

*Monetary Policy Regimes
and Economic Performance:
The Historical Record, 1979-2008*

Luca Benati
European Central Bank

Charles Goodhart
London School of Economics

Conference on:
'Key developments in monetary economics'
Frankfurt, 29-30 October 2009

The views expressed herein are personal, and do not necessarily
reflect the position of the European Central Bank

Today's talk:

Issue: ‘*Are SVAR-based policy counterfactuals reliable?*’

→ Based on **DSGE models**, we explore to which extent **SVAR-based** counterfactuals can reliably capture the impact of **changes in the Taylor rule** on the properties of the economy

Motivation:

SVAR-based policy counterfactuals are widely used:

→ Primiceri (*ReStat*, 2005), Sims and Zha (*AER*, 2006),
Gambetti, Pappa, Canova (*JMCB*, 2006) etc. etc.

However:

- **reliability** has **never** been systematically **checked** conditional on a set of DGPs
- **only** piece of evidence—Benati and Surico (*AER*, 2009)—is **negative** ...

Motivation (continued):

→ Benati and Surico provide a **single example** based on estimated **DSGE** models in which **SVARs fail** to uncover the truth about the DGP ...

In particular, **SVAR-based counterfactual** dramatically **fails** to capture the impact of changes in the Taylor rule ...

So, **how serious** is the problem?

Do Benati and Surico's results crucially depend on their **specific DGP**, or do they point towards a **general problem**?

Let's start by considering the key **conceptual** issue involved ...

The problem in a nutshell

- Take a **New Keynesian model**
- Consider **two** sets of parameters for the **Taylor rule**:

$$\begin{aligned}\text{Taylor}^1 &\rightarrow [\rho^1, \psi_\pi^1, \psi_y^1] \\ \text{Taylor}^2 &\rightarrow [\rho^2, \psi_\pi^2, \psi_y^2]\end{aligned}$$

Together with other parameters, you have:

$$\begin{aligned}\text{Taylor}^1 &\rightarrow \text{DSGE}^1 \rightarrow \text{SVAR}^1 \rightarrow \text{MonetaryRule}^1 \\ \text{Taylor}^2 &\rightarrow \text{DSGE}^2 \rightarrow \text{SVAR}^2 \rightarrow \text{MonetaryRule}^2\end{aligned}$$

where **MonetaryRuleⁱ**, $i = 1, 2$ is interest rate equation of the structural VAR representation of the DSGE model

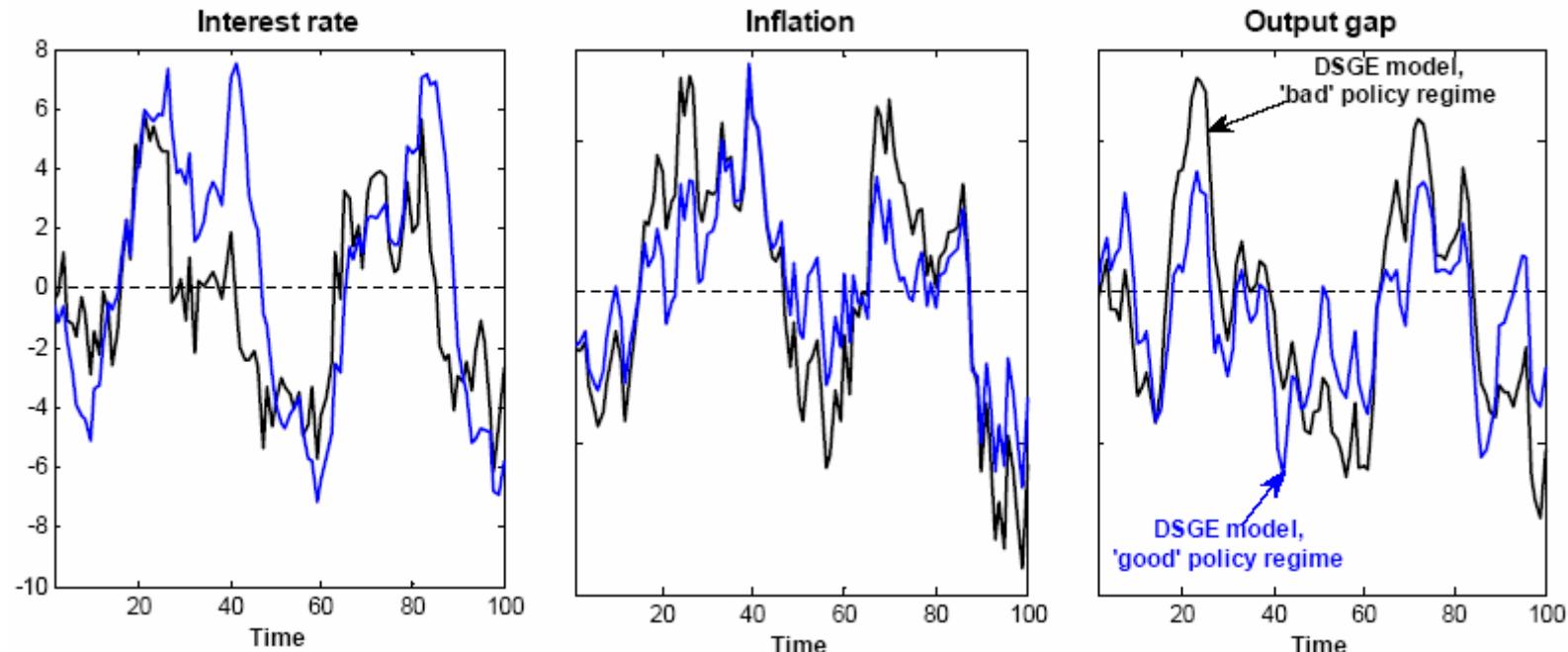
Key issue is: ‘Switching MonetaryRule¹ and MonetaryRule² is not the same as switching Taylor¹ and Taylor²,

→ difference is sometimes large ...

A simple illustration:

Feed **same** set of **shocks** to New Keynesian 3-equation ‘toy’ model conditional on **two** alternative **Taylor rules**:

- Taylor¹ $\rightarrow [\rho^1, \psi_\pi^1, \psi_y^1]$ (call it ‘bad’ policy)
- Taylor² $\rightarrow [\rho^2, \psi_\pi^2, \psi_y^2]$ (call it ‘good’ policy)



Switching Taylor¹ and Taylor² within the **DSGE** model causes black lines to become blue, and viceversa ...

Two alternative notions of policy counterfactual:

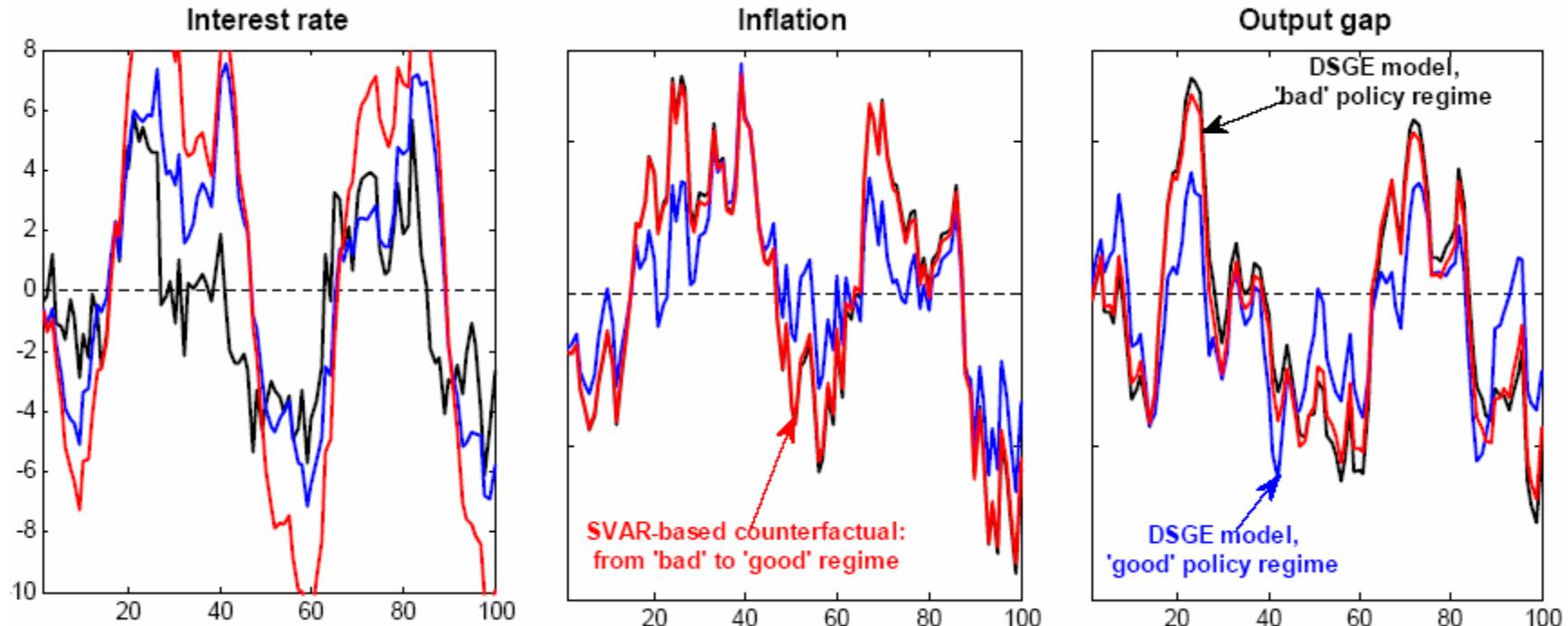
- Switching Taylor¹ and Taylor² within the **DSGE** model is the **authentic** policy counterfactual
- switching MonetaryRule¹ and MonetaryRule² within the **SVAR** model is the **SVAR-based** policy counterfactual

Question: ‘*Can I replicate the authentic policy counterfactual by switching the monetary rules of the structural VAR representations of the DSGE models?*’

The **answer** is **NO**, and the difference between the outcome of the authentic policy counterfactual and the outcome of the SVAR-based counterfactual is sometimes large ...

Let’s see in this case how large the error is in going from ‘bad’ to ‘good’ → **imposing MonetaryRule² in SVAR¹**

If SVAR-based counterfactual worked, **red** lines would be identical to the **blue** lines ...but this is clearly **not the case** ...



- On the contrary, for **inflation** and **output gap** you **hardly move** from the 'bad' regime (\rightarrow red almost identical to black)
- SVAR-based counterfactual **fails to capture truth**
 - \rightarrow Let's see results based on numerical methods ...

Theoretical properties of SVAR-based policy counterfactuals

- **Model:** standard **New Keynesian** model with backward and forward-looking components

$$y_t = \gamma y_{t+1|t} + (1 - \gamma) y_{t-1} - \sigma^{-1} (R_t - \pi_{t+1|t}) + \epsilon_{y,t}$$

$$\pi_t = \frac{\beta}{1 + \alpha\beta} \pi_{t+1|t} + \frac{\alpha}{1 + \alpha\beta} \pi_{t-1} + \kappa y_t + \epsilon_{\pi,t}$$

$$R_t = \rho R_{t-1} + (1 - \rho) [\phi_\pi \pi_t + \phi_y y_t] + \epsilon_{R,t}$$

- **Country:** United States
- **Sample period:** post-1960 period
- **Bayesian estimates** from Benati's (*QJE*, 2008)

These ‘benchmark’ estimates imply certain **theoretical properties** for the economy

→ trivially recovered from VAR implied by DSGE model ...

I will show results from the following exercise:

- Let $\text{Taylor}^B \equiv [\rho^B, \psi_\pi^B, \psi_y^B]$ be the estimated **benchmark Taylor rule**
- Let $\text{Taylor}^A \equiv [\rho^A, \psi_\pi^A, \psi_y^A]$ be an **alternative Taylor rule**, with different values of the key coefficients

We have

$$\begin{aligned}\text{Taylor}^B &\rightarrow \text{DSGE}^B \rightarrow \text{SVAR}^B \rightarrow \text{MonetaryRule}^B \\ \text{Taylor}^A &\rightarrow \text{DSGE}^A \rightarrow \text{SVAR}^A \rightarrow \text{MonetaryRule}^A\end{aligned}$$

which implies two sets of theoretical standard deviations for the series

$$\begin{aligned}\text{SVAR}^B &\rightarrow \text{STDs}^B \\ \text{SVAR}^A &\rightarrow \text{STDs}^A\end{aligned}$$

By definition, Substituting $Taylor^A$ with $Taylor^B$ implies that $STDs^A$ becomes $STDs^B$

Question: ‘What if I try to do that via the SVARs, by imposing MonetaryRule^B into SVAR^A?’

Let $STDs^C$ (C for **counterfactual**) be the theoretical standard deviations of the series produced by such SVAR-based policy counterfactual

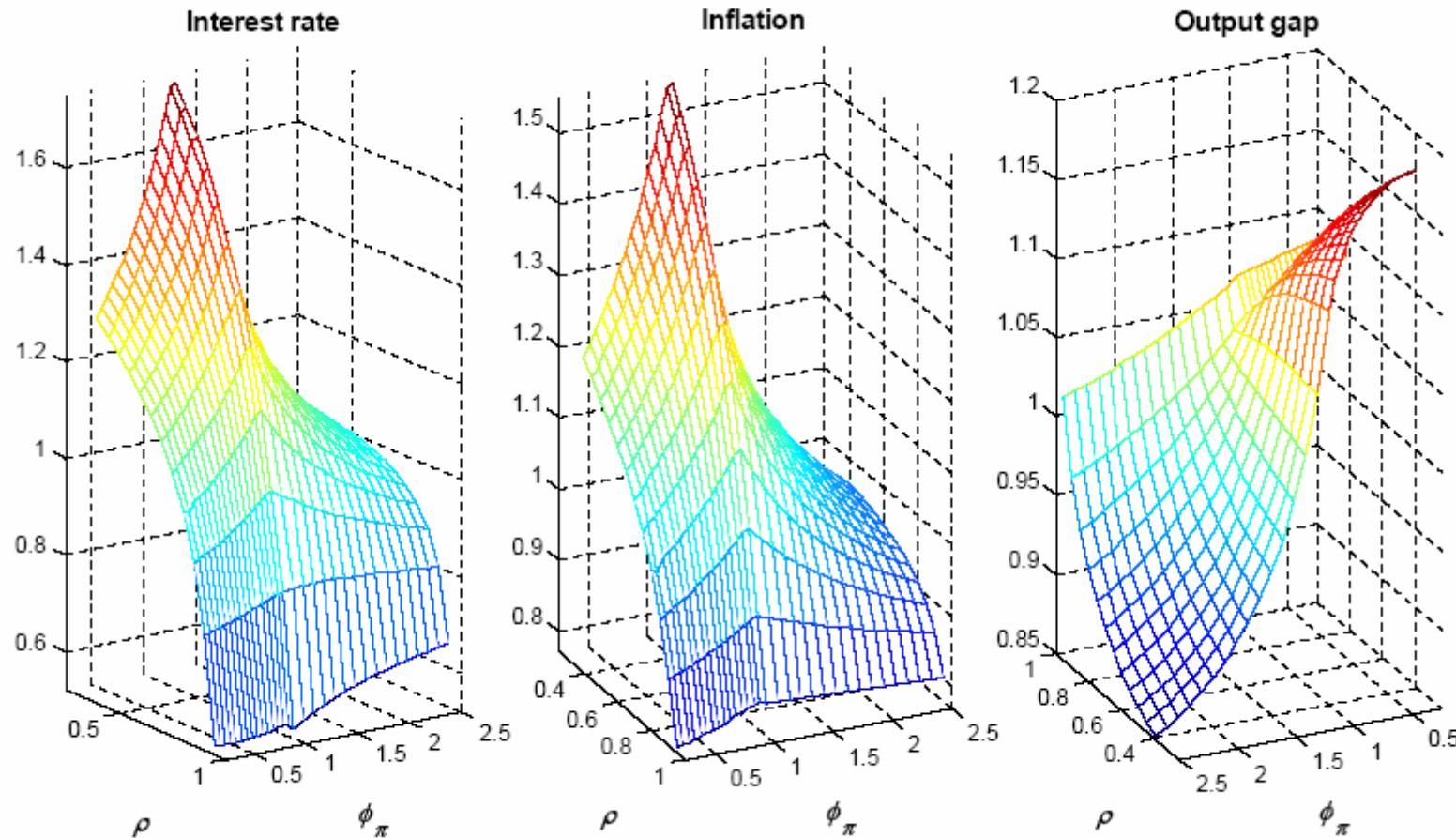
If it worked fine, we would have, for each variable

$$STDs^C = STDs^B$$

So that for each possible alternative Taylor rule ($Taylor^A$), their ratio would be uniformly one ...

→ but that's not the case

The ratio $\text{STDs}^{\text{C}}/\text{STDs}^{\text{B}}$ for grids of values for ρ^{A} and ψ_{π}^{A} :



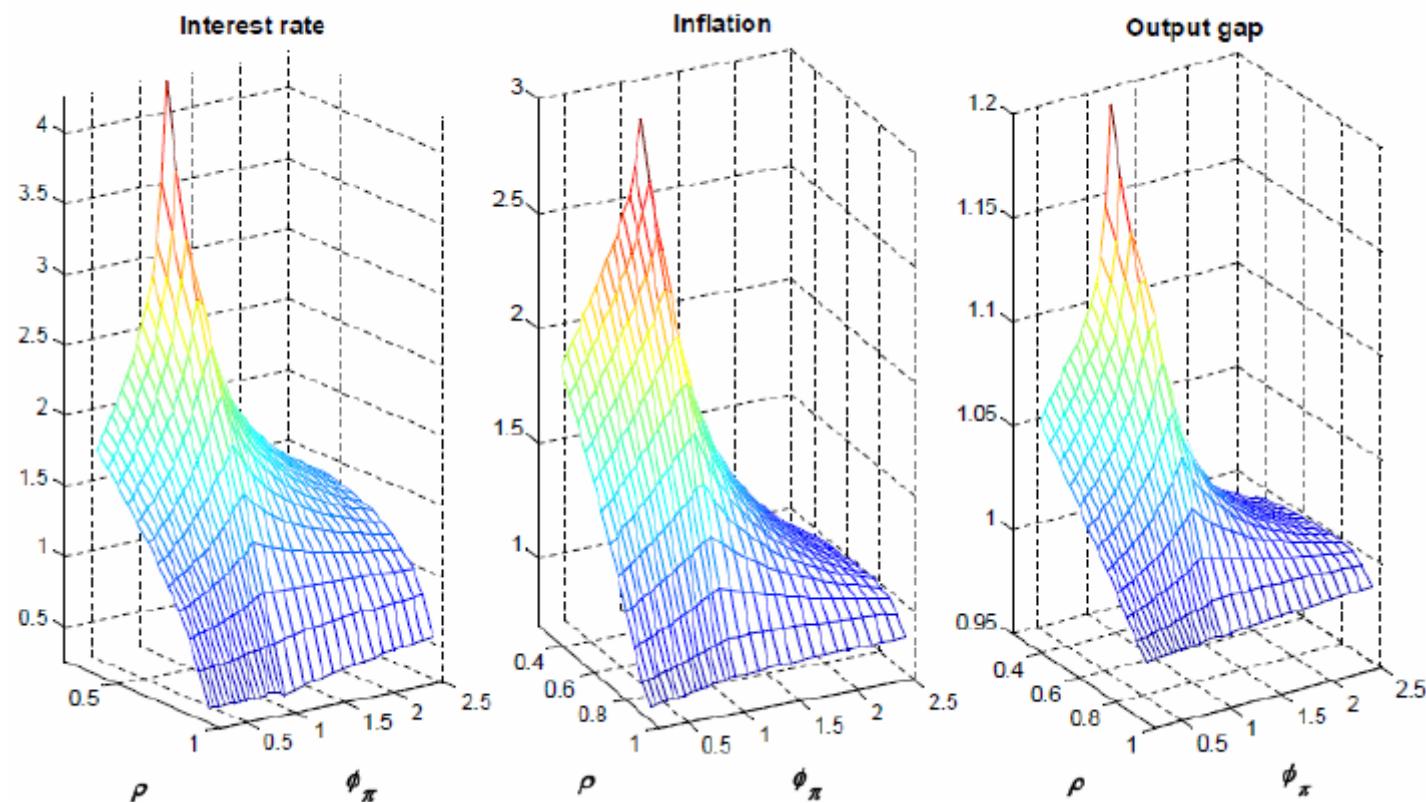
Only close to 1 if Taylor^A is close to Taylor^B ...

→ In general, SVAR-based counterfactual fails ...

Same results based on two alternative DSGE models:

(i) Lubik and Schorfheide (*AER*, 2004)

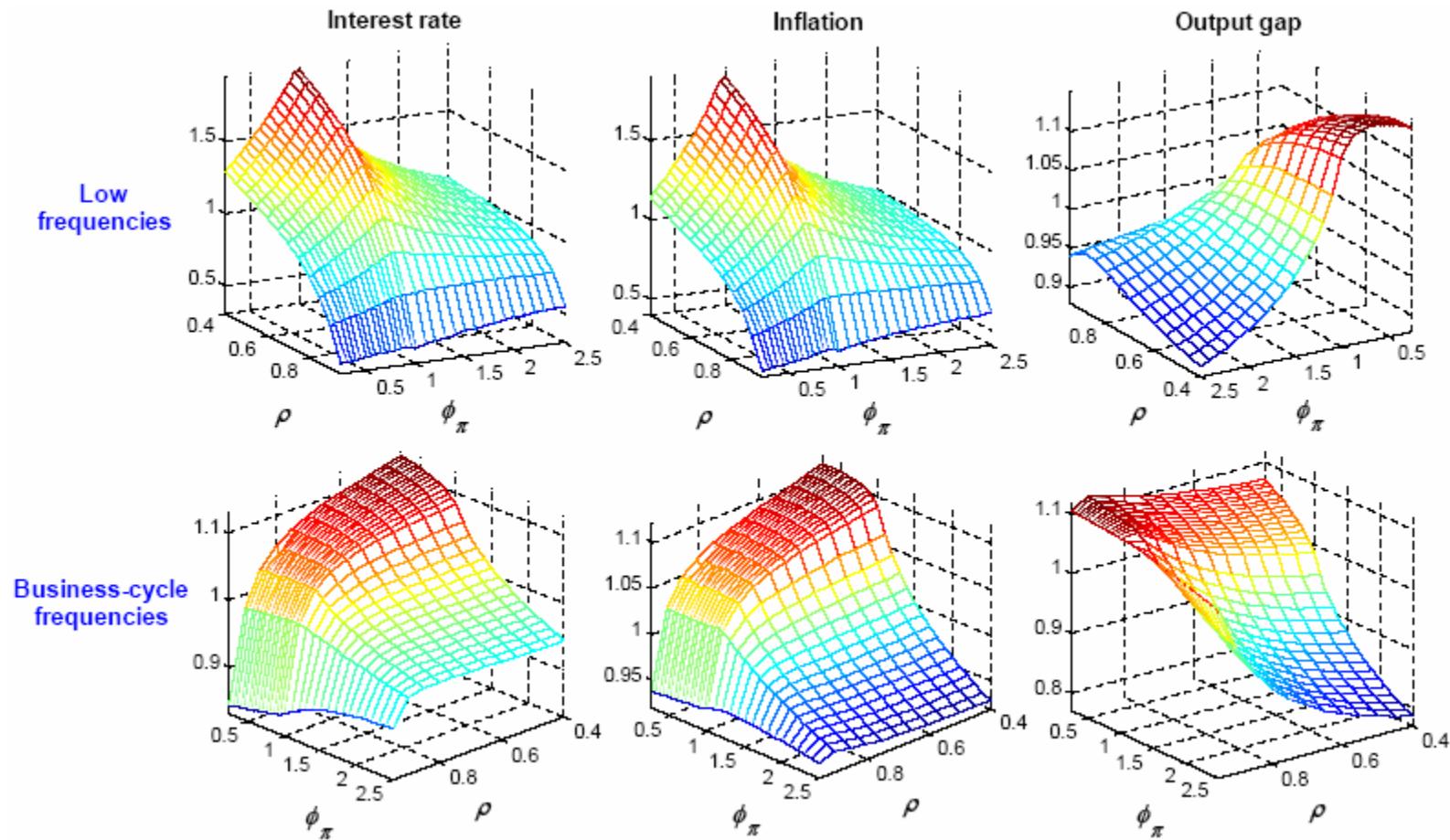
(ii) Andres, Lopes-Salido, and Nelson (*JEDC*, 2009),
which I estimate for post-WWII United States



Results based on Lubik and Schorfheide (*AER*, 2004)

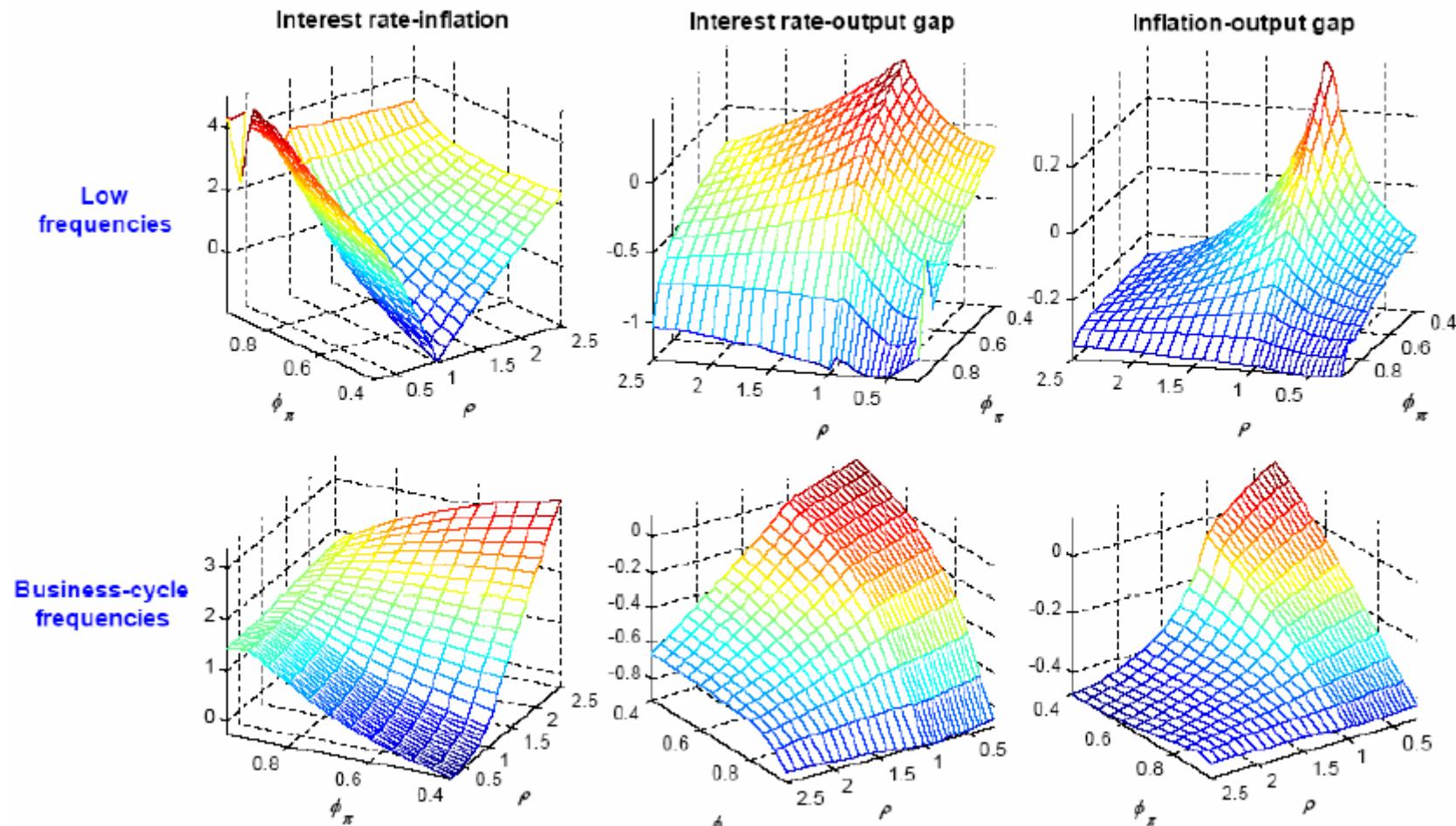
More evidence on this based on theoretical **cross-spectral statistics** between **benchmark** and **counterfactual** VARs

If counterfactual **worked well**, for each series cross-spectral **gain** between benchmark and counterfactual **would be one**



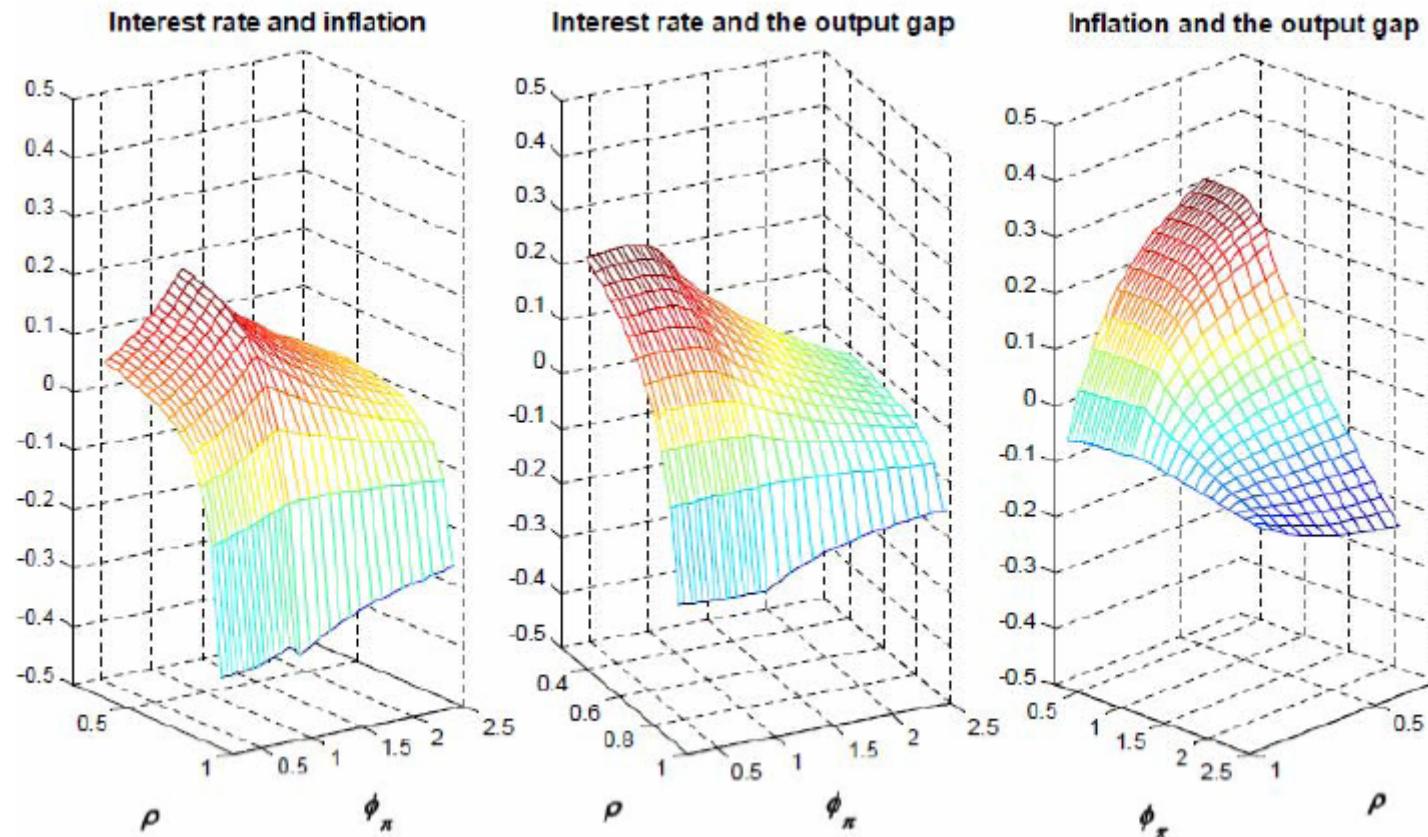
It clearly is not ...

SVAR-based counterfactual also **distorts macro relationships**:



I: **Difference** between counterfactual and benchmark cross-spectral gains is sometimes large ...

II: Difference between counterfactual and benchmark unconditional correlations:



‘Where does the problem originate from?’

I show it is due to the **cross-equations restrictions** imposed by **rational expectations** on the solution of macroeconomic models with **forward-looking components** ...

Formally, let the **SVAR** representations of the **DSGE** model conditional on **2** alternative **values** of the **policy** parameters, θ_1 and θ_2 , be:

$$\tilde{B}_0(\theta_1)Y_t = \tilde{B}_1(\theta_1)Y_{t-1} + \dots + \tilde{B}_p(\theta_1)Y_{t-p} + \epsilon_t$$

$$\tilde{B}_0(\theta_2)Y_t = \tilde{B}_1(\theta_2)Y_{t-1} + \dots + \tilde{B}_p(\theta_2)Y_{t-p} + \epsilon_t$$

The **SVAR-based counterfactual** associated with imposing the **SVAR’s structural monetary rule for regime 2** onto the **SVAR** for **regime 1** produces the following structure:

$$\begin{bmatrix} \tilde{B}_0^R(\theta_2) \\ \tilde{B}_0^{\sim R}(\theta_1) \end{bmatrix} Y_t = \begin{bmatrix} \tilde{B}_1^R(\theta_2) \\ \tilde{B}_1^{\sim R}(\theta_1) \end{bmatrix} Y_{t-1} + \dots + \begin{bmatrix} \tilde{B}_p^R(\theta_2) \\ \tilde{B}_p^{\sim R}(\theta_1) \end{bmatrix} Y_{t-p} + \epsilon_t$$

The problem is clear:

- **SVAR-based counterfactual only changes θ in the interest rate equation**
- **it leaves θ unchanged in the other equations**

Therefore, **in general**, results from SVAR-based counterfactual are **different** from results of DSGE-based counterfactual ...

Now let's see an **extreme example** in which the model solution is vector white noise: I show this is **only** case in which SVAR-based counterfactual works ...

Analytical example:

An **extreme example**: consider a purely forward-looking New Keynesian model:

$$R_t = \rho R_{t-1} + (1 - \rho)[\phi_\pi \pi_t + \phi_y y_t] + \epsilon_{R,t}$$

$$\pi_t = \beta \pi_{t+1|t} + \kappa y_t + z_t$$

$$y_t = y_{t+1|t} - \tau(R_t - \pi_{t+1|t}) + g_t$$

Setting $\phi_y = \rho = \rho_z = \rho_g = 0$, under **determinacy** model has following ‘VAR representation’ *sui generis*:

$$\underbrace{\begin{bmatrix} R_t \\ \pi_t \\ y_t \end{bmatrix}}_{Y_t} = \underbrace{\frac{1}{1 + \kappa \tau \phi_\pi} \begin{bmatrix} 1 & \kappa \phi_\pi & \phi_\pi \\ -\kappa \tau & \kappa & 1 \\ -\tau & 1 & -\tau \phi_\pi \end{bmatrix}}_{A_0} \underbrace{\begin{bmatrix} \epsilon_{R,t} \\ z_t \\ g_t \end{bmatrix}}_{\epsilon_t}$$

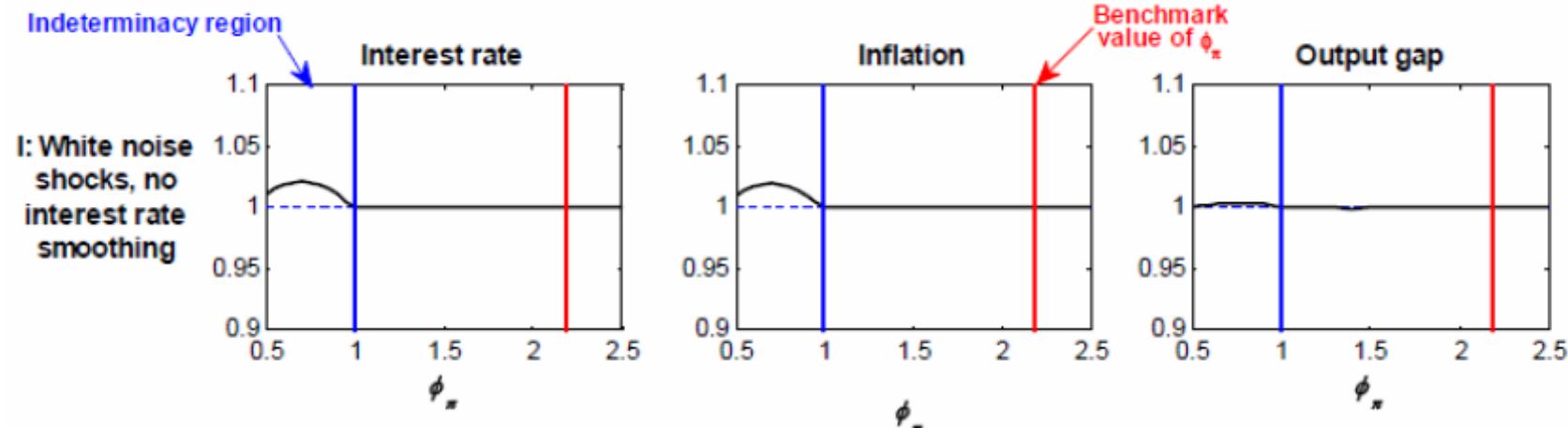
No dynamics because (i) model is purely forward-looking; (ii) shocks are white noise; (iii) solution under determinacy

SVAR representation is:

$$\underbrace{\begin{bmatrix} 1 & -\phi_\pi & 0 \\ \tau & 0 & 1 \\ 0 & 1 & -\kappa \end{bmatrix}}_{A_0^{-1}} \underbrace{\begin{bmatrix} R_t \\ \pi_t \\ y_t \end{bmatrix}}_{Y_t} = \underbrace{\begin{bmatrix} \epsilon_{R,t} \\ z_t \\ g_t \end{bmatrix}}_{\epsilon_t}$$

Policy parameter only appears in the interest rate equation, but not in the other equations ...

→ this suggests SVAR-based counterfactuals should work fine



Indeed, it does ...

In the figure in previous page notice that SVAR-based counterfactual still **fails under indeterminacy** ...

Lubik and Schorfheide (*JEDC* 2003, *AER* 2004):

- under indeterminacy, solution depends on additional **latent AR(1) process**
 - **expectations of inflation and output gap—which depend on policy parameter—do not drop out of IS and Phillips curves**
 - **policy parameter enters the SVAR equations for inflation and output gap**

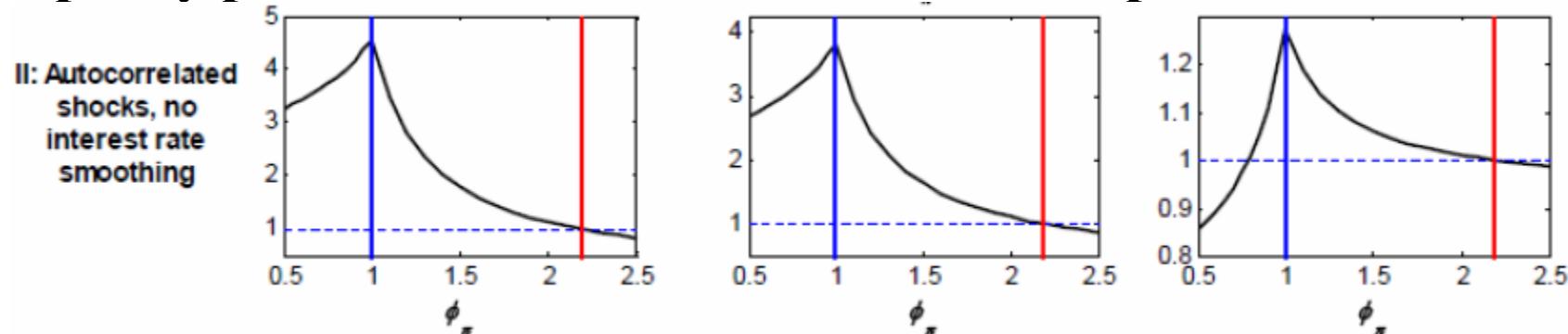
However, even under determinacy, as soon as you **relax** these **extreme assumptions, the counterfactual fails** ...

Let's relax the assumption of white noise shocks ...

Assume **shocks** to IS and Phillips curves are **AR(1)** processes.

I show analytically—see equation (17)—that now inflation, output, contain AR(1) component, so that

- their expectations are not zero
- such non-zero expectations cause complex convolutions of policy parameter to enter the IS and Phillips curves ...



SVAR-based counterfactual **fails even under determinacy**,

→ Analogous results for models with partly backward-looking components in the IS and Phillips curves ...

‘How relevant is the problem in practice?’

Only way to answer would be to know the true data generation process ...

In what follows I will provide **tentative** evidence on likely practical relevance of the problem, based on **estimated DSGE models** for Great Inflation and most recent period

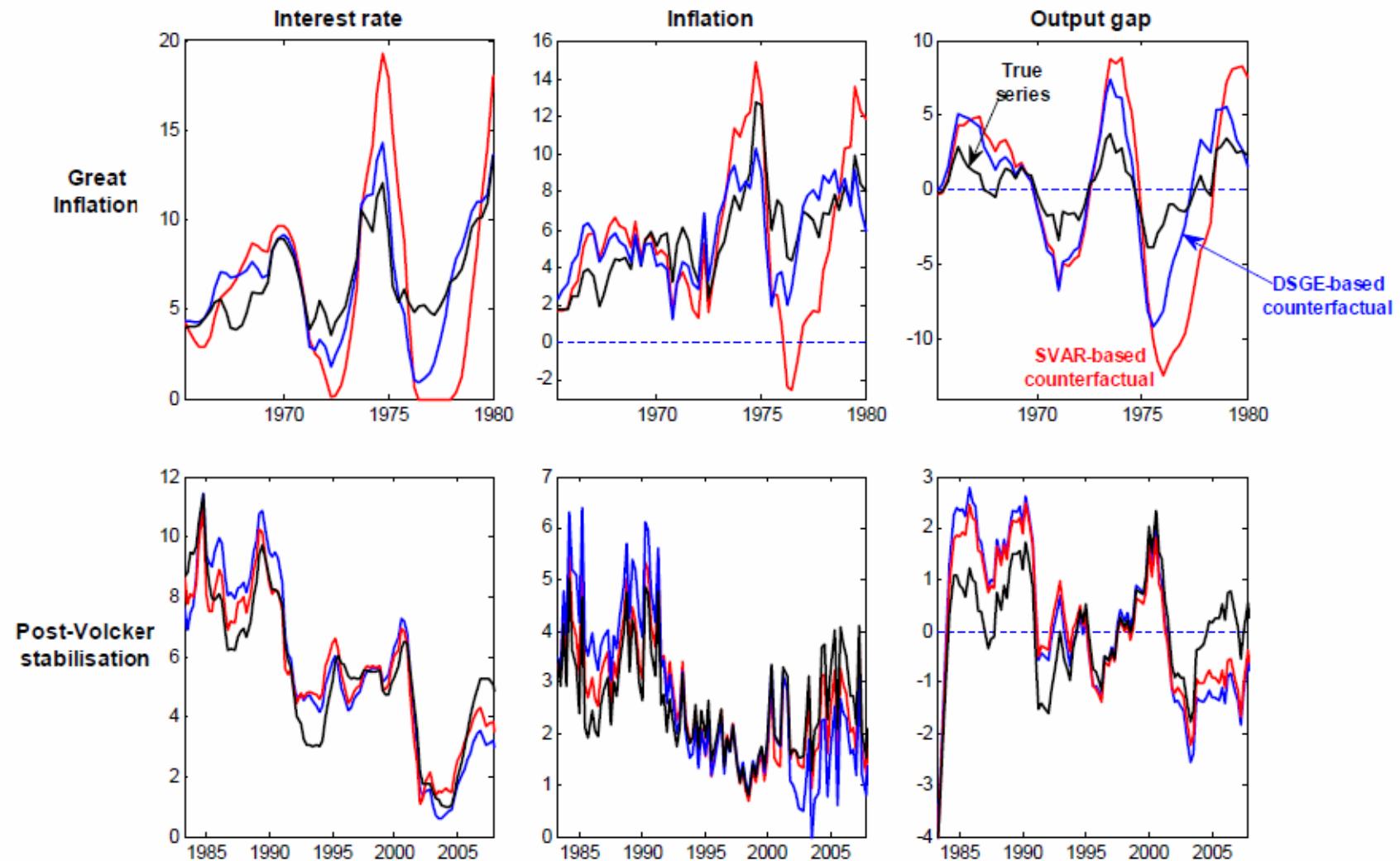
- **Countries:** United States, United Kingdom
- **Models:** (i) standard New Keynesian backward- and forward-looking, and (ii) Andres, Lopes-Salido, and Nelson (*JEDC*, 2009)
- **Estimation:** Bayesian → Random-Walk Metropolis
- I allow for one-dimensional **indeterminacy**, but **no sunspot shocks**
→ with sunspot shocks, **identification** problem under indeterminacy ...

Then, based on estimated models for two periods, I perform **policy counterfactuals**

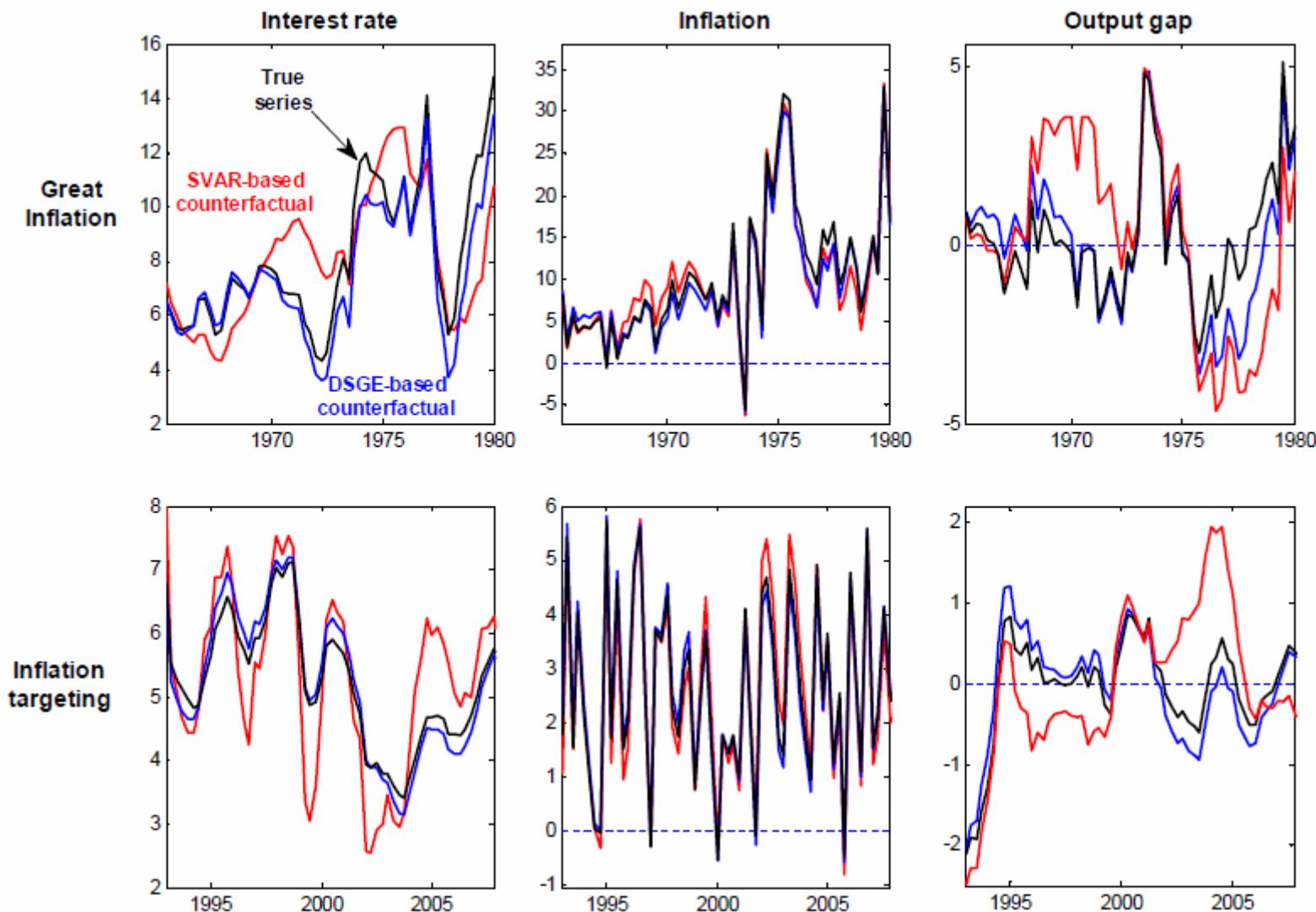
- both **DSGE**-based and **SVAR**-based
- for both periods

Let's see the results ...

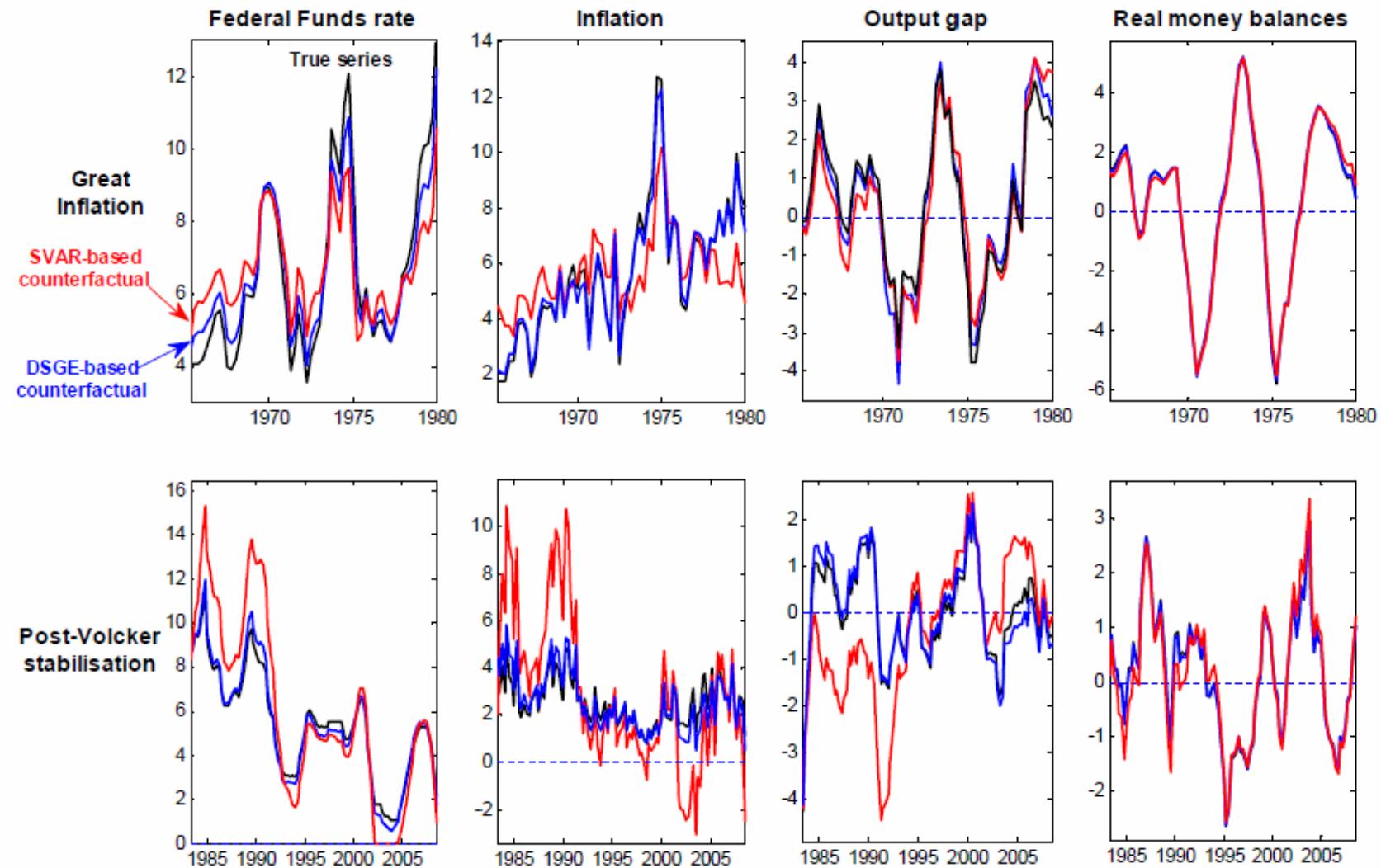
I: U.S., New Keynesian backward- and forward-looking model



II: U.K., New Keynesian backward- and forward-looking model



III: U.S., Andres *et al.* (JEDC, 2009) model



Key points to stress: I

Results are already sufficiently **bad without sunspots** ...

If I **allow for sunspots**, everything becomes **worse**, because

- there's an **identification** problem under indeterminacy (N VAR residuals, $N+1$ shocks)
→ 'identified' shocks under indeterminacy are **not true structural shocks**
- the **DSGE-based** counterfactual '**kills off**' the sunspots, the **SVAR-based** one **cannot** ...
→ results are necessarily **distorted**

Key points to stress: II

SVAR-based counterfactuals suffer from key **logical problem**

- **reliability crucially depends on unknown structural characteristics of data generation process**
→ extent of forward- as opposed to backward-looking behaviour, etc.
- **you can't just assume it**
- **only way to check for reliability within specific context is to estimate a (DSGE) structural model ...**
- **but that's exactly what the SVAR methodology wanted to avoid in the first place!!**

Summing up

SVAR-based counterfactuals perform **well** only conditional on **extreme model features** → model solution is vector white noise

Under **normal circumstances** SVAR-based counterfactuals **always** suffer from an **approximation** error which **can be** quite **substantial** ...

Results from SVAR-based counterfactuals should be taken with **caution**, precisely because they **may suffer** from a **substantial imprecision** ...

SVAR-based counterfactuals suffer from crucial logical problem: only way to check for reliability within specific context is to estimate structural model ...