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Abstract

This paper uses a simple New-Keynesian dynamic stochastic general equi-

librium model as a prior for a vector autoregression, shows that the resulting

model is competitive with standard benchmarks in terms of forecasting, and

can be used for policy analysis.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are popular nowadays in

macroeconomics. They are taught in virtually every economics Ph.D. program, and

represent a predominant share of publications in the field. Yet, when it comes to

policy making, these models are scarcely used – at least from a quantitative point

of view. The main quantitative workhorse for policy making at the Federal Reserve

System is FRB-US, a macro-econometric model built in the Cowles foundation tradi-

tion – a style of macroeconomics that is no longer taught in many Ph.D. programs.1

In their decision process, Fed policy makers rely heavily on forecasting. They want

to know the expected path of inflation in the next few quarters, and by how much a

50 basis point increase in the federal funds rate would affect that path. FRB-US of-

fers answers to these questions – answers that many macroeconomists would regard

with suspicion given both the Lucas’ (1976) critique and the fact that in general the

restrictions imposed by Cowles foundation models are at odds with dynamic general

equilibrium macroeconomics (Sims, 1980). General equilibrium models on the other

hand have a hard time providing alternative answers. The fact that these models

are perceived to do badly in terms of forecasting, as they are scarcely parameterized,

is perhaps one of the reasons why they are not at the forefront of policy making.

While progress is being made in the development of DSGE models that de-

liver acceptable forecasts, e.g., Smets and Wouters (2003), this paper proposes an

approach that combines a stylized general equilibrium model with a vector autore-

gression (VAR) to obtain a specification that both forecasts well and is usable for

policy analysis. Specifically, the approach involves using prior information coming

from a DSGE model in the estimation of a vector autoregression. Loosely speaking,

this prior can be thought of as the result of the following exercise: (i) simulate time

series data from the DSGE model, (ii) fit a VAR to these data. In practice we replace

the sample moments of the simulated data by population moments computed from

the DSGE model solution. Since the DSGE model depends on unknown structural

1Some lucky few, among them the authors of this paper, have had the privilege of encountering

proponents of this approach during their graduate studies.
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parameters, we use a hierarchical prior in our analysis by placing a distribution

on the DSGE model parameters. A tightness parameter controls the weight of the

DSGE model prior relative to the weight of the actual sample. Markov-Chain Monte

Carlo methods are used to generate draws from the joint posterior distribution of

the VAR and DSGE model parameters.

The paper shows that the approach makes even a fairly stylized New Keynesian

DSGE model competitive with standard benchmarks in terms of forecasting real

output growth, inflation, and the nominal interest rate - the three variables that are

of most interest to policy makers.2 Up to this point our procedure borrows from the

work of DeJong, Ingram, and Whiteman (1993), and Ingram and Whiteman (1994),

who are the first to use priors from DSGE models for VARs. Ingram and Whiteman

showed that prior information from the bare-bones stochastic growth model of King,

Plosser, and Rebelo (1988) is helpful in forecasting real economic activity, such as

output, consumption, investment, and hours worked.

In addition to documenting the forecasting performance of a trivariate VAR with

a prior derived from a monetary DSGE model, this paper makes two contributions

that significantly extend the earlier work. First, we show formally how posterior in-

ference for the VAR parameters can be translated into posterior inference for DSGE

model parameters. Second, we propose procedures to conduct two types of policy

experiments within our framework. The first policy analysis is based on identified

VAR impulse responses to monetary policy shocks. To obtain identification we con-

struct an orthonormal matrix from the VAR approximation of the DSGE model to

map the reduced form innovations into structural shocks. This procedure induces

2 Ireland (2003) pursues a similar goal by augmenting a linearized DSGE model with unobserv-

able errors, following Sargent (1989) and Altug (1989). Unlike in these earlier papers, Ireland does

not restrict the errors to be uncorrelated across variables (“measurement errors”). Instead he al-

lows them to follow a stationary VAR. While the resulting hybrid model is suitable for forecasting,

Ireland provides no general discussion about the extent to which the latent errors are distinguish-

able from the structural shocks (identification) and no framework for policy analysis. Robertson,

Tallman, and Whiteman (2002) also provide an alternative approach, based on relative entropy, to

incorporate moment restrictions from economic theory into a model’s forecasts.
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a DSGE model based prior distribution for the VAR impulse responses, which is

updated with the sample information.

The second policy experiment is more ambitious. We want to forecast the ef-

fects of a change in the policy rule. Suppose a policy maker has a DSGE model

that forecasts poorly and a VAR model that is silent about the effects of a policy

regime change. In order to assess the effects of a policy intervention accurately,

one has to correct the DSGE model predictions to bring its baseline forecasts under

the existing policy regime on track. Based on the VAR with DSGE model prior

(DSGE-VAR) we propose to implement such a correction. Since we lack knowledge

about the relationship between policy parameters and DSGE model misspecifica-

tion, we assume that the pre-intervention correction remains appropriate under the

new policy regime. To illustrate our approach we try to forecast the impact of the

change from the Martin-Burns-Miller regime to the Volcker-Greenspan regime on

the volatility of inflation and compare it to the variability of actual inflation in the

Volcker-Greenspan period.

The paper is organized as follows. Section 2 contains a brief description of the

DSGE model that we are using to construct the prior distribution. Section 3 dis-

cusses the specification of the DSGE model prior and explores the joint posterior

distribution of VAR and DSGE model parameters from a theoretical perspective.

Empirical results for a VAR in output growth, inflation, and interest rates are pre-

sented in Section 4. Section 5 concludes. Proofs and computational details are

provided in the Appendix.

2 A Simple Monetary DSGE Model

Our econometric procedure is applied to a trivariate VAR for output, inflation, and

interest rates. The prior distribution for the VAR is derived from a New Keynesian

DSGE model. To make this paper self-contained, we briefly review the model spec-

ification, which is adopted from Lubik and Schorfheide (2002). Detailed derivations
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can be found, for instance, in King and Wolman (1999), King (2000), and Woodford

(2003).

The model economy consists of a representative household, a continuum of mo-

nopolistically competitive firms, and a monetary policy authority that adjusts the

nominal interest rate in response to deviations of inflation and output from their

targets. The representative household derives utility from real balances M/P and

consumptions C relative to a habit stock. We assume that the habit stock is given

by the level of technology. This assumption assures that the economy evolves along

a balanced growth path. The household derives disutility from hours worked, h, and

maximizes

Et

[
∞∑

s=t

βs−t
(
(Cs/As)

1−τ − 1

1− τ
+ χ log

Ms

Ps
− hs

)]
, (1)

where β is the discount factor, τ is the risk aversion parameter, and χ is a scale

factor. P is the economy-wide nominal price level which the household takes as

given. The (gross) inflation rate is defined as πt = Pt/Pt−1.

The household supplies perfectly elastic labor services to the firms period by

period and receives the real wageW . The household has access to a domestic capital

market where nominal government bonds B are traded that pay (gross) interest R.

Furthermore, it receives aggregate residual profits D from the firms and has to pay

lump-sum taxes T . Thus, the households’ budget constraint is of the form

Ct +
Bt
Pt

+
Mt

Pt
+
Tt
Pt

=Wtht +
Mt−1

Pt
+Rt−1

Bt−1
Pt

+Dt. (2)

The usual transversality condition on asset accumulation rules out Ponzi-schemes.

The production sector is described by a continuum of monopolistically com-

petitive firms each facing a downward-sloping demand curve for its differentiated

product:

Pt(j) =

(
Xt(j)

Xt

)−1/ν

Pt. (3)

This demand function can be derived in the usual way from Dixit-Stiglitz prefer-

ences, whereby Pt(j) is the profit-maximizing price consistent with production level

Xt(j). The parameter ν is the elasticity of substitution between two differentiated
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goods. The aggregate price level and aggregate demand Xt are beyond the control

of the individual firm. Nominal rigidity is introduced by assuming that firms face

quadratic adjustment costs in nominal prices. When a firm wants to change its price

beyond the economy-wide inflation rate π∗, it incurs menu costs in the form of lost

output:
ϕ

2

(
Pt(j)

Pt(j − 1)
− π∗

)2
Xt. (4)

The parameter ϕ ≥ 0 governs the degree of stickiness in the economy.

Production is assumed to be linear in labor ht(j), which each firm hires from

the household:

Xt(j) = Atht(j). (5)

Total factor productivity At is an exogenously given unit-root process of the form

lnAt = ln γ + lnAt−1 + z̃t (6)

where

z̃t = ρz z̃t−1 + εz,t (7)

and εz,t can be broadly interpreted as a technology shock that affects all firms in the

same way. The specification of the technology process induces a stochastic trend

into the model.3

Firm j chooses its labor input ht(j) and price Pt(j) to maximize the present

value of future profits:

IEt

[
∞∑

s=t

QsDs(j)

]
(8)

subject to (5) and (6), where the time s profit is given by

Ds(j) =

(
Ps(j)

Ps
Xs(j)−Wshs(j)−

ϕ

2

(
Ps(j)

Ps−1(j)
− π∗

)2
Xs(j)

)
.

Here Q is the time-dependent discount factor that firms use to evaluate future

profit streams. While firms are heterogenous ex ante, we only consider the sym-

metric equilibrium in which all firms behave identically and can be aggregated into

3Since our simple DSGE model lacks an internal propagation mechanism that can generate

serially correlated output growth rates we assume that technology growth follows a stationary

AR(1) process.
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a single representative monopolistically competitive firm. Under the assumption

that households have access to a complete set of state-contingent claims Qt+1/Qt =

β(Ct/Ct+1)
τ in equilibrium. Since the household is the recipient of the firms’ residual

payments it directs firms to make decisions based on the household’s intertemporal

rate of substitution.

The central bank follows a nominal interest rate rule by adjusting its instrument

in response to deviations of inflation and output from their respective target levels:

Rt
R∗

=

(
Rt−1
R∗

)ρR [( πt
π∗

)ψ1
(
Xt

X∗
t

)ψ2
](1−ρR)

eεR,t, (9)

where R∗ is the steady state nominal rate and X∗
t is potential output, which we

define as X∗
t = At after normalizing the steady-state hours worked to one. The

parameter 0 ≤ ρR < 1 determines the degree of interest rate smoothing. The

central bank supplies the money demanded by the household to support the desired

nominal interest rate. The monetary policy shock εR,t can be interpreted as an

unanticipated deviation from the policy rule.

The government consumes a fraction ζt of each individual good j. We define

gt = 1/(1− ζt) and assume that g̃t = ln(gt/g
∗) follows a stationary AR(1) process

g̃t = ρg g̃t−1 + εg,t, (10)

where εg,t can be broadly interpreted as government spending shock. The govern-

ment levies a lump-sum tax (or subsidy) Tt/Pt to finance any shortfall in government

revenues (or to rebate any surplus):

ζtXt +Rt−1
Bt−1
Pt

+
Mt−1

Pt
=
Tt
Pt

+
Mt

Pt
+
Bt
Pt

(11)

The fiscal authority accommodates the monetary policy of the central bank and en-

dogenously adjusts the primary surplus to changes in the government’s outstanding

liabilities.

To solve the model, optimality conditions are derived for the maximization prob-

lems. Consumption, output, wages, and the marginal utility of consumption are de-

trended by the total factor productivity At. The model has a deterministic steady
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state in terms of the detrended variables. Define the percentage deviation of a vari-

able yt from its trend Y ∗
t as ỹt = lnYt − lnY ∗

t . The log-linearized system can be

reduced to three equations in output, inflation, and nominal interest rates:

x̃t = IEt[x̃t+1]− τ
−1(R̃t − IEt[π̃t+1]) + (1− ρg)g̃t + ρz

1

τ
z̃t, (12)

π̃t =
γ

r∗
IEt[π̃t+1] + κ[x̃t − g̃t], (13)

R̃t = ρRR̃t−1 + (1− ρR) (ψ1π̃t + ψ2x̃t) + εR,t, (14)

where r∗ = γ/β is the steady state real interest rate and κ is a function of the price

adjustment costs and the demand elasticity. The parameter measures the overall

degree of distortion in the economy. Equation (12) is an intertemporal consumption

Euler-equation, while (13) is derived from the firms’ optimal price-setting problem

and governs inflation dynamics. Equation (14) is the log-linearized monetary policy

rule.4 The linear rational expectations system given by Equations (7), (10), and (12)

to (14) can be solved, for instance, with the algorithm described in Sims (2002).

The relationship between the steady-state deviations and observable output

growth, inflation, and interest rates is given by the following measurement equa-

tions:

∆ lnxt = ln γ +∆x̃t + z̃t (15)

∆ lnPt = lnπ∗ + π̃t

lnRat = 4[(ln r∗ + lnπ∗) + R̃t].

In the subsequent empirical analysis a period t corresponds to one quarter. Output

growth and inflation are quarter-to-quarter changes, whereas the interest rate, Ra
t ,

is annualized. The evolution of x̃t, π̃t, R̃t, and z̃t is given by the solution to the

linear rational expectations system above. The DSGE model has three structural

shocks which we collect in the vector εt = [εR,t, εg,t, εz,t]
′. We assume that the

4In this paper we restrict the parameter space to values that lead to a unique stable solution

of the linear rational expectations system. Lubik and Schorfheide (2002) discuss the econometric

analysis of linear rational expectations models when the parameter space is not restricted to the

determinacy region.
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shocks are normally distributed and independent of each other and over time. Their

standard deviations are denoted by σR, σg, and σz, respectively. The DSGE model

parameters are stacked into the vector

θ = [ln γ, lnπ∗, ln r∗, κ, τ, ψ1, ψ2, ρR, ρg, ρz, σR, σg, σz]
′. (16)

The DSGE model imposes tight restrictions across the parameters of the moving-

average (MA) representation for output growth, inflation, and interest rates.

3 Using the DSGE Model to Obtain a Prior for a VAR

Let yt = [∆ lnxt,∆lnPt, lnR
a
t ]. A less restrictive moving-average representation for

the n×1 vector yt than the one implied by the DSGE model of the previous section

can be obtained from a vector autoregressive model:

yt = Φ0 +Φ1yt−1 + . . .Φpyt−p + ut, (17)

where ut is a vector of one-step-ahead forecast errors. VARs have a long tradition

in applied macroeconomics as a tool for forecasting, policy analysis, and business

cycle analysis. One drawback of VARs is that they are not very parsimonious:

in many applications, data availability poses a serious constraint on the number

of endogenous variables and the number of lags that can effectively be included

in a VAR without overfitting the data. A solution to this problem of too many

parameters is to constrain the parameter estimates by “shrinking” them toward a

specific point in the parameter space.5 For instance, Doan, Litterman, and Sims

(1984) proposed to shrink the estimates of a VAR that included the level of output,

and prices, toward univariate random walk representations. The justification for

this shrinkage was statistical rather than economic: no-change forecasts implied by

the random-walk model were known to be fairly accurate. Our method shrinks the

VAR estimates toward restrictions that are derived from a DSGE model. The spirit

of our approach is to take the DSGE model restrictions seriously without imposing

them dogmatically.

5Shrinkage estimators have a long tradition in statistics, see, e.g., Lehmann (1983).
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Shrinkage estimators can be interpreted as Bayes estimators that are derived

from prior distributions that concentrate much of their probability mass near the

desired parameter restrictions. Priors are a way of systematically adding observa-

tions. In fact, many prior distributions can be incorporated into the estimation

by augmenting the actual data set with dummy observations.6 Loosely speaking,

we implement the DSGE model prior by generating dummy observations from the

DSGE model, and adding them to the actual data. The ratio of dummy over actual

observations – which we call λ in the remainder of the paper – measures the weight

of the prior relative to the sample.

The DSGE model is indexed by a vector θ of so-called deep parameters. Instead

of conditioning our analysis on a specific value of θ we place a prior distribution on

the DSGE model parameters. In the econometric parlance, we construct a hierar-

chical prior consisting of a marginal distribution for θ and a conditional distribution

for the VAR parameters given θ which is generated through the dummy observa-

tions. Bayes theorem then leads us to a joint posterior distribution for the DSGE

model and VAR parameters. Our implementation of the DSGE model prior has an

important advantage over previous approaches. We learn about the DSGE model

parameters by implicitly searching for values of θ for which the distance between the

VAR estimate and the vector autoregressive representation of the DSGE model is

small. This information about θ will be exploited for the policy analysis in Section 4.

We have just given an informal description of our procedure. Much of the

remainder of this section – for the econometrically oriented reader – provides an

accurate and detailed exposition. In Section 3.1 we discuss the likelihood function.

Section 3.2 describes the prior distribution. The posterior distribution is analyzed

in Section 3.3.

6This so-called mixed estimation is originally due to Theil and Goldberger (1961), and used for

instance, by Sims and Zha (1998).
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3.1 Likelihood Function

In order to construct a likelihood function we assume that the innovations ut in

Equation (17) have a multivariate normal distribution N (0,Σu) conditional on past

observations of yt. Let Y be the T × n matrix with rows y′t. Let k = 1 + np, X

be the T × k matrix with rows x′t = [1, y′t−1, . . . , y
′
t−p], U be the T × n matrix with

rows u′t, and Φ = [Φ0,Φ1, . . . ,Φp]
′. The VAR can be expressed as Y = XΦ+U with

likelihood function

p(Y |Φ,Σu) ∝ (18)

|Σu|
−T/2 exp

{
−
1

2
tr[Σ−1

u (Y ′Y − Φ′X ′Y − Y ′XΦ+ Φ′X ′XΦ)]

}

conditional on observations y1−p, . . . , y0. Although the DSGE model presented in

Section 2 does not have a finite-order vector autoregressive representation in terms

of yt, the VAR can be interpreted as an approximation to the moving-average repre-

sentation of the DSGE model. The magnitude of the discrepancy becomes smaller

the more lags are included in the VAR. Since θ is of much lower dimension than

the VAR parameter vector, the DSGE model imposes a restrictions on the (approx-

imate) vector autoregressive representation of yt.

3.2 Prior Distribution

Suppose the actual observations are augmented with T ∗ = λT artificial observations

(Y ∗, X∗) generated from the DSGE model based on the parameter vector θ. The

likelihood function for the combined sample of artificial and actual observations is

obtained by premultiplying (18) with

p(Y ∗(θ)|Φ,Σu) ∝ (19)

|Σu|
−λT/2 exp

{
−
1

2
tr[Σ−1

u (Y ∗′Y ∗ − Φ′X∗′Y ∗ − Y ∗′X∗Φ+ Φ′X∗′X∗Φ)]

}
.

The factorization

p(Y ∗(θ), Y |Φ,Σu) = p(Y ∗(θ)|Φ,Σu)p(Y |Φ,Σu) (20)
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suggests that the term p(Y ∗(θ)|Φ,Σu) can be interpreted as a prior density for Φ

and Σu. It summarizes the information about the VAR parameters contained in the

sample of artificial observations.

If we in fact would construct our prior by generating random draws from the

DSGE model, a repeated application of our procedure would lead to stochastic

variation in the prior distribution which is undesirable. In order to remove the

stochastic variation from p(Y ∗(θ)|Φ,Σu) we replace the non-standardized sample

moments Y ∗′Y ∗, Y ∗′X∗, and X∗′X∗ by their expected values. According to our

DSGE model, the vector yt is covariance stationary and the expected values of the

sample moments are given by the (scaled) population moments λTΓ∗
yy(θ), λTΓ

∗
yx(θ),

and λTΓ∗
xx(θ), where, for instance, Γ∗

yy(θ) = IEθ[yty
′
t]. Since these population mo-

ments can be computed analytically, our procedure is very efficient from the com-

putational standpoint. Formally, the use of population moments implies that we

replace expression (19) with:

p(Φ,Σu|θ) = c−1(θ)|Σu|
−λT+n+1

2 (21)

× exp

{
−
1

2
tr[λTΣ−1

u (Γ∗
yy(θ)− Φ′Γ∗

xy(θ)− Γ∗
yx(θ)Φ + Φ′Γ∗

xx(θ)Φ)]

}
,

where we also added an initial improper prior p(Φ,Σu) ∝ |Σu|
−(n+1)/2.

Provided that λT ≥ k+n and Γxx(θ) is invertible, the prior density is proper and

non-degenerate. In this case the normalization factor c(θ) can be chosen to ensure

that the density integrates to one (the formula for c(θ) is given in the Appendix).

Define the functions

Φ∗(θ) = Γ∗−1

xx (θ)Γ∗
by(θ) (22)

Σ∗
u(θ) = Γ∗

yy(θ)− Γ∗
nyx(θ)Γ

∗−1

xx (θ)Γ∗
xy(θ). (23)

Conditional on θ the prior distribution of the VAR parameters (21) is of the Inverted-

Wishart (IW) – Normal (N ) form7

Σu|θ ∼ IW

(
λTΣ∗

u(θ), λT − k, n

)
(24)

7If Γ∗xx(θ) is of reduced rank, then the prior concentrates its mass in a lower dimensional subspace

of the domain of Φ. In our application the number of structural shocks equals the number of

endogenous variables n to which the model is fitted and Γxx(θ) is full rank. For DSGE models
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Φ|Σu, θ ∼ N

(
Φ∗(θ),Σu ⊗ (λTΓ∗

xx(θ))
−1

)
. (25)

The specification of the prior is completed with a distribution of the DSGE model

parameters, details of which we discuss in Section 4. Overall our prior has the

hierarchical structure

p(Φ,Σu, θ) = p(Φ,Σu|θ)p(θ). (26)

The functions Φ∗(θ) and Σ∗
u(θ) trace out a subspace of the VAR parameter

space and can be interpreted as follows. Suppose that data are generated from a

DSGE model with parameters θ. Among the p’th order VARs the one with the

coefficient matrix Φ∗(θ) minimizes the one-step-ahead quadratic forecast error loss.

The corresponding forecast error covariance matrix is given by Σ∗
u(θ).

Our prior is designed to assign probability mass outside of the subspace traced

out by Φ∗(θ) and Σ∗
u(θ).

8 We use the covariance matrix Σ∗
u(θ) ⊗ (λTΓ∗

xx(θ))
−1 to

distribute probability mass around Φ∗(θ) and average over θ with respect to a prior

p(θ). The orientation of the prior contours is such that the prior is fairly diffuse

in the directions of the DSGE model parameter space that we expect to estimate

imprecisely according to the DSGE model. Our prior differs from the one used

by DeJong, Ingram, and Whiteman (1993), who used a simulation procedure to

approximate (in our notation) the marginal prior for the VAR coefficients p(Φ,Σ) =
∫
p(Φ,Σu|θ)p(θ)dθ by a conjugate IW −N prior.

3.3 Posterior Distribution

In order to study the posterior distribution we factorize it into the posterior den-

sity of the VAR parameters given the DSGE model parameters and the marginal

posterior density of the DSGE model parameters:

p(Φ,Σu, θ|Y ) = p(Φ,Σu|Y, θ)p(θ|Y ). (27)

with less than n structural shocks we recommend to ensure that Γ∗
xx(θ) is full rank by introducing

additional shocks or measurement errors.
8Ingram and Whiteman (1994) used a Gaussian prior for the DSGE model parameters θ ∼

N (θ̄, Vθ) and approximated the function Φ∗(θ) equation-by-equation with a first-order Taylor series

around the prior mean θ̄ to induce a prior distribution for the VAR parameters.
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Let Φ̃(θ) and Σ̃u(θ) be the maximum-likelihood estimates of Φ and Σu, respectively,

based on artificial sample and actual sample

Φ̃(θ) = (λTΓ∗
xx(θ) +X ′X)−1(λTΓ∗

xy +X ′Y ) (28)

Σ̃u(θ) =
1

(λ+ 1)T

[
(λTΓ∗

yy(θ) + Y ′Y )

−(λTΓ∗
yx(θ) + Y ′X)(λTΓ∗

xx(θ) +X ′X)−1(λTΓ∗
xy(θ) +X ′Y )

]
. (29)

Since conditional on θ the DSGE model prior and the likelihood function are conju-

gate, it is straightforward to show, e.g., Zellner (1971), that the posterior distribution

of Φ and Σ is also of the Inverted Wishart – Normal form:

Σu|Y, θ ∼ IW

(
(λ+ 1)T Σ̃u(θ), (1 + λ)T − k, n

)
(30)

Φ|Y,Σu, θ ∼ N

(
Φ̃(θ),Σu ⊗ (λTΓ∗

xx(θ) +X ′X)−1
)
. (31)

The formula for the marginal posterior density of θ and the description of a

Markov-Chain-Monte-Carlo algorithm that generates draws from the joint posterior

of Φ, Σu, and θ are provided in the Appendix. The ability to compute the population

moments Γ∗
yy(θ), Γ

∗
xy(θ), and Γ∗

xx(θ) analytically from the log-linearized solution to

the DSGE model and the use of conjugate priors for the VAR parameters makes

the approach very efficient from a computational point of view: 25000 draws from

the posterior distribution of all the items of interest - including forecast paths and

impulse responses - can be obtained in less than 10 minutes using a 1.2GHz PC. In

the remainder of this section we discuss the choice of λ and the source of information

about the DSGE model parameters.

3.3.1 Choice of λ

The hyperparameter λ determines the effective sample size for the artificial obser-

vations, which is λT . If λ is small the prior is diffuse, and the actual observations

dominate the artificial observations in the posterior. According to Equation (28),

the posterior mean of Φ conditional on θ equals the OLS estimate of Φ if λ = 0.
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For large values of λ the prior concentrates along the restriction functions Φ∗(θ)

and Σ∗
u(θ). We will show that as the length of the artificial sample increases the

VAR parameter estimates will stay closer to the restrictions implied by the DSGE

model. In the limit our procedure is equivalent to estimating the VAR subject to

the DSGE model restrictions. Formally, as λ −→∞, conditional on θ the posterior

mean Φ̃(θ) approaches Φ∗(θ) and the variance Σ̃u(θ) goes to zero. However, this

result does not imply that the actual observations have no influence on the overall

posterior distribution. An examination of the marginal posterior of the DSGE model

parameters can clarify this point.

The posterior p(θ|Y ) can be obtained by combining the marginal likelihood

function

p(Y |θ) =

∫
p(Y |Φ,Σu)p(Φ,Σu|θ)d(Φ,Σu) (32)

with the prior p(θ) (see Appendix). If T is fixed and λ tends to infinity the marginal

likelihood function p(Y |θ) approaches the (quasi)- likelihood function of the DSGE

model9

p∗(Y |θ) ∝ |Σ∗
u(θ)|

−T/2 exp

{
−
1

2
tr

[
Σ∗−1

u (θ)(Y −XΦ∗(θ))′(Y −XΦ∗(θ))

]}
. (33)

The function p∗(Y |θ) is obtained by replacing the unrestricted parameters Φ and

Σu in Equation (18) with the restriction functions Φ∗(θ) and Σ∗
u(θ). The result is

summarized in the following proposition which is proved in the Appendix.

Proposition 1 Let θ̃ be the mode of p(Y |θ). For a fixed set of observations Y ,

ln
p(Y |θ)

p(Y |θ̃)
−→ ln

p∗(Y |θ)

p∗(Y |θ̃)
as λ −→∞

uniformly for θ in compact subsets of Θ for which Σ∗
u(θ) and Γ∗

xx(θ) are non-singular.

Not surprisingly, the empirical performance of a VAR with DSGE model prior

will crucially depend on the choice of λ. We use a data-driven procedure to determine

9Since the DSGE model typically does not have a finite-order vector autoregressive specification

p∗(Y |θ) is a quasi-likelihood function from the perspective of the structural model.



15

an appropriate value λ̂ of the hyperparameter. We maximize the marginal data

density

pλ(Y ) =

∫
pλ(Y |θ)p(θ)dθ (34)

with respect to λ over some grid Λ = {l1, . . . , lq}. Rather than averaging our

conclusions about all possible values of λ, we condition on the value λ̂ with the

highest posterior probability. This marginal data density can also be used to choose

an appropriate lag length for the VAR.

3.3.2 Learning about the DSGE Model Parameters

A major improvement of our procedure over earlier approaches is that it enables

posterior inference with respect to the DSGE model parameters, whereas previous

approaches only delivered a posterior for the VAR parameters. While the likelihood

function (18) itself does not directly depend on the DSGE model parameters, the

marginal distribution of θ will nevertheless be updated through the sample informa-

tion. Similar to Smith (1993), an estimate of θ is implicitly obtained by projecting

the VAR estimates onto the restrictions implied by the DSGE model.

The joint posterior density can be written as

p(Φ,Σu, θ|Y ) = p(Φ,Σu|Y )p(θ|Φ,Σu). (35)

Learning about θ takes place indirectly through learning about the VAR parameters.

We expect that the best fit of the vector autoregression model is achieved for

values of λ that allow moderate deviations from the DSGE model restrictions. Define

the function

q(θ|Y ) = exp

{
−
1

2
ln |Σ∗−1

u (θ)| −
1

2
tr[Σ̂−1

u,mleΣ
∗
u(θ)] (36)

−
1

2
tr[Σ̂−1

u,mle(Φ
∗(θ)− Φ̂mle)

′Γ∗
xx(θ)(Φ

∗(θ)− Φ̂mle)]

}
.

where Φ̂mle and Σ̂u,mle maximize the likelihood function (18). Using a second-order

Taylor expansion, it can be shown that the logarithm of q(θ|Y ) is approximately a

quadratic function of the discrepancy between the VAR estimates and the restriction
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functions generated from the DSGE model. For long samples and under moderately

tight priors the marginal log-likelihood function can be approximated as follows.

Proposition 2 Let θ̃ be the mode of p(Y |θ). Suppose T −→ ∞, λ −→ 0, and

λT −→∞. Then

1

λT
ln
p(Y |θ)

p(Y |θ̃)
= ln

q(Y |θ)

q(Y |θ̃)
+Op(max[(λT )−1, λ]).

The approximation holds uniformly for θ in compact subsets of Θ for which Σ∗
u(θ)

and Γ∗
xx(θ) are non-singular.

The intuition for this result is the following. The weight of the prior relative to

the likelihood function is small (λ −→ 0), so that for all values of θ the posterior dis-

tribution of the VAR parameters concentrates around Φ̂mle. The conditional density

of θ given Φ and Σu projects Φ̂mle onto the subspace Φ∗(θ). The amount of infor-

mation accumulated in the marginal likelihood p(Y |θ) relative to the prior depends

on the rate at which λT diverges. The more weight is placed on the artificial obser-

vations from the DSGE model (λ converges to zero slowly), the more curvature and

information there is in p(Y |θ). According to Proposition 2 the posterior estimate

of θ can be interpreted as a minimum distance estimate (e.g., Chamberlain (1984)

and Moon and Schorfheide (2002)) that is obtained by minimizing the weighted dis-

crepancy between the unrestricted VAR estimates Φ̂mle and the restriction function

Φ∗(θ).

4 Empirical Application

This section describes the results obtained when we apply the prior from the New

Keynesian model described in Section 2 on a trivariate VAR in real output growth,

inflation, and interest rates. We use quarterly data, and the lag length in the VAR

is four quarters.10 Section 4 consists of four parts. Section 4.1 discusses the prior

10The data for real output growth come from the Bureau of Economic Analysis (Gross Domestic

Product-SAAR, Billions Chained 1996$). The data for inflation come from the Bureau of Labor
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and posterior for the DSGE model parameters. Section 4.2 describes the forecasting

results. We show that the DSGE model prior leads to a substantial improvement

relative to an unrestricted VAR an in several dimensions dominates a VAR with

Minnesota prior (Minn-VAR).

Policy analysis with a DSGE-VAR is discussed in Sections 4.3 and 4.4. First,

we construct impulse response functions to study the effects of modest interventions

(Leeper and Zha, 2003) in terms of unanticipated deviations from the monetary

policy reaction function. The DSGE model is used to obtain an identification scheme

for the VAR. Second, we use the DSGE-VAR to predict the effects of a policy rule

change. While in the context of VARs the analysis of regime changes is generally

subject to the Lucas’ critique, our approach can be seen as a weighted average of

two extremes: (i) using the DSGE model to forecast the effects of the policy change

(λ = ∞), and (ii) using the VAR to make forecasts (λ = 0), thereby ignoring the

effects of the policy intervention. In our framework, the choice of the prior weight λ

reflects the degree of misspecification of the structural model. We try to predict the

impact of the change from the Martin-Burns-Miller regime to the Volcker-Greenspan

regime using the DSGE-VAR. The results suggest that the approach is promising,

at least in some dimensions.

4.1 Prior and Posterior of θ

All empirical results are generated with the prior distribution reported in Table 1.

The model parameters ln γ, lnπ∗, ln r∗, σR, σg, and σz are scaled by 100 to convert

their units into percentages. The priors for the quarterly steady state growth rate,

inflation rate, and real interest rate are fairly diffuse and have means 0.5%, 1.0%,

and 0.5%, respectively. With 90% prior probability the risk aversion parameter τ

is between 1.2 and 2.8, whereas the slope of the Phillips curve κ is between 0.06

Statistics (CPI-U: All Items, seasonally adjusted, 1982-84=100). The interest rate series are con-

structed as in Clarida, Gaĺı, and Gertler (2000): for each quarter the interest rate is computed as

the average federal funds rate ( source: Haver Analytics) during the first month of the quarter,

including business days only. Our sample ranges from 1955:III to 2001:III.
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and 0.51. The latter interval is consistent with the values that have been used in

calibration exercises, e.g., Clarida, Gaĺı, and Gertler (2000). The priors for the

policy parameters ψ1 and ψ2 are centered at Taylor’s (1999) values.11 The prior is

truncated at the indeterminacy region of the parameter space.

As stressed in Section 3, our procedure also generates posterior estimates for the

DSGE model parameters. Such estimates are presented in Table 2 for the sample

period 1959:III to 1979:II. To illustrate that the extent of learning about θ depends

on the weight λ of the DSGE model prior, Table 2 reports 90% posterior confidence

sets for λ = 1 and λ = 10. A comparison of prior and posterior intervals indicates

that for λ = 1 the data lead to a modest updating. The confidence intervals for most

parameters shrink. For instance, the prior confidence interval for the interest rate

smoothing parameter ρR ranges from 0.15 to 0.81, whereas the posterior interval

narrows to [0.21, 0.54]. The parameter that characterizes the responsiveness of the

central bank to inflation is revised downward, whereas the confidence interval for

the output coefficient shifted upwards. The posterior means for ψ1 and ψ2 are 1.3

and 0.3, respectively. The updating is slightly more pronounced for λ = 10, when

the artificial sample size is ten times as long as the actual sample.

4.2 Forecasting Results

The objective of this subsection is to show that VARs with DSGE model priors

produce forecasts that improve on those obtained using unrestricted VARs, and are

competitive with those obtained using the popular Minnesota prior. The Minnesota

prior shrinks the VAR coefficients to univariate unit root representations. While

it has been empirically successful, e.g., Litterman (1986), Todd (1984), it lacks

economic justification and ignores information with respect to co-movements of the

11Since the inflation rate and the interest rate in the DSGE model are quarter-to-quarter, the

value of ψ2 corresponds to one fourth of the value obtained in univariate Taylor-rule regressions

that use annualized interest rate and inflation data.



19

endogenous variables.12

In a particular instance, this point has already been made by Ingram and White-

man (1994). However, we provide two extensions of their results. First, we show

that DSGE model priors can be helpful in forecasting not only real but also nominal

variables. Second, while Ingram and Whiteman document the ex post forecasting

performance of their DSGE-VAR as a function of the relative weight of the prior,

we also study the forecasting performance under the requirement that a hyperpa-

rameter λ̂ is chosen ex ante for each forecast based on the marginal posterior data

density pλ(Y ). This is an important extension because the forecasting performance

of the VAR is sensitive to λ and it has to be guaranteed that a good λ can be chosen

before the actual forecast errors become available.

Most of the remainder of the section will present results from a forecasting

exercise using a rolling sample from 1975:III to 1997:III (90 periods). For each date

in the forecasting interval we used 80 observations in order to estimate the VAR,

that is, a ratio of data to parameters of about 6 to 1 for each equation. This choice is

motivated by the fact that the data-parameter ratio in larger models that are being

used for actual forecasting, such as the Atlanta Fed VAR, is of the same magnitude.

It is important to remark that the results presented in this section have no pretense

of being general: they are specific to the particular DSGE model, and the particular

VAR being estimated.

12 In this paper the Minnesota prior is implemented as:

φ̄ = (In ⊗ (X ′
TXT ) + ιH

−1
m )−1(vec(X ′

TYT ) + ιH
−1
m φm)

where the parameter ι denotes the weight of the Minnesota prior, φm is the prior mean and Hm

is the prior tightness. The values of φm and Hm are the same as in Doan, Litterman and Sims

(1984), with the exception of the prior mean for the first lag of output growth and inflation. Since

these two variables enter the VAR in growth rates, as opposed to log levels, to be consistent with

the random walk hypothesis the prior mean for the first lag of the ‘own’ regressor in the output

growth and inflation equations is zero and not one. The Minnesota prior is augmented by a proper

IW prior for Σu. The weight of the Minnesota prior is controlled by the hyperparameter ι. The

hyperparameter is selected ex ante using a modification of (34). This value hovers around 0.5,

depending on the sample. The value used in Doan, Litterman and Sims (1984) is ι = 1.



20

We begin by investigating how the forecasting performance of the VAR changes

as a function of λ and the forecast horizon. Figure 1 plots the percentage im-

provement (or loss, if negative) in root mean square forecast errors (rmse) of the

DSGE-VAR relative to the unrestricted VAR for cumulative real output growth, cu-

mulative inflation, and the federal funds rate.13 The fourth panel of Figure 1 depicts

the improvements in the multivariate forecasting performance statistic proposed by

Doan, Litterman, and Sims (1984).14 The grid of values of λ ranges from 0 to ∞,

where λ =∞ means forecasting with the VAR approximation of the DSGE model.

By definition the gain for λ = 0 is zero. As the weight of the prior is increased

we observe a substantial gain in the forecast performance. The surface for the multi-

variate statistic is fairly flat for values of λ between 0.5 and 5, but then deteriorates

sharply as λ approaches infinity. Overall our performance measures have an inverse

U-shape as a function of the hyperparameter λ. This indicates that there is a bene-

fit from shrinking the VAR estimates toward the DSGE model restrictions without

dogmatically imposing them. The ex post optimal λ for long-run forecasts tends

to be larger than for short-run forecasts. In order to obtain accurate forecasts over

long horizons one has to estimate powers of the autoregressive coefficients Φ. The

large sampling variance of these estimates can be reduced by increasing the weight

of the prior. However, once the length of the artificial sample relative to the actual

sample exceeds 2, the variance reduction is dominated by an increased bias and the

forecasting accuracy generally deteriorates. Interestingly, the deterioration is not

sharp at all: in particular, for inflation and the interest rate the long-run forecasts

from DSGE-VAR are still accurate even when the prior weight is infinity.

While Figure 1 documents that the DSGE model prior leads to an improved

13Neither the output growth rates nor the inflation rates are annualized.
14The ln-det statistic is defined as the converse of the natural logarithm of the determinant of the

error covariance matrix of the forecasts, divided by two (to convert from variance to standard error)

times the number of variables that are forecasted (to obtain an average figure). The improvement

in the multivariate forecasting performance statistics is computed by taking the difference between

the multivariate statistics multiplied by 100 to obtain percentage figures. This number can be seen

as the average in the improvements for the individual variables, adjusted to take into account the

joint forecasting performance, i.e., the correlation in forecast errors.
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forecasting performance, two questions remain. First, can an appropriate value

of λ be selected ex ante? Second, how does the DSGE-VAR compare to a more

competitive forecasting model such as a VAR with Minnesota prior?

We argued in Section 3.3.1 that λ can be chosen over a grid Λ to maximize the

marginal data density pλ(Y ), given in Equation (34). This leads to the hyperpa-

rameter estimate

λ̂ = argmaxλ∈Λ pλ(Y ). (37)

Depending on the sample, this value generally hovers around 0.6, which corresponds

to 48 artificial observations from the DSGE model. However, the shape of the

marginal data density as a function of λ is flat for values of λ between 0.5 and 2,

suggesting that the fit of the model is approximately the same within that range.

These estimates are broadly consistent with the value that leads to the best ex-post

one-step-ahead forecast performance.15

Table 3 documents the rmse improvements of the DSGE-VAR based on λ̂ rel-

ative to the unrestricted VAR and the Minn-VAR. The DSGE-VAR clearly outper-

forms the unrestricted VAR, even if the weight of the prior is chosen ex ante. The

DSGE-VAR also dominates the Minn-VAR in terms of output growth and inflation

forecasts and according to the multivariate performance measure. While the im-

provement is small, around 1 to 1.5 percent, for short-horizons, it is substantial for

forecast horizons beyond 2 years. The DSGE-VAR forecasts of the federal funds

rate are unfortunately slightly worse than the Minn-VAR forecasts for most of the

horizons that we considered. Overall, these results suggest that the DSGE-VAR

is competitive with, and to some extent improves upon, the Minn-VAR. 16 When

15A full Bayesian procedure would average over λ rather than condition on the highest posterior

probability λ. However, in our experience the values of λ that have non-negligible posterior prob-

ability produce very similar predictions so that the gain from averaging instead of conditioning is

minimal.
16We do not report formal significance tests for superior forecast performance, such as the Diebold

and Mariano (1995) test, since the assumptions underlying those tests do not match the setup in our

paper. Thus, the results should be interpreted as ex post accuracy comparisons, not as hypothesis

tests. Although not pursued here, Bayesian posterior odds could be used to choose among DSGE-
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interpreting these results one has to bear in mind a key difference between Min-

nesota and DSGE model prior. The Minnesota prior has only a statistical but not

an economic justification. We will show subsequently that the DSGE model prior

can be exploited in the analysis of policy interventions.

4.3 Impulse Response Functions

In order to compute dynamic responses of output, inflation, and interest rates to

unanticipated changes in monetary policy and to other structural shocks it is neces-

sary to determine the mapping between the structural shocks εt and the one-step-

ahead forecast errors ut. Let Σtr be the Cholesky decomposition of Σu. It is well

known that in any exactly identified structural VAR the relationship between ut

and εt can be characterized as follows:

ut = ΣtrΩεt, (38)

where Ω is an orthonormal matrix and the structural shocks are from now on stan-

dardized to have unit variance, that is IE[εtε
′
t] = I. According to Equation (17) the

initial impact of εt on the endogenous variables yt in the VAR is given by

(
∂yt
∂ε′t

)

V AR

= ΣtrΩ. (39)

The identification problem arises from the fact that the data are silent about the

choice of the rotation matrix Ω. More prosaically, since ΣtrΩΩ
′Σ′
tr = ΣtrΣ

′
tr = Σu

the likelihood function is invariant to Ω.

Macroeconomists generally require Ω to have some ex ante justification and to

produce ex post impulse response functions that are “reasonable”, i.e., conform in

one or more dimensions with the predictions of theoretical models. Since there is

no agreement on what these dimensions should be, a multitude of identification

strategies have been proposed (see Christiano, Eichenbaum, and Evans (1999) for

a recent survey). In this paper we have used the DSGE model to derive a prior

distribution for the reduced form VAR parameters. Hence, it is quite natural in our

VAR and Minn-VAR ex ante.
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framework to use the structural model also to identify the VAR. Thus, we will now

construct a rotation matrix Ω based on the dynamic equilibrium model.

The DSGE model itself is identified in the sense that for each value of θ there

is a unique matrix A0(θ), obtained from the state space representation (15), that

determines the contemporaneous effect of εt on yt. Using a QR factorization of

A0(θ), the initial response of yt to the structural shocks can be can be uniquely

decomposed into (
∂yt
∂ε′t

)

DSGE

= A0(θ) = Σ∗
tr(θ)Ω

∗(θ), (40)

where Σ∗
tr(θ) is lower triangular and Ω∗(θ) is orthonormal. To identify the VAR, we

maintain the triangularization of its covariance matrix Σu and replace the rotation

Ω in Equation (39) with the function Ω∗(θ) that appears in (40).17

The implementation of this identification procedure is straightforward in our

framework. Since we are able to generate draws from the joint posterior distribution

of Φ, Σu, and θ, we can for each draw (i) use Φ to construct a MA representation of

yt in terms of the reduced-form shocks ut, (ii) compute a Cholesky decomposition

of Σu, and (iii) calculate Ω = Ω∗(θ) to obtain a MA representation in terms of the

structural shocks εt.

A few remarks about the procedure are due. First, since the likelihood of the

reduced form VAR is invariant with respect to Ω, the rotation matrix that is used to

achieve identification is the same a posteriori as it is a priori for any fixed θ. How-

ever, as explained in Section 3.3.2, the distribution of θ is updated with the sample

information. Hence, we learn from the data which rotation to choose, indirectly, via

learning about the DSGE model parameters.

Second, the extent to which the posterior impulse responses are forced to look

like the DSGE model’s responses will depend on the tightness of the prior. The larger

λ, the more similar the responses will be. If the researcher chooses the tightness of

the prior endogenously based on the marginal data density (34) the data – and not

17Since the vector autoregressive representation of the DSGE model, as characterized by Φ∗(θ)

and Σ∗
u(θ), is only an approximation, the Cholesky decomposition of Σ∗

u(θ) is not exactly equal to

Σ∗
tr(θ). However, in our experience the difference is for practical purposes negligible.
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the researcher – will determine in which dimensions the posterior impulse responses

will conform to the model’s responses, and in which dimensions they will not.

Figure 2 depicts the impulse response functions with respect to monetary policy

shocks of cumulative real output growth, inflation, and the interest rate, normal-

ized so that the initial impact of a monetary shock on the interest rate is 25 basis

points. Each plot shows the VAR impulse-responses (dashed-and-dotted line), the

corresponding 90 % error bands (dotted lines), and the DSGE model impulse re-

sponses (solid lines). The estimates are based on a sample of 80 observations ending

in 2001:III. The impulse responses are computed for different values of the tight-

ness parameter λ, namely λ ∈ {0.5, 1, 5}. As expected, the VAR impulse responses

become closer to the model’s as the weight of the prior increases. Specifically, the

distance between the posterior means of the VAR and the model’s impulse responses

decreases. In addition, the bands for the VAR impulse responses narrow consider-

ably.

It is interesting to observe that in some dimensions the VAR impulse responses

conform to the model’s even for small values of the tightness parameter (λ = 0.5).

The sign and the magnitude of the VAR impulse responses on impact agree with

the model and are very precisely estimated. This suggests that Σtr and Σ∗
tr(θ) in

Equations (39) and (40) are very similar. The response of inflation to a money shock

is short-lived both in the DSGE model as well as in the VAR. In other dimensions

there is less agreement: where the model predicts long-run money neutrality, the

VAR impulse responses indicate that there is substantial uncertainty about the

long-run effects of money shocks on output. While these findings are specific to

this DSGE model, they seem to favor identification strategies based on impulse

responses on impact (as in Faust (1998), Canova and DeNicoló (2002), and Uhlig

(2001)) relative to strategies that rely on long-run neutrality.

Identification schemes based on zero-restrictions on the contemporaneous impact

of the structural shocks often produce a price-puzzle in three- or four-variable VARs.

While the price-puzzle can be avoided by including producer prices in addition to

consumer prices, it can also be avoided by using our identification scheme that is
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not based on zero-restrictions.

4.4 Regime Shifts

The analysis of welfare implications of different monetary policy rules has become

an active area of research (see, for instance, the articles in Taylor (1999)). It is

important for policy makers to have a set of tools that allows them to predict the

effects of switching from one policy rule to another. Suppose a policy maker only

has a DSGE model and an unrestricted VAR available. Moreover, suppose the

forecast performance of the DSGE model is worse than that of the VAR. However,

because of the Lucas critique, the policy maker does not fully trust the VAR to

correctly predict the impact of a permanent change in the policy rule. Based on the

DSGE-VAR, we propose an approach by which the policy maker uses the DGSE

model to forecast the effect of the policy change, but corrects the DSGE model

predictions. The correction is the one that brings the DSGE’s forecasts under the

existing policy regime on track. The tacit assumption underlying this procedure is

that the correction is itself policy invariant.

We begin by decomposing the joint posterior of VAR and DSGE model param-

eters into

p(Φ,Σu, θ|Y ) = p(Φ,Σu|θ, Y )p(θ|Y ). (41)

To the extent that p(Φ,Σu|θ, Y ) assigns mass away from the restriction functions

Φ∗(θ) and Σ∗
u(θ) it can be interpreted as a correction of the VAR representation of

the DSGE model given θ. This correction has been constructed from past observa-

tions to optimize forecasting performance.

Partition θ = [θ′(s), θ
′
(p)]

′, where θ(p) corresponds to the parameters that the

central bank can affect with its conduct of monetary policy. Suppose that our

beliefs about the post-intervention policy parameters can be characterized by the

density p̃(θ(p)), which possibly concentrates all its mass on a single value of θ(p). We

combine p̃(θ(p)) with the information that we have about the non-policy parameters
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based on the available data. This leads to a modified posterior of θ:

p̃(θ|Y ) = p(θ(s)|Y )p̃(θ(p)), (42)

where p(θ(s)|Y ) is the marginal posterior of the non-policy parameters.

Our inference with respect to the effect of the regime shift will be drawn from

p̃λ(Φ,Σu|Y ) =

∫
pλ(Φ,Σu|Y, θ)p̃λ(θ|Y )dθ. (43)

We use the subscript λ to indicate that the conclusions depend on the weight given

to the DSGE model. It is instructive to take another look at the posterior mean of

the VAR parameters Φ conditional on the DSGE model parameters θ:

Φ̃(θ) =

(
λ

1 + λ
Γ∗
xx(θ) +

1

1 + λ
T−1X ′X

)−1( λ

1 + λ
Γ∗
xy(θ) +

1

1 + λ
T−1X ′Y

)
.

The parameters θ are now drawn from the modified distribution p̃(θ|Y ) that reflects

the change in the distribution of the policy parameters due to the intervention.

The sample moments X ′X, X ′Y , and Y ′Y , on the other hand, are functions of

pre-intervention observations only. They remain part of our analysis because they

the incorporate information about how to “correct” the DSGE model predictions to

achieve a good forecast performance.

If λ = 0, the VAR posterior does not depend on θ at all: hence the researcher is

ignoring the DSGE model (and the regime shift itself) in computing her forecasts.

If λ =∞, then the procedure is equivalent to analyzing the policy directly with the

(VAR approximation of the) DSGE model. It is clear that the Lucas critique is fully

observed only in the λ =∞ extreme.

Most of the current literature on monetary policy rules focuses on the effect of

these rules on the magnitude of economic fluctuations and the households’ utility

over the business cycle. A popular measure of welfare besides agents’ utility is the

volatility of the output gap and inflation. To illustrate our prediction approach we

are considering the effect of a change in the response of the federal funds rate to

deviations of inflation from its target rate (the parameter ψ1 in the Taylor rule (14))

on the standard deviation of real output growth and inflation.
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A widely shared belief, e.g., Clarida, Gaĺı, and Gertler (2000), is that under the

chairmanship of Paul Volcker and Alan Greenspan the U.S. central bank responded

more aggressively to rising inflation than under their predecessors William Martin,

Arthur Burns, and William Miller. Based on the empirical results in the Taylor-rule

literature we compare two policies. Under the first policy scenario ψ1 = 1.1, whereas

under the second policy scenario ψ1 = 1.8. The former can be loosely interpreted

as a continuation of the inactive Martin, Burns, and Miller policy18, whereas the

latter corresponds to a switch to a more active Volcker, Greenspan policy. To

assess the two policies we generated draws from the modified posterior (42) and

simulate trajectories of 80 observations conditional on the parameter draws. For

each trajectory we discard the first eight quarters (hence we consider only the paths

post 1982:III) and then compute the standard deviation of output growth, inflation,

and the federal funds rate.

The results for various choices of λ are summarized in the density plots of Fig-

ure 3. The dashed densities corresponds to ψ1 = 1.1 and the solid densities to

ψ1 = 1.8. The vertical lines in the plots show the standard deviation of the actual

sample (post 1982:III) for the variables of interest. The 1982:III threshold is taken

from Clarida, Gaĺı, and Gertler (2000). The transition period from high inflation to

low inflation between 1979 and 1982 implies that the actual standard deviation of

inflation for the whole sample is high, and in our view does not reflect the “steady

state” variability of inflation under the Volcker-Greenspan policy. Hence we choose

to discard the first eight quarters.19

The DSGE model predicts that an increase in the Taylor rule parameter ψ1

induces a lower equilibrium variability of inflation and therefore a lower variability

18Although some authors report estimates of ψ1 < 1 we restrict ourselves to the determinacy

region of the DSGE model.
19A possible explanation is that the linear model fails to capture the transition period from high

inflation to low inflation. In the model agents change their expectations instantaneously when the

policy change is announced whereas in reality there may be a learning process in which agents

slowly realize that the policy change is permanent (regime shift) rather than temporary (deviation

from policy rule).
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of the federal funds rate. This is indeed what can be observed in Figure 3 for λ > 0.

Whenever ψ1 increases from 1.1 to 1.8, the forecasted variability of inflation and

interest rate decreases. It is reassuring to observe that for inflation the distribution

of the predicted standard deviation for ψ1 = 1.8 (solid line) concentrates around the

actual standard deviation. The predictions under ψ1 = 1.1 (dashed line) tend to

overestimate inflation variability. In terms of the interest rate, the predictions under

ψ1 = 1.8 tend to underestimate Fed Fund variability, while the predictions under

ψ1 = 1.1 tend to overestimate it (although the mode of the dashed distribution

appears to be roughly on spot, the distribution is skewed to the right).

The predictions for the standard deviation of output do not change significantly

as ψ1 increases. The DSGE-VAR does not predict the reduction of the variability in

real output growth that took place after 1979. This reduction may be the outcome

of a change in the exogenous technology process rather than the effect of monetary

policy. Note that the predicted effect of the policy change becomes larger as the

weight of the prior increases. As more weight is given to the DSGE model, the

differences in the predictions becomes sharper, as one would expect.

Although the experiment just described is not pure out-of-sample prediction,

since the policy experiment ψ1 = 1.8 was motivated by an analysis of the Volcker-

Greenspan sample, it illustrates the potential of our approach. We view the proce-

dure as a tool that lets the policy maker assess the effects of the policy change as a

function of the confidence placed in the structural model measured by λ.

5 Conclusions

The paper takes the idea of Ingram and Whiteman (1994) – imposing priors from

general equilibrium models on VARs – and develops it into a full-blown, computa-

tionally efficient strategy, that is usable for policy analysis. Our approach involves

the following steps: (i) Choose a DSGE model and a prior distribution for its param-

eters. (ii) Solve the DGSE model and map the prior distribution of its parameters

into a prior distribution for the VAR parameters. While a log-linear approximation
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of the DSGE model simplifies the computation of its VAR approximation given by

Φ∗(θ) and Σ∗
u(θ) considerably, it is not crucial to our approach. (iii) Obtain via

Monte Carlo methods the joint posterior distribution of DSGE and VAR parame-

ters, which can then be used to compute predictive densities.

We apply this procedure to a VAR in real output growth, inflation, and interest

rates, and show that it is broadly successful in terms of forecasting performance. The

DSGE-VAR clearly outperforms an unrestricted VAR and the vector autoregressive

approximation of the DSGE model itself at all horizons. Its forecasting performance

is comparable to, and in some dimensions better than a VAR with Minnesota prior.

Unlike the Minnesota prior, our DSGE model prior also offers help in terms

of policy analysis. We construct a VAR identification scheme for the structural

shocks based on a comparison of the contemporaneous VAR responses with the

DSGE model responses. The identification of policy shocks enables an analysis of

modest interventions. Our approach provides an attractive alternative to existing

identification schemes because it closely ties VAR identification to a fully specified

general equilibrium model. Beyond the specification of a DSGE model and the

possibly data-driven selection of the prior weight, our identification procedure does

not require the researcher to make any additional choices.

We also illustrate how a VAR with DSGE model prior can be used to predict the

effects of a permanent change in the policy rule – a task that is generally considered

infeasible for identified VARs. We use the approach to predict the impact of the

change from the Martin-Burns-Miller regime to the Volcker-Greenspan regime on

the volatility of the variables of interest. We find that at least in some dimensions

the approach fares reasonably well in terms of predicting the effect of the change,

although further research is needed to investigate this issue more deeply.

More research lies down the road. First, if the VAR is specified in terms of

output and prices rather than output growth and inflation, then the calculation of

expected sample moments of data generated from the DSGE model becomes more

complicated due to the non-stationarity. Second, our method could be used to

generate priors for state-space models that formally nest the DSGE model. This
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extension is conceptually straightforward but challenging from a computational per-

spective. Third, it is worthwhile to apply the method to larger scale DSGE models,

e.g., the Smets-Wouters (2003) model, and to make comparisons among priors that

are derived from different models, such as a New Keynesian model versus a flexible

price cash-in-advance model.

As envisioned in Diebold (1998), the combination of DSGE models and vector

autoregressions shows promise for macroeconomic forecasting and policy analysis.
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A Derivations and Proofs

The normalization factor c(θ) for the conditional prior density of the VAR parame-

ters p(Φ,Σu|θ) in Equation (21) is given by

c(θ) = (2π)
nk
2 |λTΓ∗

xx(θ)|
−n

2 |λTΣ∗
u(θ)|

−λT−k
2 (A1)

2
n(λT−k)

2 π
n(n−1)

4

n∏

i=1

Γ[(λT − k + 1− i)/2],
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where Γ[·] denotes the gamma function.

The marginal likelihood function of θ in Equation (32) is given by

p(Y |θ) = p(Y |Φ,Σ)p(Φ,Σ|θ)/p(Φ,Σ|Y ) (A2)

=
|λTΓ∗

xx(θ) +X ′X|−
n
2 |(λ+ 1)T Σ̃u(θ)|

−
(λ+1)T−k

2

|λTΓ∗
xx(θ)|

−n
2 |λTΣ∗

u(θ)|
−λT−k

2

×
(2π)−nT/22

n((λ+1)T−k)
2

∏n
i=1 Γ[((λ+ 1)T − k + 1− i)/2]

2
n(λT−k)

2
∏n
i=1 Γ[(λT − k + 1− i)/2]

.

The third equality can be obtained from the normalization constants of the Inverted

Wishart – Normal distributions.

Proof of Proposition 1. Define the sample moments Γ̂xx = X ′X/T , Γ̂xy =

X ′Y/T , and Γ̂yy = Y ′Y/T . Let φ = 1/λ and θ̃ the mode of the marginal log-

likelihood function given in Equation (A2). Consider the log-likelihood ratio

ln
p(Y |θ)

p(Y |θ̃)
= −

T

2
ln |Σ∗

u(θ)| −
n

2
ln |I + φΓ∗−1

xx (θ)Γ̂xx| (A3)

−
(1/φ+ 1)T − k

2
ln

∣∣∣∣
1/φ+ 1

1/φ
Σ∗−1

u (θ)Σ̃u(θ)

∣∣∣∣

+
T

2
ln |Σ∗

u(θ̃)|+
n

2
ln |I + φΓ∗−1

xx (θ̃)Γ̂xx|

+
(1/φ+ 1)T − k

2
ln

∣∣∣∣
1/φ+ 1

1/φ
Σ∗−1

u (θ̃)Σ̃u(θ̃)

∣∣∣∣ .

We derive an approximation of the log-likelihood ratio that is valid as φ −→ 0. A

first-order Taylor approximation of the second term around φ = 0 yields

ln |I + φΓ∗−1

xx Γ̂xx| = ln |I|+ φtr[Γ∗−1

xx Γ̂xx|+O(φ2). (A4)

Notice that

1/φ+ 1

1/φ
Σ∗−1

u Σ̃u =

[
Γ∗
yy − Γ∗

yxΓ
∗−1

xx Γ∗
xy

]−1
(A5)

×

[
Γ∗
yy + φΓ̂yy − (Γ∗

yx + φΓ̂yx)(Γ
∗
xx + φΓ̂xx)

−1(Γ∗
xy + φΓ̂xy)

]
.

The log-determinant of this term has the following first-order Taylor expansion

around φ = 0:

ln

∣∣∣∣
1/φ+ 1

1/φ
Σ∗−1

u Σ̃u

∣∣∣∣

= ln |I|+ φtr

[
Σ∗−1

u (Γ̂yy − Γ̂yxΦ
∗ − Φ∗′Γ̂xy +Φ∗′Γ̂xxΦ

∗)

]
+O(φ2). (A6)
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Combining these results yields

ln p(Y |θ) = −
T

2
ln |Σ∗

u(θ)|+
T

2
ln |Σ∗

u(θ̃)| (A7)

−
T

2
tr

[
Σ∗−1

u (θ)(Γ̂yy − Γ̂yxΦ
∗(θ)− Φ∗′(θ)Γ̂xy +Φ∗′(θ)Γ̂xxΦ

∗(θ))

]

+
T

2
tr

[
Σ∗−1

u (θ̃)(Γ̂yy − Γ̂yxΦ
∗(θ̃)− Φ∗′(θ̃)Γ̂xy +Φ∗′(θ̃)Γ̂xxΦ

∗(θ̃))

]
+O(φ)

= ln
p∗(Y |θ)

p∗(Y |θ̃)
+O(φ).

Thus, as φ −→ 0 the log-likelihood ratio converges to the log-likelihood ratio of the

quasi-likelihood functions. The convergence is uniform on compact subsets of Θ for

which Σ∗
u(θ) and Γ∗

xx(θ) are non-singular.

Proof of Proposition 2. We rewrite the marginal log-likelihood ratio given in

Equation (A3) in terms of λ:

ln
p(Y |θ)

p(Y |θ̃)
= −

T

2
ln |Σ∗

u(θ)| −
n

2
ln |λI + Γ∗−1

xx (θ)Γ̂xx| (A8)

−
(λ+ 1)T − k

2
ln
∣∣∣(λ+ 1)Σ∗−1

u (θ)Σ̃u(θ)
∣∣∣

+
T

2
ln |Σ∗

u(θ̃)|+
n

2
ln |λI + Γ∗−1

xx (θ̃)Γ̂xx|

+
(λ+ 1)T − k

2
ln
∣∣∣(λ+ 1)Σ∗−1

u (θ̃)Σ̃u(θ̃)
∣∣∣ .

A Taylor-series expansion of the second term around λ = 0 yields

ln |λI + Γ∗−1

xx Γ̂xx| = ln |Γ∗−1

xx Γ̂xx|+ λtr[Γ̂−1
xxΓ

∗
xx] +O(λ2). (A9)

Notice that

(λ+ 1)Σ∗−1

u Σ̃u =

[
Γ∗
yy − Γ∗

yxΓ
∗−1

xx Γ∗
xy

]−1
(A10)

×

[
λΓ∗

yy + Γ̂yy − (λΓ∗
yx + Γ̂yx)(λΓ

∗
xx + Γ̂xx)

−1(λΓ∗
xy + Γ̂xy)

]
.

The log-determinant of this term has the following first-order Taylor expansion

around λ = 0:

ln
∣∣∣(λ+ 1)Σ∗−1

u Σ̃u

∣∣∣ (A11)

= ln |Σ∗−1

u Σ̂u,mle|+ λtr

[
Σ̂−1
u,mle(Γ

∗
yy − Γ∗

yxΦ̂mle − Φ̂′
mleΓ

∗
xy + Φ̂′

mleΓ
∗
xxΦ̂mle)

]
+O(λ2)

= ln |Σ∗−1

u Σ̂u,mle|+ λtr

[
Σ̂−1
u,mleΣ

∗
u

]
+ λtr

[
Σ̂−1
u,mle(Φ

∗ − Φ̂mle)
′Γ∗
xx(Φ

∗ − Φ̂mle)

]
+O(λ2).
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Combining the three terms leads to the following approximation of the log-likelihood

ratio

p(Y |θ)

p(Y |θ̃)
= −

λT

2
ln |Σ∗−1

u (θ)|+
λT

2
ln |Σ∗−1

u (θ̃)| (A12)

−
λT

2
tr[Σ̂−1

u,mleΣ
∗
u(θ)] +

λT

2
tr[Σ̂−1

u,mleΣ
∗
u(θ̃)]

−
λT

2
tr[Σ̂−1

u,mle(Φ
∗(θ)− Φ̂mle)

′Γ∗
xx(θ)(Φ

∗(θ)− Φ̂mle)]

+
λT

2
tr[Σ̂−1

u,mle(Φ
∗(θ̃)− Φ̂mle)

′Γ∗
xx(θ̃)(Φ

∗(θ̃)− Φ̂mle)] +Op(max[λ2T, 1])

= ln
q(Y |θ)

q(Y |θ̃)
+Op(max[λ2T, 1]).

B Practical Implementation

We assume that the parameter space of λ is finite Λ = {l1, . . . , lq}. In order to

select λ, and to generate draws from the joint posterior distribution of DSGE model

parameters and VAR parameters we use the following scheme:

1. For each λ ∈ Λ use the Metropolis algorithm described in Schorfheide (2000)

to generate draws from pλ(θ|Y ) ∝ pλ(Y |θ)p(θ). The steps needed to evaluate

pλ(Y |θ) based on Equation (A2) are as follows. For each θ:

(i) Solve the DSGE model given by Equations (7), (10), and (12) to (14),

for instance, with the algorithm described in Sims (2002). This leads to a

transition equation of the form

st = T (θ)st−1 +R(θ)εt. (B1)

The measurement equation (15) can be written in stacked form as:

yt = Z(θ)st +D(θ) + νt. (B2)

(In our implementation we choose st such that νt = 0). Define the variance-

covariance matrices of the shocks as:

IE[νtν
′
t] = Σνν(θ), IE[εtε

′
t] = Σεε(θ), IE[εtν

′
t] = Σεν(θ).
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(ii) Compute the population moments Γ∗
yy(θ), Γ∗

yx(θ), and Γ∗
xx(θ) from the

state-space representation (B1, B2). Notice that

IE[yty
′
t] = ZΩssZ

′ + ZRΣεν + (ZRΣεν)
′ +Σνν +DD′

IE[yty
′
t−h] = ZT h(ΩssZ

′ +RΣεν) +DD′
(B3)

where Ωss = IE[sts
′
t] and can be obtained by solving the following Lyapunov

equation Ωss = TΩssT
′ +RΣεεR

′.

2. Based on these draws apply Geweke’s (1999) modified harmonic mean estima-

tor to obtain numerical approximations of the data densities pλ(Y ).

3. Find the pre-sample size λ̂ that has the highest data density.

4. Select the draws of {θ(s)} that correspond to λ̂ and use standard methods to

generate draws from p(Φ,Σu|Y, θ(s)) (see Equations 30 and 31) for each θ(s).

Notice that this scheme can also be used to select among competing DSGE

models. Moreover, the whole procedure can be easily generalized to the case in

which we have a prior distribution over the hyperparameter λ.
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Table 1: Prior Distributions for DSGE Model Parameters

Name Range Density Mean S.D.

ln γ IR Normal 0.500 0.250

lnπ∗ IR Normal 1.000 0.500

ln r∗ IR+ Gamma 0.500 0.250

κ IR+ Gamma 0.300 0.150

τ IR+ Gamma 2.000 0.500

ψ1 IR+ Gamma 1.500 0.250

ψ2 IR+ Gamma 0.125 0.100

ρR [0,1) Beta 0.500 0.200

ρg [0.1) Beta 0.800 0.100

ρz [0,1) Beta 0.300 0.100

σR IR+ Inv. Gamma 0.251 0.139

σg IR+ Inv. Gamma 0.630 0.323

σz IR+ Inv. Gamma 0.875 0.430

Notes: The model parameters ln γ, lnπ∗, ln r∗, σR, σg, and σz are scaled by 100

to convert them into percentages. The Inverse Gamma priors are of the form

p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

, where ν = 4 and s equals 0.2, 0.5, and 0.7, respec-

tively. Approximately 1.5 % of the prior mass lies in the indeterminacy region of

the parameter space. The prior is truncated in order to restrict it to the determinacy

region of the DSGE model.
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Table 2: Posterior of DSGE Model Parameters: 1959:III - 1979:II

Name Prior Posterior, λ = 1 Posterior, λ = 10

CI(low) CI(high) CI(low) CI(high) CI(low) CI(high)

ln γ 0.101 0.922 0.473 1.021 0.616 1.045

lnπ∗ 0.219 1.863 0.433 1.613 0.553 1.678

ln r∗ 0.132 0.880 0.113 0.463 0.126 0.384

κ 0.063 0.513 0.101 0.516 0.081 0.416

τ 1.197 2.788 1.336 2.816 1.684 3.225

ψ1 1.121 1.910 1.011 1.559 1.009 1.512

ψ2 0.001 0.260 0.120 0.497 0.150 0.545

ρR 0.157 0.812 0.530 0.756 0.550 0.747

Notes: We report 90 % confidence intervals based on the output of the Metropolis-

Hastings Algorithm. The model parameters ln γ, lnπ∗, and ln r∗ are scaled by 100

to converted them into percentages.
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Table 3: Percentage gain (loss) in RMSEs: DSGE Prior versus Unre-

stricted VAR and Minnesota Prior

Horizon rGDP Growth Inflation Fed Funds Multivariate

V-unr V-Minn V-unr V-Minn V-unr V-Minn V-unr V-Minn

1 17.335 1.072 8.389 1.653 7.250 -7.593 12.842 0.943

2 16.977 6.965 7.247 1.339 5.024 -4.895 10.993 2.884

4 15.057 5.803 8.761 4.767 5.008 -1.878 9.630 3.959

6 14.116 3.452 10.460 7.240 6.648 -0.713 10.388 4.290

8 12.387 4.230 11.481 7.794 8.420 -0.204 11.023 5.187

10 14.418 7.986 12.261 8.351 8.242 -0.639 12.864 6.463

12 15.078 12.512 12.626 9.011 6.404 0.726 12.419 7.537

14 16.236 17.233 12.995 9.634 6.059 1.146 12.611 8.481

16 19.122 21.575 13.238 10.116 5.823 2.389 13.428 9.512

Notes: The rolling sample is 1975:III to 1997:III (90 periods). At each date in the

sample, 80 observations are used in order to estimate the VAR. The forecasts are

computed based an the values λ̂ and ι̂ that have the highest posterior probability

based on the estimation sample.
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Figure 1: Forecasting performance as a function of the weight of the

prior
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Notes: The plot shows the percentage gain (loss) in RMSEs relative to an unre-

stricted VAR. The rolling sample is 1975:III to 1997:III (90 periods). At each date

in the sample, 80 observations are used in order to estimate the VAR.
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Figure 2: Identified impulse response functions

 0  4  8 12 16

−20

0

20

40

real GDP growth − cumulative

λ 
=

0.
5

 0  4  8 12 16
−15

−10

−5

0

5

10
inflation

 0  4  8 12 16
−10

0

10

20

30
Fed Fund

 0  4  8 12 16

−20

0

20

40

λ 
=

1

 0  4  8 12 16
−15

−10

−5

0

5

10

 0  4  8 12 16
−10

0

10

20

30

 0  4  8 12 16

−20

0

20

40

λ 
=

5

 0  4  8 12 16
−15

−10

−5

0

5

10

 0  4  8 12 16
−10

0

10

20

30

Notes: The dashed-dotted lines represent the posterior means of the VAR impulse

response functions. The dotted lines are 90% confidence bands. The solid lines

represent the mean impulse responses from the DSGE model. The impulse responses

are based on the sample 1981:IV to 2001:III.
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Figure 3: Effects of a Policy Regime Shift
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Notes: The dotted horizontal lines correspond to the sample standard deviation

of the actual data from 1982:IV to 1999:II. The dashed and the solid lines are

posterior predictive distributions of sample standard deviations for the same time

period, obtained using data up to 1979:II. The dashed line corresponds to ψ1 = 1.1,

the solid line corresponds to ψ1 = 1.8.


