Fiscal Devaluations

EMMANUEL FARHI Harvard GITA GOPINATH

Harvard

OLEG ITSKHOKI Princeton

ECB Global Research Forum December 2012

Motivation

- Currency devaluation: response to loss of competitiveness
 - New relevance: crisis in the Euro Area Quotes

- **Fiscal devaluation**: set of fiscal policies that lead to the same real outcomes but keeping exchange rate fixed
 - o Old idea (Keynes, 1931): Uniform tariff cum export subsidy
 - More recently: VAT-payroll tax swap
 - Cavallo and Cottani (2010), IMF Fiscal Monitor (2011)
 - No longer a theoretic curiosity:
 - Germany 2007, France 2012, discussed in Portugal, Spain

What we do

- Formal analysis of fiscal devaluations
 - New Keynesian open economy model (DSGE)
 - conventional fiscal instruments
 - wage and price stickiness (in local or producer currency)
 - alternative asset market structures and currency-denomination of debt
- Example: optimal devaluation, nominal or fiscal

What we do

- Formal analysis of fiscal devaluations
 - New Keynesian open economy model (DSGE)
 - conventional fiscal instruments
 - wage and price stickiness (in local or producer currency)
 - alternative asset market structures and currency-denomination of debt
- Example: optimal devaluation, nominal or fiscal
- Relate literature
 - 1 Partial equilibrium: Staiger and Sykes (2010), Berglas (1974)
 - 2 Fiscal implementation: Adao, Correia and Teles (2009)
 - 3 Quantitative studies of the VAT effects
 - 4 Taxes under sticky prices: Poterba, Rotemberg, Summers (1986)

Main Findings

Robust Policies

 Small set of conventional fiscal instruments suffices for exact equivalence across a variety of economic environments

2 Simple Sufficient Statistic

 Size of tax adjustments depends only on the size of desired devaluation and is independent of details of environment

3 Government Revenue Neutrality

- Exact if all tax instruments are used
- Long-run; proportional to trade deficit in the short run

Main Findings

- 1 Two Fiscal Devaluation policies:
 - (FD') Uniform increase in import tariff and export subsidy

OR

- (FD") Uniform increase in value-added tax (with border adjustment) and reduction in payroll tax
- 2 In general, (FD') and (FD") need to be complemented with a reduction in consumption tax and increase in income tax
 - may be dispensed with if devaluation is unanticipated
- 3 If debt denominated in home currency, equivalence requires partial default (forgiveness)

Outline

- 1 Static (one-period) model
- 2 Full dynamic model
- 3 Optimal devaluation: an example
- 4 Implementation issues
 - non-zero initial taxes
 - differential short-run tax pass-through
 - non-uniform VAT and multiple variable inputs
 - labor mobility
 - quantitative assessment
 - the case of monetary union

Static Model Setup I

- Two countries:
 - nominal or fiscal devaluation at Home
 - passive policy in Foreign
- Households:
 - Preferences:

$$U(C, N), \qquad C = C_H^{\gamma} C_F^{1-\gamma}, \quad \gamma \ge 1/2$$

Budget constraint

$$\frac{PC}{1+\varsigma^c} + M + T \le \frac{WN}{1+\tau^n} + \frac{\Pi}{1+\tau^d} + B$$

— Cash in advance:

$$\frac{PC}{1+\varsigma^c} \leq M$$

Setup II

• Firms: Y = AN

$$\Pi = (1 - \tau^{\mathsf{v}}) P_H C_H + (1 + \varsigma^{\mathsf{x}}) \mathcal{E} P_H^* C_H^* - (1 - \varsigma^{\mathsf{p}}) WN$$

Government: balanced budget

$$\begin{aligned} M + T + TR &= 0, \\ TR &= \left(\frac{\tau^n}{1 + \tau^n} WN + \frac{\tau^d}{1 + \tau^d} \Pi - \frac{\varsigma^c}{1 + \varsigma^c} PC\right) \\ &+ \left(\tau^v P_H C_H - \varsigma^p WN\right) + \left(\frac{\tau^v + \tau^m}{1 + \tau^m} P_F C_F - \varsigma^x \mathcal{E} P_H^* C_H^*\right) \end{aligned}$$

Equilibrium relationships I

PCP case

International relative prices:

$$\begin{split} P_H^* &= P_H \frac{1}{\mathcal{E}} \frac{1 - \tau^{\nu}}{1 + \varsigma^{\kappa}} \\ P_F &= P_F^* \mathcal{E} \frac{1 + \tau^m}{1 - \tau^{\nu}} \quad \Rightarrow \quad \mathcal{S} = \frac{P_F^*}{P_H^*} = \frac{P_F^*}{P_H} \mathcal{E} \frac{1 + \varsigma^{\kappa}}{1 - \tau^{\nu}} \end{split}$$

Wage and Price setting:

$$W = \bar{W}^{\theta_w} \left[\mu_w \frac{1 + \tau^n}{1 + \varsigma^c} P C^{\sigma} N^{\varphi} \right]^{1 - \theta_w},$$

$$P_H = \bar{P}_H^{\theta_p} \left[\mu_p \frac{1 - \varsigma^p}{1 - \tau^v} \frac{W}{A} \right]^{1 - \theta_p}$$

3 Demand — cash in advance:

$$PC \leq M(1+\varsigma^c)$$

Equilibrium relationships II

- **4** Goods market clearing: $Y = C_H + C_H^*$
- **5** Exchange rate determination:
 - Budget constraint (allowing for partial default)

$$P^*C^* = P_F^*Y^* - \frac{1 - \tau^h}{\mathcal{E}}B^h - B^{f*} \qquad \Rightarrow \qquad \mathcal{E} = \frac{\frac{1 - \tau^v}{1 + \tau^m}M(1 + \varsigma^c) - \frac{1 - \tau^h}{1 - \gamma}B^h}{M^* + \frac{1}{1 - \gamma}B^{f*}}$$

Perfect risk-sharing:

$$\left(\frac{C}{C^*}\right)^{\sigma} = \frac{P^*\mathcal{E}}{P/(1+\varsigma^c)} \equiv \mathcal{Q} \qquad \Rightarrow \qquad \mathcal{E} = \frac{M}{M^*}\mathcal{Q}^{\frac{\sigma-1}{\sigma}}$$

Results I

Proposition

The following policies constitute a fiscal δ -devaluation

1 under balanced trade or foreign-currency debt:

$$\begin{array}{ll} \text{(FD')} & \tau^m = \varsigma^{\mathsf{x}} = \delta \\ \text{(FD'')} & \tau^{\mathsf{v}} = \varsigma^p = \frac{\delta}{1+\delta} \end{array} \right] \quad \text{and} \quad \varsigma^{\mathsf{c}} = \tau^{\mathsf{n}} = \epsilon, \quad \frac{\Delta M}{M} = \frac{\delta - \epsilon}{1+\epsilon} \quad \forall \epsilon$$

2 under home-currency debt supplement with partial default:

$$\tau^h = \delta/1 + \delta$$

3 under complete international risk-sharing need to set:

$$\epsilon = \delta$$
 and $\frac{\Delta M}{M} = -\frac{\sigma - 1}{\sigma} \frac{\Delta Q}{Q}$

Results II

- 4 Local currency pricing
 - Result: Same as under PCP.
 - Law of one price does not hold

$$P_{H}^{*} = \bar{P}_{H}^{*\theta_{p}} \left[\mu_{p} \frac{1 - \varsigma^{p}}{1 + \varsigma^{x}} \frac{1}{\mathcal{E}} \frac{W}{A} \right]^{1 - \theta_{p}}$$

Real effects differ under PCP and LCP

Results III

- **6** Revenue neutrality
 - Result: (FD') and (FD") are fiscal revenue-neutral.
 - When $\varsigma^c = \tau^n = \epsilon$, revenue neutrality holds in the long run

$$TR = \left[rac{\delta}{1+\delta} - rac{\epsilon}{1+\epsilon}
ight] \left(P_F C_F - (1+\delta) \mathcal{E}_0 P_H^* C_H^*
ight)$$

- Fiscal surplus in periods of trade deficit
- Revenue neutrality is relative to the fiscal effect of a nominal devaluation

Dynamic model

- Endogenous savings and portfolio decisions
- Dynamic (interest-elastic) money demand
- More general preferences

Dynamic model

- Endogenous savings and portfolio decisions
- Dynamic (interest-elastic) money demand
- More general preferences

• Definition: Consider an equilibrium path of the economy with $\mathcal{E}_t = \mathcal{E}_0(1 + \delta_t),$ given $\{M_t\}.$

Fiscal $\{\delta_t\}$ -devaluation is a sequence

$$\{M_t', \tau_t^m, \varsigma_t^x, \tau_t^v, \varsigma_t^p, \varsigma_t^c, \tau_t^n, \tau_t^d\}$$

that leads to the same real allocation, but with $\mathcal{E}'_{t} \equiv \mathcal{E}_{0}$.

Anticipated and unanticipated devaluations

Three steps of the proof

- **1** Given (C_t, C_t^*) and relative prices, the rest of the allocation is unchanged
- 2 Given (C_t, C_t^*) , for relative prices to be unchanged, we need:
 - (i) for wages: $\varsigma_t^c \equiv \tau_t^n$
 - (ii) for domestic price setting:

$$(1 + \varsigma_t^c)(1 - \tau_t^v)/(1 + \tau_t^d) \equiv (1 + \varsigma_t^c)(1 - \varsigma_t^p)/(1 + \tau_t^d) \equiv 1$$

(iii) for international price setting:

$$(1 + \tau_t^m)/(1 - \tau_t^v) \equiv (1 + \varsigma_t^x)/(1 - \tau_t^v) \equiv 1 + \delta_t$$

- **3** For (C_t, C_t^*) to be unchanged, we need unchanged:
 - (i) terms of trade and deviations from law of one price
 - (ii) real exchange rate
 - (iii) real payoffs of assets

Two Key Equations

Flow budget constraint of a country:

$$\sum_{j \in \Omega_t} \frac{Q_t^{j*}}{P_t^*} B_{t+1}^j - \sum_{j \in \Omega_{t-1}} \frac{Q_t^{j*} + D_t^{j*}}{P_t^*} B_t^j = \frac{P_{Ht}^*}{P_t^*} \Big[C_{Ht}^* - C_{Ft} \mathcal{S}_t \Big],$$

where
$$C_{Ht}^* = (P_{Ht}^*/P_t^*)^{-\zeta} C_t^*$$
 and $C_{Ft} = (P_{Ft}/P_t)^{-\zeta} C_t$

International risk sharing condition:

$$\mathbb{E}_{t} \left\{ \frac{Q_{t+1}^{j*} + D_{t+1}^{j*}}{Q_{t}^{j*}} \frac{P_{t}^{*}}{P_{t+1}^{*}} \left[\left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{Q_{t+1}}{Q_{t}} - \left(\frac{C_{t+1}^{*}}{C_{t}^{*}} \right)^{-\sigma} \right] \right\} = 0 \quad \forall j \in \Omega_{t}$$

where Terms of Trade and Real Exchange Rate are:

$$\mathcal{S}_t = rac{P_{Ft}}{P_{Ht}^*} rac{1}{\mathcal{E}_t} rac{1 - au_t^V}{1 + au_t^m}$$
 and $\mathcal{Q}_t = rac{P_t^* \mathcal{E}_t}{P_t / (1 + arsigma_t^c)}$

Result I Complete markets

Proposition

A fiscal $\{\delta_t\}$ -devaluation in a dynamic PCP or LCP economy with complete markets:

$$\begin{split} & (\mathsf{FDD'}) \qquad \tau_t^m = \varsigma_t^{\mathsf{x}} = \tau_t^d = \delta_t \\ & (\mathsf{FDD''}) \qquad \tau_t^{\mathsf{v}} = \varsigma_t^p = \frac{\delta_t}{1 + \delta_t}, \ \tau_t^d = 0 \ \bigg] \quad \text{ and } \quad \varsigma_t^c = \tau_t^n = \delta_t, \end{split}$$

and a suitable choice of $\{M'_t\}$.

- analogous to static economy: terms of trade, RER
- interest-elastic money demand: no additional tax instruments

$$\chi C_t^{\sigma} \left(\frac{M_t (1 + \varsigma_t^c)}{P_t} \right)^{-\nu} = \frac{i_{t+1}}{1 + i_{t+1}}$$

Results II Incomplete markets

- 1 Foreign-currency risk-free bond:
 - Home country budget constraint:

$$Q_{t}^{*}B_{t+1}^{f} - B_{t}^{f} = \left[P_{Ht}^{*}C_{Ht}^{*} - P_{Ft}C_{Ft}\frac{1}{\mathcal{E}_{t}}\frac{1 - \tau_{t}^{v}}{1 + \tau_{t}^{m}}\right]$$

The optimal risk sharing condition

$$Q_{t}^{*} = \beta \mathbb{E}_{t} \left\{ \left(\frac{C_{t+1}^{*}}{C_{t}^{*}} \right)^{-\sigma} \frac{P_{t}^{*}}{P_{t+1}^{*}} \right\} = \beta \mathbb{E}_{t} \left\{ \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \frac{(1 + \varsigma_{t+1}^{c}) \mathcal{E}_{t+1}}{(1 + \varsigma_{t}^{c}) \mathcal{E}_{t}} \right\}$$

Results II Incomplete markets

- Foreign-currency risk-free bond:
 - Home country budget constraint:

$$Q_{t}^{*}B_{t+1}^{f} - B_{t}^{f} = \left[P_{Ht}^{*}C_{Ht}^{*} - P_{Ft}C_{Ft}\frac{1}{\mathcal{E}_{t}}\frac{1 - \tau_{t}^{v}}{1 + \tau_{t}^{m}}\right]$$

The optimal risk sharing condition

$$Q_{t}^{*} = \beta \mathbb{E}_{t} \left\{ \left(\frac{C_{t+1}^{*}}{C_{t}^{*}} \right)^{-\sigma} \frac{P_{t}^{*}}{P_{t+1}^{*}} \right\} = \beta \mathbb{E}_{t} \left\{ \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \frac{(1 + \varsigma_{t+1}^{c}) \mathcal{E}_{t+1}}{(1 + \varsigma_{t}^{c}) \mathcal{E}_{t}} \right\}$$

- Same proposition applies: (FDD') and (FDD")
 - dynamic savings decision
- 2 Same for international trade in equities Show
- 3 Home-currency bond: additionally requires partial default

$$1 - d_t = (1 + \delta_{t-1})/(1 + \delta_t)$$

Results III Unanticipated devaluation

Proposition

A one-time <u>unanticipated</u> fiscal δ -devaluation in an <u>incomplete</u> <u>markets</u> economy:

$$\begin{array}{ll} \text{(FDR')} & \tau_t^m = \varsigma_t^{\mathsf{x}} = \tau_t^d = \delta \\ \text{(FDR'')} & \tau_t^{\mathsf{v}} = \varsigma_t^{\mathsf{p}} = \frac{\delta}{1+\delta}, \quad \tau_t^d = 0 \end{array} \right] \qquad \text{and} \qquad M_t' \equiv M_t,$$

together with a one-time partial default (haircut) $\tau^h = \delta/(1+\delta)$ on home-currency debt.

- No consumption subsidy needed
- Applies to risk-free-bond and international-equity economies
- Generalization of revenue neutrality:

$$TR_t = -rac{\delta_t}{1+\delta_t}NX_t + rac{\delta_t}{1+ au_t^d}\Pi_t$$

Optimal Devaluation Setup

- Small open economy
- Flexible prices, sticky wages
- Permanent unexpected negative productivity shock
- Nominal devaluation is optimal
- Fiscal devaluation requires no consumption subsidy (VAT+payroll or tariff+subsidy)
- Parameters:

$$\beta = 0.99$$
, $\theta_w = 0.75$, $\gamma = 2/3$, $\sigma = 4$, $\varphi = \kappa = 1$, $\eta = 3$

Implementation

- 1 Non-uniform VAT (e.g., non-tradables)
 - match payroll subsidy
- 2 Multiple variable inputs (e.g., capital)
 - uniform subsidy
- 3 Tax pass-through assumptions: equivalence of
 - VAT and exchange rate pass-through into foreign prices
 - VAT and payroll tax pass-through into domestic prices
 - Generalization
- $\textbf{4} \ \, \text{Non-zero initial tax:} \ \, \tau_t^{\text{V}} = \frac{\bar{\tau}_0^{\text{V}} + \delta_t}{1 + \delta_t}$

Implementation in a Monetary Union

- Coordination with union central bank:
 - Union-wide money supply:

$$\bar{M}_t = M_t + M_t^*$$

- M_t/M_t^* is endogenous
- Division of seigniorage between members:

$$\Delta \bar{M}_t = \Omega_t + \Omega_t^*$$

- Special cases: unilateral fiscal adjustment suffices
 - seigniorage is small $(\Delta \bar{M}_t
 ightarrow 0)$
 - devaluing country is small $(\Delta \bar{M}_t/\bar{M}_t o 0)$

Summary

- Two robust FD policies:
 - uniform import tariff and export subsidy, OR
 - uniform increase in VAT and reduction in payroll tax
- Unanticipated devaluation: no additional instruments.
 Overall, small set of conventional fiscal instruments
- Require minimal information: size of desired devaluation δ
- Robust in particular to:
 - price and wage setting
 - asset market structure
- Revenue-neutrality
- Sidesteps the trilemma in international macro

Quotes

Popular arguments for abandoning Euro and devaluation:

— Feldstein (FT 02/2010):

If Greece still had its own currency, it could, in parallel, devalue the drachma to reduce imports and raise exports... The rest of the eurozone could allow Greece to take a temporary leave of absence with the right and the obligation to return at a more competitive exchange rate.

- Krugman (NYT): Why devalue? The Euro Trap, Pain in Spain

Now, if Greece had its own currency, it could try to offset this contraction with an expansionary monetary policy – including a devaluation to gain export competitiveness. As long as its in the euro, however, Greece can do nothing to limit the macroeconomic costs of fiscal contraction.

— Roubini (FT 06/2011): The Eurozone Heads for Break Up

...there is really only one other way to restore competitiveness and growth on the periphery: leave the euro, go back to national currencies and achieve a massive nominal and real depreciation.

Keynes (1931) in the context of Gold standard

Precisely the same effects as those produced by a devaluation of sterling by a given percentage could be brought about by a tariff of the same percentage on all imports together with an equal subsidy on all exports, except that this measure would leave sterling international obligations unchanged in terms of gold.

Related Literature

Comparison to ACT (Adao, Correia and Teles, JET, 2009)

	ACT (2009)	FGI (2011)				
Allocation	Flexible-price (first best)	Nominal devaluation	— one-time unexpected			
Implementation	General non-constructive	Specific implementation:				
	fiscal implementation principle	— simplicity, robustness, feasibility				
Environment						
 Nominal frictions 	Sticky prices (PCP or LCP)	Sticky prices (PCP and LCP) and sticky wages				
- Int'l asset markets	Risk-free nominal bonds	Arbitrary degree of completeness	Arbitrary incomplete markets			
Instruments	Separate consumption taxes by origin of the good and income taxes in both countries; addi- tional instruments in other cases	VAT, payroll, consumption and income tax in one country	VAT and payroll tax only in one country			
Implementability						
 Analytical characterization of taxes 	No	Yes, simple characterization and expressions				
 Int'l coordination of taxes 	Yes	No, unilateral policy				
 Tax dependence on microenvironment 	In general, yes	No, robust to any changes in environment				
- Tax dynamics	In general, complex dynamic path	Path of taxes follows the path of devaluation	Only one-time tax change			

Local currency pricing

- Law of one price does not hold
- Price setting in consumer currency

$$P_{H}^{*} = \bar{P}_{H}^{*\theta_{p}} \left[\mu_{p} \frac{1 - \varsigma^{p}}{1 + \varsigma^{x}} \frac{1}{\mathcal{E}} \frac{W}{A} \right]^{1 - \theta_{p}},$$

$$P_{F} = \bar{P}_{F}^{\theta_{p}} \left[\mu_{p} \frac{1 + \tau^{m}}{1 - \tau^{v}} \mathcal{E} \frac{W^{*}}{A^{*}} \right]^{1 - \theta_{p}},$$

Terms of trade appreciates

$$S = \frac{P_F}{P_H^*} \frac{1}{\mathcal{E}} \frac{1 - \tau^{\mathsf{v}}}{1 + \tau^{\mathsf{m}}}$$

Foreign firm profit margins decline

$$\Pi^* = P_F^* C_F^* + P_F C_F \frac{1}{\mathcal{E}} \frac{1 - \tau^{\mathsf{v}}}{1 + \tau^{\mathsf{m}}} - W^* N^*$$

Price setting

$$\bar{P}_{Ht}(i) = \frac{\mathbb{E}_t \sum_{s \geq t} (\beta \theta_p)^{s-t} C_s^{-\sigma} P_s^{-1} P_{Hs}^{\rho} Y_s \frac{\rho}{\rho-1} \frac{(1+\varsigma_s^c)(1-\varsigma_s^\rho)}{1+\tau_s^d} W_s / A_s(i)}{\mathbb{E}_t \sum_{s \geq t} (\beta \theta_p)^{s-t} C_s^{-\sigma} P_s^{-1} \frac{(1+\varsigma_s^c)(1-\tau_s^\nu)}{1+\tau_s^d}},$$

- Under (FDD"), $(1 + \varsigma_s^c)(1 \tau_s^v) = (1 + \varsigma_s^c)(1 \varsigma_s^p) = 1$, therefore the reset price \bar{P}_{Ht} stays the same, and hence so does P_{Ht}
- (FDD') additionally requires compensating with $\tau_s^d = \delta_t$, unless devaluation is unanticipated

back to slides

International trade in equities

Budget constraint

$$\begin{split} \frac{P_t C_t}{1 + \varsigma_t^c} + M_t + \left(\omega_{t+1} - \omega_t\right) \mathbb{E}_t \left\{\Theta_{t+1} V_{t+1}\right\} - \left(\omega_{t+1}^* - \omega_t^*\right) \mathbb{E}_t \left\{\Theta_{t+1} \mathcal{E}_{t+1} V_{t+1}^*\right\} \\ \leq \frac{W_t N_t}{1 + \tau_t^n} + \omega_t \frac{\Pi_t}{1 + \tau_t^d} + (1 - \omega_t^*) \mathcal{E}_t \Pi_t^* + M_{t-1} - T_t, \end{split}$$

Value of the firm:

$$\begin{aligned} V_t &= \mathbb{E}_t \sum_{s=t}^{\infty} \Theta_{t,s} \frac{\Pi_s}{1 + \tau_s^d}, \qquad \Theta_{t,s} = \prod_{\ell=t+1}^s \Theta_{\ell}, \ \Theta_{\ell} = \beta \left(\frac{C_{t+1}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+1}} \frac{1 + \varsigma_{t+1}^c}{1 + \varsigma_t^c}, \\ V_t^* &= \mathbb{E}_t \sum_{s=t}^{\infty} \Theta_{t,s}^* \Pi_s^* \end{aligned}$$

• Risk-sharing conditions

$$\mathbb{E}_t \sum_{t}^{\infty} \left(\Theta_{t,s} - \Theta_{t,s}^* \frac{\mathcal{E}_t}{\mathcal{E}_s} \right) \frac{\Pi_s}{1 + \tau_s^d} = 0 \quad \text{and} \quad \mathbb{E}_t \sum_{t}^{\infty} \left(\Theta_{t,s} \frac{\mathcal{E}_s}{\mathcal{E}_t} - \Theta_{t,s}^* \right) \Pi_s^* = 0.$$

back to slides

Home-currency Bond

- Partial defaults on home-currency bonds: contingent sequence {d_t}
- The international risk sharing condition becomes

$$Q_{t} = \beta \mathbb{E}_{t} \left\{ \left(\frac{C_{t+1}^{*}}{C_{t}^{*}} \right)^{-\sigma} \frac{P_{t}^{*} \mathcal{E}_{t}}{P_{t+1}^{*} \mathcal{E}_{t+1}} (1 - d_{t+1}) \right\}$$

$$= \beta \mathbb{E}_{t} \left\{ \left(\frac{C_{t+1}}{C_{t}} \right)^{-\sigma} \frac{P_{t}}{P_{t+1}} \frac{1 + \varsigma_{t+1}^{c}}{1 + \varsigma_{t}^{c}} (1 - d_{t+1}) \right\},$$

Country budget constraint can now be written as

$$Q_t \frac{1}{\mathcal{E}_t} B_{t+1}^h - \left(1 - d_t\right) \frac{\mathcal{E}_{t-1}}{\mathcal{E}_t} \frac{1}{\mathcal{E}_{t-1}} B_t^h = \left(1 - \gamma\right) \left[P_t^* C_t^* - P_t C_t \frac{1}{\mathcal{E}_t} \frac{1 - \tau_t^v}{1 + \tau_t^m} \right]$$

Model with capital

Choice of capital input by firms:

$$\frac{N_t}{K_t} = \frac{\alpha}{1 - \alpha} \frac{(1 - \varsigma_t^R)}{(1 - \varsigma_t^P)} \frac{R_t}{W_t}$$

• Choice of capital investment by households:

$$U_{c,t}\frac{(1+\varsigma_t^c)}{(1+\varsigma_t^l)} = \beta \mathbb{E}_t U_{c,t+1} \left[\frac{R_{t+1}}{P_{t+1}} \frac{(1+\varsigma_{t+1}^c)}{(1+\tau_{t+1}^K)} + (1-\delta) \frac{(1+\varsigma_{t+1}^c)}{(1+\varsigma_{t+1}^l)} \right]$$

- Results:
 - ① When consumption subsidy ς^c_t is not used, only capital expenditure subsidy to firms ς^R_t is required (parallel to payroll subsidy). All variable inputs should be subsidized uniformly
 - 2 Otherwise, investment subsidy and capital income tax need to be used in addition:

$$\varsigma_t^I = \tau_t^K = \varsigma_t^c = \delta_t$$

Pass-through of VAT and payroll tax

• Static model with differential pass-through $\xi_p > \xi_{\tau}$:

$$P_H = \left[ar{P}_H \cdot rac{(1-arsigma^
ho)^{\xi_
ho}}{(1- au^{
ho})^{\xi_
ho}}
ight]^{ heta_
ho} \left[\mu_
ho rac{1-arsigma^
ho}{1- au^{
ho}} rac{W}{A}
ight]^{1- heta_
ho}$$

Proposition

Fiscal devaluation is as characterized in Results I-III, but with payroll subsidy given by

$$arsigma^p = 1 - \left(rac{1}{1+\delta}
ight)^{rac{\xi_{
ho} heta_p+1- heta_p}{\xi_{
ho} heta_p+1- heta_p}}.$$

- still $\tau^{\nu} = \delta/(1+\delta)$, to mimic international relative prices
- $-\xi_{\nu} > \xi_{\rho}$ implies $\varsigma^{\rho} > \tau^{\nu} = \delta/(1+\delta)$
- as θ_p decreases towards 0, ς^p decreases towards $\delta/(1+\delta)$

Quantitative investigation

Source: Gopinath and Wang (2011)

	Germany	Spain	Portugal	Italy	Greece
Taxes					
— VAT	13%	7%	11%	9%	8%
 payroll contributions 	14%	18%	9%	24%	12%
— including employee's SSC	27%	22%	16%	29%	22%
% change, 1995-2010					
– wages	25%	61%	64%	39%	127%
- productivity	17%	19%	28%	3%	42%
Required devaluation*		34%	28%	28%	77%
Maximal fiscal devaluation**		23%	11%	32%	14%
— with German fiscal revaluation		38%	26%	47%	29%
— additionally reducing employee's SSC		43%	34%	56%	43%

- Required devaluation brings unit labor cost (W_t/A_t) relative to Germany to its 1995 ratio
- Maximal fiscal devaluation is constrained by zero lower bound on payroll contributions and 45% maximal VAT rate (which is never binding). A reduction of x in payroll tax and similar increase in VAT is equivalent to a x/(1 - x) devaluation
- Maximal German revaluation is an additional decrease in German VAT of 13% and a similar increase in German payroll tax, equivalent to an additional 15% devaluation against Germany

▶ back to slides