exchanging the export commodity 

for a given imported commodity (think of the terms of trade for oil) functions as a technology 

shock for producing that imported commodity.10  

The one other complication is that if trade is not balanced, we need to treat net exports as a 

final good. Because foreign bonds are a stock that can be accumulated, we view positive net 

exports as more similar to investment than to consumption. But of course, net exports and 

investment are far from being perfect substitutes, since the capital stock figures into production in a 

way that foreign bonds do not. Note that we use the export good as the numeraire for the foreign 

bonds accumulated by net exports. This means that the stock of foreign bonds should be interpreted 

as the amount of exports that don’t need to be produced to get a given vector of imports if one is 

willing to run down that stock of foreign bonds. And foreign debt--a negative value of bonds B (not 

to be confused with the matrix B11)—can be interpreted as the additional amount of exports that 

would be needed to pay off the foreign debt without changing the vector of imports.  

Having derived final good technologies it is useful to see how they compare to other 

measures in the literature. Greenwood, Hercowitz and Krusell (2003) propose measuring the 

                                                 

10 Of course, while terms of trade shocks function theoretically just like technology shocks, their econometric 
properties will be much different. Terms of trade are likely to be much closer to stationary, and are also likely to be 
more radically endogenous than technology schocks proper. 

11 Sorry about the confusion on mnemonics.  Henceforth, any references to “B” are to the input-output matrix. 
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technology for producing investment goods relative to that for producing consumption goods using 

the price of investment goods relative to consumption goods and this practice is common in the 

New Keynesian DSGE literature. Similarly, Fisher (2006) proposes identifying the dynamic 

response to the relative technology using the assumption that only a shock to the relative 

technology has a long run impact on the relative price. In the appendix we derive a detailed 

expression showing that differences and sales taxes and share-weighted factor prices drive a wedge 

between relative technologies and relative final-goods prices.  

To build intuition into the underlying sources of that wedge it is helpful to consider the first 

order conditions for labor and capital in the consumption and investment sectors under the 

additional assumptions that factor inputs are heterogenous and final goods are subject to excise 

taxes. At any given date, these first order conditions can be written 

 
1

1

1
=

1

C C
C C J C C

J J
J J C J J

P Z R W

P Z R W

α α

α α
τ
τ

−

−

+
+

 (7) 

where CP  and JP  are market prices, Cτ  and Jτ  are excise taxes, CR  and JR  are rental prices of 

capital, CW  and JW  are wage rates, and Cα  and Jα  are capital shares in production. In log first 

differences we have 

[ ] [ ] [ ]= (1 ) (1 )C J J C C C C C J J J J C Jdp dp dz dz dr dw dr dw d dα α α α τ τ− − + + − − + − + −  (8) 

Clearly, at any point in time, unless factor shares and growth rates of taxes and factor prices 

are all identical then relative prices and relative technologies will not be equal. If we add imperfect 

competition to the model then there is an additional wedge due to differences in the growth rates of 

mark-ups. This makes it clear that the convention of equating relative prices with relative 

technologies at each point in time can be problematic. Our measurement is not subject to this 

drawback. Note however, that as long as there are no permanent shocks to the wedges, that   
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In the context of our model, one can show that if we aggregate according to equation (6) 

and use standard commodity-level TFP residuals (without controls for utilization or non-constant 

returns to scale), then relative final-goods prices and relative final-use TFP are related by the 

following identity: 

( ) [ ]1 1 ,Producer( )( ) ( )( )

Relative price + Factor-Price Wedge Tax Wedge

Dom Dom
J C C J J C K L J Cdtfp dtfp dp dp b b I B s dr s dw b b I B dp dp− −  − = − + − − + + − − − 

= +
 

In the equation, ( )J Cb b−  is a row vector for a given year of commodity-specific shares in 

final investment versus consumption; [ ]K La dr a dw+ is a column vector of commodity-specific 

share-weighted input price growth (where only domestic commodities have non-zero entries); 

similarly, ,ProducerDom Domdp dp −  is a column vector of the difference between price paid by a 

purchaser and the price received by a producer. 12  

IV. Data 

We use the KLEM dataset produced by Dale Jorgenson and his collaborators, along with 

the underlying input-output data.13 The main vintage of data run from 1960-2005, but we have 

merged them with an earlier vintage of Jorgenson data back to 1949.  The dataset provides 

consistent industry output and inputs as well as commodity final-use data for 35 

industries/commodities.  (We have the full input-output matrix only back to 1960; the so-called 

                                                 

12 For this equation to hold as an identity in the data, we need to allow final-use shares, the input-output 
matrix B, and factor shares to vary period-by-period.  Otherwise, this is only an approximation.  In the results, we show 
this decomposition using period-by-period shares. 

13 The dataset updates Jorgenson, Gollop, and Fraumeni (1987).  We thank  Dale Jorgenson as well as Barbara 
Fraumeni, Mun Ho, and Kevin Stiroh for helpful conversations about the data.  Jon Samuels helped tremendously with 
data availability.   The main data are available at http://dvn.iq.harvard.edu/dvn/dv/jorgenson (accessed April 26, 2010).  
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“make” table is available only back to 1977.)  We are not aware of any other disaggregated U.S. 

data set that covers the entire economy and allows productivity analysis for a long time period. 14)   

The Jorgenson data offer several key advantages.  First, they provide a unified dataset that 

allows for productivity analysis by providing annual data on gross output and inputs of capital, 

labor, and intermediates.  Second, the input data incorporate adjustments for composition; e.g., 

services from different types of labor are taken to be proportional to wages, as standard first-order-

conditions imply, not simply to total hours worked.  Third, the productivity data are unified with 

annual input-output data that are measured on a consistent basis.  The I-O data include not just 

intermediate-input flows of the different commodities, but also commodity-specific final 

expenditures on consumer non-durables and services, consumer durables, investment, government, 

and exports and imports.  Although our model is in terms of just consumption and investment, the 

logic extends naturally to this larger set of final expenditure categories.   

Our data do not comprise all of GDP.  First, they exclude the service flow from owner-

occupied housing.  Second, they exclude services produced directly as part of government 

administration (they do include government enterprises; and they include direct purchases by the 

government of goods and services produced by non-government businesses).  Thus, our output 

measure corresponds to the output of businesses plus nonprofit institutions serving households.   

We have separate prices for domestic commodity production and for commodity imports.  

For each commodity, we calculate a composite supply price as a Tornquist index, which we apply 

                                                 

14 The original data source for input-output and industry gross output data is generally the Bureau of Labor 
Statistics which has, for a long time, produced annual versions of both nominal and real (chained) I-O tables.  (The 
current vintage of data from the BLS Empoyment Projections Program is available at http://www.bls.gov/emp/#data 
(accessed April 26, 2010). 
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to  all uses of the commodity.  In essence, we assume that all users of a commodity consume the 

same composite of domestic and imported supplies of the commodity.15 

Much of the macroeconomics literature on investment-specific technical change has used 

alternative quality-adjusted deflators for investment goods, following Gordon (1983) and its 

extension by Cummins and Violante (2002).  We have incorporated these deflators in our work.  

First, since the Cummins-Violante measures end in 2000, we updated their empirical estimates, 

allowing us to obtain adjusted deflators for detailed equipment investment categories through 2005.  

Second, we re-estimate the capital-input measures for each industry in the Jorgenson data.  To do 

so, we use the alternative Gordon-Cummins-Violante (GCV) deflators to obtain modified measures 

of real equipment investment from the BEA’s detailed investment-by-industry dataset. For each 

type of capital asset, we then estimate perpetual inventory measures of the detailed asset-by-

industry capital stocks; we then do Tornquist aggregation to industry capital-input measures using 

estimated user-cost weights.  Third, since these investment goods are produced by someone, we 

also need to modify commodity and industry output measures to account for their production.  For 

example, if the extended Gordon deflators suggest an adjustment to, say, special industrial 

machinery, we modify the deflators for the Jorgenson commodity/industry “non-electrical 

equipment” to take account of this modification.  The necessary modifications are fairly complex, 

and involve digging into the more detailed BLS input-output tables that underlie the Jorgenson data 

(e.g., to obtain appropriate weights for, say, special industrial machinery in total non-electrical 

equipment); details are available from the authors.  In general, these modifications affect the means 

of the data (for example, equipment technology growth is faster, but consumption technology 

                                                 

15 Relatively recently, the BEA has begun producing an “import matrix” that shows, for each commodity, the 
estimated industry uses of imports.  But they create this table using the “assumption that each industry uses imports of 
a commodity in the same proportion as imports-to-domestic supply of the same commodity,”,( 
http://www.bea.gov/industry/xls/1997import_matrix.xls, ‘readme’ tab) rather than using separate data on where 
imports flow.  So the BEA makes the same assumption we do. 



 21

growth (equipment users) is slower), but regression coefficients discussed below are not much 

affected.  

From our disaggregated data, we obtain measures of industry/commodity technology to 

feed through the input-output tables.  One easy measure would be the sectoral Solow residuals, i.e., 

i idy dx− , where idx is share-weighted inputs of capital, labor, and intermediates.  However, a 

sizeable literature emphasizes that, in the short run particularly, measures of the Solow residual 

even at a disaggregated level contain non-technological components such as unobserved variations 

in factor utilization and the effects of  non-constant returns to scale.   

Hence, we update the estimated industry technology residuals from Basu, Fernald, and 

Kimball (BFK, 2006).  For this version of the paper, we focus on controlling for factor utilization 

and maintain the assumption of constant returns.  In particular, we estimate the following 

regressions at the level of each industry, using oil price increases, government defense spending, 

and a measure of monetary innovations (from a VAR) as instruments:   

i i i i idy dx c dhβ ε− = + + , 

where dy is output growth, dx is share-weighted input growth, and dh is hours-per-worker growth 

(as a proxy for utilization).  These estimates control for variations in factor utilization, which can 

drive a wedge between technology and measured TFP.  For each industry, technology is measured 

as i ic ε+ .  See BFK (2006) or Appendix D of this paper for further details.16  

BFK (2006) implement their adjustments for non-mining private industries.  For other 

industries, including mining, government enterprises, and the international trade industry, we 

simply use standard TFP.  This implies that the technology measures may not be fully exogenous.  

Where this matters for regression analysis, however, there is a natural instrument: The measures of 

                                                 

16 These residuals correspond to domestic industry production.  We convert them to commodity-supply 
residuals with the input-output make tables and by rescaling by the domestic supply share. 
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final-use technology, where we zero out the endogenous elements.  Of greatest importance there, 

we zero out the terms of trade (our measure of technology for the artificial international trade 

industry), which is clearly endogenous.  

V. Results 

We now consider various issues of relevance for macroeconomists.  Except where 

indicated, our measures of relative prices, TFP growth (with industry Solow residuals), and 

technology change (measured using utilization-adjusted TFP) are based on the Jorgenson data 

adjusted with Gordon-Cummins-Violante deflators.  We will often refer to utilization-adjusted TFP 

simply as “technology,” since under our maintained hypothesis of constant returns to scale, 

utilization adjustments are sufficient to control for mismeasurement in the Solow residual and 

identify technology change. 

We first examine the long-run properties of the data from 1950 to 2005, which we also 

break into sub-periods of 1950-1982 and 1983-2005.  Table 1 shows the sample-average growth 

rates of final-use TFP (the top panel) and technology (the bottom panel).  Since utilization should 

be stationary in the long run, both TFP and utilization-adjusted TFP should have much the same 

means.  This prediction holds in the data, with differences between the top and bottom panels 

showing up in the second or third decimal place.  The data show the pattern we have come to 

expect, with the technology for producing equipment and durable consumption advancing at a 

rapid rate, on the order of 3 percent per year over the last two decades.  The technology for 

producing non-durables and services (NDS) consumption improves very slowly over the whole 

period, and is essentially flat over the post-1983 period.  The technology for producing structures 

shows a definite and puzzling decline over the whole period, which is particularly pronounced over 

the later period.  We ascribe this decline to a lack of adequate adjustment for the increasing quality 
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of structures in the official data.  Similar mismeasurement probably also explains the lack of 

growth in NDS technology over the post-1983 period.17   

Our mapping of industry production residuals to final-use categories also provides novel 

estimates of technology for two categories of output, government purchases and exports.  Both 

have increased strongly over our sample period, particularly export technology, which grows at 2.1 

percent from 1950 to 2005.   

Figure 1 shows the ordering of growth rates visually by plotting the estimated levels of 

final-use technology (with utilization-adjusted residuals) that correspond to the bottom panel of 

Table 1. Note that our “government technology” is not the technology in the production of services 

by government workers, which are not included in our measure of output.  Government technology 

growth captures improvement in the production technology for the goods that the government buys 

from private industries.  The government purchases a mix of equipment, non-durables and services, 

and structures.  Similarly, the correct interpretation of our “trade technology” is that it is the 

technology for producing exports.  Since exports are primarily goods (and about half durable 

goods), trade technology grows at a rate comparable to equipment technology and consumer 

durables. 

GHK and the literature building on their work use relative prices as a proxy for relative 

technology.  Of course, under some assumptions this procedure is rigorously correct, but as 

discussed above these assumptions are restrictive.  Now that we have an independent measure of 

sectoral technical change, derived under more general assumptions than GHK, we can ask an 

important question: To what extent do relative final-use output prices provide a good 

approximation to relative final-use TFP or technology?  Table 2 shows the comparison with 

                                                 

17 For example, the official statistics do not attempt, even in principle, to capture the gains from increased 
product variety. 
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relative TFP (without utilization adjustments, so the identity derived in equation (8) holds exactly).  

As expected, the price of non-durables and services consumption has risen on average relative to 

the price of the equipment investment.  This trend is more pronounced in the post-1982 period.  

Even so, relative prices do not change as fast as relative TFP.  Table 2 shows that on average 

relative TFP has risen about 0.5 percent per year faster than the relative price.  As discussed in the 

theory section, this can happen if there are differences in the growth rates of share-weighted 

primary input prices or long-run changes in the relative tax wedge.  In fact, about two-thirds of the 

gap between relative prices and relative TFP is due to long-run changes in relative primary input 

prices, with the remaining gap due to changes in relative sales taxes.  (The important factor for the 

tax wedge turns out to be rising sales taxes on consumer goods, which worked to raise consumer 

prices; the effect of tax changes on investment prices alone is relatively small.)  

How can the growth rate of primary input prices diverge across sectors over a period of 

decades?  One would think that prices for identical factors should equalize across industries over 

such long periods, and the composition corrections in the Jorgenson data should ensure that we are 

indeed comparing constant-quality inputs across sectors.  (Thus, for example, if computer 

manufacturing requires a higher fraction of college-educated workers than auto manufacturing, we 

would not misinterpret this fact as implying that the price of homogeneous “labor” is higher in 

computers than in autos.)  Recall, however, that the primary input prices are weighted by their cost 

shares.  We know that over time the price of labor rises faster than capital rentals, so industries 

with high labor shares will, ceteris paribus, experience faster price growth.  In Table 3 we report 

capital shares by final-use sectors, and show that this pattern does indeed hold in the data.  That is, 

equipment investment does indeed have a lower capital share (and thus a higher labor share) than 

does NDS consumption.  In addition to verifying the reason for the long-run gap between relative 

prices and relative TFP, the result that capital shares differ noticeably across sectors invalidates 
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both short- and long-run identification based on uncovering relative technology change from the 

behavior of relative prices.  Thus, the conclusions of a large literature are immediately called into 

question.production 

Tables 4A and 4B show selected correlations for standard TFP and BFK technology 

change, respectively..  The sectoral shocks themselves are very highly correlated, as shown in the 

first rows of each panel.  This is not surprising:  In addition to any truly “common” shocks, the 

final-sector shocks are different weighted averages of the same vector of underlying commodity 

shocks.  However, the correlations are lower using utilization-adjusted TFP, as one expects:  This 

control eliminates the common mismeasurement from business-cycle variations in factor 

utilization. 

Our procedure allows us to test the orthogonality assumptions typically used in the 

preceding empirical literature.  In particular, GHK and Fisher (2006) explicitly assume 

orthogonality of what they label “neutral” and (equipment) “investment-specific” productivity 

innovations.  In our two-sector framework, these labels correspond to the consumption-sector 

productivity shock and the relative equipment-investment-consumption shock.  Line 3 of the two 

panels shows the correlation between the “neutral” and “equipment specific” shocks.     

A priori, there seems little reason to expect orthogonality, given that these shocks are 

different mixtures of the same underlying productivity residuals.  The orthogonality assumption 

appears shaky in the data, for both the standard and utilization-adjusted TFP series, where the 

correlations are about (plus or minus) 0.10.  Note that Fisher (2006) does not assume that observed, 

standard TFP measures technology, so the utilization-adjusted result is probably more relevant.  

Note also that orthogonality with consumption TFP is a much better approximation than is 
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orthogonality with investment TFP, as shown in line 4.18  However, whether or not the 

orthogonality assumptions are verified, GHK’s and Fisher’s identification schemes cannot uncover 

relative technology from relative prices, since factor shares differ across sectors. 

Finally, what are the dynamic effects of exogenous shocks to different types of technology?  

Table 5 shows dynamic responses of business-cycle variables to changes in sectoral technology.  

The first set of variables we study consists of GDP and its components, with all the dependent 

variables entered in growth rates.19  The table also shows the same regressions for other interesting 

macroeconomic variables: hours, wages, a variety of prices, and interest rates, with variables other 

than interest rates entered in log differences.  The R2 shown are for bandpass filtered data, i.e., 

where the dependent variable and the fitted values are first bandpass filtered to focus on variation 

between 2 and 8 years. 

The challenge is the desire to be comprehensive in including all final-use shocks with the 

cost of using greater disaggregation (e.g., including structures separately), when multicollinearity 

becomes a serious problem.  We aggregate final-use sectors in the way that corresponds to typical 

assumptions in two-sector models:  One sector produces all investment goods, including equipment 

for both the private sector and the government, consumer durables, structures and exports; the other 

produces non-durables and services consumption for the household and government sectors.  We 

group exports with investment goods, for two reasons.  First, exports are mostly durable.  Second, 

exports are a way of adding to a country’s durable wealth, just like equipment investment, for 

                                                 

18 The correlations for the entire period are not the averages of the correlations for the subperiods, because the 
standard deviations over the entire period exceed the average of the standard deviations for the subperiods.  An 
interesting question that we have not yet pursued is what orthogonality of relative TFP and consumption TFP implies 
about the input-output structure of the economy. 

19 The GDP and investment data are taken directly from published BEA tables.  They have not been adjusted 
using the Gordon investment deflators. 
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exports can be used to purchase capital held in the rest of the world.  For all variables, we include 

the current value and two lags.   

As the data section noted, we do face a problem in interpreting the terms of trade as 

exogenous.  First, the terms of trade should change with changes in domestic consumption and 

investment technology, if these goods are exported.  Second and more importantly, the terms of 

trade may change for reasons that are clearly not exogenous.  For example, monetary policy can 

change the terms of trade if prices are sticky.  Monetary policy may also react to changes in output 

or hours worked due to non-technology shocks, thus exacerbating the endogeneity problem. 

We address this problem by constructing a second set of measures of technology that we do 

think are exogenous, using only industry technology shocks based on the utilization-adjusted TFP 

residuals.  Operationally, we set to zero changes in the terms of trade as well as changes in the TFP 

of the natural resource industries and government enterprises.  We then use this group of rigorously 

exogenous measures as instruments for the various types of technology change in Table 5. 

Focusing first on the effects of investment-specific shocks, we find results similar to those 

documented by Gali (1999) and BFK (2006), which are puzzling from the standpoint of a simple 

one- or two-sector RBC model with flexible prices.  Aggregate GDP, non-durables consumption, 

purchases of consumer durables, residential investment and imports all fall significantly after a 

positive shock to equipment technology.  Most strikingly, equipment and software investment falls 

for two years after a positive shock to the technology for producing investment goods, and the 

decline is highly significant.  This last finding is especially striking if one considers the likelihood 

of measurement error in our measures of investment output.  Since we are regressing equipment 

growth on the technology for producing equipment, measurement error in output would create a 

positive bias in the coefficient.  Adjusting for measurement error, the true coefficients are likely to 

be even more negative than our estimates.  (There is little autocorrelation in the investment 
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technology growth series, so this result doesn’t seem to reflect predictability that equipment 

technology will be even better in the future.  In some models, news of a future technology 

improvement will cause demand to contract until the improvement is actually realized.)  

Table 5 shows that hours worked fall significantly when investment technology improves, 

and do not recover their pre-shock value even after three years.  Note that this is a decline in total 

hours worked in response to a positive technology shock to a sector that (even with the inclusion of 

consumer durables) produces less than 20 percent of GDP!  As shown in Table 6, the updated BFK 

results show a distinct and significant negative contemporaneous correlation between hours growth 

and aggregated BFK technology.  (The negative effect is more pronounced with the original BFK 

industries, i.e., excluding agriculture, mining, and government enterprises). 

As expected, an equipment-technology improvement does lower the relative price of 

equipment.  Somewhat surprisingly, consumption prices also fall, as does the GDP deflator.   

Next we examine the effects of consumption-technology shocks.  Here again we find results 

at odds with simple RBC models which, as we noted, generally predict consumption technology 

neutrality.  We see that consumption-technology shocks increase GDP and non-durables 

consumption significantly, but also increase equipment investment, consumer durables 

consumption and (on impact but not cumulatively) residential housing, with at least one 

statistically significant impact in each category.  Hours worked are basically unchanged over the 

three years.  As expected, the relative price of consumption to equipment falls, but the decline is 

not statistically significant.   

The final column of Table 5 shows the R2 of the regression, after bandpass-filtering both 

the dependent variable and the fitted value in order to focus on business-cycle frequencies.  For 

quantity variables, especially, the explanatory power is quite high.  Figure 3 shows the fitted values 

of hours and equipment to technology shocks.  The explanatory power of the regression is clear.  
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Comparing the fitted values in the top and bottom panels, it is also clear that, conditional on 

technology, hours and equipment investment move comove positively.  But it is also clear that, 

according to the regressions,  technology innovations did not cause the deep recessions of the 

1970s and 1980s.  

Our simple model of Section II predicts that business investment should not change in 

response to a consumption technology improvement.  The model did not include residential 

investment and consumer durables.  We conjecture that if the model is extended to allow for 

durable goods to provide services that directly enter the utility function, and incorporates non-

separability between non-durables consumption and durables services, it would predict roughly the 

results that we find, at least qualitatively,   

Taken together, these results suggest that the earlier findings of Gali (1999) and BFK 

(2006) about the contractionary effects of technology improvements are driven primarily by the 

effects of investment technology shocks.  They also raise an interesting question:  Does any fairly 

standard model predict that consumption technology improvements should be expansionary, but 

investment technology improvements should not?  We believe that a simple two-sector model with 

sticky prices in both sectors and a standard Taylor rule for monetary policy can go some way 

towards matching the results we find.  Preliminary results obtained by Basu, Fernald and Liu 

(2012) suggest that we are right. 

A reason the sticky price model may be appropriate is the extremely slow pass-through of 

technology to relative prices.  The pass-through was almost imperceptible in the regression results.  

However, other models of slow pass-through (for example, in flexible-price models with time-

varying markups), might also explain the results we find. 

Considering the results altogether, we find strong evidence that we cannot summarize 

technology shocks using a single aggregate index.  Aggregation would hold either if (1) all final-
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use technology shocks were perfectly correlated or (2) if the different shocks had identical 

economic effects.  Unfortunately, neither condition is satisfied, since Table 4B shows that the 

relevant correlation is about 0.50, and we can statistically reject the hypothesis that all the 

coefficients of investment- and consumption-technology shock in Tables 5 are identical at all lags.  

Hence, it appears important to use multi-sector models to investigate economic fluctuations due to 

technology shocks. 

Table 5 has some interesting findings that bear on the sticky-price interpretation of our 

results, and suggest some new thinking about optimal monetary policy.  Note that the Fed Funds 

rate falls significantly and sharply in the first two years following a consumption technology 

improvement, but barely changes following an investment technology improvement.  

Correspondingly, the GDP deflator falls for all three years following an investment shock, but only 

on impact and insignificantly following a consumption shock.  If the Fed targets consumption 

prices, but not investment prices, then that would go a long way towards explaining why the effects 

of an investment shock are so contractionary but the effects of the consumption shock are 

expansionary.  These results also suggest that optimal monetary policy should target investment as 

well as consumption goods prices. 

 

VI. Conclusions 

Theory suggests that the final-use sector in which technology shocks occur matters for the 

dynamic response of those shocks.  We make this point with the example of consumption-

technology neutrality in the real-business-cycle model.  Consistent with the predictions of the 

model, our empirical results show that consumption- and investment-specific shocks do indeed 

have significantly different economic effects, and the differences persist for at least several years. 
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The details of the results present several puzzles.  The results for investment-sector shocks 

show that hours decline when investment technology improves, GDP declines sharply and, most 

surprisingly, investment itself declines strongly.  These results are consistent with the findings of 

Gali (1999) and BFK (2006), who interpret them as evidence in favor of nominal price rigidities.  

Our findings for consumption shocks are quite different, however:  they show significant increases 

in GDP and in the consumption of both non-durables and durable goods, including housing.  

Whether these results taken together can be explained by richer or differently-parameterized 

flexible-price or sticky-price models with multiple sectors is at this point an open question, 

although we find two-sector sticky price models promising in this regard. 

A novel contribution of this paper is a new method to measure sector-specific technologies 

that does not rely simply on relative price changes, as frequently used in the macro literature.  In 

special cases, the relative-price measures are appropriate; but in general, they are not.  We show 

that the conditions necessary for relative prices to measure relative technologies do not hold in the 

data.  Since our method allows us to test hypotheses that are identifying assumptions in other 

works, it is a robust, albeit data-intensive, way of checking whether these assumptions hold in any 

situation where their validity is in doubt. 
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Appendix A:  The Optimal Mode of Production 

Closed Economy:  Stretching terminology a bit, define “final”  or “net” output of a 
commodity as the quantity produced that is used in the direct production of consumption, 
investment, government purchases—that is, the amount not used in the production of intermediate 
goods.  Gross output of a commodity is the total amount of the commodity produced for all 
purposes.   

 
Let R be the rental rate for capital K, W the wage for labor N, and Z a vector of 

multiplicative technology shifters.  Consider the cost minimizing plan for making one unit of final 
or net output of commodity i available for use in producing C, J, G: 
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The i subscript refers throughout to the fact that the program is intended to produce net 

output of commodity i.  The hats on key variables are a reminder that the program is for one net 
unit of commodity i. ( , , )iP R W Z  is the minimum average (and marginal) cost of producing 

commodity i. ˆ
ijK is the amount of capital used directly to produce commodity j in order to produce 

one net unit of commodity i.  ˆ
ijN  is the amount of labor used directly to produce commodity j in 

order to produce one net unit of commodity i.  îjY  is the total gross amount of commodity j used to 

produce one net unit of commodity i. ˆ
ijM  is the amount of commodity   used directly to produce 

commodity j in order to produce one net unit of commodity i. jZ is the multiplicative technology 

shifter for producing commodity j. jKa is capital’s share in the direct inputs to commodity j. jNa is 

labor’s share in the direct inputs to commodity j.  Finally, jb  is the share of commodity   in the 

direct inputs to commodity j.   Our objective in this appendix is to find the boiled down production 
function for net output of commodity i as a function of the technology vector and the total capital 
and labor inputs used directly or indirectly to produce net output of commodity i.  We will use 
Shephard’s Lemma (also called the derivative principle) to find capital’s share iα  and labor’s share 

1 iα− , and the corresponding method to find the elasticity ijξ  of net output with respect to each 

component jZ of the technology vector Z.   To be specific, by Shephard’s Lemma, capital’s share 

in the boiled-down net output production function is given by  
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labor’s share in the net output production function is given by  
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and the elasticity of the net output production function with respect to jZ is equal in 

magnitude but opposite in sign to the elasticity of the unit cost function with respect to jZ  
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These elasticities of the unit cost function can be found by using the Envelope Theorem.  

First, write the Lagrangian for (1.9) as  
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The first order conditions with respect to ˆ
ijK  and ˆ

ijN  yield this pair of equations: 
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where we have made explicit the dependence of quantities and Lagrange multipliers coming 

out of the optimal program on R, W, and Z.  By the definition of jKa  as the share of capital in direct 

production,  
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Together, Equations (1.14)  and (1.16) imply that  
 

(1.17) ˆ( , , ) ( , , ) ( , , ).ij j ijR W Z P R W Z Y R W Zλ =  
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To get more insight into ijλ define ijθ  as the total gross nominal output of commodity j used 

to produce 1
( , )iP R W  net units of commodity i.  That is,  

 

(1.18) 
( , , ) ˆ( , , ) ( , , ),
( , , )

j
ij ij

i

P R W Z
R W Z Y R W Z

P R W Z
θ =  

 
Using Equation (1.18), Equation (1.17) can be written as  
 
(1.19) ( , , ) ( , , ) ( , , ).ij ij iR W Z R W Z P R W Zλ θ=  

 
To find ijθ ,  consider the relationship between the net output production functions and the 

direct production functions.  Because of the properties of Cobb-Douglas production functions, the 
value of the commodity j used directly to produce 1 net unit of commodity i  is ijb .  In turn, 

obtaining ijb  net units of commodity j for direct use in the production of commodity i requires, in 

turn, the overall production of a value ij jb θ   of commodity  .  Overall, the total value of 

commodity   produced must be i ij j
j

bθ θ=  , except that when i= , 1ii ij ji
j

bθ θ= + , since one 

must account for the original unit value of commodity i that is to be produced.  In matrix form,  
 
(1.20) ,I BΘ = + Θ  
 
 
 
where [ ]ijθΘ = , [ ]ijbΒ = , and I is the identity matrix.  Solving for Θ ,  

 
(1.21) 1( ) .I B −Θ = −  
 
Note that for the Cobb-Douglas case, the matrix Θ  is a constant.   
 
Now return to the problem of finding the parameters of the boiled-down, net output 

production function.  By the Envelope Theorem,  
 

(1.22) 

ˆ

.
ij ij jK ij i jK

j j ji i
i ij jK

ji i i i i

R K a Pa
P LR R

a
P R P R P P P

λ θ
α θ∂ ∂

= = = = = =
∂ ∂

  
  

 

Note that iP ,  ˆ
ijK , ijλ , and jKa are all functions of R, W, and Z, since the optimal program 

for producing one unit of net output of commodity i depends on R, W, and Z.  ( iL  is a function of 

almost everything in sight.)  Similarly,  
 
(1.23) 1 .i ij jN

j

aα θ− =   
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In vector form,  
 
(1.24) Kaα = Θ  

 
and  
 
(1.25) 1 .Naα− = Θ  

 
where 1 in Equation (1.25) represents a vector of 1’s.   These are all constants in the Cobb-

Douglas case.  Finally, the elasticity of output with respect to component j of the technology vector 
is  

 

(1.26) .j j iji i
ij ij

i j i j i

Z ZP L

P Z P Z P

λ
ξ θ∂ ∂

= − = − = ==
∂ ∂

 

 
Since all the elasticities of the boiled-down net output production function are constant, it 

must be given by  
 

(1.27)
1

1constant = constant ,
ij jN ij jN

ij j j iji i

a a
final

i i i j i i j
j j

Y K N Z K N Z
θ θ

ξ θα α
−

−
 

= ⋅ ⋅∏ ∏  

 
where final

iY  represents final or net output of commodity i.   

 
Departures from Cobb-Douglas: As long as the elasticities of factor substitution are 

strictly between zero and infinity, one can handle departures from Cobb-Douglas in a 
straightforward way.  Define the logarithmic price function ip  for final net output as follows: 

 
( , ; ) ln( ( , , )).r w z

i ip r w z P e e e=  

 
That is, ln( )i ip P= , ln( )r R= , ln( )w W=  and ln( )j jz Z=  for each element of the vectors 

z and Z so that the function ip  is a log-log version of iP .  Similarly, define the logarithmic price 

function iq  for gross output with the arguments  

 

1 2( , , , , , )i iq r w z p p   

 
Then since the price of a commodity is the same whether used as final output or as an 

intermediate good, the functions ip  and iq  obey the functional equation 

 

, 1 2( , , ) ( , , ( , , ), ( , , ), )i i ip r w z q r w z p r w z p r w z=   

 
Differentiating with respect to r, w, and jz ,  
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ji i i

j j

pp q q

r r p r

∂∂ ∂ ∂
= +

∂ ∂ ∂ ∂  

 

ji i i

j j

pp q q

w w p w

∂∂ ∂ ∂
= +

∂ ∂ ∂ ∂  

 

.j ji i i i
i

j jj j

p pp q q q

z z p z p z
δ

∂ ∂∂ ∂ ∂ ∂
= + = − +

∂ ∂ ∂ ∂ ∂ ∂ 
   

 

 
Where iδ  is the Dirac delta that is equal to 1 when its two subscripts are equal and zero 

otherwise.  The last equality holds because technology is multiplicative and defined so that the a 
one percent improvement in a commodity’s own technology increases its gross output by one 
percent when all the other inputs are fixed, implying that the direct effect of this technology 
improvement on cost is a one percent reduction.   
 

By the principles of duality with unit cost functions, the factor shares for final net output 

can be written i
i

p

r
α ∂

=
∂

, 1 i
i

p

w
α ∂

− =
∂

, while the factor shares for gross output can be written 

i
iK

q
a

r

∂
=

∂
, i

iN

q
a

w

∂
=

∂
 and i

ij
j

q
b

p

∂
=

∂
.  Also, define i

i

p

z
ψ ∂

=
∂


.  Form column vectors [ ]iα α= , 

[ ]K iKa a=  [ ]N iNa a= , [1]=1  and the matrices [ ]ijB b=  and [ ]iψΨ =  . Then, the equations above 

can be cast in matrix form as 
 

Ka Bα α= +  

 
( )Na Bα α− = + −1 1  

 
.I BΨ = − + Ψ  

 
Solving for α , 1 α−  and Ψ ,  
 

1( ) KI B aα −= −  

 
1( ) NI B aα −− = −1  

 
(implying 1( ) ( )K NI B a a−= − +1  or ( )K Na a I B+ = − 1 ) 

 
and 

 
1( ) .I B −Ψ = − −  
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Open Economy:  The strategy for extending the results to the open economy is as follows.  

First, model exports as an additional commodity, produced by a CRTS CES production function 
that aggregates the other commodities shown as exported in the input-output table.  Second, model 
each of the Φ  types of imported commodities as distinct commodities (superscripted foreign) from 
both the home-produced commodities (superscripted domestic) and the aggregate of the home-
produced and imported commodity of each type that is used to produce other commodities and for 
final use (no superscript).  Thus, the open economy version of our model has 3 1Φ +  commodities 
to the closed-economy model’s Φ  commodities.  The aggregate of home-produced and imported 
commodities that is used to produce other commodities and for final use is sometimes called 
“supply,” but for clarity, we will call it the “usable” commodity. All commodities, including 
exports are produced from the usable commodity.  (This is an assumption that could be questioned.  
We also considered a model in which exports are produced from domestic commodities alone, but 
decided to emphasize the simpler and more readily interpretable model in which all commodities 
are produced from usable commodities.) 

 
Third, model imported commodities as produced by a CRTS production function with one 

input: the aggregate export commodity.  For each imported commodity, the ratio of the 
international price of the export commodity to the international price of each imported commodity 
acts as the technology parameter for that imported commodity.   

 
Third, since the emphasis in this appendix is on the production side of the economy, it  

focuses on equilibrium conditional on the time paths of the levels of aggregate final output: that is, 
consumption C, investment J, government purchases G and net exports X.  (Note the nonstandard 
use of X for net exports.)  Alternatively, one can easily consider an equilibrium conditioning on the 
time paths of government purchases G and net exports X, in which C and J arise from optimizing 
behavior.  Modeling the determination of the time path of net exports X is beyond the scope of this 
paper, just as modeling the determination of the time path of government purchases G is beyond 
the scope here. Fourth, the model also conditions on the path of international prices.  (That is, it is 
solved conditional on the terms of trade for each imported commodity.) 

 
The one unusual thing about net exports X as a final good is that it can be negative.  When 

net exports are negative, the perspective taken here is that imports can be obtained either by means 
of the export commodity or by means of an electronic credit stated in terms of units of the export 
commodity.  Thus, negative net exports are in units of the export commodity and represent the 
amount of electronic credits treated as equivalent to units of the export commodity that domestic 
buyers of imports have been lent.  This perspective is valuable because there is only one aggregate 
export commodity, but many types of imports that the model keeps track of.  (Everything would be 
equivalent if net exports were expressed in terms of any particular imported commodity, but it 
would be necessary to pick one, since differential changes in the prices of different imported 
commodities makes them non-equivalent, financially.) 

 
Because the model conditions on the time path of net exports, it is not essential to keep 

track of the foreign debt.  That is, the main reason one would need to keep track of foreign debt is 
to determine the time path of net exports.  (It is part of the relevant intertemporal budget constraint 
in that determination.)  Since keeping track of the foreign debt is not central to the model here, for 
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convenience, one can think of the foreign debt as being stated in terms of units of the export 
commodity.  

 
Computationally, the key to extending results to the open economy is to lay out the open 

economy version of the matrix B, which we will call *B .  First, define a row vector ' [ ]X Xib b= , of 

the shares of each domestic commodity in aggregate exports, where the prime is a reminder that 
this is a row vector.  Next, define the diagonal matrix 

[ ]ij iδ υΔ =  of import shares for each commodity, where  ijδ  is again the Dirac delta equal 

to 1 when its subscripts are equal and zero otherwise, and iυ  is the share of commodity i that is 

imported.  Then with rows representing outputs, columns representing inputs and the commodities 
in the order exports, foreign commodities, domestic commodities, usable commodities,  

 
*

0 0 0 '

0 0 0

0 0 0

0 0

X

B
b

B

I

ι

=  
 
 
 
 
 Δ − Δ 

 

 
where ι  is a column vector of ones.  That is, exports are produced from domestic 

commodities with the shares in the row vector ' [ ]X Xib b= .  Imported commodities are “produced” 

solely from the export commodity, which therefore has a share of 1 for each imported commodity.  
Domestic commodities are produced from usable commodities according to the matrix of input 
shares B discussed above for the closed economy.  Finally, usable commodity i is  produced from 
the corresponding foreign commodity with share iυ and the corresponding domestic commodity 

with share 1 iυ− .  These shares show up in the diagonal matrices Δ  and I − Δ .  All other input 

shares for this extended matrix are zero.   
 
Computationally, it is also important to specify the counterparts to the capital and labor 

share vectors and the counterpart to the technology shock vector.  Since capital and labor are only 
used in the production of domestic commodities, one can write: 

 
* *, .

0 0

0 0

0 0

K N

K N

a a

a a

= =   
   
   
   
   
   
   

 

 
That is, capital and labor are only directly used in the production of domestic commodities.  

Finally, let foreign
i X ip pτ = −  be the logarithm of the terms of trade for the foreign produced version 

of commodity i and [ ]iτ τ=  be the vector of terms of trade.  Then 
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* .
0

0

dz

d

dz

τ

=  
 
 
 
 
 
 

 

 
That is, changes in the terms of trade for each foreign-produced commodity acts as the 

technology shock for that foreign-produced commodity.  Domestically-produced commodities have 
the technology shocks specified above in the discussion of the closed-economy model.  By 
construction, there are no technology shocks to the aggregation procedures for aggregating the 
different commodities that are exported or for aggregating foreign and domestic versions of a 
commodity into usable commodities. 

 
It is possible to algebraically compute 1( *)I B −− :  
 

*

1 0 ' 0

0 0

0 0

0

X

I B
b

I

I B

I I

ι

− =  
− 

 −
 

− 
 −Δ Δ − 

 

 
and  
 

* 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

( )
1 ' ' ' ( ) '

' ' ' ( ) '

( )

( )

X X X X

X X X X

I B
b b b I b

b I b b I b

B B I B I B

I

ι
ι ι ι ι ι ι

ι
ι

−
− − − −

− − − −

− − − −

− − − −

− =  
+ Ω Δ Ω Δ Ω − Δ Ω 

 + Ω Δ + Ω Δ Ω − Δ Ω 
Ω Δ Ω Δ + Ω − Δ Ω 

 Ω Δ Ω Δ Ω − Δ Ω 

 

 
where 
 

'XI B B bιΩ = − + Δ − Δ . 

This can be verified by multiplying to confirm that 
 

* * 1( )( )
1 0 0 0

0 0 0

0 0 0

0 0 0

I B I B

I

I

I

−− − =  
 
 
 
 
 
 

. 

 
Substituting in to the formulas for the objects of interest: 
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* * 1 *

1

1

1

1

( )
' ( )

' ( )

[ ( )]

( )

K

X K

X K

K

K

I B a
b I a

b I a

I B I a

I a

α

ι

−
−

−

−

−

= − =  
Ω − Δ 

 Ω − Δ 
+ Ω − Δ 

 Ω − Δ 

, 

 
* * 1 *

1

1

1

1

( )
' ( )

' ( )

[ ( )]

( )

N

X N

X N

N

N

I B a
b I a

b I a

I B I a

I a

ι α

ι

−
−

−

−

−

− = − =  
Ω − Δ 

 Ω − Δ 
+ Ω − Δ 

 Ω − Δ 

, 

 
and 
 

* * * 1

1 1

1 1

1 1

1 1

( )
0 ' ' ( )

( ' ) ' ( )

[ ( )]
0 ( )

X X

X X

dz I B
b d b I dz

d I b d b I dz
dz B d I B I dz

d I dz

τ
τ ι τ ι

τ
τ

−
− −

− −

− −

− −

Ψ = − − =   
− Ω Δ − Ω − Δ   

   − + Ω Δ − Ω − Δ   
− Ω Δ − + Ω − Δ   

   −Ω Δ − Ω − Δ   

. 

 
The fourth (bottom) component of each of these is the component relevant to usable 

commodities, and appropriately aggregated, to consumption, investment and government 
purchases.  The first (top) component is relevant to the export commodity.  In other words, for final 
goods usable commodities, the reduced-form change in effective value-added productivity 
(including both technology and terms of trade effects) is  

 
 1 1( )I dz dτ− −Ω − Δ + Ω Δ  
 
(Note the sign change going from change in price to change in productivity.)  For exports, 

the reduced-form change in productivity is  
 
 1 1' ( ) 'X Xb I dz b dτ− −Ω − Δ + Ω Δ  

 
Thus, the reduced form change in effective value-added productivity for exports is just the 

export share vector times the reduced form change in effective value-added productivity for 
commodities. 

 
Note that if Δ , the import shares, is zero, then the fourth component reduces to the closed-

economy formula, since  
 

1 1 1 2 1 2 3 2

1

[( ) ] [ ...] [ ...] [ ...]

( )

B I B I B I I B B B B B B I B B

I B

− − − −

−

− − = − + + + + = + + + = + + +
= −
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(or multiply both the far left and far right of this equation by I B−  to verify). 
 
 

Appendix B: Updating Basu, Fernald, and Kimball (2004) Industry Residuals 

We used our new dataset to update the estimated industry technology series along the lines 
of Basu, Fernald, and Kimball (2006).  BFK follow Hall (1990), but add industry hours per worker 
to the regression to control for unobserved variations in labor effort and capital’s workweek.  The 
basic idea behind the utilization proxy is that a cost-minimizing firm operates on all margins 
simultaneously, both observed and unobserved.  As a result, changes in observed margins can 
proxy for unobserved utilization changes.  If labor is particularly valuable, for example, firms will 
work existing employees both longer (observed hours per worker rise) and harder (unobserved 
effort rises).   

More specifically, let industries have the following gross-output production function: 
(28)  ( ), , ,i

i i i i i i i iY F A K E H N M Z= .  

The industry produces gross output, Yi, using the capital stock Ki, employees Ni, and 
intermediate inputs of energy and materials Mi.  The capital stock and number of employees are 
quasi-fixed, so their levels cannot be changed costlessly.  But industries may vary the intensity 
with which they use these quasi-fixed inputs:  Hi is hours worked per employee; Ei is the effort of 
each worker; and Ai is the capital utilization rate (that is, capital’s workweek). Total labor input, Li, 
is the product EiHiNi.  The production function Fi is (locally) homogeneous of γi  in total inputs.  γi 
exceeding one implies increasing returns to scale, reflecting overhead costs, decreasing marginal 
cost, or both.  Zi indexes technology.  

With cost minimization, the standard first-order conditions give the output elasticities, 
which we use to weight growth of each input.  Let idx  be observed share-weighted input growth, 

and idu  be unobserved share-weighted growth in utilization, i.e., the workweek of capital and labor 

effort.  (For any variable J, we define dj as its logarithmic growth rate 1ln( / )t tJ J − .)  This yields: 

(29)  ( )i i i i idy dx du dzγ= + + ,  

where  
(30)  ( )i Ki i Li i i Mi idx s dk s dn dh s dm= + + + ,   

  i Ki i Li idu s da s de= + ,  

and Jis  is the ratio of payments to input J in total cost.  (We have normalized the elasticity 

with respect to technology, ( / )ZF Z F , to unity, since it isn’t separately identified.) 

The challenge is to derive a suitable proxy for unobserved  utilization variation, dui..  
Suppose firms seek to minimize the present discounted value of costs for any given path of output.  
There is a convex costs of adjusting the quasi-fixed factors (K and N).  Total compensation per 
worker is ( ) ( ),WG H E V A , where W is the base wage; the function G specifies how the hourly 

wage depends on effort, E, and the length of the workday, H; and V(A) captures a shift premium 
associated with varying capital’s workweek.  (This true shadow wage might be implicit, and not 
observed in the data at high frequency.)  Thus, firms must pay a higher wage to get workers to 
work longer (on a given shift), or to work harder, or to work at night.  In this environment, BFK 
show that, as a first-order approximation, the following expression holds: 
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 .i i i i i idy dx dh dzγ β= + +  

The coefficient iβ , which can be estimated, relates observed hours growth to unobserved 
variations in labor effort and capital’s workweek.  That coefficient incorporates various elasticities 
including, in particular, the elasticity of unobserved effort with respect to hours, from the implicit 
function relating them (which came out of optimization).   

In this paper, we impose constant returns and estimate these equations as a system.  
Previous work (e.g., Basu and Fernald, 1997, as well as BFK) find that the typical industry has 
close to constant returns.  In addition, in some industries it is difficult to distinguish returns to scale 
from utilization, since they are positively correlated measures of inputs.   

We estimate these equations using instrumental variables, in order to control for correlation 
between technology shocks and input growth.  As described in BFK, we use updated versions of 
two of the Hall-Ramey instruments: oil prices and growth in real government defense spending.  
For oil, we use increases in the U.S. refiner acquisition price.  We also use, as a third instrument, 
an updated estimate of Burnside’s (1996) quarterly Federal Reserve “monetary shocks” from an 
identified VAR.  In all cases, we have quarterly instruments; we sum the four year t-1 quarterly 
shocks as instruments.  For the money shock, we lag the instrument an extra year in case the VAR 
does not fully control for the systematic response to technology shocks.20 

Specific regression results will be available in a later version of the paper. 
We need residuals for all commodities (industries) that are used as intermediate inputs or 

that use intermediate inputs.  BFK did not estimate residuals for agriculture, mining industries, or 
government enterprises.  TFP is highly volatile, and the instruments have no explanatory power.   

To conserve parameters, we restrict the utilization coefficient within five  groups.  We split 
durables manufacturing into two groups, based on their weights in final equipment demand.  The 
reason is that we care a lot about the coefficient in the “core” group, which comprises fabricated 
metals, non-electrical and electrical machinery, motor vehicles, and other transportation equipment.  
Within non-durables, we split out chemicals and petroleum from other industries, because the data 
clearly preferred to put a different coefficient on these industries.  Finally, we include non-
manufacturing (8). 

For the commodity-specific terms of trade, we use the aggregate export deflator relative to 
the commodity-specific import deflator.  Even if there is no foreign supply of the commodity, there 
are still imports of non-competing goods.  In any cases where there are no imports into an industry, 
we set the import-supply price to one (unchanging over time).  This is innocuous, since it gets 
multiplied by a weight of zero.  

The commodity-specific terms of trade is, of course, endogenous, and may respond to a 
wide range of other shocks (e.g., demand shocks at home and abroad that affect nominal exchange 
rates).  As a result, in our regression analysis, we instrument by recalculating the final-use shocks 
where we zero out the terms-of-trade vector as well as the technology shocks in industries where 
we don’t have controls for utilization (agriculture, mining, and government enterprises). 

Further details on the production-function estimates will be available in a later draft. 

                                                 

20  BFK find that results are robust to different combinations and lags of the instruments; results are not driven 
by any one of these instruments.  They also discuss the small sample properties of instrumental variables.    
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Table 1. Sample-average growth rates of sector-specific technologies 
(Standard TFP and utilization-adjusted technology estimates) 

 
A. Final-goods sector TFP growth 

(percent change, annual rate) 
 1950-2005 1950-1982 1983-2005 

(1) Consumption TFP, dzC 0.12 0.24 -0.06 
    

(2) Durables Consumption, TFP dzCD 
 

1.86 1.47 2.44 

(3) Investment TFP, dzJ 
3a. Equipment dzJE 
3b. Structures dzJS 
 

1.30 
2.75 
-0.39 

1.00 
2.07 
-0.07 

1.75 
3.77 
-0.88 

(4) Government TFP, dzG 

 

(5) Trade TFP, dzTrade 
 

1.20 
 

2.05 

1.09 
 

1.57 

1.36 
 

2.78 

 
 

B. Final-goods sector technology, using utilization-adjusted industry shocks 
(percent change, annual rate) 

 
 1950-2005 1950-1982 1983-2005 

(1) Consumption TFP, dzC 0.13 0.26 -0.07 
    

(2) Durables Consumption, TFP dzCD 
 

1.89 1.49 2.50 

(3) Investment TFP, dzJ 
3a. Equipment dzJE 
3b. Structures dzJS 
 

1.33 
2.80 
-0.39 

1.08 
2.20 
-0.05 

1.70 
3.71 
-0.89 

(4) Government TFP, dzG 

 

(5) Trade TFP, dzTrade 
 

1.22 
 

2.09 

1.14 
 

1.66 

1.34 
 

2.74 

 
 

Notes: In the top panel, TFP is calculated for the 35 domestic industries in the Jorgenson 
dataset and aggregated to final-use sectors as described in the text.  The bottom panel uses industry 
technology residuals, as described in the text.  Those estimates control for variations in factor 
utilization.  
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Table 2.  Final-Use Capital Shares 
 

final-good category 
 

capital share

Consumption (Non-durables and services ) 0.36
Consumer Durables 0.31
Equipment Investment 0.30
Structures 0.26
Government 0.30
     Government Consumption 0.35
     Government Equipment 0.26
     Government Structures 0.28
Net Exports 0.35

sample averages, 1961-2005 
 

Notes:  For final-use vector bh, where { , , , , , , , , }h C CD JE JS G GC GE GS NX⊂ , capital’s share 

is calculated as 1[ ]h Kb I B s− ′− , where is the vector of commodity capital shares 
  

Ks ′
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Table 3.  Relative output prices and relative technology 
(percent change, annual rate)  

 
A.  Prices of nondurable and services consumption relative to price of equipment 

investment, BEA and Jorgenson datasets 
 

 1960-2005 1960-1982 1982-2005 

BEA 2.69 1.58 3.70 
Jorgenson – adjusted with 
Gordon deflators 

2.67 1.61 3.67 

 
Notes: Price index for consumption of non-durables and services is calculated as a chained-

price index.   
 

B. Jorgenson data (adjusted with Gordon deflators): 
Relative prices and relative sectoral TFPs 

 
( ) [ ]1 1 ,Producer( )( ) ( )( )

Relative price + Factor-Price Wedge Tax Wedge

Dom Dom
J C C J J C K K L L J Cdz dz dp dp b b I B s dp s dp b b I B p dp− −  − = − + − − + + − − − 

= +
 

Full 
Sample

(1) 

1960-
1982

(2) 

1982-
2004 

(3) 

Acceleration
((3) – (2)) 

(1) Relative TFP (Equip. invest. relative to 
NDS consump.) 

 

3.15 2.11 4.14 2.04

(2) Relative price (NDS consump. relative to 
equip. investment) 

2.68 1.60 3.71 2.10

 
(3) Relative primary input prices (equip 

relative to NDS cons.) 
 

0.33 0.40 0.27 -0.14

  
(4) Relative sales tax wedge (equip. relative to 

NDS cons.) 
0.14 0.10 0.17 0.07

  
 

Notes:  Lines (2) through (4) sum to line (1).  NDS is non-durables and services.  In the equation, 
( )J Cb b−  is a row vector for a given year of commodity-specific shares in final investment versus 

consumption; [ ]K K L Ls dp s dp+ is a column vector of commodity-specific share-weighted input price 

growth, where only domestic commodities have non-zero entries; similarly, ,ProducerDom Domp dp −  is 

a column vector of the difference between price paid by a purchaser and the price received by a 
producer.  Terms are defined and discussed further in the text.   
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Table 4.  Correlations of sector-specific residuals 
 

 
A. Selected correlations of final-use TFP 

 
 

 1950-2004 1950-1982 1983-2005 
(1) Corr(dzJ, dzC) 

 
0.82 0.88 0.71 

(2) Corr(dzJE, dzC) 
 

0.70 0.79 0.61 

(3) Corr(dzJE - dzC, dzC) 
 
(4) Corr(dzJE- dzC, dzJ) 

 

0.12 
 

0.51 

0.25 
 

0.49 

-0.01 
 

0.62 

 
 
 
 

B. Selected correlations of final-use technology 
 
 

 1950-2005 1950-1982 1983-2005 
(1) Corr(dzJ, dzC) 

 
0.48 0.50 0.52 

(2) Corr(dzJE, dzC) 
 

0.24 0.27 0.29 

(3) Corr(dzJE - dzC, dzC) 
 
(4) Corr(dzJE- dzC, dzJ) 

 

-0.10 
 

0.73 

-0.06 
 

0.73 

-0.10 
 

0.75 

 
 

Notes: dzJ is TFP or technology for overall investment; dzJ,E is for equipment and software; 
dzC is for non-durables and services consumption.  With 56 observations, a correlation of 0.22 is 
significant at the 10 percent level and 0.27 is significant at the 5 percent level; with 22 
observations, a correlation of 0.35 is significant at the 10 percent level and 0.41 is significant at the 
5 percent level.  See also notes to Table 1. 
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Table 5: Regression results 
 

 
 
Notes: Instrumental variables regressions from 1952-2005.  All variables except interest rates are in 
annual growth rates; interest rates are entered in levels.  Dependent variables are shown in the left 
column.   Regressors are current and lagged values of BFK final-use-sector technology shocks 
shown, along with a constant term (not shown).  Regressions with prices or the wage also include 
decade dummies for the 1970s and 1980s.  Instruments are corresponding variables where the terms 
of trade and technology in agriculture, mining, and government enterprises are zeroed out before 
aggregation.  Heteroskedastic and auto-correlation robust standard errors in parentheses. 

        Technology shocks
Consumption 

Investment and Exports (nondurables and services)

dzj dzj(-1) dzj(-2) dzc dzc(-1) dzc(-2) R2

(1) GDP, GCV adjusted. -0.39 -0.09 0.14 0.75 0.22 -0.14 0.40
 (0.08) (0.14) (0.11) (0.25) (0.43) (0.33)

(2) Equip. and Soft. Invest, GCV adj. -1.15 -1.18 0.39 2.38 0.86 -1.07 0.29
 (0.36) (0.46) (0.35) (0.96) (1.40) (0.99)

(3) Consumer durables, GCV adj. -0.72 -0.02 0.49 2.32 -0.57 -1.04 0.22
 (0.32) (0.39) (0.39) (0.72) (1.26) (0.98)

(4) Consump. of nondur. and services, GCV adj. -0.19 -0.01 0.02 0.34 0.12 -0.04 0.50
 (0.05) (0.05) (0.08) (0.15) (0.14) (0.17)

(5) Non-res. structures invest. -0.40 -1.16 -0.16 -0.40 2.29 0.89 0.36
 (0.33) (0.33) (0.45) (0.97) (0.89) (0.88)

(6) Residential structures invest. -1.49 0.92 0.79 4.03 -0.73 -4.04 0.32
 (0.47) (0.73) (0.69) (1.74) (1.62) (1.95)

(7) Exports, GCV adj. -0.44 -0.43 0.62 1.36 0.86 -0.93 0.12
 (0.37) (0.40) (0.43) (0.94) (1.12) (0.65)

(8) Imports, GCV adj. -0.70 -0.37 0.59 1.06 -0.23 -1.29 0.29
 (0.24) (0.33) (0.44) (0.78) (1.00) (1.09)

(9) Hours worked -0.37 -0.26 0.12 0.14 0.14 -0.32 0.42
 (0.08) (0.12) (0.12) (0.34) (0.37) (0.24)

(10) Wage (Jorgenson, composition-adj.) -0.15 -0.19 -0.20 0.44 0.31 -0.05 0.19
 (0.12) (0.14) (0.13) (0.31) (0.33) (0.29)

(11) GDP deflator (Jorgenson), GCV adj. -0.29 -0.20 -0.30 -0.40 0.23 0.24 0.22
 (0.11) (0.10) (0.16) (0.35) (0.31) (0.29)

(12) Rel price: CNDS to Equip (Jorgenson), GCV-adj. 0.23 0.01 0.05 -0.04 -0.07 -0.29 0.01
 (0.10) (0.12) (0.11) (0.41) (0.30) (0.29)

(13) Price of NDS Consumption (Jorgenson), GCV adj. -0.20 -0.21 -0.32 -0.39 0.30 0.30 0.24
 (0.12) (0.13) (0.19) (0.32) (0.35) (0.32)

(14) Price of equipment (Jorgenson), GCV adj. -0.43 -0.22 -0.37 -0.34 0.37 0.59 0.03
 (0.15) (0.14) (0.24) (0.60) (0.46) (0.45)

(15) Fed Funds rate 0.04 -0.20 -0.20 -1.36 -0.42 -0.30 0.38
 (0.12) (0.09) (0.12) (0.50) (0.25) (0.35)

(16) 10-year Treasury -0.09 -0.11 -0.10 -0.84 -0.85 -0.49 0.30
 (0.10) (0.12) (0.12) (0.32) (0.20) (0.30)
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Figure 1: Cumulated Final-Use Sector Technology Series 

 

 

Note: All series are calculated by cumulating log changes of utilization-adjusted technology 
from 1950-2005.  These series “zero out” the terms-of-trade shocks and technology in sectors for 
which no utilization adjustment is available.  The value for 1949 is normalized to zero. 
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Figure 2: Relative Prices, Relative TFP, and Relative Technology 
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Figure 3: Fitted values of hours and equipment to technology 
Business-cycle frequency  

 

 
 

 
Fitted values are from regressions shown in Table 5. 
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