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Abstract

This paper analyzes the equilibrium pricing implications of contagion risk in a two-
tree Lucas economy with CRRA preferences. The dividends of both trees are subject
to downward jumps. Some of these jumps are contagious and increase the risk of
subsequent jumps in both trees for some time interval. We show that contagion risk
leads to large price-dividend ratios for small assets, a joint movement of prices in
the case of a regime change from the calm to the contagion state, significantly pos-
itive correlations between assets, and large positive betas for small assets. Whereas
disparities between the assets with respect to their propensity to trigger contagion
barely matter for pricing, the prices of robust assets that are hardly affected by
contagion and excitable assets that are severely hit by contagion differ significantly.
Both in absolute terms and relatively to the market, the price of a small safe haven
increases if the economy reaches the contagion state. On the contrary, the price of
a small, contagion-sensitive asset exhibits a pronounced downward jump.
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1 Introduction and Motivation

The concept of financial contagion describes a situation where losses in one company,

one sector of the economy or one country significantly increase the risk of subsequent

losses both in the same and in other companies, sectors or countries. However, although

a vast amount of literature deals with the various aspects of contagion, the preface of the

insightful anthology of Claessens and Forbes (2001) still applies:

’No sooner had the Asian crisis broken out in 1997 than the witch-hunt started.

With great indignation every Asian economy pointed fingers. They were in-

nocent bystanders. The fundamental reason for the crisis was this or that –

most prominently contagion – but also the decline in exports of the new com-

modities (high-tech goods), the steep rise of the dollar, speculators, etc. The

prominent question, of course, is whether contagion could really have been the

key factor and, if so, what are the channels and mechanisms through which

it operated in such a powerful manner. The question is obvious because until

1997, Asia’s economies were generally believed to be immensely successful,

stable and well-managed.’

A crucial issue in modeling financial contagion is its time dimension.1 Contagion is not

an event that takes place at a single point in time. Instead, the risky ’contagious state’

prevails for some time interval before the economy eventually reverts to the initial ’calm

state’. Consequently, contagion affects the investment opportunities for some time period.

The question then is how contagion affects the equilibrium in the economy. How is the

threat of contagion reflected in prices today, and how do prices change if contagion hits

the economy? Do we observe differential pricing in the cross-section if assets differ in their

propensity to trigger contagion or in their degree of robustness against contagion risk?

In this paper, we analyze the impact of contagion risk on asset prices and asset price

dynamics in a general equilibrium. We rely on a Lucas-tree economy with several trees

which was first analyzed in Cochrane, Longstaff, and Santa-Clara (2008), who consider

two trees and a log investor, and Martin (2009), who studies a Lucas orchard with several

trees and assumes general CRRA preferences. The representative investor in our economy

also has CRRA preferences. Dividends are subject to diffusion risk and to downward

jumps. The jump intensities follow a two-state Markov chain: they are moderate in the

1See, e.g., Ait-Sahalia, Cacho-Diaz, and Laeven (2010)
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’calm state’, but increase significantly as soon as the economy enters the ’contagion state’.

A distinctive feature of our model is that jumps from the calm state to the contagion state

are triggered by (or happen simultaneously with) a drop in the dividends of either of the

two trees. In a sense, financial contagion can be viewed as an extremely virulent disease

among the trees (one might, e.g., think of the classical mildew).

Our paper makes three main contributions to the literature. First, we derive a semi-closed

form solution for the price-dividend ratio (and thus all other key asset pricing figures) in

our model. Second, we analyze the impact the threat of contagion has on prices and price

dynamics, and we compare prices in the calm state and in the contagion state. Third, we

analyze the cross-sectional effects of contagion, i.e. the differential pricing of assets with

respect to their exposure to contagion risk.

In more detail, our contributions are as follows. For calculating the price-dividend ratios,

we start from the solution of Martin (2009) for the case of iid dividends in a Lucas

orchard and follow Branger, Schlag, and Wu (2011) in extending it to the case of non-iid

dividends. A key quantity is the characteristic function of future dividends. We show that

our model is affine so that the characteristic function has a standard form (see Duffie,

Pan, and Singleton (2000)). Furthermore, we manage to simplify the resulting formula

for the price-dividend ratio significantly and are able to reduce the number of numerical

integrations to one like in the case of iid dividends.

Second, we study the impact of contagion risk on equilibrium asset prices. We start with

the case where both trees have identical parameters. As shown by Cochrane, Longstaff,

and Santa-Clara (2008) and Martin (2009), there are spill-over effects between the trees.

The asset prices depend on the dividends of both trees and not just on the own dividends

since the stochastic discount factor is driven by the joint behavior of both dividends. These

spill-over effects lead to large price-dividend ratios for small trees, excess volatilities of

large trees, positive correlations between the prices even if dividends are uncorrelated,

and nonzero exposures of prices to shocks in the dividends of the other asset.

In our model, regime changes from the calm to the contagion state and vice versa add a

further risk dimension. Since price-dividend ratios depend on the current regime, jumps

into the contagion state lead to simultaneous large price changes in both assets, and

jumps back into the calm state, of course, to a reverse change. These simultaneous large

price jumps increase the already positive correlations between the assets. In particular,

these correlations remain significant even when one asset becomes small (and its dividend

no longer contributes to systematic consumption risk). Our model thus endogenously
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generates additional systematic risk and thus an additional beta for small assets. This

effect is particularly pronounced in the contagion state.

Third, we analyze the differences in prices and price dynamics that are caused by dif-

ferences in the characteristics of the dividends. This allows us to assess the impact of

contagion risk on the cross-sectional pricing of stocks. We find that the propensity to

induce contagion, i.e. the question of which of the assets really triggers contagion, barely

matters for pricing. There are basically no differences between the prices of assets that

induce contagion and assets that never do so.

On the contrary, the consequences of contagion are of first-order importance. We show

that there are indeed significant differences between the prices of robust assets (whose

jump intensity is only slightly higher in the contagion state) and excitable assets (which

are heavily affected by contagion in the sense that the intensities of downward jumps in

their dividends increase strongly). The price-dividend ratio of a small robust asset is much

greater than the price-dividend ratio of an equally small excitable asset. While there is

always a large excess demand for a small asset due to diversification needs of the investor

(see Cochrane, Longstaff, and Santa-Clara (2008)), we find additional demand for the

small safe haven which drives its price up even further. The price-dividend ratio of a

small excitable asset, on the other hand, is hardly greater than that of the market since

the diversification benefits are nearly offset by the less attractive growth prospects.

The different characteristics of the assets also lead to different price changes upon entering

the contagion state. The excess demand for the safe haven represented by the small robust

asset in the contagion state drives its price up both in absolute terms as well as relatively

to the market (flight to quality). The price of a small excitable asset drops relatively to

the market and, depending on the parameters, also in absolute terms. The reason is that

the jump intensity of the large (robust) asset increases only mildly, and, thus, the small

asset takes the whole burden of the economic downturn.

Moreover, the mere fact that contagion may happen at some future point in time increases

the systematic risk in the economy: even small assets whose dividends are nearly indepen-

dent of overall consumption have positive market betas that can be as high as 0.8 in the

contagion state in our example. The risk of joint price jumps (not joint dividend jumps)

due to a regime change increases the systematic risk in the economy significantly. Finally,

volatilities are larger in the contagion state than in the calm state due to the increase in

the overall level of risk in this state. Volatilities are thus anti-cyclical in our model and

increase if the economic conditions worsen.
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Our paper is related to several strands of the literature. First of all, we build on the growing

research on asset pricing with multiple trees. Cochrane, Longstaff, and Santa-Clara (2008)

analyze the equilibrium in a Lucas tree economy with two structurally identical trees with

iid dividends, diffusion risk only, and a log investor. Martin (2009) extends this setup to

several trees, jump-diffusion processes, and CRRA utility. Branger, Schlag, and Wu (2011)

consider a setup where the dividend growth rate is stochastic for one of the two trees so

that dividends are no longer iid and analyze the implications of learning. Formally, the

latter two approaches rely on an application of the generalized transform analysis of Chen

and Joslin (2010). Buraschi, Porchia, and Trojani (2010) also consider a Lucas orchard

with jump risk and two states for jump intensities. They include more than two trees

and focus on the implications of learning about the true state. In their model, however,

disasters only have a temporary effect since each tree can either be in the recovery state

(with high dividends) or in the recession state (with low dividends). This implies a kind of

mean-reversion for the dividends. In contrast, we focus on the implications of persistent

jumps which reduce the level of dividends in all future periods.

There is also a huge literature on the impact of jumps onto asset prices. Naik and Lee

(1990) derive the equilibrium in a one-tree economy with utility from terminal wealth

where the dividend follows a jump-diffusion process. Rietz (1988) and Barro (2006, 2009)

show that rare but severe disasters help to explain the equity premium puzzle. Wachter

(2010) analyzes the impact of a time-varying (exogenous) jump intensity on the variance

of returns in a model with Epstein-Zin preferences. Gabaix (2010) focuses on time-varying

jump intensities and time-varying recovery rates in a model with CRRA utility in order

to solve some famous asset pricing puzzles. Backus, Chernov, and Martin (2011) draw a

link between consumption-based asset pricing models and standard option pricing theory.

They find that option prices imply more frequent, but also more modest jumps than the

disaster literature in asset pricing assumes.

Another strand of related literature deals with the correct notion of contagion, its econo-

metric detection and its financial implications. The book of Claessens and Forbes (2001)

provides a detailed synopsis of the different terms which are around in this literature. Lon-

gin and Solnik (2001) as well as Forbes and Rigobon (2002), among others, analyze the

time-varying behavior of stock return correlations. Differing from this type of studies, our

paper explicitly focuses on jump risk as the prevalent source of contagion. Bae, Karolyi,

and Stulz (2003) evaluate contagion via the coincidence of extreme return shocks of stock

indices across several countries all around the globe. They find significant evidence for the

existence of contagion. Our paper differs from this kind of studies in that we explicitly
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focus on the time dimension of contagion. Instead of large simultaneous dividend move-

ments, our model involves dividend shocks that increase all other loss probabilities for a

certain time period and, thus, have a longer-lasting impact.

Ait-Sahalia, Cacho-Diaz, and Laeven (2010) use a definition of financial contagion that

is closest to ours. They focus on developing and implementing an estimation procedure

for a model akin to ours which captures the empirically observed jump clustering. In

their setup, economic shocks propagate around the globe within days whereas, in our

benchmark parametrization, contagion lasts for several months. However, as our numerical

results show, the duration of the contagion state is of second-order importance only. The

mere fact that contagion is modeled as an economic state instead of a single disastrous

event drives most of our findings.

The remainder of this paper is structured as follows. Section 2 explains the model setup.

The equilibrium pricing relations and the results for the case of structurally identical trees

are presented in Section 3. Section 4 analyzes the cross-sectional pricing implications of

contagion risk. Some robustness checks are performed in Section 5. Section 6 concludes.

2 Model Setup

2.1 Dividend Dynamics

We consider a continuous-time Lucas tree economy with an infinite horizon. There are

two trees producing the same perishable consumption good which serves as numeraire.

The dividends of the trees follow a jump-diffusion process.

We capture contagion risk by a Markov chain the state of which influences the jump

intensities. The economy can be in either of two states, the calm or contagion one. We

introduce a state variable pt which can be viewed as the indicator variable of the Markov

chain: the economy is in the calm state if pt = 1 and in the contagion state if pt = 0.

The trees A and B produce the dividends DA and DB. The dynamics of the log dividends

yA = lnDA and yB = lnDB and of the state variable pt are

dyA,t = µA(pt)dt+ σAdW
A
t + log(1 + LA)

∑
j=1,2,3

dNA,j
t ,

dyB,t = µB(pt)dt+ σBdW
B
t + log(1 + LB)

∑
j=1,2,3

dNB,j
t ,

dpt = −(dNA,2
t + dNB,2

t ) + dN4
t .
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The drifts of the dividends µA and µB are state-dependent, and we set µi(pt) = ptµ
calm
i +

(1−pt)µconti . The Wiener processes WA and WB are correlated with correlation ρ, and we

assume that the diffusion volatilities are constant. Furthermore, the dividends can jump

with a relative jump size of Li < 0, which is constant in our model.2 The jumps are driven

by the Poisson processes N .

We now first give the economic description of the jump structure in our model before

we turn to how it is captured formally. In the calm state (pt = 1), two types of jumps

in each asset can occur: First there can be jumps that do not change the state. These

jumps have an intensity of λcalm,calmi . The second type of jumps does not only decrease the

dividend, but also triggers a regime change from ’calm’ to ’contagion’. The intensity of

these jumps is denoted by λcalm,conti .3 Put together, the total jump intensity for dividend i

in the calm state is λcalm,calmi +λcalm,conti . In the contagion state (pt = 0), the intensity for

a downward jump in dividend i is λcont,conti , which is assumed to be larger than the jump

intensity in the calm state. Furthermore, this type of jumps does not change the state,

i.e. the economy stays in the contagion state. Finally, the economy can also jump back to

the calm state with intensity λcont,calm. Such a jump does not trigger losses in any of the

dividends.

Formally, to model all possible jumps, we introduce the Poisson processes N i,j (i =

A,B, j = 1, 2, 3) and N4 with intensities λi,jt and λ4t , respectively. N i,1 and N i,2 are jumps

that can happen in the calm state only. We set λi,1t = ptλ
calm,calm
i , i.e. j = 1 corresponds

to a jump that does not change the state, and λi,2t = ptλ
calm,cont
i , i.e. j = 2 corresponds

to a jump from the calm to the contagion state. The multiplication with pt ensures that

the jump intensities are indeed zero in the contagion state (where pt = 0). Similarly, the

intensities of N i,3 and N4 are λi,3t = (1 − pt)λ
cont,cont
i , i.e. j = 3 captures jumps in the

contagion state, and λ4t = (1 − pt)λcont,calm, describing jumps back into the calm state.

Again, this ensures that the corresponding jumps can only occur in the contagion state.

To summarize, the dividends follow RCLL processes. The drifts, the variance-covariance

matrix of the diffusion components, and the jump intensities are affine functions of the

state variable pt. The model is thus affine, and there are a closed-form solutions for the

characteristic functions of the log-dividends (see, e.g., Duffie, Pan, and Singleton (2000)).

2We could also allow for a stochastic jump size. However, this would complicate the model and notation

without adding to our main results.
3In the following, we will call the asset whose dividends exhibit this second kind of jumps the

’contagion-inducing’ asset.
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2.2 Representative Investor

Our economy is populated by a representative investor with CRRA utility and time-

additive preferences. His subjective time preference rate is denoted by δ, and his relative

risk aversion is γ. Under the assumption of an infinite planning horizon, his expected

utility is

E

[∫ ∞
0

e−δt
C1−γ
t

1− γ
dt

]
.

In the following, we assume γ > 1. Thus, the intertemporal elasticity of substitution is

1/γ < 1.

2.3 Dynamics of Aggregate Consumption and Dividend Share

In equilibrium, aggregate consumption equals aggregate dividends. The dynamics of con-

sumption Dm,t = DA,t +DB,t are given by

dDmt

Dm,t−
=

[
st
(
µA + 0.5σ2

A

)
+ (1− st)

(
µB + 0.5σ2

B

)]
dt+ stσAdW

A
t + (1− st)σBdWB

t

+ stLA
∑
j=1,2,3

dNA,j
t + (1− st)LB

∑
j=1,2,3

dNB,j
t ,

where st denotes the dividend share of asset A at time t:

st =
DA,t

DA,t +DB,t

.

In the following, the term ’size’ is used as a synonym for the dividend share of a tree.

E.g., asset A is called ’large’ if st is near 1. The dynamics of st follow from Ito’s Lemma:

dst = st(1− st)

[ [
µA − µB − (st − 0.5)

(
σ2
A + σ2

B − 2ρσAσB
)]
dt+ σAdW

A
t − σBdWB

t

+
∑
j=1,2,3

LA
1 + LAst

dNA,j
t −

∑
j=1,2,3

LB
1 + LB(1− st)

dNB,j
t

]
.

Downward jumps in dividend A reduce the dividend share of asset A, whereas downward

jumps in B increase it. In the case of identical trees, the (absolute) sensitivity of st to

shocks in one of the dividends is largest if the trees have equal size. It converges to zero

if one of the trees dominates the economy.
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The local variance of consumption equals

Vart

[
dDmt

Dm,t−

]
= s2t

(
σ2
A + L2

A

∑
j=1,2,3

λA,jt

)
dt+ (1− st)2

(
σ2
B + L2

B

∑
j=1,2,3

λB,jt

)
dt

+ 2st(1− st)ρσAσBdt.

It depends on the dividend share st and on the state variable pt (via the jump intensities)

and is thus stochastic. In the case of identical trees, it is the smallest if both trees have

the same size.

2.4 Parametrization

For our numerical examples, we set the subjective time discount rate of the representative

investor equal to δ = 0.03 and his relative risk aversion equal to γ = 4. Both choices are

in line with the literature. The intertemporal elasticity of substitution is thus given by

γ−1 = 0.25, which is well below one. Consequently, the investor is very eager to smooth

consumption over time, and the income effect dominates the intertemporal substitution

effect, so that the wealth-consumption ratio is greater in bad states than in good states.

Our key contributions are, however, not affected by this assumption.

Table 1 provides the parameters for the dividend dynamics in the benchmark case. In our

setting, the two trees may differ along two dimensions: size and parametrization. In the

following, we assume that the trees have identical parameters and call this situation the

case with ’identical trees’ (even if the trees have different sizes). The case with different

parameters for the two trees will be analyzed in Section 4, where we study the impact of

contagion on the differential pricing of the stocks in more detail.

For the dividend dynamics, we start from the diffusion case in Martin (2009). He assumes

a volatility of 10% and a dividend growth rate of 2%. Our model includes jumps, so that

we choose a lower diffusion volatility of 8% and a greater drift conditional on no jumps

of 3.5%. Note that we do not model consumption and dividends separately, but assume

that aggregate dividends are equal to consumption.

Jumps are assumed to happen quite frequently and are rather moderate, different from the

literature on disaster risk (see, e.g., Barro (2006, 2009)). Upon a jump, the corresponding

dividend drops by 2%. In the calm state, the intensity of a jump is 0.4 for each of the

two stocks. Every other of these jumps induces contagion, i.e. triggers a change in the

economic state. In the contagion state, jump intensities are five times as high as in the
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calm state. Finally, the intensity for a jump from the contagion to the calm state is 2,

so that the economy spends on average 6 months in the contagion state. The stationary

probabilities of the calm and the contagion state are 5/6 and 1/6, respectively.

Our parametrization implies the following moments of dividend and consumption growth.

In the calm state, the expected dividend growth rate is 3%, which drops to 0% in the

contagion state. The volatility increases from 8.1% in the calm state to 8.5% in the

contagion state. The expected consumption growth equals the expected dividend growth,

while the volatility of consumption depends on the dividend share. It is the largest if one

of the two trees dominates and drops to 6% if both trees have equal size.

We set µcalmi = µconti and thus assume that the growth rate of the trees conditional on no

jumps is constant and does not depend on the state. In a production economy, one could

think of the growth rate as the overall (constant) expected profitability of the production

technology. Jumps are adverse events that permanently reduce the capital stock and thus

also future dividends. Examples include natural disasters, the failure of a newly developed

medicine, problems in obtaining a loan, the bankruptcy of a major customer, or the loss

in a major lawsuit. In the contagion state, the intensity for such disasters is significantly

greater.

Alternatively, one can choose the drift in the calm and contagion state such that the

expected growth rates of dividends are equal in both states. In this case, the higher

intensity of disasters in the contagion state is – at least in terms of expected growth –

offset by a higher productivity of the trees conditional on no disasters. The main effect

of the contagion state is then the higher variance of dividends due to the larger jump

intensities.

Our results definitely depend on which setup we choose. The first one where a larger

probability of adverse events is not offset by a higher productivity might seems more

appropriate to capture contagion effects. However, Section 5 provides a robustness check

where we consider the case of equal growth rates in both states.

3 Equilibrium

In equilibrium, aggregate consumption C equals aggregate dividends, Ct = DA,t + DB,t.

The pricing kernel ξ is thus given by

ξt = e−δt
(
DA,t +DB,t

DA,0 +DB,0

)−γ
. (1)
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From the pricing kernel, we can derive the risk-free rate, the market prices of risk and the

price-dividend ratios of the assets.

3.1 Risk-free Rate

The risk-free rate follows from the (negative) expected growth rate of the pricing kernel.

Proposition 1 The risk-free rate is given by

rf,t = δ + γst

(
µA + 0.5σ2

A +
∑
j=1,2,3

LAλ
A,j

)
+ γ(1− st)

(
µB + 0.5σ2

B +
∑
j=1,2,3

LBλ
B,j

)
− 0.5γ(1 + γ)

(
s2tσ

2
A + (1− st)2σ2

B + 2st(1− st)ρσAσB
)

−
∑
j=1,2,3

[
(1 + LAst)

−γ − (1− γLAst)
]
λA,j

−
∑
j=1,2,3

[
(1 + LB(1− st))−γ − (1− γLB(1− st))

]
λB,j

A proof can be found in Appendix A.

The risk-free rate has the standard form which is well known for a CRRA economy.

It increases in the subjective time preference rate δ and in the expected consumption

growth where the latter enters with a factor γ (which is the inverse of the intertemporal

elasticity of substitution here). The remaining terms are negative and capture the impact

of precautionary savings due to diffusive volatility (second line) and jump risk (third and

fourth line).

The lower panel of Figure 1 depicts the risk-free rate as well as its components in the

calm state (left graph) and in the contagion state (right graph). With identical trees, the

risk-free rate is the largest if both trees have equal size since the variance of consumption

and thus the precautionary savings term is smallest.

The risk-free rate is much lower in the contagion state than in the calm state for two

reasons. First, the expected dividend growth rate is smaller in the contagion state than in

the calm state. Second, the variance of consumption is larger in the contagion state than

in the calm state, and the additional precautionary savings demand lowers the risk-free

rate. In our benchmark case, the first effect is the larger one.
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3.2 Market Prices of Risk

The market prices of risk can also be derived from the dynamics of the pricing kernel.

Proposition 2 The market price of risk for WA
t is γstσA, whereas the market price of

risk for WB
t is γ(1 − st)σB. The risk premium earned on an exposure η to jumps which

induce a loss in one of the dividends (j = 1, 2, 3) is η [1− (1 + LAst)
−γ]λA,j for jumps in

dividend A and η [1− (1 + LB(1− st))−γ]λB,j for jumps in dividend B. Jumps from the

contagion state back to the calm state are not priced.

The proof is given in Appendix A.

The market prices of risk have the standard form for CRRA preferences. They depend

on the relative risk aversion γ and on the exposure of aggregate consumption to the

risk factors. Therefore, the market prices of risk increase in the dividend share of the

corresponding tree.

The risk premia for diffusion risk are identical in the calm and in the contagion state

since the exposure to diffusion risk in the dividends does not depend on the state. For

jumps that induce a loss in one of the dividends, the risk-neutral jump intensities are

(1 + LAst)
−γλA,j and (1 + LB(1 − st))−γλB,j, j = 1, 2, 3, respectively. They are greater

than the jump intensities under the physical measure. Consequently, the investor earns a

positive risk premium on an asset that loses value upon such a jump.

Finally, notice that the premium earned on a given jump risk exposure is proportional to

the intensity of the jump, i.e. to the average number of jumps per year. The investor thus

earns a larger jump risk premium in the contagion state than in the calm state. However,

the risk premium per unit of jump risk does not depend on the state of the economy.

Consequently, there is no additional risk premium for being in the (worse) contagion

state. With time-additive preferences and CRRA, state variables which only affect future

consumption dynamics but not current consumption are not priced. For the same reason,

jumps from the contagion state to the calm state do not carry a risk premium.

3.3 Price-Dividend Ratios

Given the pricing kernel (1), we can price all future payment streams. Here, we focus

on pricing the market, i.e. the claim to aggregate consumption, and the two trees. For

notational convenience, we denote the dividend streams of both trees by Dα1
A D

α2
B , where
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(α1, α2) = (1, 0) gives tree A and (α1, α2) = (0, 1) gives tree B. The price of the market

is simply the sum of the prices of asset A and asset B.

Proposition 3 The price-dividend ratio of an asset with dividend stream Dα1
A D

α2
B is

Pt
Dα1
A,tD

α2
B,t

=

∫ ∞
−∞

I(st, v)J(v, pt, α1, α2)dv

where the functions I and J are given by

I(s, v) =
[
s(1− s)

]− γ
2

(
1− s
s

)iv
= (DA +DB)γ D

− γ
2
−iv

A D
− γ

2
+iv

B

J(v, p, α1, α2) =
2F (v)

1 +M2(θ, p)

(
1

M1(θ) + Z(θ)− 2δ
+

M2(θ, p)

M1(θ)− Z(θ)− 2δ

)
and where θ(v, α1, α2) = (α1 − γ

2
− iv, α2 − γ

2
+ iv, 0). The functions F , M1, M2, and Z

can be found in Appendix B.

The proof is given in Appendix B.

The price-dividend ratio of the market portfolio with dividend DA + DB is a weighted

average of the individual price-dividend ratios:

Pm,t
Dm,t

=
PA,t + PB,t
DA,t +DB,t

= st
PA,t
DA,t

+ (1− st)
PB,t
DB,t

.

The upper panel of Figure 1 depicts the price-dividend ratios in the calm and conta-

gion state. The dependence on the dividend share is similar to the results of Cochrane,

Longstaff, and Santa-Clara (2008). Small assets have very high price-dividend ratios since

the agent would like to hold a diversified portfolio of shares of both trees. This leads to a

high demand for shares of the small tree and thus to a high share price. The price-dividend

ratio of the market is constant for a log-investor and U-shaped for γ > 1.

Comparing the calm and contagion state shows that price-dividend ratios are the largest

in the contagion state. In our example, the relative difference is about 4%. At first glance,

a higher asset price in the contagion state seems to be counterintuitive. It can however

be explained by the value of the intertemporal elasticity of substitution that is below

one. The investor reacts to bad investment opportunities by consuming a smaller fraction

of his wealth. This in turn implies that the wealth-consumption ratio (i.e. in our case

the price-dividend ratio of the market) is largest in the worse contagion state. The same

argument applies to assets A and B.4

4For a relative risk aversion below one, we see the opposite effect. The results of a robustness check

with γ = 2/3 are given in Section 5.2.
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3.4 Risk Exposures

The asset price Pi,t depends on the current dividends of both trees and on the state

variable pt. For its dynamic properties (such as the equity risk premium, local volatility,

or correlations with other assets), the exposures with respect to the risk factors are crucial.

The dynamics of Pi (i = A,B,m) can be written as

dPi,t
Pi,t−

=
E[dPi,t]

Pi,t−
+ σi,AdW

A
t + σi,BdW

B
t

+
∑
j=1,2,3

Li,A,jdN
A,j
t +

∑
j=1,2,3

Li,B,jdN
B,j
t + Li,4dN

4
t

where σi,j is the sensitivity with respect to the Wiener processes j ∈ {A,B}. The variable

Li,k,j denotes the sensitivity with respect to jumps of type j in dividend k (k = A,B,

j = 1, 2, 3), and Li,4 denotes the sensitivity with respect to jumps from the contagion

state to the calm state.

Proposition 4 For an asset i with dividend stream Dα1
A D

α2
B , the sensitivities with respect

to the Wiener processes are

σi,A(s, p) =

∫∞
−∞ I(s, v)(γs+ θ1(v, α1, α2))J(v, p, α1, α2)dv∫∞

−∞ I(s, v)J(v, p, α1, α2)dv
σA

σi,B(s, p) =

∫∞
−∞ I(s, v)(γ(1− s) + θ2(v, α1, α2))J(v, p, α1, α2)dv∫∞

−∞ I(s, v)J(v, p, α1, α2)dv
σB.

The sensitivities with respect to the Poisson processes Nk,j (k = A,B, j = 1, 2, 3) are

Li,k,j = (1 + LA)α1α̃1(1 + LB)α2α̃2

∫∞
−∞ I(st, v)J(v, pt, α1, α2)dv∫∞
−∞ I(st−, v)J(v, pt−, α1, α2)dv

− 1

where α̃1 and α̃2 are defined such that Dα̃1
A D

α̃2
B is the dividend process of asset k (i.e. the

asset which exhibits the respective dividend jump). The sensitivities with respect to the

Poisson process N4 are

Li,4(s, p) =

∫∞
−∞ I (s, v) J(v, 1, α1, α2)dv∫∞
−∞ I(s, v)J(v, 0, α1, α2)dv

− 1.

Detailed formulas for each jump risk factor can be found in Appendix C.

The proof is given in Appendix C.
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The sensitivities of the market are weighted averages of the exposures of the single assets:

dPm,t
Pm,t−

= st−
PA,t−/DA,t−

Pm,t−/Dm,t−

dPA,t
PA,t−

+ (1− st−)
PB,t−/DB,t−

Pm,t−/Dm,t−

dPB,t
PB,t−

.

The exposure of an asset to a risk factor depends on the respective exposure of its dividend

and of its price-dividend ratio. For a constant price-dividend ratio, the price sensitivities

are identical to those of the dividend (cash-flow effect). A stochastic price-dividend ratio

drives a wedge between price and dividend sensitivities. From an economic point of view,

these differences can be attributed to the dependence of the stochastic discount factor on

the joint dynamics of both dividends and thus on the state variables st and pt (sdf effect).

The exposures for our benchmark parametrization are shown in Figure 2. The upper

panel gives the diffusion exposures. The cash-flow channel generates an exposure equal

to the diffusion volatility for the own dividend and zero for shocks in the other dividend

(depicted by the black dotted lines in the figures). The sdf effect introduces some addi-

tional exposure. For a small or medium-sized tree, the price-dividend ratio is decreasing

in its dividend share. A positive shock to the own dividend increases its dividend share

and thus decreases its price-dividend ratio, which in turn dampens the exposure of the

asset price to this shock. Vice versa, the same effect leads to a positive cross-exposure

to innovations in the dividend of the other tree. Similarly, a large asset has an excess

exposure to innovations in its own dividend, and a negative cross-exposure to innovations

in the other tree. The reaction to ’normal’ dividend jumps can be explained in exactly

the same way. Finally, the reaction to jumps that change the state is given by the sum

of the dividend effect just described and a state variable effect shown in the lower left

panel of Figure 2. Since the price-dividend ratios are the largest in the contagion state, a

jump into the contagion state, ceteris paribus, drives all prices up (by around 4% in our

benchmark case). This increase more than offsets the dividend effect so that both assets

have a positive total exposure to contagion-triggering jumps (shown in the third row in

Figure 2). In turn, the prices decrease by around 4% if the economy reverts to the calm

state. There is no dividend effect upon this event so that the respective exposures of both

assets are approximately -4%.
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3.5 Equity Premia and Expected Returns

The expected return on asset i consists of the expected price change and the dividend

yield:

Et[dRi,t] =
E[dPi,t]

Pi,t−
+
Di,t

Pi,t−
dt.

The expected excess return follows directly from the risk exposures analyzed in Section

3.4 and the market prices of risk given in Section 3.2.

Proposition 5 The expected excess return on an asset with dividend stream Dα1
A D

α2
B is

1

dt
Et[dRi,t]− rf,t = σi,AγstσA + σi,Bγ(1− st)σB

+
∑
j=1,2,3

Li,A,j
[
1− (1 + LAst)

−γ]λA,j
+
∑
j=1,2,3

Li,B,j
[
1− (1 + LB(1− st))−γ

]
λB,j.

The expected (excess) return on the market portfolio is a weighted average of the indi-

vidual expected (excess) returns again:

Et[dRm,t] = st
PA,t−/DA,t−

Pm,t−/Dm,t−
Et[dRA,t] + (1− st)

PB,t−/DB,t−

Pm,t−/Dm,t−
Et[dRB,t].

The first two terms in Proposition 5 capture the risk premium for dividend diffusion risk.

Since an asset is mainly exposed to shocks in its own dividend, this premium increases in

the market price of risk for these shocks and thus in the dividend share of the asset. The

remaining terms capture the jump risk premia. Note that jumps back from the contagion

state to the calm state are not priced and thus do not have an impact here. For the other

jumps, we have shown in Section 3.2 that the investor earns a positive risk premium on a

negative exposure to these jumps. He thus earns a positive premium on jumps that do not

change the state (since the exposures are negative), while he has to pay some premium on

jumps from the calm to contagion state (since the corresponding exposures are positive).

For our benchmark case, the expected excess returns are given in the middle panel of

Figure 1. In line with intuition, the expected excess return on an asset is monotonically

increasing in its dividend share. The contribution of the asset to aggregate consumption

risk is negligible if its dividend share tends to zero, and so the market prices of its risk

factors tend to zero. Since an asset is mainly exposed to its own dividend risk factors, the

total risk premium of small assets tends to zero as well.
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Expected excess returns increase upon entering the contagion state due to an increase in

the jump intensities and thus in the amount of jump risk. Decomposing the risk premium

into the premium for diffusion and jump risk, however, shows that the bulk of the expected

excess return is due to diffusion risk. Since only a small part of the expected excess return

stems from jump risk exposure, the risk premium increases only moderately in case of

contagion.

3.6 Local Volatilities

The local variance of the asset price Pi (i = A,B,m) follows from the exposures given in

Section 3.4:

1

dt
Var

[
dPi,t
Pi,t−

]
= σ2

i,A + σ2
i,B + 2ρσi,Aσi,B +

∑
j=1,2,3

L2
i,A,jλ

A,j +
∑
j=1,2,3

L2
i,B,jλ

B,j.

The upper panel in Figure 3 depicts the local volatilities in the calm (left graph) and in

the contagion state (right graph). The volatilities are significantly greater in the contagion

state than in the calm state because of the larger jump intensities in combination with

the larger jump exposures.

For the individual assets, the degree of excess volatility depends on the dividend share and

on the state. In the calm state, the volatility of a large asset exceeds the volatility of the

corresponding dividend, while the opposite holds true for a small asset. In the contagion

state, the volatilities are always larger than the dividend volatilities, irrespective of the

size of the tree in our example.

The excess volatility of a large asset can be attributed to its additional exposure to

shocks in its own dividend (see Section 3.4). For a small asset, the dampened exposure

to shocks in its own dividend reduces its volatility as compared to the volatility of the

dividends. Finally, jumps that change the state can also add to the local volatility. Both

assets have positive excess exposures to jumps from the calm state to the contagion state.

The resulting additional local volatility, however, is not large enough to result in excess

volatility for all trees in the calm state. In the contagion state, the intensity for jumps

back into the calm state is greater, which indeed induces excess volatility for all assets in

our example.

The volatility of the market, i.e. the claim to aggregate consumption, is smallest if both

trees have the same size since the volatility of aggregate consumption is lowest then.

Furthermore, the volatility of the claim to aggregate consumption always exceeds the
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volatility of consumption since the properties of the market are similar to the properties

of the large asset that exhibits excess volatility in both states.

3.7 Local Correlations

The local correlation between the prices of asset A and B is given by

CorrA,B,t =
Covt

(
dPA,t
PA,t−

,
dPB,t
PB,t−

)
√
Vart

[
dPA,t
PA,t−

]
Vart

[
dPB,t
PB,t−

] ,
where the local variances have been derived in the previous subsection. The local covari-

ance is obtained from the exposures:

Covt

(
dPA,t
PA,t−

,
dPB,t
PB,t−

)
= σA,AσB,Adt+ σA,BσB,Bdt+ ρσA,AσB,Bdt+ ρσA,BσB,Adt

+
∑
j=1,2,3

LA,A,jLB,A,jλ
A,jdt+

∑
j=1,2,3

LA,B,jLB,B,jλ
B,jdt

+ LA,4LB,4λ
4dt.

The correlations between the market portfolio and an individual asset are determined

analogously.

The results in the benchmark case are given in the middle row of Figure 3. The correlation

between the market portfolio and an individual asset increases in the dividend share of

that asset and becomes one if the asset dominates the economy. If the dividend share

tends to zero, the correlation converges to the correlation between the two single assets.

The correlation between the individual assets is positive, even though the dividends are

uncorrelated. This effect has already been documented by Cochrane, Longstaff, and Santa-

Clara (2008). It is driven by the dependence of the stochastic discount factor on both

dividends, which in turn induces an exposure of asset prices to risk factors that do not

influence their own dividends. In our model, however, correlations are much larger in the

limiting cases than in the setup of Cochrane, Longstaff, and Santa-Clara (2008). These

larger correlations are caused by jumps triggering a regime switch, i.e. by the dependence

of the prices on the state variable pt. The simultaneous increase in the prices of both

assets as soon as the economy enters the contagion state leads to a positive correlation

of the asset prices in the calm state even if the dividend share of one asset tends to zero.

Similarly, the possibility of a regime change back to the calm state gives rise to a positive

local correlation between the asset prices in the contagion state.
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The larger jump exposures and larger jump intensities in the contagion state imply that

the correlation increases if contagion hits the economy, which is often used as a definition

for a contagion state.5 However, note that there is a subtle difference between realized

(co-)variances and local (co-)variances. While the former increase only if a jump indeed

happens (and are thus naturally larger if the economy is in the contagion state), the latter

depend on the mere probability of a jump that is larger in the contagion state than in the

calm state.

Finally, the lower panel of Figure 3 depicts the betas of the assets. If one of the assets

dominates the economy, its beta converges to one since the beta of the market is one as

well. If the dividend share of an asset goes to zero, then its beta decreases because it is

carrying less systematic risk. Since the market beta is a weighted average of the betas of

large and small trees, the beta of a large tree must be above one.

In line with the economic intuition behind contagion risk, the beta of a small stock

does not go to zero in the limit which parallels the limiting behavior of the correlation.

Economically, the small asset is still exposed to the risk of a regime change. Since the

market portfolio has a significant exposure to this risk as well, the risk of a regime change

is systematic, and the beta of the small asset cannot drop below a certain positive number.

This lower boundary is larger in the contagion state than in the calm state which is well

in line with the empirical evidence that, during economic crises, it becomes much harder

to find a ’zero-beta’ asset.

4 Cross-sectional Pricing Effects of Contagion

We now discuss the impact which the threat of contagion has on the cross-section of

asset prices by relaxing the assumption of identical trees. In Section 4.1, we analyze the

case where contagion mainly affects one asset while the jump intensity of the other asset

increases only slightly. In Section 4.2, we compare an asset that never induces contagion

with an asset that induces contagion whenever it is hit by a downward jump.

5For a detailed discussion of the different notions of contagion, interdependence and comovement, we

refer the reader to the extensive analysis of Claessens and Forbes (2001).
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4.1 Robust versus Excitable Assets

We study an economy where, as in the benchmark case, all parameters are identical in

the calm state. However, the two assets now differ in the contagion state. The column

labeled ’Extension 1’ of Table 1 summarizes the parameters. The jump intensity of asset

A is doubled (0.8 instead of 0.4 in the calm state), whereas the jump intensity of asset B

is even multiplied by 8 and is now 3.2. The overall intensity for a jump in the contagion

state is thus still 4. Intuitively, we can think of asset A as a ’robust’ asset, while asset B

suffers much more from contagion and is called ’excitable’ in the following.

The results for this calibration are shown in Figures 4, 5, 6, and 7. There are pronounced

differences to the benchmark case in both states. Firstly, the price-dividend ratios shown in

the upper row of Figure 4 are asymmetric in both states. The price of a small robust asset

A is much larger than the price of an equally small excitable asset B. Stated differently,

the excess demand for the small safe haven A is much larger than the excess demand for

the very risky small asset B.

To understand the pricing implications of differences in the size as well as in the parameters

of the trees, we separate the cash flow effects from the sdf effects. In a standard one-

tree setup, it is well known that the cash flow effect and the sdf effect go into opposite

directions: A higher expected growth rate, e.g., increases future payoffs (leading to a larger

price) and decreases the sdf (leading to a smaller price). For γ > 1, the sdf effect usually

dominates. In a two-tree setup with one dominating tree, the stochastic discount factor

is mainly driven by this large asset (see Section 3.2). Therefore, the large asset is priced

according to the intuition from the one-asset case, and the sdf effect dominates. This

implies that the price of a large robust asset is lower than in the benchmark case since

there is less risk in the economy. On the contrary, the price of a large excitable asset is

greater because the economy is riskier.

The prices of small assets are driven by the sdf effect, which depends on the characteristics

of the dominating asset, and the cash-flow effect, which depends on the characteristics of

the small asset. The latter is no longer offset by the sdf effect, but can even prevail. As

compared to the benchmark case, the price of a small excitable asset decreases due to the

sdf effect (where the sdf is set by the large robust asset), and it also decreases due to the

cash-flow effect (since the small asset is riskier than in the benchmark case). For a small

robust asset, the intuition works just the other way round. Therefore, the price of a small

excitable asset is smaller than in the benchmark case, while the price of a small robust

asset is larger.
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The exposures of the asset prices to the risk factors are shown in Figure 5. The exposures

to diffusion risk and to normal dividend jumps (i.e. jumps within a state) are rather

similar to the benchmark case. The exposure to contagious jumps (i.e. jumps that change

the state), however, is significantly different, which is mainly driven by the effect of the

regime change on the price-dividend ratio (see lower right graphs of Figure 5). This effect

and the impact of the dividend jump itself (shown in the second panel of Figure 5) add

up to the total exposure to contagion-inducing jumps (shown in the lower left graphs of

Figure 5).

The effect of the regime change can again be explained by separating the cash flow effect

and the sdf effect. If the excitable asset B dominates the economy, consumption prospects

become worse in the contagion state and the (positive) sdf effect of a change from the

calm to the contagion state is larger than in the benchmark case. The opposite holds true

if the robust asset A dominates. Therefore, the impact of a regime change on the prices

of both assets is now asymmetric and depends on the dividend share st. It is much larger

if the excitable asset B dominates than if the robust asset A dominates.

The cash-flow effect is driven by the fact that the expected dividend growth rate of the

excitable asset drops more than that of the robust asset A. The effect is thus greater for

an excitable asset than for a robust asset, and for small assets, it is not offset by the

sdf effect. Consequently, the price-dividend ratio of a small excitable asset increases by

less than the price-dividend ratio of the market, while the price-dividend ratio of a small

robust asset increases by more than that of the market. In our numerical example, the

difference is 2%. Figure 6 depicts the excess exposures to the regime change. Furthermore,

the negative cash flow effect for the excitable small asset B can even more than offset the

positive sdf effect upon entering the contagion state. Indeed, the price of asset B drops if

the economy enters the contagion state.

Assume that contagion hits an economy with a large excitable asset and a small robust

asset that is a safe haven barely affected by contagion. The safe haven becomes much more

valuable both in absolute terms and relatively to the market. There is only a small risk

that its dividend level suddenly drops in the future. Drawing the analogy to a production

economy, this can be interpreted as a stable production. This yields the classical flight-

to-quality pattern. If the economy eventually reverts to the calm state, this effect will, of

course, trigger a price decrease of the safe haven relative to the market.

On the other hand, consider an economy with a small excitable asset (e.g. a small sub-

supplier) and a large robust asset (e.g. a global enterprise that is ’too big to fail’). Dete-
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riorating economic conditions are bad news for all assets. Policy-makers, however, might

judge the impact of contagion on the large asset as very dangerous since this asset is re-

sponsible for a large part of the consumption in the economy. A common argument then

goes that, in order to stabilize the economy, actions have to be taken to avoid additional

losses in the large asset. On the other hand, small firms are usually considered to be of

second-order importance. Therefore, their growth prospects suffer as soon as a crisis hits

and their earnings are subject to several downward shocks, e.g. due to a freezing capi-

tal market or a slump in sales. The results of our model are in line with this anecdotal

evidence: If the economy slips into the contagion state, the cash-flow effect leads to a

significant decrease in the price of the small excitable asset both in absolute terms and

relative to the market portfolio.

The risk-free rate is again smaller in the contagion state than in the calm state. The drop

of interest rates is now the largest if the excitable asset B dominates the economy, while

it is rather small if the robust asset A dominates. Following our line of argument above,

this can be explained by the fact that the differences between the calm and the contagion

state are much larger in the first case than in the second one.

The changes of the expected excess returns are much smaller than in the benchmark case.

The equity premia in the contagion state decrease slightly as compared to the benchmark

case if the robust asset A dominates the economy and increase if the excitable asset B

dominates. To get the intuition, remember that the risk premia are mainly driven by

diffusion risk. While the market prices of risk do not change, the exposures are more

pronounced if the excitable asset B dominates, which in turn leads to larger equity risk

premia. Furthermore, the contribution of jump risk to the equity risk premium, which is

still quite small due to the moderate jump size, is greater if the excitable asset B dominates

than if the robust asset A dominates.

A similar pattern can be observed for volatility. Although the overall picture is the same

as in the benchmark calibration, the dependence of volatility on the dividend share and

excess volatility are again more pronounced and the consequences of contagion are greater

if the excitable asset B dominates than if the robust asset A dominates. Put differently,

an increase in contagion risk – either because the intensity of jumps is larger in the

contagion state or because a larger part of the economy is hit by contagion – leads to

increased volatilities before contagion actually happens and, of course, to much higher

volatilities once the economy is hit by contagion.

The correlations are again greater than in the benchmark case if the excitable asset B
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dominates and smaller if the safe haven A dominates. The reason is that correlations

between very small and very large assets are mainly driven by their joint exposures to

regime changes. Since these exposures are larger in absolute terms when asset B dominates,

the correlation is larger in this case as well.

Finally, these results feed into the beta values of the assets: The small robust asset A

carries a lot of systematic risk although it is not directly hit by contagion, which again

follows from the sdf effect described above: If an excitable asset B dominates the econ-

omy (and the sdf), then its negative growth prospects in the contagion state ’spill over’

to asset A via the stochastic discount factor. The resulting positive beta of asset A is

documented in the empirical literature dealing with contagion and systemic risk.6 This

fact is independent of whether asset A is small and itself relatively robust to contagion.

4.2 Propensity to Trigger Contagion

We now study the case where only one asset is able to trigger contagion. Column ’Ex-

tension 2’ of Table 1 summarizes the corresponding parameters. In the calm state, the

overall intensities for jumps in asset A or B are still 0.4, and on average, every second

jump induces contagion. While both assets are equally likely to induce contagion in the

benchmark case, we now assume that only jumps of asset A can trigger contagion.

Figure 8 depicts our results. They are similar to those of the benchmark calibration:

differences between the assets with respect to their robustness against contagion have more

significant pricing implications than differences in their propensity to induce contagion.

Furthermore, differences to the benchmark calibration – if any – are only observed in

the calm state, while the results for the contagion state hardly differ. Since we have not

changed any parameters in the contagion state, but only the propensities of the two trees

to induce contagion (and not even their probabilities to suffer a downward jump), this

result is perfectly in line with intuition.

A slight difference to the benchmark calibration exists for the equity risk premia in the

calm state. They are now greater if asset A is small and smaller if asset A is large. The

reason is that the equity risk premium mainly depends on the exposures to (systematic)

risk factors in the large asset. If A dominates the economy, then only contagious jumps

are priced, and the corresponding premium is negative (see Section 3.5). On the other

6See, e.g., Claessens and Forbes (2001) for a general overview.
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hand, if A is very small and B dominates, then there is only a jump risk premium for

normal jumps. Since this premium is positive, both equity risk premia increase.

Furthermore, the difference between the assets in their propensity to induce contagion

drives a wedge between the volatilities of asset A and asset B in the calm state. Volatilities

of the contagion-inducing asset A are smaller, while volatilities of asset B are greater than

in the benchmark calibration. To get the intuition, consider the exposures to normal

jumps. Each asset has – in absolute terms – a large exposure to this type of jumps in

its own dividend and a small cross-exposure to this type of jumps in the other tree. For

contagious jumps, the opposite holds true. Since asset B exhibits only normal jumps and

asset A exhibits only contagious jumps, the average exposure thus decreases in absolute

terms for asset A and increases for asset B, and so does the volatility. Finally, the volatility

of the market portfolio follows from the volatilities of the individual assets. It is thus

smaller if the contagion-inducing asset A dominates and larger if asset B dominates the

economy.

5 Robustness Checks

5.1 Constant Dividend Growth

In the benchmark case, the calm and contagion state differ both in the expected dividend

growth rate and in jump intensities. As a robustness check, we analyze the case where

the expected growth rates are identical in both states. The parameters are given in the

column ’Equal Growth Rates’ in Table 1. While the drift (conditional on no jumps) is

still 0.03 in the calm state, it is set to 0.067 in the contagion state as to offset the greater

expected losses.

The results for this calibration are shown in Figures 9 and 10. Most results are qualitatively

very similar to the benchmark calibration. Overall, the risk in the economy is decreasing

since the average growth rate no longer depends on the state of the economy. Therefore,

volatilities and correlations are on average lower.

Compared to the benchmark case, the difference between the calm and contagion state

is reduced. While the jump intensity is by definition greater in the contagion state the

expected growth rate does not drop any more. Thus, the price-dividend ratios hardly

change between the two states and the exposures to contagious jumps are very similar to
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the exposures to normal jumps. Furthermore, the price reaction to a jump back to the

calm state is negligible.

The change in the exposures to regime changes has an impact on the second moments.

First, volatilities are smaller than in the benchmark case, and the difference between

the volatilities in the contagion and calm state is smaller as well. Second, correlations

between very small and very large assets, which are mainly driven by the exposure to

regime changes, are significantly lower and now close to zero.

5.2 Relative Risk Aversion

Our results are robust against a change in the relative risk aversion γ. As long as γ > 1,

there are no qualitative deviations from the benchmark case. With a relative risk aversion

above one, the intertemporal elasticity of substitution is below one. As discussed earlier,

this implies that price-dividend ratios are larger in the contagion than in the calm state.

We have also solved our model for γ = 2/3. As expected, price-dividend ratios are lower

in the contagion than in the calm state, i.e. prices drop when the economy enters the

contagion state. All the other results (in particular, the exposures to the risk factors) are

qualitatively similar to the benchmark case.

Additionally, we have carried out robustness checks with respect to all other parame-

ters (diffusion volatilities, drift rates, jump intensities, and the loss size). Prices and risk

exposures are increasing in the overall economic risk and decreasing in the expected divi-

dend growth rate where the dividend growth effect prevails. This has also been shown in

the numerical examples above. The implications of contagion risk and the cross-sectional

pricing results are qualitatively stable.

6 Conclusion

We have solved for the equilibrium in a two tree model where dividends are subject to

contagion risk. Jumps do not only trigger instantaneous, persistent losses in dividends,

but can also increase the probability of subsequent jumps across the whole economy. In the

benchmark case with identical trees, the price-dividend ratios and asset pricing moments

depend on the dividend share, as has been shown in Cochrane, Longstaff, and Santa-Clara

(2008) and Martin (2009).
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In our model, however, there is also a dependence on the state of the economy. In the

benchmark case, both assets react in the same direction if the regime changes. These joint

exposures lead to excess volatilities of large assets in the calm state and further increase

the volatilities of all assets in the contagion state. Furthermore, correlations between very

small and very large assets as well as betas of very small assets do not converge to zero, but

can be significantly positive. The mere fact that contagion risk is present in the economy

gives rise to additional systematic risk in both assets.

The analysis of two non-identical trees allows us to assess the impact of contagion risk

on the differential pricing of assets in the cross-section. We find significant differences

between assets that are severely affected by contagion and assets that are more robust to

systemic risk. Economically, this can be explained by the fact that the stochastic discount

factor is mainly driven by the characteristics of the large asset. If a rather robust asset

dominates the market, then a small, contagion-sensitive asset exhibits a downward jump

when contagion occurs (in absolute terms as well as relative to the market). If, on the

other hand, an excitable asset dominates the economy, then the price-dividend ratio of a

small safe haven increases both in absolute terms and relatively to the market when the

economy reaches the contagion state. On the contrary, the propensity to induce contagion

has a very small effect on prices and price dynamics. The threat of contagion and its

consequences for the various assets are thus of first-order importance, whereas it hardly

matters which asset actually might trigger contagion.

One avenue for future research is to solve for the equilibrium with Epstein-Zin utility.

This would allow us to choose a relative risk aversion and an intertemporal elasticity

of substitution both greater than one. Furthermore, a preference for early resolution of

uncertainty would result in a risk premium for the state variable pt as well so that there

would indeed be a nonzero ’market price of contagion risk’. Another interesting extension

is option pricing. While it is obvious that downward jumps induce a volatility smile, the

implications of a regime change for its level and slope might be more involved.
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A Proof of Proposition 1 and 2

The risk-free rate and the market prices of risk follow from the dynamics of the pricing kernel

ξt which is given by ξt = e−δt
(DA,t+DB,t)

−γ

(DA,0+DB,0)−γ
. Ito’s Lemma yields

dξt
ξt−

=
[
− δ − γst(µA + 0.5σ2A)− γ(1− st)(µB + 0.5σ2B)

+ 0.5γ(1 + γ)
(
s2tσ

2
A + (1− st)2σ2B + 2st(1− st)ρσAσB

)]
dt

− γstσAdWA
t − γ(1− st)σBdWB

t

+
∑

j=1,2,3

[(
1 + LAst

)−γ
− 1

]
dNA,j

t +
∑

j=1,2,3

[(
1 + LB(1− st)

)−γ
− 1

]
dNB,j

t

where st denotes the dividend share of asset A at time t. The risk-free rate rf,t is given by

rf,tdt = −Et
[
dξt
ξt−

]
.

The market prices of risk follow from the sensitivities of the pricing kernel with respect to the

different risk factors. �

B Proof of Proposition 3

The full version of Proposition 3 reads as follows.

Proposition 6 The price-dividend ratio of an asset with dividend stream Dα1
A Dα2

B is

Pt
Dα1
A,tD

α2
B,t

=

∫ ∞
−∞

I(st, v)J(v, pt)dv

where the functions I and J are given by

I(s, v) =

(
1√

s(1− s)

)γ (
1− s
s

)iv
= (DA +DB)γ D

− γ
2
−iv

A D
− γ

2
+iv

B

J(v, p) =
2F (v)

1 +M2(θ, p)

(
1

M1(θ) + Z(θ)− 2δ
+

M2(θ, p)

M1(θ)− Z(θ)− 2δ

)
The function F is given by

F (v) =
1

2π

Γ(γ2 + iv)Γ(γ2 − iv)

Γ(γ)

26



and the argument θ is given by θ = (θ1, θ2, θ3) = (α1 − γ
2 − iv, α2 − γ

2 + iv, 0), v ∈ R. The

functions M1, M2, and Z are defined as follows:

M1(θ) = θ1

(
µcalmA + µcontA

)
+ θ2

(
µcalmB + µcontB

)
+ θ21σ

2
A + θ22σ

2
B + 2θ1θ2ρσAσB

+ λcalm,calmA

(
(1 + LA)θ1 − 1

)
+ λcalm,calmB

(
(1 + LB)θ2 − 1

)
+ λcont,contA

(
(1 + LA)θ1 − 1

)
+ λcont,contB

(
(1 + LB)θ2 − 1

)
− λcalm,contA − λcalm,contB − λcont,calm

M2(θ, p) =
2Z(θ)

2eθ3K3 +K1(θ) + Z(θ)
· p+

2Z(θ)

−2e−θ3K2(θ)−K1(θ) + Z(θ)
· (1− p) − 1

Z(θ) =
√
K1(θ)2 − 4K2(θ)K3

where the functions K1, K2 and K3 are given by

K1(θ) =
(
µcontA − µcalmA

)
θ1 +

(
µcontB − µcalmB

)
θ2

−λcalm,calmA

(
(1 + LA)θ1 − 1

)
− λcalm,calmB

(
(1 + LB)θ2 − 1

)
+λcont,contA

(
(1 + LA)θ1 − 1

)
+ λcont,contB

(
(1 + LB)θ2 − 1

)
−λcont,calm + λcalm,contA + λcalm,contB

K2(θ) = −λcalm,contA (1 + LA)θ1 − λcalm,contB (1 + LB)θ2

K3 = λcont,calm.

Proof: W.l.o.g., the current time is denoted by 0. The following expectation can be obtained

directly from Duffie, Pan, and Singleton (2000) (p. 1351 and p. 1371) since the model is affine:

E0

exp

(θ1, θ2, θ3) ·


yA,T

yB,T

pT



 = exp

αT,θ1,θ2,θ3(0) + βT,θ1,θ2,θ3(0)


yA,0

yB,0

p0


 .

Duffie, Pan, and Singleton (2000) show that αT,θ1,θ2,θ3 and βT,θ1,θ2,θ3 satisfy the following ordi-

nary differential equations with boundary conditions β(T ) = (θ1, θ2, θ3)
′ and α(T ) = 0. For the
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sake of simplicity, the subscripts (T, θ1, θ2, θ3) are omitted from now on.

β̇1(t) = 0

β̇2(t) = 0

β̇3(t) =
(
µcontA − µcalmA

)
β1(t) +

(
µcontB − µcalmB

)
β2(t)

−λcalm,calmA

(
eβ1(t) log(1+LA) − 1

)
− λcalm,calmB

(
eβ2(t) log(1+LB) − 1

)
−λcalm,contA

(
eβ1(t) log(1+LA) − β3(t) − 1

)
− λcalm,contB

(
eβ2(t) log(1+LB) − β3(t) − 1

)
+λcont,contA

(
eβ1(t) log(1+LA) − 1

)
+ λcont,contB

(
eβ2(t) log(1+LB) − 1

)
+ λcont,calm

(
eβ3(t) − 1

)
α̇(t) = −µcontA β1(t)− µcontB β2(t)−

1

2
β1(t)

2σ2A −
1

2
β2(t)

2σ2B − β1(t)β2(t)ρσAσB

−λcont,contA

(
eβ1(t) log(1+LA) − 1

)
− λcont,contB

(
eβ2(t) log(1+LB) − 1

)
− λcont,calm

(
eβ3(t) − 1

)
The boundary condition for β(T ) yields β1(t) = θ1 and β2(t) = θ2. Thus, the system of four

equations simplifies to a system of two equations:

β̇3(t) =
(
µcontA − µcalmA

)
θ1 +

(
µcontB − µcalmB

)
θ2 (2)

−λcalm,calmA

(
eθ1 log(1+LA) − 1

)
− λcalm,calmB

(
eθ2 log(1+LB) − 1

)
−λcalm,contA

(
eθ1 log(1+LA) − β3(t) − 1

)
− λcalm,contB

(
eθ2 log(1+LB) − β3(t) − 1

)
+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
+ λcont,calm

(
eβ3(t) − 1

)
α̇(t) = −µcontA θ1 − µcontB θ2 −

1

2
θ21σ

2
A −

1

2
θ22σ

2
B − θ1θ2ρσAσB (3)

−λcont,contA

(
eθ1 log(1+LA) − 1

)
− λcont,contB

(
eθ2 log(1+LB) − 1

)
− λcont,calm

(
eβ3(t) − 1

)
with boundary conditions β3(T ) = θ3 and α(T ) = 0. Lemma 7 gives the solution for β3(t).

Lemma 7 The function β3(t) is given by

β3(t) = θ3 + log
[(
−2e−θ3K2(θ)−K1(θ) + Z(θ)

)(
e−Z(θ)(t−T ) − 1

)
+ 2Z(θ)

]
− log

[(
2eθ3K3 +K1(θ) + Z(θ)

)(
e−Z(θ)(t−T ) − 1

)
+ 2Z(θ)

]
+ 2πin

where K1(θ) = (µcontA − µcalmA )θ1 + (µcontB − µcalmB )θ2

−λcalm,calmA

(
eθ1 log(1+LA) − 1

)
− λcalm,calmB

(
eθ2 log(1+LB) − 1

)
+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
−λcont,calm + λcalm,contA + λcalm,contB

K2(θ) = −λcalm,contA eθ1 log(1+LA) − λcalm,contB eθ2 log(1+LB)

K3 = λcont,calm

Z(θ) =
√
K1(θ)2 − 4K2(θ)K3.
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Proof: Let K1, K2 and K3 be defined as in Lemma 7. Then the ODE (2) reads

β̇3(t) = K1 +K2e
−β3(t) +K3e

β3(t)

Multiplying with eβ3(t) and defining g(t) = eβ3(t) gives the following equivalent Riccati boundary

problem for g(t):

ġ(t) = K2 +K1g(t) +K3g(t)2 (4)

with boundary condition g(T ) = eθ3 . A straightforward calculation shows that, for solving the

Riccati problem, solving the following linear boundary problem is sufficient:

ḧ(t)−K1ḣ(t) +K2K3h(t) = 0 (5)

ḣ(T ) = h1

h(T ) = h0

where the boundary values fulfil the relation

eθ3 = − h1
K3h0

. (6)

If there exists an open neighborhood D of T which does not contain any zeros of h, then

g(t) = − ḣ(t)
K3h(t)

is well-defined on D and solves the Riccati problem (4) on the domain D.

Abbreviating
√
K2

1 − 4K2K3 = Z, the zeroes of the characteristic polynomial of (5) are

K1

2
−
√
K2

1

4
−K2K3 =

K1

2
− Z

2
and

K1

2
+

√
K2

1

4
−K2K3 =

K1

2
+
Z

2
.

These are of order 1 and, therefore, the general solution of the second-order homogeneous bound-

ary problem (5) equals

h(t) = K4e

(
K1
2
−Z

2

)
(t−T )

+K5e

(
K1
2

+Z
2
(t−T )

)

where the constants K4 and K5 depend on the boundary values h1 and h0. Choosing h0 = 1

and h1 = −eθ3K3 (so that the constraint (6) is met) results in

1 = K4 +K5

−eθ3K3 = K4

(
K1

2
− Z

2

)
+K5

(
K1

2
+
Z

2

)
which can be solved for K4 and K5:

K4 =
eθ3K3 + K1

2 + Z
2

Z
=

2eθ3K3 +K1 + Z

2Z

K5 = 1−K4 =
Z − 2eθ3K3 −K1

2Z
.
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Note that the function h has no zeros in a neighborhood of T (since h(T ) = 1 and h is continuous)

so that the solution g of our original Riccati problem (4) equals

g(t) = − ḣ(t)

K3h(t)
= −

(
K1
2 −

Z
2

)
K4e

(
K1
2
−Z

2

)
(t−T )

+
(
K1
2 + Z

2

)
(1−K4)e

(
K1
2

+Z
2

)
(t−T )

K3K4e

(
K1
2
−Z

2

)
(t−T )

+K3(1−K4)e

(
K1
2

+Z
2

)
(t−T )

(7)

= −(K1 − Z)K4e
−Z(t−T ) + (K1 + Z) (1−K4)

2K3K4e−Z(t−T ) + 2K3(1−K4)

=

(
−2K2 − eθ3K1 + eθ3Z

) (
e−Z(t−T ) − 1

)
+ 2Zeθ3

(2eθ3K3 +K1 + Z)
(
e−Z(t−T ) − 1

)
+ 2Z

(8)

= eθ3
(
−2e−θ3K2 −K1 + Z

) (
e−Z(t−T ) − 1

)
+ 2Z

(2eθ3K3 +K1 + Z)
(
e−Z(t−T ) − 1

)
+ 2Z

.

Note that, for g(T ) = 0, equation (8) provides the classical solution for Riccati equations given,

e.g., in Liu and Pan (2003). In our case, however, g(T ) = eθ3 6= 0.

Taking logarithms on both sides, we get the final result for β3 (note that the logarithm we take

here need not be the principal value of the complex logarithm, but can be any branch of the

complex logarithm; the extra 2πin will cancel out in the integration later on anyway). This

completes the proof of Lemma 7. �

The solution for α (given in Lemma 8) follows from Lemma 7 through integration.

Lemma 8 The function α is given by

α(t) =

[
− µcontA θ1 − µcontB θ2 −

1

2
θ21σ

2
A −

1

2
θ22σ

2
B − θ1θ2ρσAσB

−λcont,contA

(
eθ1 log(1+LA) − 1

)
− λcont,contB

(
eθ2 log(1+LB) − 1

)
+ λcont,calm

]
(t− T )

+ log

((
2eθ3K3 +K1(θ) + Z(θ)

)(
e−Z(θ)(t−T ) − 1

)
+ 2Z(θ)

)

+
K1(θ) + Z(θ)

2
(t− T )− log(2Z(θ)) + 2πin

where K1(θ), K2(θ), K3 and Z(θ) have been defined in Lemma 7.

Proof: Plugging g(t) = eβ3(t) into the ODE (3) results in the following ODE for α (with

boundary condition α(T ) = 0)

α̇(t) = −µcontA θ1 − µcontB θ2 −
1

2
θ21σ

2
A −

1

2
θ22σ

2
B − θ1θ2ρσAσB

−λcont,contA

(
eθ1 log(1+LA) − 1

)
− λcont,contB

(
eθ2 log(1+LB) − 1

)
+ λcont,calm − λcont,calmg(t).

30



Integration then yields (since α(T ) = 0)

α(t) =

∫ t

T
α̇(u)du = (t− T )

[
− µcontA θ1 − µcontB θ2 −

1

2
θ21σ

2
A −

1

2
θ22σ

2
B − θ1θ2ρσAσB

−λcont,contA

(
eθ1 log(1+LA) − 1

)
− λcont,contB

(
eθ2 log(1+LB) − 1

)
+ λcont,calm

]

−λcont,calm
∫ t

T
g(u)du.

Plugging in the representation (7) for g gives

−K3

∫ t

T
g(u)du =

∫ t

T

ḣ(u)

h(u)
du = (log h(t)− log h(T )) = log

(
K4e

(
K1
2
−Z

2

)
(t−T )

+K5e

(
K1
2

+Z
2
(t−T )

))
=
K1 + Z

2
(t− T ) + log

((
2eθ3K3 +K1 + Z

)(
e−Z(t−T ) − 1

)
+ 2Z

)
− log(2Z) + 2πin

where n ∈ Z stands for some unknown integer (not necessarily the same as in Lemma 7). This

completes the proof of Lemma 8. �

Neither β nor α depend on yA, yB or p. Both functions only depend on t, T , θ1, θ2, θ3 and the

model parameters. Therefore,

E0

exp

(θ1, θ2, θ3) ·


yA,T − yA,0
yB,T − yB,0
pT − p0



 = eχ(θ1,θ2,θ3,T,p0)

where

χ(θ1, θ2, θ3, T, p0) = αT,θ1,θ2,θ3(0) +

βT,θ1,θ2,θ3(0)−


θ1

θ2

θ3


′ 


yA,0

yB,0

p0

 = α(0) +
(
β3(0)− θ3

)
p0.

The last equality holds because β1 = θ1 and β2 = θ2.

In some cases (especially if there is no latent state variable), χ(θ1, θ2, θ3, T, p0) can be rewritten

in the form c(θ1, θ2, θ3)T where c is called the cumulant-generating function. E.g., the approach

of Martin (2009) is based on this cumulant-generating function. Our problem is a bit more

involved since we have state variables. As the function χ is an affine function of p0, however,

the generalized solution of Branger, Schlag, and Wu (2011) applies here. According to Branger,

Schlag, and Wu (2011), the current price-dividend ratio of an asset with dividend payments

equal to Dα1
A Dα2

B is given by

Pα,0
Dα,0

=

(
2 cosh

yB,0 − yA,0
2

)γ ∫ ∞
−∞

eiv(yB,0−yA,0)F (v)

∫ ∞
0

e−δt+χ(α1− γ2−iv,α2− γ2+iv,0,t,p0)dtdv
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where F is defined as

F (v) =
1

2π

Γ(γ2 + iv)Γ(γ2 − iv)

Γ(γ)
.

Using that yB,0 − yA,0 = log 1−s0
s0

, this can be rewritten as

Pα,0
Dα,0

=

(
1√

s0(1− s0)

)γ ∫ ∞
−∞

(
1− s0
s0

)iv
F (v)

∫ ∞
0

e−δt+χ(α1− γ2−iv,α2− γ2+iv,0,t,p0)dtdv. (9)

In the case with diffusion risk only and without state variables, a closed-form solution is available

and proven by Martin (2009). Here, a closed-form solution seems impossible: in order to compute

the outer integral via the Residue Theorem, one would need information about the poles of the

integrand which lie in the upper complex halfplane. However, since the inner integral in (9) does

not depend on yA or yB at all, this integral can be given in closed form.

Lemma 9 It holds that∫ ∞
0

e−δt+χ(θ1,θ2,θ3,t,p)dt = − 1

(1 +M2(θ, p))(M1(θ) + Z(θ)− 2δ)
− M2(θ, p)

(1 +M2(θ, p))(M1(θ)− Z(θ)− 2δ)

where M1 and M2 are defined as

M1(θ) = (µcalmA + µcontA )θ1 + (µcalmB + µcontB )θ2 + θ21σ
2
A + θ22σ

2
B + 2θ1θ2ρσAσB

+λcalm,calmA

(
eθ1 log(1+LA) − 1

)
+ λcalm,calmB

(
eθ2 log(1+LB) − 1

)
+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
−λcalm,contA − λcalm,contB − λcont,calm

M2(θ, p) =
2Z(θ)

−2e−θ3K2(θ)−K1(θ) + Z(θ)
· p+

2Z(θ)

2eθ3K3 +K1(θ) + Z(θ)
· (1− p)− 1.

Proof: With Lemma 7 and 8, χ fulfils

χ(θ1, θ2, θ3, T, p) = α(0) +
(
β3(0)− θ3

)
p

=

[
µcontA θ1 + µcontB θ2 +

1

2
θ21σ

2
A +

1

2
θ22σ

2
B + θ1θ2ρσAσB

+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
− λcont,calm

]
T

−K1 + Z

2
T + log

((
2eθ3K3 +K1 + Z

) (
eZT − 1

)
+ 2Z

)
− log(2Z) + 2πin

+p

[
log
[(
−2e−θ3K2 −K1 + Z

) (
eZT − 1

)
+ 2Z

]
− log

[(
2eθ3K3 +K1 + Z

) (
eZT − 1

)
+ 2Z

] ]
.
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The indicator variable p takes only the two values 0 and 1 almost surely. For p = 1, the function

χ simplifies to

χ(θ1, θ2, θ3, T, 1)

=

[
µcontA θ1 + µcontB θ2 +

1

2
θ21σ

2
A +

1

2
θ22σ

2
B + θ1θ2ρσAσB

+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
− λcont,calm − K1 + Z

2

]
T

+ log

((
−2e−θ3K2 −K1 + Z

) (
eZT − 1

)
+ 2Z

)
− log(2Z) + 2πin.

On the other hand, for p = 0, the function χ simplifies to

χ(θ1, θ2, θ3, T, 0)

=

[
µcontA θ1 + µcontB θ2 +

1

2
θ21σ

2
A +

1

2
θ22σ

2
B + θ1θ2ρσAσB

+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
− λcont,calm − K1 + Z

2

]
T

+ log

((
2eθ3K3 +K1 + Z

) (
eZT − 1

)
+ 2Z

)
− log(2Z) + 2πin.

Therefore, χ can be rewritten as

χ(θ1, θ2, θ3, T, p) =

(
M1(θ)

2
− Z(θ)

2

)
T + log

(
eZ(θ)T +M2(θ, p)

)
+M3(θ, p) + 2πin

where M1,M2,M3 are defined as follows:

M1(θ) = 2

(
µcontA θ1 + µcontB θ2 +

1

2
θ21σ

2
A +

1

2
θ22σ

2
B + θ1θ2ρσAσB

+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
− λcont,calm − K1(θ)

2

)
=

(
µcalmA + µcontA

)
θ1 +

(
µcalmB + µcontB

)
θ2 + θ21σ

2
A + θ22σ

2
B + 2θ1θ2ρσAσB

+λcalm,calmA

(
eθ1 log(1+LA) − 1

)
+ λcalm,calmB

(
eθ2 log(1+LB) − 1

)
+λcont,contA

(
eθ1 log(1+LA) − 1

)
+ λcont,contB

(
eθ2 log(1+LB) − 1

)
−λcalm,contA − λcalm,contB − λcont,calm

M2(θ, p) =
2Z(θ)

−2e−θ3K2(θ)−K1(θ) + Z(θ)
· p+

2Z(θ)

2eθ3K3 +K1(θ) + Z(θ)
· (1− p)− 1

M3(θ, p) = p log
(
−2e−θ3K2(θ)−K1(θ) + Z(θ)

)
+ (1− p) log

(
2eθ3K3 +K1(θ) + Z(θ)

)
− log(2Z(θ))
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The functions M1,M2,M3 do not depend on T . Therefore, the integral in Lemma 9 can be

computed as the sum of two integrals whose integrand is an exponential-affine function of t:

I =

∫ ∞
0

e−δt+χ(θ1,θ2,θ3,t,p)dt =

∫ ∞
0

e
−δt+

(
M1
2
−Z

2

)
t+log(eZt+M2)+M3+2πin

dt

= eM3

∫ ∞
0

e

(
M1
2
−Z

2
−δ

)
t (
eZt +M2

)
dt = eM3

(∫ ∞
0

e

(
M1
2

+Z
2
−δ

)
t
dt+M2

∫ ∞
0

e

(
M1
2
−Z

2
−δ

)
t
dt

)
= eM3

(
− 1
M1
2 + Z

2 − δ
− M2

M1
2 −

Z
2 − δ

)
(10)

= − 1

(1 +M2)
(
M1
2 + Z

2 − δ
) − M2

(1 +M2)
(
M1
2 −

Z
2 − δ

) . (11)

Equality (10) holds although M1+Z
2 −δ and M1−Z

2 −δ are complex numbers because the respective

integration rules also apply in complex analysis. Equality (11) holds because eM3(θ,p) = 1
1+M2(θ,p)

for p = 0 as well as for p = 1. Altogether, this completes the proof of Lemma 9. �

Now, evaluating the functions M1(θ) and M2(θ, p) at

(θ1, θ2, θ3, p) = (α1 −
γ

2
− iv, α2 −

γ

2
+ iv, 0, p0)

gives the formula for the price-dividend ratio of Proposition 3. �

C Proof of Proposition 4

For i = A,B, Ito’s Lemma gives

dPi,t =
∂Pi,t
∂DA,t

dDdiff
A,t +

∂Pi,t
∂DB,t

dDdiff
B,t +

1

2

(
∂2Pi,t
∂D2

A,t

dD2
A,t +

∂2Pi,t
∂D2

B,t

dD2
B,t + 2

∂2Pi,t
∂DA,t∂DB,t

dDA,tdBB,t

)
+
∑

j=1,2,3

(Pi,t − Pi,t−)
[
dNA,j

t + dNB,j
t

]
+ (Pi,t − Pi,t−) dN4

t

The dividend processes follow

dDA,t

DA,t−
=

(
µA +

1

2
σ2A

)
dt+ σAdW

A
t + LA

∑
j=1,2,3

dNA,j
t

dDB,t

DB,t−
=

(
µB +

1

2
σ2B

)
dt+ σBdW

B
t + LB

∑
j=1,2,3

dNB,j
t

According to Proposition 3, the price of asset i which pays the dividend Dα1
A Dα2

B is given by

Pi,t =

∫ ∞
−∞

I(st, v)Di,tJ(v, pt, α1, α2)dv
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where

I(s, v) =

(
1√

s(1− s)

)γ (
1− s
s

)iv
= (DA +DB)γ D

− γ
2
−iv

A D
− γ

2
+iv

B

and J does not depend on DA or DB at all. Computing the partial derivatives of Pi,t thus

breaks down to computing the partial derivatives of I (due to a standard dominated convergence

argument, differential and integral signs can be interchanged here if all involved integrals exist).

The first-order derivatives of I fulfil

∂I

∂DA
DA = I ·

[
γs− γ

2
− iv

]
∂I

∂DB
DB = I ·

[
γ(1− s)− γ

2
+ iv

]
∂[IDA]

∂DA
=

∂I

∂DA
DA + I = I ·

[
γs− γ

2
− iv + 1

]
∂[IDB]

∂DB
=

∂I

∂DB
DB + I = I ·

[
γ(1− s)− γ

2
+ iv + 1

]
The exposure of asset i to diffusion risk j is defined as

σi,j,t =

∂Pi,t
∂Dj,t

Dj,t

Pi,t
σj

Remember the abbreviation (θ1, θ2) = (α1− γ
2 − iv, α2− γ

2 + iv) where (α1, α2) = (1, 0) for asset

A and (0, 1) for asset B. Plugging in the derivatives and eliminating DA,t and DB,t whenever

they are redundant leads to the general form for the diffusion exposures given in Proposition 4.

The exposure of asset i to one of the seven jump risk factors is defined as

Pi,t − Pi,t−
Pi,t−

.

The exposure to jumps from the contagion state to the calm state which do not induce any

dividend losses (i.e. Li,4) follows from this definition directly.

In order to analyze the jumps which imply a loss in one of the dividends (i.e. type j = 1, 2, 3),

let the dividend process which exhibits the jump be encoded by (α̃1, α̃2) and let the asset whose

price exposure is to be investigated be encoded by (α1, α2). Then each jump exposure can be

written in the form

L(α1,α2),(α̃1,α̃2),j = (1 + LA)α1α̃1(1 + LB)α2α̃2

∫∞
−∞ I(st, v)J(v, pt, α1, α2)dv∫∞
−∞ I(st−, v)J(v, pt−, α1, α2)dv

− 1

If dividends of asset A jump, the dividend share decreases to st = st−
1+LA

1+LAst−
. If dividends

of asset B jump, it increases to st = st−
1

1+LB(1−st−) . Putting all details together leads to the
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following jump exposures:

Li,A,1(s, p) = (1 + LA)α1

∫∞
−∞ I

(
s 1+LA
1+sLA

, v
)
J(v, 1, α1, α2)dv∫∞

−∞ I(s, v)J(v, 1, α1, α2)dv
− 1

Li,B,1(s, p) = (1 + LB)α2

∫∞
−∞ I

(
s 1
1+(1−s)LB , v

)
J(v, 1, α1, α2)dv∫∞

−∞ I(s, v)J(v, 1, α1, α2)dv
− 1

Li,A,2(s, p) = (1 + LA)α1

∫∞
−∞ I

(
s 1+LA
1+sLA

, v
)
J(v, 0, α1, α2)dv∫∞

−∞ I(s, v)J(v, 1, α1, α2)dv
− 1

Li,B,2(s, p) = (1 + LB)α2

∫∞
−∞ I

(
s 1
1+(1−s)LB , v

)
J(v, 0, α1, α2)dv∫∞

−∞ I(s, v)J(v, 1, α1, α2)dv
− 1

Li,A,3(s, p) = (1 + LA)α1

∫∞
−∞ I

(
s 1+LA
1+sLA

, v
)
J(v, 0, α1, α2)dv∫∞

−∞ I(s, v)J(v, 0, α1, α2)dv
− 1

Li,B,3(s, p) = (1 + LB)α2

∫∞
−∞ I

(
s 1
1+(1−s)LB , v

)
J(v, 0, α1, α2)dv∫∞

−∞ I(s, v)J(v, 0, α1, α2)dv
− 1

Li,4(s, p) =

∫∞
−∞ I (s, v) J(v, 1, α1, α2)dv∫∞
−∞ I(s, v)J(v, 0, α1, α2)dv

− 1.

�
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Benchmark Extension 1 Extension 2 Equal Growth Rates

Panel A: Parameters

µcalmA 0.035 0.035 0.035 0.035
µcontA 0.035 0.035 0.035 0.067
µcalmB 0.035 0.035 0.035 0.035
µcontB 0.035 0.035 0.035 0.067
σA 0.08 0.08 0.08 0.08
σB 0.08 0.08 0.08 0.08
ρ 0 0 0 0
LA -0.02 -0.02 -0.02 -0.02
LB -0.02 -0.02 -0.02 -0.02

λcalm,calmA 0.2 0.2 0.0 0.2

λcalm,contA 0.2 0.2 0.4 0.2

λcalm,calmB 0.2 0.2 0.4 0.2

λcalm,contB 0.2 0.2 0.0 0.2

λcont,contA 2 0.8 2 2
λcont,contB 2 3.2 2 2
λcont,calm 2 2 2 2

Panel B: Moments of Dividend Growth

mean dividend growth A calm 0.03 0.03 0.03 0.03
mean dividend growth B calm 0.03 0.03 0.03 0.03
mean dividend growth A cont 0.00 0.02 0.03 0.03
mean dividend growth B cont 0.00 -0.03 0.03 0.03
dividend volatility A calm 0.081 0.081 0.081 0.081
dividend volatility B calm 0.081 0.081 0.081 0.081
dividend volatility A cont 0.085 0.082 0.085 0.085
dividend volatility B cont 0.085 0.088 0.085 0.085

Table 1: Parameters and Moments

The table gives the parameters (panel A) and the moments (panel B) of the dividends.
The first column refers to the benchmark case with identical trees. The last three columns
give the parameters and moments if contagion mainly affects asset B (’Extension 1’), if
contagion is only induced by asset A (’Extension 2’), and if the dividend growth rates are
equal in both states (’Equal Growth Rates’).
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Figure 1: Asset Prices and Returns (Benchmark Parametrization)

The figure shows the price-dividend ratios (upper row), the equity risk premia (middle
row) and the risk-free rate (lower row) as a function of the dividend share of asset A. The
left column gives the results for the calm state, the right column gives the results for the
contagion state. Price-dividend ratios and equity premia are given for asset A (red dashed
line), asset B (blue dash-dotted line) and the market (green solid line). The risk-free rate
is decomposed into its various components. The parameters for the benchmark case are
given in column ’Benchmark’ of Table 1.
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Figure 3: Volatilities and Correlations (Benchmark Parametrization)

The figure shows the local volatilities (upper row), the local correlations (middle row)
and the beta with respect to the market (lower row) as a function of the dividend share
of asset A. The left column gives the results for the calm state, the right column gives
the results for the contagion state. The volatilities are given for asset A (red dashed line),
asset B (blue dash-dotted line) and the market (green solid line) and the respective dotted
lines mark the dividend and consumption volatilities. The parameters for the benchmark
case are given in column ’Benchmark’ of Table 1.
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Figure 4: Asset Prices and Returns (Robust versus Excitable Assets)

The figure shows the price-dividend ratios (upper row), the equity risk premia (middle
row) and the risk-free rate (lower row) as a function of the dividend share of asset A. The
left column gives the results for the calm state, the right column gives the results for the
contagion state. Price-dividend ratios and equity premia are given for the robust asset
A (red dashed line), the excitable asset B (blue dash-dotted line) and the market (green
solid line). The risk-free rate is decomposed into its various components. The parameters
are given in column ’Extension 1’ of Table 1.
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Figure 7: Volatilities and Correlations (Robust versus Excitable Assets)

The figure shows the local volatilities (upper row), the local correlations (middle row)
and the beta with respect to the market (lower row) as a function of the dividend share
of asset A. The left column gives the results for the calm state, the right column gives
the results for the contagion state. The volatilities are given for asset A (red dashed line),
asset B (blue dash-dotted line) and the market (green solid line) and the respective dotted
lines mark the dividend and consumption volatilities. The parameters are given in column
’Extension 1’ of Table 1.
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Figure 8: Asset Prices, Equity Premia and Volatilities (Propensity to Induce Contagion)

The figure shows the price-dividend ratios (upper row), the equity risk premia (middle
row) and local volatilities (lower row) as a function of the dividend share of asset A. The
left column gives the results for the calm state, the right column gives the results for the
contagion state. All results are given for the contagion-inducing asset A (red dashed line),
the non-inducing asset B (blue dash-dotted line) and the market (green solid line). The
parameters are given in column ’Extension 2’ of Table 1.
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Figure 9: Asset Prices, Volatilities and Correlations (Constant Dividend Growth)

The figure shows the price-dividend ratios (upper row), local volatilities (middle row)
and local correlations (lower row) as a function of the dividend share of asset A. The
left column gives the results for the calm state, the right column gives the results for the
contagion state. The parameters are given in column ’Equal Growth Rates’ of Table 1.
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