

Directorate General Research Competitiveness Network

Micro-based evidence of EU competitiveness: The CompNet database

Vienna CompNet workshop, 19-20 September

F. di Mauro, P. Lopez-Garcia, C. Altomonte, N. Benatti, C. Angeloni and members of WS2

Provide a first overview of the dataset

Objectives

- Show the potential of the dataset by highlighting some preliminary but suggestive findings, which deserve further research efforts:
- Firm heterogeneity within sectors larger than across sectors, for all countries
- Top productive firms relatively more homogeneous (size) across countries; more churning within low productive firms
- As a result of this heterogeneity, **resource reallocation** important for overall productivity
- Reallocation has virtually stopped in all countries during the crisis
- Firm heterogeneity also matter for current account rebalancing

Findings

- 1. Introduction
- 2. The CompNet database
- 3. Descriptive analysis of industry indicators across countries
- 4. Allocative efficiency differences across countries, sectors and time
- 5. An application of CompNet data: Explaining trade balance
- 6. Some preliminary conclusions

2. The CompNet database

2.1. Distributed micro-data analysis

- 2.2. Description of the data
 - Country samples
 - Sample representativeness
- 2.3. Variables and indicators
 - Inputs and output of the production process
 - Productivity indicators
 - Allocative efficiency indicators
- 2.4. Summary Statistics
- 2.5. Data validation with Eurostat and EU KLEMS

2.6. Comparison with Amadeus data

Country samples

	Average	Т	otal Coverag	ge/Eurostat*	*		S	Sector Coverage	
	No. of Firms*	Firms	N. of Employees	Turnover	Labour Cos ts	Year Coverage	Mining and Quarrying	Manufacturing	Services
BELGIUM	66,842	33%	73%	86%	101%	1996-2011	3/5	full	full
CZ	21,156	4%	64%	78%	62%	2002-2011	full	full	full
ESTONIA	12,186	66%	85%	78%	62%	1995-2011	4/5	full	full
FRANCE	348,179	n/a	n/a	n/a	n/a	1995-2007	full	23/24	full
GERMANY	30,688	2%	38%	66%	55%	1997-2010	1/5	23/24	27/29
HUNGARY	13,683	4%	47%	73%	53%	2003-2010	full	full	full
ITALY	53,054	2%	17%	22%	24%	2001-2008	2/5	23/24	full
POLAND	6,250	1%	14%	80%	86%	2002-2011	full	full	28/29
ROMANIA	196,514	92%	94%	91%	93%	2005-2011	full	full	full
SLOVAKIA	3,954	8%	67%	89%	80%	2000-2002; 2006-2011	full	23/24	full
SLOVENIA	16,676	33%	78%	92%	94%	1995-2011	4/5	23/24	full
SPAIN	245,121	24%	42%	58%	60%	1995-2011	full	full	full

* average across all years available

** average across comparable years in Eurostat and CompNet

- In the analysis, we use data from 2002 to 2010 for 12 countries across 58 2digit (NACE REV.2) manuf. and non-manuf. sectors
- Portugal is not in this version of the paper...but it will be in the next

Is our sample representative of the population of firms?

			Size Dist	tribution				Sector Di	stribution		
	0 to 19 e	employees	20 to 249	employees	>250 ei	mployees	Manuf	acturing	Non-Man	ufacturing	Period
-	Compne t*	Eurostat*	Compnet*	Eurostat*	Compnet	*Eurostat*	Compnet*	Eurostat*	Compnet*	Eurostat*	
BELGIUM	89.2%	96.0%	10.0%	3.8%	0.8%	0.2%	19.3%	14.4%	80.7%	85.6%	2008-2011
CZ	49.4%	97.4%	45.9%	2.4%	4.7%	0.2%	44.0%	25.6%	56.0%	74.4%	2005-2011
ESTONIA	88.3%	90.4%	11.2%	9.1%	0.5%	0.4%	23.4%	20.6%	76.6%	79.4%	2005-2011
FRANCE	86.3%	96.4%	12.8%	3.4%	0.9%	0.2%	19.2%	14.9%	80.8%	85.1%	2007;2009
GERMANY	22.7%	91.6%	61.7%	7.8%	15.6%	0.6%	51.2%	16.3%	48.8%	83.7%	2008-2010
HUNGARY	58.5%	97.2%	37.1%	2.6%	4.3%	0.2%	70.5%	16.2%	29.5%	83.8%	2005-2010
ITALY	56.5%	97.4%	42.5%	2.5%	1.0%	0.1%	58.2%	19.5%	41.8%	80.5%	2008
POLAND	0.0%	94.9%	95.4%	4.6%	4.6%	0.5%	63.3%	35.9%	36.7%	64.1%	2005-2011
ROMANIA	90.8%	91.3%	8.5%	8.0%	0.7%	0.7%	25.0%	25.5%	75.0%	74.5%	2005-2011
SLOVAKIA	14.9%	89.6%	76.0%	9.5%	9.1%	0.9%	50.4%	29.7%	49.6%	70.3%	2008-2011
SLOVENIA	88.6%	96.1%	10.5%	3.5%	0.8%	0.3%	25.6%	24.4%	74.4%	75.6%	2005-2011
SPAIN	93.0%	96.4%	6.5%	3.4%	0.5%	0.2%	19.4%	17.2%	80.6%	82.8%	2008-2011

* average across all years available

Data for Czech Republic, Spain, France, Hungary, Italy, Romania, Slovakia on self-employed persons is included in Eurostat, but excluded in CompNet. *CompNet data represents the universe of firms for Belgium, Estonia and Romania, while Eurostat only has survey samples for those countries.

Countries with representative samples of firms

Countries where small firms and services seem to be under-represented

Use of common sector weights for all countries to mitigate bias

Correlation of the sector-year levels and growth rates per country in CompNet with EUROSTAT (SBS)
 Sector Turnover 10 0.87

L

-0.85

									18	S 0.99	-0.76
	correlati	on with H	Eurostat (le	$evels)^{12}$	correlation	n with Euro	ostat (grow	th rates)	¹² 43	3 0.98	-0.54
	Turnover	VA	L	LC	Turnover	VA	L	LC	60	- 1.00	0.65
BELGIUM	0.77*	0.97*	0.94*	0.98*	0.27*	0.30*	0.16*	0.15*	71	L -0.97	0.99
CZ***	0.96*	0.92*	0.81*	0.97*	0.90*	0.40*	0.92*	0.69*	82	-1.00	-0.67
ESTONIA***	0.83*	0.74*	0.84*	0.80*	0.83*	0.52*	0.84*	0.64*			
GERMANY	0.96*	0.83*	0.66*	0.83*	0.93*	0.92*	0.87*	0.90*			
HUNGARY***	0.96*	0.93*	0.52*	0.85*	0.80*	0.71*	0.74*	0.78*			
ITALY	0.87*	0.68*	0.69*	0.90*	n/a	n/a	n/a	n/a			
POLAND	0.93*	0.77*	0.72*	0.85*	0.83*	0.44*	0.81*	0.76*			
ROMANIA***	0.97*	0.95*	0.99*	0.99*	0.64*	0.47*	0.80*	0.48*			
SLOVAKIA	0.99*	0.95*	0.67*	0.96*	0.60*	0.62*	0.24*	0.57*			
SLOVENIA***	0.98*	0.95*	0.90*	0.94*	0.72*	0.58*	0.35*	0.37*			
SPAIN	0.77*	0.81*	0.87*	0.92*	0.13*	-0.01	-0.01	0.10*			
¹ (*) indicates signific	ance at 5%					szclass	Turnover	VA	L	LC	r
2 across all years ava	ilable						1 -0.07*	-0.05	-0.02	-0.13*	
*** indicates coverag	e of more than	3 years					2 -0.03	0.14*	0.33*	0.48*	
							3 0.09*	0.08*	0.17*	0.15*	
							4 0.53*	0.49*	0.19*	0.32*	1
							5 0.63*	0.53*	0.33*	0.40*	ł

Countries with more than 3 years of overlapping info with Eurostat

- Correlation of the sector-year levels CompNet-EUKLEMS¹
 - EUKLEMS designed to sum up to National Accounts, no to follow variables along time

	Lev	rels	Years included in validation
	Turnover	Labour	
BELGIUM	0.96*	0.84*	1996-2007
CZ	0.97*	0.94*	2002-2007
ESTONIA	0.95*	0.45*	1995-2007
FRANCE	0.85*	0.59*	1995-2007
GERMANY	0.80*	0.93*	1997-2007
HUNGARY	0.89*	0.72*	2003-2007
ITALY	0.86*	0.89*	2001-2007
SLOVAKIA	0.95*	0.83*	2000-2007
SLOVENIA	0.93*	0.94*	1995-2006
SPAIN	0.85*	0.91*	1995-2007

¹Could match only 7 sectors: R&D Rental and leasing Teleco. Manuf. of machinery and equipment

Comparison with Amadeus

- Firm coverage of CompNet and Amadeus is different
 - Can lead to important differences in labour productivity distribution

- 1. Introduction
- 2. The CompNet database

3. Descriptive analysis of industry indicators across countries

- 4. Allocative efficiency differences across countries, sectors and time
- 5. An application of CompNet data: Explaining trade balance
- 6. Some preliminary conclusions

• There is huge heterogeneity, in terms of firm performance, within narrowly defined sectors – more than across sectors!

How heterogeneous are firms across different industries?

Firm heterogeneity within sectors (II)

- Important to acknowledge this high dispersion:
 - The impact of macro/policy shocks depends on the underlying distribution
 - Average labour productivity of a sector is not representative –<u>test</u>

Similar picture if we look at the <u>20+</u> employees sample

Firm heterogeneity within sectors (III)

- Dispersion in terms of size is even larger
 - The distribution of size is very very skewed, large differences bet. average and median size
 - A bit different if we look at the 20+ employees sample

Labour productivity growth

 Evolution of the labour productivity distribution can be seen by tracking productivity changes in bottom and top tails of the distribution (base year=2002)

- Catch-up effect in Eastern countries
- Higher productivity growth in tradables
- Bad productivity performance of Spain and Italy especially, but not only, in low tail of productivity distribution

Labour productivity and unit labour cost

• Now we add the ULC evolution on top of the productivity one, for p10 and p90 firms. Non-tradables.

- Top productive firms contained ULC, in all sectors, across all countries. In tradables, ULC actually decreased constantly in core countries
- Low productive firms increase a lot their ULC, in tradables in Spain and Italy, in non-tradables in core

TFP growth differences, before and during the crisis

Not very different if we look at the <u>20+</u> employees sample

- Large differences in terms of TFP growth rates
- Generally (much) larger in tradables
- Drop to negative numbers during the crisis

- 1. Introduction
- 2. The CompNet database
- 3. Descriptive analysis of industry indicators across countries
- Allocative efficiency differences across countries, sectors and time
- 5. An application of CompNet data: Explaining trade balance
- 6. Some preliminary conclusions

Allocative efficiency: At each moment of time, available resources (within a sector) are put to their best use

- Static allocative efficiency: Allocation of resources across firms in any period of time: More productive firms enjoy higher market shares
 - Measurement
- Dynamic allocative efficiency: Allocation of resources along time: Resources are reallocated from low productive to high productive firms

 <u>Measurement</u>

Scope for resource reallocation

Static allocative efficiency

The percentage of industry productivity explained by the covariance is small, ranges between 5-20% - although great potential

Contribution of Covariance Term to Weighted Productivity

- It is quite stable across years
- It is larger in non-tradable sectors (higher reallocation) and in Eastern countries

Dynamic allocative efficiency

 Productivity growth= within firm productivity growth + reallocation of resources from less to more productive firms in the sectors

- The contribution of both terms has changed during the crisis

- 1. Introduction
- 2. The CompNet database
- 3. Descriptive analysis of industry indicators across countries
- 4. Allocative efficiency differences across countries, sectors and time
- 5. An application of CompNet data: Explaining trade balance
- 6. Some preliminary conclusions

Productivity and competitiveness

- Explore the correlation between internationalization, and the dispersion indicators and distribution parameters of TFP
 - Better explanation of export performance than averages
 - Internationalization is measured with export value, trade balance, and Balassa index
 - Data: only manufacturing sectors from 1996 to 2011. Unbalanced panel with 2382 observations
- Findings:
 - Contemporaneous trade performances are positively correlated with TFP dispersion (lagged two years)
 - In country-sectors, where the TFP distribution is more positively skewed (fatter and longer right tail), it is more likely to observe surplus in trade balance (col.7)
 - The level of productivity at the top of distribution is positively correlated with the export performances

Table: Trade and TFP dispersion

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	Exp.	Exp.	Exp.	Exp.	TradeBal.	TradeBal.	TradeBal.	TradeBal.	B.Index	B.Index	B.Index	B.Index
TFP(mean) _{t-2}	.059***	166***	.046**	098*	-6.3e-03	055***	-8.1e-03	-9.4e-03	11***	51***	112***	55***
	(.0178)	(.0425)	(.0191)	(.0532)	(.0066)	(.0163)	(.0071)	(.0207)	(.037)	(.1179)	(.0406)	(.1417)
Sect.V.A. _{t-2}	.834***	.819***	.818***	.829***	.277***	.273***	.27***	.276***	1.47***	1.44***	1.47***	1.46***
	(.0272)	(.0271)	(.0276)	(.0274)	(.0099)	(.0099)	(.0099)	(.01)	(.1444)	(.1413)	(.1457)	(.1422)
TFP(s.d.) _{t-2}		.232***				.048***				.429***		
		(.0414)				(.0154)				(.109)		
TFP(skew) _{t-2}			.079***				.039***				.129***	
			(.021)				(.0088)				(.0471)	
TFP(iqr) _{t-2}				.144***				-1.3e-03				.43***
				(.0471)				(.0196)				(.1228)
Obs.	1624	1619	1598	1619	1624	1619	1598	1619	1624	1619	1598	1619
R2	.965	.966	.965	.965	.63	.63	.628	.628	.53	.535	.533	.533

All variables are in logs and lagged of two year. Each observation is defined by the triple country sector year. Robust standard errors are in parenthesis. We include the following set of fixed effects: year, country, sector, country X year, and sector X year. Sect.V.A. is the log of value added

Productivity and Competitiveness (II) Barba-Navaretti, Bugamelli, Castellani, Forlani

Table: Trade and TFP percentile

	(1)	(2)	(3)	(4)
	Exp.	Exp.	Exp.	Exp.
Sect.V.A. _{t-2}	.837***	.836***	.834***	.811***
	(.0273)	(.027)	(.0272)	(.0269)
TFP(med.) _{t-2}	.039**	683***	345***	061
	(.0175)	(.1798)	(.1036)	(.0461)
TFP(pc25) _{t-2}		.136		
		(.1136)		
TFP(pc75) _{t-2}		.601***		
		(.1125)		
TFP(pc10) _{t-2}			.083	
			(.0678)	
TFP(pc90) _{t-2}			.319***	
			(.065)	
TFP(pc1) _{t-2}				059*
				(.0344)
TFP(pc99) _{t-2}				.176***
				(.0338)
Obs.	1624	1624	1624	1624
R2	.965	.966	.965	.966
All variables are in logs and lagged of two year. Ea	ch observation	is defined by t	the triple count	ry sector year.
Robust standard errors are in parenthesis. We incl	ude the followi	ng set of fixed	effects: year, c	ountry, sector,
country X year, and sector X year. Sect.V.A. is the	log of value add	led.		

The countries' competitiveness in the international markets appears to depend on the TFP dispersion within sectors, as well as on the right tail of the TFP distribution.

- 1. Introduction
- 2. The CompNet database
- 3. Descriptive analysis of industry indicators across countries
- 4. Allocative efficiency differences across countries, sectors and time
- 5. An application of CompNet data: Explaining trade balance

6. Some preliminary conclusions

- The new CompNet database has enormous potential to help policy-makers and researchers to better understand competitiveness.
- 2 The database is dynamic, it will improve (outliers, dofile structure) and expand in terms of countries and variables

THANKS FOR YOUR ATTENTION!!!

 T-Test for Labour productivity differences between within and across dispersion measures

Paired t test

Vari abl e	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
l pr~s_sd l pr~n_sd	4556 4556	14. 18508 23. 47036	. 1273161 . 1915407	8. 593601 12. 92865	13. 93548 23. 09485	14. 43469 23. 84587
diff	4556	- 9. 285275	. 091909	6. 203689	- 9. 465461	- 9. 105089
mean Ho: mean	(diff) = me (diff) = 0	an(lprod_acr	oss_sd - lpr	od_wi thi n_sd degrees) t s of freedom	= -1.0e+02 = 4555
Ha: mean Pr(T < t)	(diff) < 0) = 0.0000	Ha Pr(: mean(diff) T > t) =	! = 0 0. 0000	Ha: mean Pr(T > t	(diff) > 0) = 1.0000

• T-Test for Labour Productivity differences between the mean and median of the distribution

Paired t test

Vari abl e	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
l~t_mean lp~t_p50	4219 4219	39. 85591 33. 69703	. 346677 . 3061047	22. 518 19. 88267	39. 17624 33. 09691	40. 53558 34. 29716
diff	4219	6. 15888	. 0515713	3. 349754	6. 057773	6. 259987
mean Ho: mean	(diff) = mea (diff) = 0	an(lprod_wt_)	mean - lprod	_wt_p50) degrees	t of freedom	= 119. 4246 = 4218
Ha: mean Pr(T < t)	(diff) < 0) = 1.0000	Ha Pr($: mean(diff) \\ T > t) =$! = 0 0. 0000	Ha: mean Pr(T > t	(diff) > 0) = 0.0000

Size dispersion (I)

- Size distribution differences are not driven by sector specialization
 - But by country-specific effects

Median size in country/industry to European (weighted) average in industry, selected sectors

sector	BE	CZ	DE	EE	ES	FR	HU	IT	RO	SI	SK	Average Size
Manufacture of textiles	0.25	1.34	2.09	0.30	0.20	0.42	0.51	0.57	0.15	0.26	2.49	37
Manufacture of paper and paper products	0.24	0.88	2.35	0.21	0.18	0.29	0.60	0.36	0.08	0.12	1.24	58
Manufacture of chemicals and chemical products	0.37	0.88	2.23	0.28	0.17	0.38	0.37	0.44	0.12	0.39	1.38	48
Manufacture of rubber and plastic products	0.31	1.37	2.13	0.39	0.21	0.42	0.64	0.49	0.12	0.14	1.91	43
Manufacture of computer, electronic and optical products	0.24	1.11	2.31	0.11	0.18	0.26	0.36	0.44	0.09	0.17	2.42	43
Manufacture of electrical equipment	0.19	0.98	2.35	0.42	0.16	0.27	0.78	0.38	0.15	0.15	2.01	54
Construction of buildings	0.16	1.34	2.25	0.20	0.16	0.24	0.70	0.57	0.16	0.18	1.98	25
Accommodation	0.16	1.23	2.05	0.20	0.30	0.30	2.02	0.67	0.16	0.32	1.72	24
Food and beverage service activities	0.08	1.06	2.27	0.27	0.19	0.25	0.34	0.58	0.12	0.13	1.43	24
Telecommunications	0.18	1.05	2.18	0.14	0.14	0.36	0.93	0.47	0.10	0.12	4.80	27
Legal and accounting activities	0.13	1.24	1.64	0.13	0.20	0.47	1.48	1.18	0.12	0.13	4.34	15
Activities of head offices; management consultancy activities	0.16	2.12	1.52	0.35	0.25	0.34	0.43	1.46	0.11	0.20	5.66	9
Other professional, scientific and technical activities	0.22	2.22	1.48	0.25	0.27	0.46	0.54	1.41	0.21	0.23	3.48	9

• Assume the following Cobb-Douglas production function (in logs) $y_{it} = \beta_0 + \beta_k k_{it} + \beta_L l_{it} + \beta_M m_{it} + \omega_{it} + u_{it}$ (1)

Where k, I and m are the inputs; ω_{it} is an unobserved (for the econometrician) firm-level time-variant productivity level and u_{it} is an i.i.d. error term representing unexpected (by the firm) shocks

- Equation (1) will be inconsistently estimated by OLS if
 - Firm-level productivity, observed by the firm, affects its choice of inputs
 - This is called the simultaneity bias (Marschak and Andrews 1944 and Griliches and Mairesse 1995)
 - Much of the literature on production function estimation of the last 60 years has been devoted to solve this problem

Solutions

- Instrumental variables: find instruments correlated to inputs but not to unobserved productivity; or lagged values of inputs (GMM)
- Fixed-effect estimation: only when you think that unobserved productivity is constant over time
- Semi-parametric estimators or control function approach :
 - Most promising
 - Use observed input demand to instrument for unobserved productivity
 Olley and Pakes (1996) propose a two-step estimation procedure using investment as a proxy to invert out the unobserved productivity shock ωt
 Given that investment can be zero and it is quite lumpy, Levinsohn and Petrin (2003) suggest to use instead demand for intermediate inputs
 Wooldridge (2009) implements LP in a GMM framework, obtaining more efficient estimators

• Labour productivity distribution, 20+ samples

• TFP growth rate, 20+ samples

 According to Olley an Pakes (1996), sector productivity level could be decomposed as follows:

• The covariance could be interpreted as the improvement in the sector productivity due to resource reallocation, as compared to the one resulting from a random reallocation of resources

Dynamic allocative efficiciency (I)

• From an accounting point of view, labour productivity growth at the sector level could be decomposed (a la Foster et al.) as follows:

- The between term is measuring the change in market share of firms with a higher/lower productivity than the average in sector
 - The larger the term, the higher (lower) the market share gain (loss) of firms with a higher (lower) than average productivity
 - This is a necessary, although not sufficient condition for "good" resource reallocation within the sector

• Industry productivity level is the sum of the unweighted productivity and the covariance between size and productivity

Note: Average Labour Productivity OP Gap between 2002-2004, 2005-2007 and 2008-2010.

Source: CompNet Dataset

 Differences in size are not homogeneous across productivity percentiles

2002-2007	BE	CZ	DE	EE	ES	FR	HU	RO	SI	SK	Average Size
Labour Productivity P10	0.58	1.16	3.55	0.32	0.41	0.47	0.65	0.47	0.28	2.11	63
Labour Productivity P50	1.25	1.06	2.49	0.24	0.33	0.54	1.15	0.69	0.50	1.76	126
Labour Productivity P90	1.01	0.85	2.96	0.16	0.61	1.33	1.16	0.51	0.61	0.80	234
2008-2010	BE	CZ	DE	EE	ES	FR	HU	RO	SI	SK	Average Size
2008-2010 Labour Productivity P10	BE 0.67	CZ 1.21	DE 3.21	EE 0.20	ES 0.22	FR n.a.	HU 0.85	RO 0.49	SI 0.20	SK 1.95	Average Size 62
2008-2010 Labour Productivity P10 Labour Productivity P50	BE 0.67 0.81	CZ 1.21 1.17	DE 3.21 2.85	EE 0.20 0.22	ES 0.22 0.27	FR n.a. n.a.	HU 0.85 0.92	RO 0.49 0.68	SI 0.20 0.46	SK 1.95 1.61	Average Size 62 111

- In higher productivity percentiles firm average size of firms is more homogeneous
- During the crisis low productivity firms in some countries have downsized more than average. Top productive firms with no dramatic changes