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Abstract 
We present new evidence on disaggregated profit and loss and VaR forecasts obtained 
from a large international commercial bank.  Our dataset includes daily P/L generated by 
four separate business lines within the bank.  All four business lines are involved in 
securities trading and each is observed daily for a period of at least two years.  We also 
collected the corresponding daily, 1-day ahead VaR forecasts for each business line.  
Given this rich dataset, we provide an integrated, unifying framework for assessing the 
accuracy of VaR forecasts. Our approach includes many existing backtesting techniques 
as special cases.  In addition, we describe some new tests which are suggested by our 
framework. A thorough Monte Carlo comparison of the various methods is conducted to 
provide guidance as to which of these many tests have the best finite-sample size and 
power properties. 
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1. Introduction 

Value-at-Risk (VaR) is by far the leading measure of portfolio risk in use at major 

commercial banks.  Despite criticisms of VaR’s statistical properties (e.g. Artzner, 

Delbaen, Eber, and Heath (1999)) and theoretical concerns that widespread usage of VaR 

could increase systemic risk (Basak and Shapiro (2002)), financial institutions and their 

regulators increasingly rely on VaR as a measure of portfolio risk.   

Under the “internal models approach” of the Basle Accord on banking (Basle 

Committee on Banking Supervision, 1996), financial institutions have the freedom to 

specify their own model to compute their Value-at-Risk. The accuracy of VaR models 

can be checked and must be checked by assessing the accuracy of the forecasts—a 

procedure known as backtesting. 

Model validation in general and backtesting in particular is an important 

component of the Supervisory Review Process (the Second Pillar) in Basel II (Basle 

Committee on Banking Supervision, 2004). The lively public policy debate sparked by 

Basle II has focused attention on banks’ procedures for backtesting. While no particular 

technique for backtesting is currently suggested in Basle II, the potential for a supervisor 

endorsed backtesting technique has clear implications for the banking system as a whole. 

It is thus crucially important for the institutions and regulators to assess the quality of the 

models employed.  

In this paper, we provide further empirical evidence on the accuracy of actual 

VaR models in forecasting portfolio risk. We obtained the daily profit and loss (P/L) 

generated by four separate business lines from a large, international commercial bank.  

Each of the business line’s P/L series is observed daily for a period of more than two 

years.  For two of the business lines, we have over 600 daily observations while for the 

other two we have over 800 observations yielding a panel of 2,930 observations.   

All four business lines are involved in securities trading but the exact nature of 

each business line is not known to us.  Each series is constructed and defined in a 

consistent manner but the series are normalized to protect the bank’s anonymity.  We do 

not observe the aggregate P&L summed across the business desks. 

In addition to the daily P/L data, we obtained the corresponding daily, 1-day 

ahead VaR forecasts.  For each business line within the bank, and for each day, the VaR 
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forecasts are estimates of the 1% lower tail.  Our data set complements that of Berkowitz, 

O’Brien (2002) who obtained daily bank-wide P/L and VaR data, but who were not able 

to obtain any information on separate business lines within the same bank.  

Given this rich dataset, we provide an integrated, unifying framework for 

assessing the accuracy of VaR forecasts. Our approach includes the existing tests 

proposed Christoffersen (1998) and Christoffersen and Pelletier (2004) as special cases.  

In addition, we describe some new tests which are suggested by our framework.   

In order to provide some guidance as to which of these many tests have the best 

finite-sample size and power properties, we conduct a thorough horserace in a Monte 

Carlo setting.   

 Testing the accuracy of a Value-at-Risk (VaR) model is based on the observation 

that the VaR forecast is a (one-sided) interval forecast. Violations – the days on which 

portfolio losses exceed the VaR – should therefore be unpredictable. In particular, the 

violations form a martingale difference sequence. The martingale hypothesis has a long 

and distinguished history in economics and finance (Durlauf (1991)). Related work dates 

back at least to the random walk theory of stock prices. The risk-neutral pricing methods 

of Harrison and Kreps (1979) and Harrison and Pliska (1981) are based on the martingale 

representation theorem.  

 As a result of this extensive toolkit, we are able to cast all existing methods of 

evaluating VaR under a common umbrella of martingale tests.  This immediately 

suggests several testing strategies.  The most obvious is a test of whether any of the 

autocovariances are nonzero. The standard approach to test for uncorrelatedness is by 

estimating the sample autocovariances or sample autocorrelations. In particular, we 

suggest the well-known Ljung-Box test of the violation sequence’s autocorrelation 

function. 

The second set of tests are inspired by Campbell and Shiller (1987) and Engle and 

Manganelli (2004). If the violations are a martingale difference sequence, then they 

should be uncorrelated by any transformation of the variables available when the VaR is 

computed. It suggests a regression of the violations/non-violations on their lagged values 

and lagged variables such as previous VaRs. 
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 A third set of tests are adapted from Christoffersen and Pelletier (2004) who focus 

on hazard rates and durations.  These tests are based on the observation that the number 

of days separating the violations (i.e., the durations) should be totally unpredictable.  

 Lastly, a fourth set of tests is taken from Durlauf (1991). He derives a set of tests 

of the martingale hypothesis based on the spectral density functions. This approach has 

several features to commend it. Unlike variance ratio tests, spectral tests have power 

against any linear alternative of any order. Spectral density tests have power to detect any 

second moment dynamics. Variance ratio tests are typically not consistent against all 

such alternatives.  

 Because the violation of the VaR is, by construction, a rare event, the effective 

sample size in realistic risk management settings can be quite small. It follows that we 

can’t rely on the asymptotic distribution of the tests to conduct inference. We instead rely 

on Dufour (2004)’s Monte Carlo testing technique which yields tests with exact level, 

irrespective of the sample size and the number of replications used. 

 The paper proceeds as follows. In Section 2 we present some new evidence on 

desk-level P/Ls and VaRs from a large international bank and we discuss the pros and 

cons of market risk management using historical simulation. Section 3 gives an overview 

of existing methods for backtesting VaR estimates and it suggests a few new approaches 

as well. Section 4 presents the results of a detailed horserace among the methods in terms 

of size and power properties in finite sample.  Section 5 presents the empirical results of 

applying the various testing methods to our desk-level data sample. Section 6 concludes.  

 

2. Desk Level P&L and VaR at a Commercial Bank 

We collected the daily profit and loss (P/L) generated by four separate business 

lines from a large, international commercial bank. All four business lines are involved in 

securities trading but the exact nature of each business line is not known to us.  Each 

series is constructed and defined in a consistent manner but they series are normalized to 

protect the bank’s anonymity.  We do not observe the aggregate P&L summed across the 

business desks.  
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In addition to the daily revenue data, we obtained the corresponding 1-day ahead 

Value-at-Risk forecasts.  The VaR forecasts are estimates of the 99% lower tail and are 

calculated for each business line within the bank.  

Suppose revenue is denoted by Rt.  The p percent Value-at-Risk (VaR) is the 

quantity VaRt such that  

(1)     ( )1 |t t tF R VaR p+ < − Ω =  

where tΩ  is the time-t information set.  The VaR is the pth percentile of the return 

distribution. The probability p is referred to as the coverage rate. By definition, the 

coverage rate is the probability that the lower tail VaR will be exceeded on a given day.  

In our dataset the tail percentile of the bank’s VaR is set at p =.01 which yields a 

one-sided, 99% confidence interval.  This is quite far in the tail but is typical of the VaR 

forecasts at commercial bank (e.g., Berkowitz and O’Brien (2002)).  

The daily P/L (dashed) and associated (negative) VaR (solid) are plotted over 

time in Figure 1. Business line 1 is observed from January 2, 2001 through June 30, 2004, 

business line 2 is observed from April 2, 2001 and lines 3 and 4 from January 3, 2002. 

Several interesting observations are apparent in Figure 1. First, notice that bursts of 

volatility are apparent in each of the P/L series (e.g. mid-sample for line 1 and end-

sample for line 2) but these bursts are not necessarily synchronized across business lines. 

Second, note the occasional and very large spikes in the P/Ls. These are particularly 

evident for line 1 and 2. Third, the bank VaRs exhibit considerable short-term variability 

(line 3), sometimes they show persistent trends away from the P/Ls (line 1) and even 

what looks like regime-shifting without corresponding moves in the associated P/L (line 

2).  

Table 1 reports the first four sample moments of the P/Ls and VaRs along with 

the exact number of daily observations. Of particular interest are the skewness and 

kurtosis estimates. Skewness is evident in business line 1 (negative) and line 2 (positive) 

but much less so in business lines 3 and 4. Excess kurtosis is evident in all four business 

lines and dramatically so in lines 1 and 2. The skewness statistics confirm the occasional 

spikes in the P/Ls in Figure 1. For completeness, the descriptive statistics for the VaRs 

are also reported in Table 1.  
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The occasional bursts of volatility apparent in the P/Ls in Figure 1 are explored 

further in Figure 2 where we demean the P/Ls and plot their daily absolute values over 

time. While the spikes in P/Ls dominate the pictures, episodes of high volatility is evident 

in each of the series, although perhaps less so in business line 3.  

 

3. A Unified Framework for VaR Evaluation 

Under the Market Risk Amendment to the Basle Accord effective in 1996, 

qualifying financial institutions have the freedom to specify their own model to compute 

their Value-at-Risk.  It thus becomes crucially important for regulators to assess the 

quality of the models employed by assessing the forecast accuracy—a procedure known 

as “backtesting”. 

The accuracy of a set of VaR forecasts can be assessed by viewing them as one-

sided interval forecasts.  A violation of the VaR is defined as occurring when the ex post 

return is lower than the VaR.  Specifically, we define violations  

(2)         1
1

1, ( )
0,

t t
t

if R VaR p
I

else
+

+

< −
= 


 

i.e. a sequence of zeros and ones.  By definition, the conditional probability of violating 

the VaR should always be 

(3)         pIpr tt =Ω=+ )|1( 1  

for every time-t. Below, we will refer to tests of this property as conditional coverage 

(CC) tests.  

 

A.  Autocorrelation Tests 

Christoffersen (1998) notes that property (3) implies that any sequence of 

violations, {It}, should be an i.i.d. Binomial random variable with mean p.  In order to 

formally test this, Christoffersen (1998) embeds the null hypothesis of an i.i.d. Binomial 

within a general first-order Markov process.  

If {It} is a first-order Markov process the one-step-ahead transition probabilities 

)|( 1 tt IIpr +  are given by  
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(4)      







−
−

1111

0101

1
1
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where ijπ  is the transition )|( 1 iIjIpr tt ==+ . 

Under the null, the violations have a constant conditional mean which implies the 

two linear restrictions, p== 1101 ππ .  A likelihood ratio test of these restrictions can be 

computed from the likelihood function 

 ( ) ( ) ( )0 01 1 1101 11
01 11 01 01 11 11; , 1 1T T T TT TL I π π π π π π− −= − −  

where ijT  denotes the number of observations with a j following a i  and iT  is the number 

of i  is the number of ones or zeros in the sample.  

 We note that all the tests are carried out conditioning on the first observation. The 

tests are asymptotically distributed as chi-square with degree of freedom two. But as for 

all the tests we will rely on finite sample p-values as discussed below. 

In this paper, we extend and unify the existing tests by noting that the de-meaned 

violations { pIt − } form a martingale difference sequence.  By definition of the 

violation, equations (2)-(3) immediately imply that  

(5)               [ ] 0|)( 1 =Ω−+ tt pIE  

where tΩ  is the information set up to time-t.  The de-meaned violations form a 

martingale difference sequence (m.d.s.) with respect to the agent’s time-t information set.  

This will be an extremely useful property because it implies that the violation sequence is 

uncorrelated at all leads and lags. 

This motivates a variety of tests which focus on the white noise or martingale 

property of the sequence.  Since white noise has zero autocorrelations at all leads and 

lags, the violations can be tested by calculating statistics based on the sample 

autocorrelations.   

For any variable Zt in the agent’s time-t information set, 

(6)      [ ] 0)( 1 =⊗−+ tt ZpIE  

which is familiar as the basis of GMM estimation.  

Specifying Zt to be the most recent de-meaned violation, we have  

(7)     [ ] 0))(( 1 =−−+ pIpIE tt .  
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The violation sequence has a first-order autocorrelation of zero, under the null.  It is this 

property which is exploited by the Markov test of Christoffersen (1998).  

More generally, if we set Zt = It-k  for any k≥0,  

(8)     [ ] 0))(( 1 =−− −+ pIpIE ktt  

which says that the de-meaned violation sequence is in fact White Noise. We write this 

null hypothesis compactly as   

(9)                         ( ))1(,0~)( 1 pppI
iid

t −−+ .   

A natural testing strategy is to check whether any of the autocorrelations are not 

zero.  Under the null all the autocorrelations are zero 

0,0:0 >= kH kγ  

and the alternative hypothesis of interest is that  

. somefor    ,0: kH ka ≠γ  

The Portmanteau or Ljung-Box statistics, for example, have known distribution 

which can be compared to critical values under the white noise null.  The Ljung-Box 

statistic is a joint test of whether the first m autocorrelations are zero.  We can 

immediately make this into a test of of a VaR model by calculating the autocorrelations 

of )( 1 pIt −+ and then calculating  

           
kT

TTmLB k
m

k −
+= ∑

=

2

1
)2()(

γ
 

which is asymptotically chi-square with m degrees of freedom.  

We may also want to consider whether violations can be predicted by including 

other data in the information set such as past returns.  Under the null hypothesis, it must 

be that  

(10)              [ ] 0,...),,...,,()( 111 =− −−+ ttttt RRIIgpIE .  

for any non-anticipating function g(⋅).    

In analogy with Engle and Manganelli (2004), we might consider the nth-order 

autoregression 

(11)     1 2 1 1
1 1

( , , , , , )
n n

t k t k k t k t k t k t k t
k k

I I g I I R R uα β β− − − − − − −
= =

= + + +∑ ∑ K K  
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where we set 1 1 1( , , , , , )t k t k t k t k t kg I I R R VaR− − − − − − − +=K K  and n=1. We can then test if the 

coefficients β  are statistically significant and whether pα =  using standard t-tests. We 

refer to this test as the CaViaR test of Engle and Manganelli.  

 

B.  Hazard Rates and Tests for Clustering in Violations 

 Under the null that VaR forecasts are correctly specified, the violations should 

occur at random time intervals.  Suppose the duration between two violations is defined 

as 

(12)                   1−−= iii ttD       

where it  denotes the day of the violation number i .  The duration between violations of 

the VaR should be completely unpredictable.  There is an extensive literature on testing 

duration dependence (e.g., Kiefer (1988), Engle and Russel (1998), Gourieroux (2000)) 

which makes this approach particularly attractive.   

Christoffersen and Pelletier (2004) apply duration-based tests to the problem of 

assessing VaR forecast accuracy.  In this section we expand upon their methods.  The 

duration-based tests can be viewed as another procedure for testing whether the violations 

form a martingale difference sequence.  

Using the Binomial property, the probability of a violation next period is exactly 

equal to ( ) ( )11 1i tpr D pr I p+= = = = .  The probability of a violation in d periods is 

(13)       ( ) ( )1 20, 0,..., 1i t t t dpr D d pr I I I+ + += = = = = . 

Under the null of an accurate VaR forecast, the violations are distributed  

                                        ( ))1(,~1 pppiidI t −+ .   

This allows us to rewrite (13) as  

                  ))(1)...(1()( pppdDpr i −−==  

(14)                 ( ) 11 dp p−= − . 

Equation (14) says that the density of the durations declines geometrically under the null 

hypothesis.  

 A more convenient representation of the same information is given by 

transforming the geometric probabilities into a flat function.  The hazard rate defined as  
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(15)          ( )( )
1 ( )

i
i

i

pr D dD
pr D d

λ =
=

− <
 

is such a transformation.  Writing out the hazard function ( )iDλ  explicitly  

(16)              ( )
( )

1

2

0

1

1 1

d

d j

j

p p
p

p p

−

−

=

−
=

− −∑
 

collapses to a constant after expanding and collecting terms.  

 We conclude that under the null, the hazard function of the durations should be 

flat and equal to p.   Tests of this null are constructed by Christoffersen and Pelletier 

(2004).  They consider alternative hypothesis under which the violation sequence, and 

hence the durations, display dependence or clustering.  The only (continuous) random 

distribution is the exponential, thus under the null hypothesis the distribution of the 

durations should be 

exp ( ; ) pDf D p pe−=  

The most powerful of the two alternative hypotheses they consider is that the durations 

follow a Weibull distribution where 

 1 ( )( ; , ) exp
bb b aD

Wf D a b a bD − −=  

This distribution is able to capture violation clustering.  When 1b < , the hazard, i.e. the 

probability of getting a violation at time iD  given that we did not up to this point, is a 

decreasing function of iD . 

It is also possible to capture duration dependence without resorting to the use of a 

continuous distribution. We can introduce duration dependence by having non-constant 

probabilities of a violation,  

 
( ) ( )

( )( ) ( )
1 2

1 2 1

0, 0,..., 1

1 1 1
i t t t d

d d

pr D d pr I I I

p p p p
+ + +

−

= = = = =

= − − −L
 

where 

 ( )1 11| 0, , 0d t d t d tp pr I I I+ + − += = = =K  

In this case, one must specify how these probabilities dp vary with d .  We will set 

 b
dp ad=  
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with 0b ≤  in order to implement the test. We refer to this as the Geometric test below. 

 Except for the first and last duration the procedure is straightforward, we just 

count the number of days between each violation. We then define a binary variable Ci 

which tracks whether observation i is censored or not. Except for the first and last 

observation, we always have 0iC = . For the first observation if the hit sequence starts 

with 0 then 1D  is the number of days until we get the first hit. Accordingly 1 1C =  

because the observed duration is left-censored. The procedure is similar for the last 

duration. If the last observation of the hit sequence is 0 then the last duration, ( )N TD , is 

the number of days after the last 1 in the hit sequence and ( ) 1N TC =  because the spell is 

right-censored.   

 The contribution to the likelihood of an uncensored observation is its 

corresponding p.d.f. For a censored observation, we merely know that the process lasted 

at least 1D  or ( )N TD  days so the contribution to the likelihood is not the p.d.f. but its 

survival function ( ) ( )1i iS D F D= − . Combining the censored and uncensored 

observations, the log-likelihood is 

 
( ) ( ) ( ) ( ) ( )

( )

( ) ( )( ) ( )( ) ( )( )

1

1 1 1 1
2

ln ; , ln 1 ln ln

ln 1 ln

N T

i
i

N T N T N T N T

L D a b C S D C f D f D

C S D C f D

−

=

= + − +

+ + −

∑
 

Once the durations are computed and the truncations taken care of, then the likelihood 

ratio tests can be calculated in a straightforward fashion. The null and alternative 

hypotheses for the test is 

pabH
pabH

a ≠≠
==

&1:
&1:0  

The only added complication is that the ML estimates are no longer available in closed 

form, they must be found using numerical optimization. 

 

C. Spectral Density Tests 

A final method for testing the martingale property is to examine the shape of the 

spectral density function.  There is a long standing literature on using the spectral density 
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for this purpose because white noise has a particularly simple representation in the 

frequency domain -- its spectrum is a flat line (e.g., Durlauf (1991)).  Statistical tests are 

constructed by examining if the sample spectrum is “close” to the theoretical flat line.  

The spectral density function is defined as a transformation of the autocovariance 

sequence, 

(17)              ωγ
π

ω ik
k

k
ef −

∞

−∞=
∑=

2
1)( . 

For a white noise process, all the autocovariances equal zero for any k≠0.  This means 

that for the hit sequence the spectral density collapses to  

(18)            )1(
2
1)( ppf −=
π

ω  

for all ],0[ πω ∈ .   

The spectral density function is constant and proportional to the variance.  

Equivalently, the spectral distribution function is a 45° line.  The asymptotic theory 

centers on the convergence of the random, estimated spectral density function using a 

functional central limit theorem.   

The sample spectrum (or periodogram) is given by replacing the population 

autocovariances with the finite-sample estimates, 

(19)           ωγ
π

ω ik
k

k
ef −

∞

−∞=
∑= ˆ

2
1)(ˆ  

which should be approximately a flat line.   

It is often convenient to de-mean the sample spectral density and take the partial 

sums  

(20)            ∑
=











−=

π

ω πσ
ωω

0
2

1
ˆ

)(ˆ
)(ˆ fU  

for each frequency ],0[ πω ∈ .  The )(ˆ ωU  are deviations of the sample spectral 

distribution from the 45 degree line. If the violations are white noise, the deviations 

should be small.  

Durlauf (1991) derives the asymptotic distribution of a variety of statistics based 

on these deviations.  The Cramér-Von Mises (CVM) test statistic is the sum of squared 

deviations 
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(21)               2

0
)(ˆ ω

π

ω

UCVM ∑
=

=  

and it converges to a known distribution whose critical values can be tabulated 

numerically.   

Another common test statistic dates to Bartlett, who showed the supremum 

(22)             2)(ˆsup ω
ω

U  

converges to the Kolmogorov-Smirnov (KS) statistic.   

 These test statistics have several attractive features. Unlike some tests of white 

noise (e.g., variance ratio tests), spectral tests have power against any linear alternative of 

any order.  That is, the test has power to detect any second moment dynamics (see 

Durlauf, (1991)).  Both the CVM and KS statistics diverge asymptotically if It is any 

stationary process which is not white noise. 

 

4. Size and Power Properties 

 Given the large variety of backtesting procedures surveyed in section 3, it is 

important to give users guidance as to their comparative size and power properties in a 

controlled setting. 

 

A. Effective Size of the Tests  

In order to assess the size properties of the various methods, we simulate i.i.d. 

Bernoulli samples with probabilities p = 1% and 5% respectively.  For each Bernoulli 

probability, we consider several different sample sizes, from 250 to 1500.  Rejection rates 

under the null are calculated over 10,000 Monte Carlo trials.  If the asymptotic 

distribution is accurate in the sample sizes considered then the rejection frequencies 

should be close to the nominal size of the test, which we set to 10%.  

Table 2 contains the actual size of the conditional coverage (CC) tests when the 

asymptotic critical values are used. The number of observations in each simulated sample 

is reported in the first column. The top panel shows the finite sample test sizes for a 1% 

VaR. We see that the LB(1) test tends to be undersized and the LB(5) tends to be 

oversized. The Markov test tends to be undersized and the Weibull test tends to be 

oversized. The Geometric test is extremely oversized for the smallest sample. The Caviar 
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and CVM tests are undersized for the smallest sample size and somewhat oversized for 

larger samples. Finally, the KS test has good size beyond the smallest sample sizes where 

it is undersized. 

 The results in the bottom panel cover the 5% VaR. In this case the LB(1) test is 

slightly undersized whereas the LB(5) is very close to the desired 10%. The Markov and 

Weibull tests are both oversized. The Geometric is somewhat undersized, whereas the 

Caviar, KS and CVM tests now are very close to the desired 10% level.  

 The overall conclusion from Table 2 is that for small sample sizes and for the 1% 

VaR which is arguably the most common in practice, the asymptotic critical values can 

be highly misleading. When computing power below we therefore rely on the Dufour 

(2004) Monte Carlo testing technique which is described in detail in Section 5.  

 

B. Finite Sample Power of the Tests  

 In order to perform a power comparison, we use a flexible and simple GARCH 

specification as a model of the P/L process.  We estimate the parameters for each 

business line separately in order to model the volatility persistence in each series. 

The GARCH model allows for an asymmetric volatility response or “leverage 

effect”. In particular, we use the NGARCH(1,1)-t(d) specification, 

2
t

2
t

2
t

2
1t

1t
2/1

1t1t

)z)d/)2d(((

z)d/)2d((R

βσ+θ−−ασ+ω=σ

−σ=

+

+++  

where Rt+1 is the daily demeaned P/L and the innovations zt are drawn independently 

from a Student's t(d) distribution.  The Student-t innovations enable the model to capture 

some of the additional kurtosis.  

 Table 3 reports the maximum likelihood estimates from the GARCH model for 

each business line. As usual we get a small but positive α and a β much closer to 1. 

Variance persistence in this model is given by  βθα ++ )1( 2 .  It is largest in business 

lines 2 and 4 which confirm the impression provided by Figure 2. The last three lines of 

Table 3 report the log likelihood values for the four GARCH models along with the log 

likelihood values for the case of no variance dynamics, where α = β = θ = 0. 

 Looking across the four GARCH estimates we see that Desk 1 is characterized by 

a large α and small d which suggests are large conditional kurtosis. Desk 2 is 



 14

characterized by high variance persistence and high unconditional kurtosis from the low 

d. Desk 3 has an unusually large negative θ which suggests that a positive P/L increases 

volatility by more than a negative P/L of the same magnitude. Desk 4 has an unusually 

large unconditional volatility and a relatively high persistence as noted earlier. 

 For the power simulation exercise, we will assume that the correct data-generating 

processes are the four estimated GARCH processes.  We must also choose a particular 

implementation for the VaR calculation.  Following the approach used by the bank to 

construct their internal VaR forecasts, we make use of historical simulation or 

“bootstrapping”.  The historical simulation VaR on a certain day is simply the 

unconditional quantile of the past Te daily observations.  Specifically 

{ }( )1 1
,100

e

tp
t s s t T

VaR percentile R p+ = − +
= −  

 For the purposes of this Monte Carlo experiment, we choose Te=250 

corresponding to 250 trading days. The VaR coverage rate p we study is either 1% (as in 

Section 2) or 5%. We look at one-day ahead VaR again as in Section 2. When computing 

the finite-sample p-values we use N=9,999 and we perform 10,000 simulations for each 

test. 

 Table 4 shows the finite sample power results for the 1% VaR from Historical 

Simulation for various samples sizes when using the GARCH DGP processes 

corresponding to each of the four business lines. 

 For business line 1 it appears that the LB(5) test performs the best overall, 

although the Geometric, KS and CVM tests are slightly better for the smallest sample. 

For the largest sample the Caviar test performs the best. For business line 2 the 

Geometric test performs the best in all cases with the Caviar a close second in the largest 

sample. For business line 3 the power is low everywhere and the Caviar is best overall. 

For business line 4 the Geometric test is again best everywhere.  

 Consider next Table 5 which shows reports the finite sample power calculations 

for the 5% VaR. For business line 1 the Caviar is best over all with the LB(5) slightly 

better in a couple of cases. For business line 2 the Caviar test is best for small samples 

and the Geometric best for larger samples. For business line 3 the power is again low 
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everywhere and the Caviar test performs the best. For business line 4 the Caviar is again 

best for small samples and the Geometric is best for large samples.  

 Considering Table 4 and 5 overall it appears that the Caviar test is the best for 5% 

VaR and the Geometric is best for 1% VaR. For business line 3 the results are somewhat 

surprising and require further investigation.  

 Tables 4 and 5 provide a couple of other conclusions. First, it is clear that the 

LB(5) test is better than LB(1) and Markov test. This is perhaps to be expected as the 

dependence in the hit sequence is not of order 1 here.  Second, the Geometric test is 

typically substantially better than the Weibull test. This is also to be expected as the latter 

wrongly assumes a continuous distribution for the duration variable. 

 Overall the power of the best tests investigated here is quite impressive, 

particularly considering the small samples investigated. Admittedly, the power numbers 

reported in Tables 4 and 5 are affected by the fact that we have conditioned the power 

calculations on being able to calculate the test in the first place. Samples where the tests 

cannot be computed are omitted due to lack of VaR hits.  

 

C. Feasibility Ratios  

 For transparency we report in Table 6 the fraction of simulated samples from 

Tables 4 and 5 where the each test is feasible. We only report sample sizes 250, 500, and 

750 for the 1% VaR and 250 for the 5% VaR as the other sample sizes had no omitted 

sample paths in our experiment.  Table 4 shows that only in the case of 1% VaR and 

samples of 250 observations is the issue non-trivial. In those cases the issue is most 

serious for the Weibull and Geometric tests and least serious for the Caviar test. That 

conclusion also holds when considering the bottom panel in Figure 6 which reports the 

fraction of feasible samples from the size calculations in Table 2. 

 

 

5. Results for Desk-level Data 

In Table 7 we report the results from applying our tests to the actual observed 

sequences of P/Ls and VaRs from the four business lines. As in the power calculations 
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above we make use of the Dufour (2004) Monte Carlo testing technique which yields 

tests with correct level, regardless of sample size. 

For the case of a continuous test statistic, the procedure is the following. We first 

generate N  independent realizations of the test statistic, , 1,...,iLR i N= . We denote by 

0LR  the test statistic computed with the original sample. Under the hypothesis that the 

risk model is correct, we know that the hit sequence is i.i.d. Bernoulli with the mean 

equal to the coverage rate. We thus benefit from the advantage of not having nuisance 

parameters under the null hypothesis. 

We next rank , 0,1,...,iLR i N= in non-decreasing order and obtain the Monte 

Carlo p-value ( )0ˆ Np LR , where 

( ) ( )0
0

ˆ 1
ˆ

1N

NG LR
p LR

N
+

=
+

 

and 

                                                ( ) ( )0 0
1

1ˆ
N

N i
i

G LR LR LR
N =

= Ι >∑ . 

The indicator function I(⋅) takes on the value one if true and the value zero otherwise. We 

reject the null hypothesis if ( )0ˆ Np LR  is less or equal than the prespecified significance 

level. 

When working with binary sequences, there is a non-zero probability of obtaining 

ties between the test values obtained with the sample and the simulated data. The 

tiebreaking procedure is as follows: For each test statistic, , 0,1, ,iLR i N= K , we draw an 

independent realization of a uniform distribution on the [ ]0;1  interval. Denote these 

draws by , 0,1, ,iU i N= K . We obtain the Monte Carlo p-value by replacing )LR(Ĝ 0N  

with 

 ( ) ( ) ( ) ( )0 0 0 0
1 1

1 11
N N

N i i i
i i

G LR LR LR LR LR U U
N N= =

= − Ι ≤ + Ι = Ι ≥∑ ∑%  

There are two additional advantages of using a simulation procedure. The first is 

that possible systematic biases, for example arising from the use of a continuous 

distribution to study discrete processes, are accounted for since they will appear both in 
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0LR  and iLR . The second is that Monte Carlo testing procedures are consistent even if 

the parameter value is on the boundary of the parameter space. The bootstrap procedures 

on the other hand could be inconsistent in this case. 

In Table 7 we report the results from applying our tests to the actual observed 

sequences of P/Ls and VaRs from the four business lines. We find no rejections in the 

first two business lines and multiple rejections in business line 3. In business line 4 two 

of the tests reject the risk model. Thus, when backtesting the actual VaRs from the four 

business unit we find it difficult to reject the historical simulation VaR except for 

business line 3. This finding could of course have several explanations. First, the samples 

are short. Second, random chance, that is, by design we fail to reject 10% of the time. 

Third, the bank may be implementing historical simulation with some adjustments which 

make it difficult to reject by the tests considered here.  

 

6.  Conclusions 

With the introduction of RiskMetrics, JP Morgan (1994) sparked a revolution in 

the field of market risk management. RiskMetrics has many redeeming features such as 

dynamic volatility and correlation modeled in a very parsimonious fashion.  

However other aspects such as the conditional normality assumption, and the 

difficulty of aggregating VaRs across business lines has increased the popularity of the 

model-free Historical Simulation technique in the financial services industry.   

Commercial banks in particular have increasingly trended towards the use of Historical 

Simulation for market risk management.  

Using new desk-level P/Ls and VaRs data from four business lines in a large 

international commercial bank we discuss the pros and cons of this trend. We find strong 

evidence of volatility dynamics and non-normality in daily P/Ls. Volatility dynamics are 

not captured in HistSim and may therefore cause clustering in VaR violations which can 

have important economic effects such as increased risk of default. We assess the ability 

of external bank regulators and internal risk auditors to detect problems in HistSim-based 

VaRs using a wide range of existing and new backtesting procedures. 

The relatively sluggish dynamics of HistSim is often touted as a virtue in that it 

avoids frequent adjustments to the associated risk-based capital. However, the internal 
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desk-level VaRs we present here move quite rapidly at the daily level thus casting doubt 

on the common wisdom.  The extreme spikes in P/Ls particularly evident in lines 1 and 2 

highlight the dangers of relying on the normal distribution in market risk management. 

Fortunately, the HistSim VaRs do not rely on the normal distribution, which is clearly 

one of its redeeming features. 

 Larger backtesting sample sizes would clearly be helpful. Second, aggregate 

GARCH modeling may be desirably to remove clusters in the VaR violations. Third, 

ideally the historical dataset of asset prices should be updated daily so as to capture 

current volatility trends. Fourth, simultaneous reporting of the VaR with several coverage 

rates (e.g. 1%, 2.5%, 5%) would be helpful to assess more carefully the tail distribution 

of the P/L and to detect omitted variance dynamics. 
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Figure 1: P/Ls and VaRs for Four Business Lines 
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Notes to Figure: We plot the P/Ls (dashed lines) and VaRs (solid lines) from the four 

business lines.  
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Figure 2: Absolute Demeaned P/Ls for Four Business Lines 
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Notes to Figure: We subtract the sample mean from each of the four P/Ls in Figure 1 and 

plot the absolute value of these centered P/Ls. 

 

 



Desk 1 Desk 2 Desk 3 Desk 4
Number of Observations 873 811 623 623
Mean 0.1922 1.5578 1.8740 3.1562
Standard Deviation 2.6777 5.2536 1.6706 9.2443
Skewness -1.7118 1.5441 0.5091 -0.1456
Excess Kurtosis 24.2195 19.8604 2.0060 3.6882

Desk 1 Desk 2 Desk 3 Desk 4
Number of Observations 873 811 623 623
Mean -7.2822 -16.3449 -3.2922 -24.8487
Standard Deviation 3.1321 10.5446 1.1901 6.6729
Skewness -0.3038 -1.3746 -0.6529 -0.3006
Kurtosis -0.1525 1.6714 -0.0133 -0.1211

Observed Number of Hits 9 5 1 4
Expected Number of Hits 9 8 6 6

P/Ls

VaRs

Table 1: P/Ls and VaRs for Four Business Lines: Descriptive Statistics



Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.0253 0.0999 0.0497 0.1103 0.5306 0.0505 0.0390 0.0517
500 0.0440 0.1336 0.0676 0.1759 0.2332 0.1153 0.0664 0.1120
750 0.0669 0.1650 0.0663 0.1616 0.1582 0.1426 0.0923 0.1241
1000 0.0763 0.1465 0.0759 0.1569 0.1186 0.1207 0.0944 0.1247
1250 0.1022 0.1458 0.0550 0.1276 0.1106 0.1214 0.1120 0.1401
1500 0.1005 0.1309 0.0637 0.1273 0.0954 0.1116 0.1117 0.1372

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.0805 0.1080 0.1280 0.1336 0.0976 0.1053 0.1020 0.1056
500 0.0675 0.1009 0.1284 0.1252 0.0762 0.1010 0.0907 0.0830
750 0.0685 0.1018 0.1659 0.1400 0.0678 0.0964 0.0965 0.0863
1000 0.0891 0.0965 0.2085 0.1423 0.0718 0.0970 0.0951 0.0950
1250 0.0920 0.0925 0.1607 0.1490 0.0608 0.0954 0.0956 0.0982
1500 0.0866 0.0978 0.1515 0.1596 0.0630 0.1029 0.0949 0.0974

Table 2: Size of 10% Asymptotic CC Tests

1 % VaR

5 % VaR



Desk 1 Desk 2 Desk 3 Desk 4
d 3.808 3.3183 6.9117 4.7017
θ -0.245 0.5031 -0.9616 0.0928
β 0.7495 0.9284 0.8728 0.9153
α 0.1552 0.0524 0.0261 0.0723
ω 0.5469 0.2154 0.2127 1.6532

Variance Persistence 0.9140 0.9941 0.9230 0.9882
Unconditional Stdev 2.5220 6.0233 1.6624 11.8478

LogL -1360.76 -1781.25 -825.87 -1855.98
LogL (HomoSked.) -1401.64 -1843.49 -831.46 -1877.73
P-value 0.0000 0.0000 0.0108 0.0000

Table 3: P/L GARCH Model Parameters and Properties



Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.1958 0.3201 0.1862 0.1431 0.3258 0.1340 0.3273 0.3305
500 0.2293 0.4200 0.1914 0.1439 0.2642 0.3360 0.4112 0.3563
750 0.2997 0.4755 0.1903 0.1474 0.2758 0.4090 0.4607 0.4075
1000 0.3709 0.5185 0.1678 0.1820 0.3418 0.4810 0.5083 0.4725
1250 0.4335 0.5635 0.1874 0.2280 0.3704 0.5360 0.5421 0.5027
1500 0.4463 0.6027 0.2018 0.2444 0.4098 0.6500 0.5852 0.5638

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.2312 0.2320 0.2110 0.1373 0.3654 0.1420 0.2777 0.2662
500 0.2201 0.2960 0.1896 0.1557 0.3678 0.3040 0.3146 0.2689
750 0.2372 0.3319 0.1806 0.1795 0.3866 0.3390 0.3407 0.2810
1000 0.2806 0.3614 0.1726 0.2181 0.4214 0.3750 0.3895 0.3229
1250 0.2808 0.4001 0.1604 0.2652 0.4752 0.4260 0.3807 0.3265
1500 0.2795 0.4231 0.1604 0.3041 0.5068 0.4830 0.4263 0.3707

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.0769 0.1170 0.0725 0.0794 0.1372 0.1020 0.1127 0.1158
500 0.0677 0.1532 0.0625 0.0739 0.0814 0.2000 0.1276 0.1078
750 0.0899 0.1603 0.0529 0.0537 0.0546 0.2420 0.1264 0.1122
1000 0.1059 0.1462 0.0359 0.0507 0.0438 0.3280 0.1374 0.1209
1250 0.1305 0.1273 0.0390 0.0493 0.0470 0.4060 0.1373 0.1295
1500 0.1472 0.1260 0.0311 0.0421 0.0380 0.5470 0.1498 0.1473

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.2502 0.2637 0.2338 0.1593 0.4058 0.1720 0.3132 0.3016
500 0.2400 0.3367 0.2142 0.1839 0.4144 0.3270 0.3824 0.2984
750 0.2803 0.3824 0.2038 0.2118 0.4288 0.3500 0.4030 0.3216
1000 0.3326 0.4193 0.2019 0.2671 0.5026 0.4350 0.4494 0.3753
1250 0.3170 0.4580 0.1955 0.3432 0.5438 0.4960 0.4546 0.3919
1500 0.3293 0.5095 0.2018 0.3889 0.5968 0.5630 0.4881 0.4272

Business Line 4

Table 4: Power of 10% Finite Sample CC Tests on 1% VaR in Four Business Lines

Business Line 1

Business Line 2

Business Line 3



Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.2964 0.3852 0.2048 0.1613 0.3190 0.4240 0.3485 0.3442
500 0.3912 0.5275 0.2139 0.1825 0.4466 0.5100 0.4429 0.4638
750 0.4356 0.6334 0.2257 0.2305 0.5684 0.6240 0.5316 0.5534
1000 0.4836 0.6957 0.2511 0.2698 0.6794 0.7290 0.5858 0.6068
1250 0.5431 0.7621 0.2935 0.3246 0.7560 0.7940 0.6654 0.6745
1500 0.5925 0.8146 0.3279 0.3790 0.8188 0.8590 0.7199 0.7220

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.2592 0.3575 0.3404 0.3222 0.4222 0.5630 0.3901 0.3832
500 0.3421 0.5077 0.2978 0.3658 0.5806 0.6280 0.4482 0.4492
750 0.3757 0.5972 0.2719 0.4346 0.6930 0.6850 0.5041 0.5059
1000 0.4194 0.6581 0.2759 0.4869 0.7838 0.7140 0.5584 0.5493
1250 0.4663 0.7208 0.3103 0.5483 0.8420 0.7710 0.6247 0.6090
1500 0.5038 0.7806 0.3345 0.6056 0.8996 0.8340 0.6811 0.6554

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.1080 0.1129 0.0821 0.0676 0.0888 0.2260 0.0986 0.0991
500 0.1032 0.1199 0.0653 0.0403 0.0644 0.3390 0.1050 0.1122
750 0.1032 0.1246 0.0617 0.0343 0.0490 0.4220 0.1063 0.1160
1000 0.1126 0.1225 0.0624 0.0310 0.0524 0.5200 0.1021 0.1069
1250 0.1140 0.1251 0.0686 0.0285 0.0438 0.6120 0.1131 0.1216
1500 0.1071 0.1247 0.0653 0.0333 0.0534 0.7160 0.1171 0.1163

Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
250 0.2877 0.3926 0.3305 0.3260 0.4460 0.5400 0.4089 0.3926
500 0.3531 0.5360 0.2816 0.3863 0.6262 0.6380 0.4704 0.4743
750 0.3976 0.6367 0.2666 0.4652 0.7462 0.7000 0.5453 0.5397
1000 0.4433 0.7050 0.2779 0.5401 0.8378 0.7430 0.6059 0.5917
1250 0.5010 0.7694 0.3169 0.6128 0.8880 0.7990 0.6670 0.6583
1500 0.5482 0.8239 0.3609 0.6773 0.9356 0.8520 0.7340 0.7130

Business Line 4

Table 5: Power of 10% Finite Sample CC Tests on 5% VaR in Four Business Lines

Business Line 1

Business Line 2

Business Line 3



VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
1% 250 0.9081 0.9081 0.9006 0.6974 0.8322 0.9897 0.9081 0.9081
1% 500 0.9984 0.9984 0.9974 0.9852 0.9918 0.9997 0.9983 0.9979
1% 750 1.0000 1.0000 1.0000 0.9998 0.9999 1.0000 0.9999 1.0000
5% 250 0.9998 0.9998 0.9998 0.9984 1.0000 1.0000 0.9999 1.0000

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
1% 250 0.8693 0.8693 0.8643 0.6691 0.8167 0.9844 0.8693 0.8693
1% 500 0.9916 0.9916 0.9928 0.9654 0.9824 0.9997 0.9927 0.9929
1% 750 0.9996 0.9996 0.9999 0.9986 0.9996 0.9999 0.9997 0.9997
5% 250 0.9965 0.9965 0.9949 0.9881 0.9942 0.9994 0.9963 0.9973

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
1% 250 0.9356 0.9356 0.9371 0.7077 0.8477 0.9945 0.9356 0.9356
1% 500 0.9990 0.9990 0.9998 0.9916 0.9943 1.0000 0.9990 0.9990
1% 750 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000 1.0000 1.0000
5% 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
1% 250 0.8659 0.8659 0.8660 0.6775 0.8169 0.9829 0.8659 0.8659
1% 500 0.9935 0.9935 0.9940 0.9694 0.9839 1.0000 0.9941 0.9946
1% 750 0.9999 0.9999 0.9999 0.9989 0.9996 1.0000 0.9997 0.9997
5% 250 0.9974 0.9974 0.9971 0.9895 0.9938 0.9997 0.9963 0.9957

VaR Sample LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
1% 250 0.9190 0.9190 0.9190 0.6896 0.7119 0.9189 0.9190 0.9190
1% 500 0.9937 0.9937 0.9937 0.9619 0.9664 0.9938 0.9937 0.9937
1% 750 0.9992 0.9992 0.9992 0.9949 0.9964 0.9994 0.9992 0.9992
5% 250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Size Simulation

Power Simulation: Business Line 4

Table 6: Fraction of Samples where Test is Feasible. 1% and 5% VaR

Power Simulation: Business Line 1

Power Simulation: Business Line 3

Power Simulation: Business Line 2



LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
Test Value 0.0955 0.4830 0.1961 1.0138 1.2896 2.9296 18.7481 2.4382
P-Value 0.4601 0.5513 0.9628 0.6619 0.3758 0.3189 0.3241 0.3948

LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
Test Value 0.0315 0.1594 1.4576 3.6338 3.8377 4.1389 11.5003 1.3503
P-Value 0.8252 0.8379 0.3199 0.2354 0.1251 0.2339 0.4671 0.5618

LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
Test Value 0.0016 0.0083 6.8487 NaN NaN 27.7656 70.3651 70.3651
P-Value 0.9920 0.9919 0.0176 0.0124 0.0533 0.0242

LB(1) LB(5)  Markov Weibull Geometric Caviar KS CVM
Test Value 0.0263 38.5720 0.9752 4.4235 4.9972 4.1304 19.6270 5.2362
P-Value 0.7845 0.0093 0.3687 0.1720 0.0602 0.2010 0.1815 0.1801

Table 7: Backtesting Actual VaRs from Four Business Lines

Business Line 4

Business Line 3

Business Line 2

Business Line 1




