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Abstract

We first document a large secular shift in the estimated response of the entire term structure of
interest rates to inflation and output in the United States. The shift occurred in the early 1980s.
We then derive an equation that links these responses to the coefficients of the central bank's
monetary policy rule for the short-term interest rate. The equation reveals two countervailing
forces that help explain and understand the nature of the link and how its sign is determined.
Using this equation, we show that a shift in the policy rule in the early 1980s provides an
explanation for the observed shift in the term structure. We also explore a shift in the policy rule
in the 2002-2005 period and its possible effect on long-term rates.



One of the most debated issues in monetary economics concerns the impact of monetary
policy on the term structure of interest rates. Approaching this issue from the perspective of
monetary policy rules seems promising because long-term interest rates depend on expectations
of future short-term rates, which are determined by the response of the central bank to future
developments in the economy, a response most easily captured by a policy rule.

In this paper we investigate how shifts in the central bank’s policy rule cause shifts in the
term structure of interest rates. We focus on a new representation of the term structure in which
long-term interest rates are related to inflation and output, much as a monetary policy rule
describes how the short-term interest rate is related to inflation and output. The term structure is
thus simply a series of implied “policy rules” for long-term interest rates—one policy rule for
each maturity—with “response coefficients” measuring the size of the interest rate reaction. We
find that these implied policy rules are very useful for understanding the impact of monetary
policy because longer-term interest rates have powerful effects on spending and asset allocation
decisions not captured by short-term interest rates.

To begin our analysis, we empirically document a dramatic secular shift over the last
several decades in the size of the response coefficients of long-term interest rates to inflation and
output in the United States. One important characteristic of this shift is that an increase in
inflation has been associated with a larger rise in long-term interest rates in the decades since the
mid 1980s than in the 1960s and 1970s. Another is that long-term interest rates have been
responding more to real output fluctuations. We then show that a theory of monetary policy
based on policy rules can explain and help understand this empirical finding. Using no-arbitrage
pricing methods developed by Ang, Dong, and Piazzesi (2005), we derive analytically an

equation relating the response coefficients in the implied long-term interest rate rules to the



response coefficients of the short-term interest rate rule of the central bank. This equation takes
risk premia into account and reveals two countervailing effects of shifts in the policy rule on the
long-term yield equations. By differentiating this equation with respect to the response
coefficients in the monetary policy rule, we derive our main result: a secular shift in the
monetary policy rule in the mid 1980s in United States explains the large shift in the term
structure. Previous work exploring the impacts of monetary policy rule shifts on longer-term
interest rates by Fuhrer (1996) used the pure expectations model of the term structure and thus
did not examine these longer-term response coefficients.

The secular shift in the mid 1980s is not the only possible regime shift in monetary policy
in recent years in the United States. During the period from 2003 to 2005, the Federal Funds rate
deviated significantly from what would have been predicted by the policy response that was
typical over the period since the mid-1980s. Though this two- to three-year period is
comparatively short for determining whether market participants interpreted this as a regime shift
or a temporary deviation from the post mid-1980s regime, the interest rate response to inflation
does seem much lower. A perception of a smaller response coefficient could have led market
participants to expect smaller interest rate responses to inflation in the future, and therefore lower
long term interest rate responses. If so, our model provides an explanation for the puzzle—
coined the “conundrum” by former Federal Reserve Chairman Alan Greenspan—that the rise in
the Federal Funds rate starting in 2004 did not bring about an increase in long-term interest rates

as would have been expected based on experience over the previous 20 years.



1. The Response Coefficients

We consider a representation of the term structure in which long-term interest rates are
linear functions of macroeconomic variables. The specific objects of our investigation are the
slopes of these linear functions, which we refer to as the response coefficients, because they
describe how yields on bonds of different maturities respond to macroeconomic developments.
These response coefficients are not individual behavioral parameters; rather they represent the
interaction of all participants in the bond markets and other parts of the economy. We are
interested in the term structure pattern of these response coefficients and how they change over
time. We focus on the responses to two macroeconomic variables—inflation and the real GDP
gap—because these are the two variables that are most important in short-term interest rate rules
that describe the behavior of central banks.

The simplest linear function occurs when long term rates depend only on inflation and a
random error term. Letting i,(") be the yield to maturity on bonds with maturity n, we then have:
M) i =a,+bx +n,
where 7, is the inflation rate and 7, is an error term. The coefficients a, are the intercepts and
the coefficients b, are the response coefficients for maturities n = 1,..., N. Clearly, the sizes of

b, are important for the overall behavior of the economy. If the b, are large, then an increase in

inflation will bring about an increase in the yields on bonds with those maturities and thereby
affect spending by firms or consumers who are borrowing funds at those maturities. A very
small value of the response coefficients—say less than one—could lead to such a small increase

in yields that the real interest rate (computed with an expected inflation rate corresponding to the



maturity of the bonds) could fall with an increase in inflation and thereby exacerbate the rise in
inflation.

Table 1 presents ordinary least squares estimates of the response coefficients b, for a

range of maturities and for two sample periods: 1960Q1 — 1979Q4 and 1984Q1 — 2006Q4. The
zero-coupon bond yields are quarterly averages of monthly CRSP data on U.S. Treasury yields at
one- through five-year maturities. We choose these maturities since they are the available
maturities in the CRSP database that have been converted to zero-coupon yields. The inflation
measure is the four-quarter moving average of the percentage change of the U.S. GDP chain-
weighted price index. Figure 1 depicts the pattern of the coefficients graphically.

Note the dramatic secular shift in these coefficients between the two sample periods. For
all maturities, the response coefficients are much larger in the second period than in the first
period. There is little or no tendency for the coefficients to decline with maturity in either period;
tests of the null hypothesis that the coefficients are equal at all maturities cannot be rejected for

either period.

Table 1: Estimated Term Structure Response Coefficients for Inflation

Maturity b, for b, for
(years) | 1960Q1 —1979Q4 | 1984Q1 — 2006Q4

1 0.605 1.549

2 0.603 1.566

3 0.580 1.540

4 0.573 1.536

5 0.573 1.528




Figure 1: Pattern of the Response Coefficients
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A similarly large shift is seen if we include a real macroeconomic variable along with the

inflation rate in the linear term structure equations. Consider the series of equations:

i(n) _
(2) ltn - an +bl,nyt +b2,n7[t +77t9

where y; is the percentage deviation of real GDP from trend (estimated by a Hodrick-Prescott

filter). Table 2 reports least squares estimates of the two response coefficients b, , and b, in

1,n
equation (2), and their term structure pattern is shown graphically in Figures 2A and 2B. Note
that the response coefficients for inflation are again much larger in the second period, and a
similar upward shift is now evident for the responses of the yields to the output gap. Observe that

the response coefficients to the output gap decline with maturity, but, as with the simple



regressions, there is no such tendency for the response coefficients to inflation to decline with

maturity.

Table 2: Estimated Term Structure Response Coefficients for Inflation and Output

Maturity b, for b, , for b, , for b, , for
(years) | 1960Q1 — 1979Q4 | 1960Q1 — 1979Q4 | 1984Q1 — 2006Q4 | 1984Q1 — 2006Q4
1 0.454 0.604 1.244 1.224
2 0.335 0.602 1.124 1.273
3 0.259 0.580 1.000 1.279
4 0.222 0.573 0.888 1.304
5 0.191 0.573 0.806 1.318
Figure 2A: Pattern of Output Gap Response Coefficients
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Figure 2B: Pattern of Inflation Response Coefficients
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The regressions reported in Tables 1 and 2 only go out to a maturity of five years because
of CRSP data availability for zero-coupon Treasury yields. To help assess how longer-term
yields might respond, we also estimated equations (1) and (2) using monthly Constant Maturity
Treasury (CMT) yields averaged to create a quarterly series for each of the one-, three-, five-,
ten-, and twenty-year bond yields. The CMT yields are estimated with a cubic spline which
approximates the zero-coupon yields used in (1) and (2), thereby enabling us to examine how the
longer-term yields respond to inflation and output. We obtained the CMT data from the FRED
database of the St. Louis Federal Reserve Bank. Tables 3 and 4 report the estimated regressions

(1) and (2), respectively, using the CMT yields.



Table 3: Estimated Term Structure Response Coefficients for Inflation using CMT Yields

Maturity b, for b, for
(years) | 1960Q1 — 1979Q4 | 1984Q1 —2006Q4

1 0.637 1.579

3 0.595 1.604

5 0.591 1.583

10 0.584 1.543

20 0.610 1.432

Table 4: Estimated Term Structure Response Coefficients for Inflation and Output using CMT

Yields
Maturity b, for b, ,, for by, for b, , for
(years) | 1960Q1 — 1979Q4 | 1960Q1 — 1979Q4 | 1984Q1 — 2006Q4 | 1984Q1 — 2006Q4
1 0.446 0.636 1.233 1.257
3 0.262 0.595 1.031 1.335
5 0.194 0.590 0.817 1.370
10 0.143 0.584 0.591 1.389
20 0.132 0.610 0.745 1.246

We see a similar pattern occurring with the CMT yields as with the zero-coupon yields; the
second sub-sample has higher response coefficients for the macro variables, even if we go out as
far as twenty years. For the shorter maturities the estimated coefficients with CMT yields are
almost identical to those with the zero-coupon yields. It should be noted that the twenty-year
yield is not available for 1987Q1 — 1993Q3, thus slightly reducing the accuracy of the estimates
of the response coefficients for the second sub-sample.'

This evidence of a shift in response coefficients is not sensitive to the exact choice of
sample periods. Similar results are obtained, for example, if the observations between 1980Q1
and 1984Q1 are included in the second sample. We have chosen the early- to mid-1980s as a

break point because it is around that period that many researchers have documented a regime

' We performed similar regressions using the Treasury yield curve derived in Gurkaynak, Sack, and Wright (2006).
The empirical shift is robust across these zero-coupon bond yields, and the quantitative difference between the
reported coefficient estimates and those using this new zero-coupon bond data is extremely small.



change in monetary policy. The change occurred around the time that Paul Volcker began to
pursue a different approach to monetary policy, and has lasted for the next two decades under his
successors. Clarida, Gali, and Gertler (2000), Taylor (1999), and Woodford (2003) have
previously reported that the response coefficients to inflation and output in a Taylor rule shifted
upwards around that time, and such a policy regime shift is also evident in the data and time

periods in Tables 1 through 4. Using the federal funds rate, denoted r,, the policy rule regression

results are as follows:

1960Q1 - 1979Q4: r, =2.448+0.970x,

t

1984Q1 — 2006Q4: r

t

=1.312+1.5797,

1960Q1 - 1979Q4: r, =2.435+0.475y, +0.975~x

t t

1984Q1 —2006Q4: r, =2.022+1.322y, +1.234r,.

Note how the monetary policy response coefficients are much larger in the second sub-sample.
The reaction coefficient on inflation is less than one in the first sub-sample and shifted to a value
substantially greater than one in the second sub-sample. The reaction coefficient on output also
shows a much greater responsiveness in the second period.

The obvious question is whether this change in the monetary policy response coefficients
can explain the changes in the entire term structure of response coefficients. In the next two
sections, we introduce a simple model and use it to derive an equation that shows that there is
indeed an intimate connection between the policy rule and the term structure that helps us

explain and understand the empirical results for the term structure.
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2. The Case where the Monetary Policy Rule Depends Only On Inflation

We begin with a model that enables us to derive a simple equation relating the response
coefficient on inflation in equation (1) to the central bank’s policy rule coefficients. In this
model, the central bank responds to inflation, but not to output. Hence, as we will show, long-
term interest rates also respond to inflation, but not independently to output, so that the model

implies a relationship of the form of equation (1). The model has the following equations:

(3) r =0r,
4) i =-n"log(R")

) P""=E,[m,P"]

t+17 t+1
(6) m., = exp(—rt - 05]&2 - ﬂ“tgtﬂ)

(7N A==y, —nnr,

(8) T, =7 _¢(rt—l '72';71) toég,

where the shock ¢, ~iid N (0,1). Equation (3) is the monetary policy rule in which the short-

term nominal interest rate 7, depends on the inflation rate with a policy response coefficient 0 >
0. Equation (4) gives the yield to maturity of a zero-coupon bond with a face value of 1, where
P™ is the price of the bond at time ¢. Equation (5) is a no-arbitrage condition showing that the
price of an n+1 period bond at time # must equal the expected present discounted value of the
price of an n period bond at time #+1, where m; is the stochastic discount factor (or pricing

kernel). Equation (6) describes this stochastic discount factor, which has the convenient

11



functional form used in the affine term structure literature. Equation (7) shows that the risk term
A, in equation (6) depends on two coefficients: yy, which represents a constant risk premium, and
y1, which represents the time-varying risk premium attributed to changes in inflation. As we will
show the more positive is y;, the more long-term yields respond positively to shocks in inflation.
Finally, equation (8) describes how monetary policy affects inflation. It is a price adjustment
equation in which the change in inflation depends on the lagged real interest rate, which we

simply assume depends on the ex-post real interest rate through the parameter ¢> 0.

The affine term structure equations (4) through (7) are simplifications of assumptions in
Ang, Dong, and Piazzesi (2005). These authors also assume that macroeconomic variables (7 in
this simple model) evolve according to an autoregression, which does not depend on the policy
rule. To answer the questions posed here about the impact of regime shifts on the term structure,
it is necessary to describe how the interest rate affects inflation, and for this reason we introduce
a simple structure which assumes the interest rate transmission mechanism in equation (8). This
effect would be ignored by a vector autoregression model with constant coefficients, leading to
errors similar to those pointed out in the Lucas critique. It is possible, of course, to improve on
equation (8) and perhaps better account for the Lucas critique by introducing, for example, a
forward-looking optimization model, or perhaps staggered price setting, but the simple form of
(8) allows us to obtain analytic results and focus on the term structure relations. Examples where
more complex structural models have been combined with affine models of the term structure are
Bekaert, Cho, and Moreno (2005), Rudebusch and Wu (2006), and Gallmeyer, Hollifield,

Palomino, and Zin (2007).

Equations (3) through (8) imply that the yields i are linear functions of the inflation

rate:

12



<(n) _
O i"=a,+br,

a functional form which corresponds to the estimated regressions in equation (1). For i =r.

this is obvious from the policy rule equation (3), and so @,=0 and b,= J. For i”’ the derivation is

as follows: From equation (4), we know that the price of the one-period bond at time #+1/ is

simply P') = exp(-r,.,), which can be substituted into equation (5) to

t+1
obtain £, = E,[m,., exp (-7, )].

Now, by substituting for m,; and r,+; from equations (3), (6), and (8) we get

(10) P® =E [exp(-6r, —=0.52] — A&, —O(x, —p(0m, — 1) + 0%,.,,))]
=exp(—or, —0.5° —5(x, —$(6 — )7, E [exp(—(5o + A,)¢,.,)]
= exp(-07, — 0.5 = 5(x, —¢(5 —)7z,) +0.55c> + 504, +0.51,%)
=exp(=or, —5(x, —p(6 —\)7,) +0.55° > — o (y, +y,7,))
=exp(0.56%0% = oy, — 52— §(5 - 1)+ oy,)7,).

where we use the normal distribution assumption for & to evaluate the expectation in the

second line of (10). Since the yield i/” is given by 0.5log(P?) we have that:

(11) i® =0.560y, —0.256°c> +0.56(2 — §(6 - 1) + oy,)7,,

which is the linear form of (9), with the response coefficient for the two period yield given by:

(12 b, PC2=9E-D+oy)
2 2 .
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A similar result holds for all maturities, as shown in Appendix A. The response

coefficient on the current inflation rate for yields to maturity of n periods is:

5> (1-¢(5 - +0y,)

n

(13) b, =

Observe that the numerator of equation (13) is a geometric series in which each term equals the
previous term multiplied by the common ratio (1-¢(6 —1) + oy,). While it is algebraically

possible for this common ratio to be negative, this would imply implausible values for the
parameters, such as an enormous response coefficient o for the central bank. Hence we will
assume throughout that the common ratio is positive and focus on whether it is greater than one
or not.

We noted in Section 1 that the estimated response coefficients are nearly constant as
maturity increases. In particular they show no tendency to increase with n. Under what
conditions is this empirical observation explained by the simple model? Consider first the case

of n =2 and examine equation (12). It shows that b, < if

(14) 5>1+%.

Condition (14) is closely related to the monetary policy principle that & > 1 (called the “Taylor
principle,” by Woodford (2001) and others). This same condition (14) is sufficient to prevent b,
from exploding as n increases. To see this, note that if (14) holds, then the common ratio of

terms in the geometric series in the numerator of equation (13) is less than one. For each

14



increase in maturity n, we calculate b, by (i) adding a term in the numerator which is less than
the previous term and (ii) adding a term in the denominator greater than the previous term. Thus
we conclude that b, cannot increase geometrically. Note, however, that while the estimated
response coefficients do not explode, they do not significantly decline. This implies that
inequality (14) is nearly an equality.

The close connection between condition (14) and the Taylor principle is important
because the latter is usually viewed as the sine qua non of a good monetary policy. If that
principle does not hold (as appears to have been the case in the first sub-sample 1960Q1 —
1979Q4 in Section 1), then the model is not even stable, which is one way to understand why
that period showed such macroeconomic turbulence; but it is possible for (14) to hold if y; is
negative which causes longer-term yields to have a more muted response to inflation. If the
Taylor principle holds, it is possible that (14) does not hold if y; is sufficiently large and positive.
In the case of no risk aversion (y; = 0), the Taylor principle and condition (14) are exactly the
same. We note that Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2005) estimated the
time-varying risk parameter corresponding to inflation to be positive, though in somewhat

different set-ups.

3. Impact of Shifts in the Monetary Policy Rule

As shown in Section 1, policy actions have gotten more aggressive in responding to
inflation; that is, ¢ in equation (3) has increased. The question we focus on now is whether that
increase may have affected the behavior of the whole term structure. In other words, can such a
shift in the response coefficients in the policy rule explain the shift in the response coefficients of

longer term interest rates?
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. One can

2 bond yield: b, = 2" ¢(52— D+oy)

First, recall equation (12) for the n =
easily see that the response coefficient in the policy rule has a direct impact on the response of
this longer-term yield to inflation. However, there are countervailing effects. A larger reaction
coefficient 0 means that expected future short-term interest rates will rise by a larger amount
when future inflation rises; this effect is measured by the presence of ¢ outside the parentheses in
(12) and it depends on the risk premium parameter y;; but a higher ¢ also means that inflation is
expected to increase by a smaller amount in the future for a given increase in inflation today,
because the persistence in inflation declines; this effect is measured by the term ¢(d —1)in

equation (12).

To sort out these countervailing effects, consider the derivative of (12) with respect to o:

ob, 2+¢+oy,

13) 00 2

—-0¢ > 0.

Note that unless ¢ is already very large, the derivative is likely to be positive and we will
generally make this assumption, as indicated by the inequality sign in (15). Then increasing &
will raise the reaction of the 2-period rate to inflation. Here, the reduced persistence has less
effect than the size of the reaction. For high values of J the derivative could be negative,

reflecting that reduced persistence has a larger effect.
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Now consider the general case of maturity » and differentiate equation (13) with respect

to 0. As shown in Appendix A, the derivative for n =2, 3,...,N is:

ob n-2 ‘ 2 ‘
16) —¢= %(l +2 A+ g+oy)1-g(S~D+oy) —¢5Y (i +2)(1-¢(S~D+07,)").

Observe that equation (16), much like equation (15), is composed of two countervailing terms.
Both terms are strictly monotonically increasing and multiplied by 1/n. The first term is a
geometric sum with common factor equal to 1—¢@(o —1) + oy,, while the second term, which is
subtracted from the first, is an arithmetic-geometric sum with the same common factor. Much as
in equation (15), there are two countervailing effects: the first term is the direct effect of policy
while the second term is the indirect persistence effect.

Figure 3 depicts these two terms as functions of the maturity length » and for some
example parameter values. Note how the curves cross at a particular maturity, which we call n*.

The derivative is the difference between the two curves, shown by the distance between them in

ob
Figure 3. For all n < n* the first term is larger so equation (16) is positive and a—é’f > 0, but the

. . . . ob
second term is larger starting at n* so that equation (16) becomes positive and a—(; <0.
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Figure 3: The Countervailing Effects of a More Responsive Policy
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Note : Parameters are set at ¢ =y, =0.05,6 =1.5,0 =0.25.

To be precise we summarize this argument with the following:

Proposition 1: Suppose conditions (14) and (15) holds and that y, > 0. Then there exists a

unique n* such that for all n < n* ZZ > 0,and foralln > % <0,

Proof: First, multiply equation (16) by n and consider the two resulting series which we denote

as:
Si(m) =1+ (1+¢+0y)1-9(S-1)+07,)

S,(n) = (¢S5 i+ 215 —-1)+07))

=95y " i(1l- ¢S D +oy,) +245Y (- pS-D+0y,)"
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forn=23,..., N. Figure 4 illustrates S, (n) and S, (n) for the same parameter values used in

Figure 3. It is clear that these two series are both monotonically increasing in .

Figure 4: Graphical Illustration Proof of Proposition 1

200

160 |

120

80

40

2 n 20 n* 40 60 80 100

Maturity (Quarters)

Note : Parameters are set at ¢ =y, =0.05,6 =1.5,0 =0.25.

Now, note that:

§1(2)=5,(2)=2+0y, —$(26 -1),

and since (15) holds, we have §,(2)-5,(2) > 0.
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We next consider maturities longer than n = 2 and define D, (n) = S,(n) —S,(n—1) and

D, (n)=S,(n)—S,(n—1),which are simply the terms in the two sums and are given by

D,(n)=(1+¢+0y)1-¢(S~D+ay)"”

D, (n) = ¢n(1-$(6 ~D+oy,)"".

L1 . . .
Note that for all n<n = %, D, (n) is larger than D, (n)and for all n > n, D,(n)is

larger than D, (n). Unless ¢o =0, which would only occur under the case of inflation following

a simple AR(1) process, there must exist some finite 7. In fact, if ¢6 = 0, then it would always

be the case that b, > 0.
00

Now consider n =3 < n. We know that:

S,(3)=S,(2)+ D,(3) and

S,3)=5,2)+D,(3).
Thus S,(3)-S,(3) = (5,(2) - S, (2))+ (D,(3) - D,(3)) > 0.
Similarly, using induction on # for all n < 7,
S,(n)=S,(n) = (S,(n—1) =S, (n-1))+(D,(n) - D, (n)) = S, (n—1) = S,(n—1)
so that S,(n)—S,(n)> 0.
Finally, we let n approach infinity, and use the formula for the limits of a geometric and

arithmetic-geometric series to compute that:
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(A +¢0) (6 -1) —oy,)
(p(6-1)-or)’

Sl(oo):

o0y = PG -D = 07)
#S-D=07)

5

and therefore given the assumptions on our parameters,

¢+07/1
S,(0)=§,(x) = 5 0
)= = 6 —D=oy)

Now we have that

»5,(2)-5,(2)>0,

(1) S,(n) = S,(n) >0 for n sufficiently large, and

(iii) D, (n)> D,(n) and for all n > n,

So there must be a single point at which these two curves cross, given by n*. Thus we

n

have proved that >0foralln <n*and % <Oforn>n".

We illustrate the proof in Figure 4. The slopes of S,(n)and S, (n) are graphical
representations of D,(n) and D, (n), respectively. Note that the number 7 lies at the point
where these two slopes are equal. The proof first considers values of n greater than 2 but to the
left of 72 and then goes on to consider values of n to the right of 7. In the first region
S,(n)>S,(n) because S,(2)—S,(2) >0 and, as n increases, a smaller term is added to the
smaller sum than to the larger sum. In the second region, which begins with a value of n where

S,(n)>S,(n), there is a single crossing point n* at which the two curves are shown to intersect.
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We feel that the assumptions underlying Proposition 1 are empirically realistic. It is
reasonable to assume that (14) holds because the estimated response coefficients in Section 1 do

not explode. Condition (15) holds unless o is extremely large. The assumption of a positive y,

falls in line with previous empirical estimates, and even if it is not positive and thus »" is infinite,
this does not contradict our empirical findings. Hence, the model does explain the facts: a
monetary policy that reacts more aggressively against inflation implies that bond yields respond
more aggressively to inflation.

Recall that the regressions reported in Section 1 went out to a five-year or twenty- quarter
maturity. These regressions showed no indication that the response coefficients declined with
the large increase in the policy response parameter 6 we saw in the two sub-samples. This
suggests that all these maturity lengths are less than n*. It would be interesting to see if the sign
reversed for longer maturity U.S. zero-coupon Treasuries, as well as for zero-coupon bond issued

by other countries.

4. A Model with Both Inflation and Output in the Policy Rules

Now, consider the following model which includes real output as well as inflation.
Equation (17) is the policy rule; it replaces the simpler policy rule of equation (3), incorporating
a measure of the real output gap in the interest rate rule of the central bank. We specify bond
prices analogous to (6), but the pricing kernel m,,; now has the matrix form shown in equation
(18). Equation (19) shows how inflation and real output affect risk aversion in the pricing kernel,

a generalization of equation (7). The risk term A4, is now two-dimensional. The first element

corresponds to the risk term associated with real output, whereas the second element corresponds

to the risk term associated with inflation. Equations (20) and (21) replace equation (8). Equation
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(20) shows how real output depends on its own lag and on the ex post real interest rate. Equation
(21) is a price adjustment equation in which inflation depends on lagged inflation and lagged real
output:

(17) r, =9d'z

(18) m, :eXp(_rz _05;‘1;"1 _)‘;vt+1)

(19) A, =y+TI7z,

(20) y, =-a,(r —7 )ty o,

2) =z, =n_+¢y, +0,5,,

5. _
where z, = (y, J, v, = [77’ ), o= ( ! } Y= (7/01 ], I= ( Yuo Ve ], and where the shocks
T & 0, Vo2 Voo T Vn

n.~iid N(0,]) and ¢, ~iid N(0,1) are independent of each other.

Analogously with the model of Section 2, the yield on an n-period bond is a linear

function of inflation and output:
(22) " =a,+b,'z,

with the n-period yield intercept term given by a, and the n-period response coefficient vector

1,n

b
givenby b, = [b J b;, corresponds to the real output gap, and the second element b, ,

2.n

corresponds to the inflation rate.

23



To show that (22) holds, we first consider the two-period bond yield and derive a, and by.

Observe that we can rewrite (20) — (21) as a VAR(1) in the following way:

(23) z,=®z, , +Xv,,

where

® - a,—af, -a,(0, -1 s o, 0
b, -as,) 1-pa,5,-1) = |go, o,

Using the same method we used in the univariate model, we first write the two-period

bondas: P? = E [m  PY]=E [m, exp(-r.,)]. Substituting in form,, and r_,, we find:
t t t+17 t+1 t t+1 t+1 t+1 t

+1

(24) P? =E [exp(-8'z, —0.5L A, —A)v,, —8z,,)]
=exp(-8z, —0.50,h, =8 ®z,)E [exp(—(h, +3 Z)v, )]
=exp(-8z, —0.5L, A, —8®z, +0.5L,A, +8 XA, +0.58 LXd)
=exp(-8z, -8 ®z, +3 X(y+TI'z,)+0.58 £X '3)
=exp(0.56 X8+ Xy -6 (I+®—-XI)z,).

Therefore, the two-period bond yield is given by:

(25) i =—(0.250 X8 +0.56 Xy) +0.58 (1+® - XIN)z,,
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where we see that @, = —(0.258 £X 8 + 0.5 Xy) and b, =0.58 (I + ® — XI'). Note the

similarities and differences between equation (25) which includes real output and equation (11)
which does not. In both equations the policy parameters affect the coefficient in predictable
ways.

More generally (see Appendix B), the n-maturity bond yield response coefficient vector

is:
(26) b, = %(z:ol(q) —zry Js.

which an obvious generalization of equation (13).

S. Impacts of Shifts in the Policy Rule on the Term Structure Response Coefficients

In our simple, univariate model, we saw that the inflation response coefficient in the simple
policy rule had a direct impact on the response of longer-term yields to inflation, yet the
direction of the reaction had two countervailing forces. We can also examine how longer-term
yields are impacted by the policy reaction coefficients in this two-dimensional model. Empirical
estimates of monetary policy rules have shown that both J, and o, significantly increased in the
1980s, and our regressions from Section 1 indicate that when output and inflation are both used
as factors determining bond yields, more aggressive policy is associated with substantial
increases in bond yield reaction coefficients. We want to see how such a policy change might
impact the response coefficients of the output gap and inflation for bond yields in our analytical
model, in order to reconcile the observed empirics. To simplify the analytics we set

71, =7, =0. The existing empirical literature does not provide much guidance about the values
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of these off-diagonal elements, though we can compute the response coefficients numerically for

any values.

Expanding the coefficient vector we derived for the two-period yield in (27) gives:

5}»(14'0‘2 _alé‘y +O_q711)+57z(¢(0‘2 _a15y +G;7711))J

(27) b, = 0.5(
~a,8,(8, ~1)+ 8,2~ ¢a, (5, ~ 1)+ 7,7,,)

Consider the derivative of the response coefficient vector for the two-period yield with

respect to the elements of o :

(28) b, _ 0'5£1+052 to,7,—a,(29, +¢5ﬂ)]
85, —a,(5. -1
a,—a,0,)+¢o
(29) abz :O'S ¢( 2 1 y) ¢ 777/11 .
aé‘ﬂ' 2 + 657/22 _alé‘y _¢a1 (2571 _1)

The first element of each of these expressions corresponds to the real output gap coefficient in
the bond yield equation (22), and the second element of each of these expressions corresponds to

the inflation coefficient.

If we examine the element b, , corresponding to inflation, we see that

ob
662"2 = %(2 toa, +0,7, -6, —2¢a 5,,) Recall from (14), the derivative from the univariate

T

ob 1 ob
modelatn=2: —2=—(2+¢+ —2¢45). Now compare ——=
n=2 — 2( ¢+ 0y, —2¢5) pare —

T

and % We now

00

have go; rather than ¢. If we let 6, = 0 to allow for only inflation as in the univariate model and
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let o,y,, = oy,, we see the similarities between the two models. The only addition compared to

the simpler model is the term «,6,. Unless this term is very large, a reasonable assumption is

> 0.

ob
that ——=2
05

We can also examine how the coefficient vector of the n-period bond yield responds to

h, h
policy changes. Let H = [ ! 12} =@ — XI'. Using this notation, the derivative of b, with
21 22

respect to each of the elements of 9 is:

T o S Ni(S, iy + g5, D)+ S
55 n z,:hliz

Gy ol IR
05 m\ 1=, 318,y + g5, hisH))+ S hi, |

as shown in Appendix B.

Now consider the derivative:

(1+Z i, )- —( S s+ 4, )

71'

Observe that this derivative is very similar to (16); we again have countervailing forces at work.
We have two sums, one is geometric and the other is arithmetic-geometric. The geometric term
represents the direct effect of policy, while the arithmetic-geometric term is a combination of the
persistence of inflation and the output gap. And as in the simpler case we can calculate how the

response coefficients for the longer yields are affected by the policy response coefficients.
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Figure 5 shows how the response coefficients shift with a change in policy parameters.

The dashed lines represents a regime with 6, =1.3and 6, =1.4, while the solid represents a

more responsive regime with 6, =1.7and 6_ =1.8. These policy parameters are much greater
p g ) x

than those estimates in the pre-1980 regime.

Figure 5: Behavior of Response Coefficients with a More Aggressive Policy Regime
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Note : Parameters are set at a; =0.2,a, =0.7,4=0.2,0, =0.75,0, =0.36,y;, =0.15,7,, =0.15.

First, notice how the output gap coefficients decline much more rapidly than the inflation
coefficients, much as in the empirical estimates. This is due to the persistence of output being
smaller than the persistence of inflation, a common stylized fact we see in the data. Even more
intriguing, however, is how the slope of the response coefficient curves change as the policy

parameters change. As the monetary policy rule becomes more responsive, shorter-term yields

28



respond more than longer-term yields to both the output gap and inflation. This is the
coutervailing forces at work; as the indirect persistence effect grows larger than the direct effect
of higher policy reaction coefficients, the bond yield response coefficients change and longer-

term response coefficients adjust downward.

6. An Explanation of the Term Structure Conundrum

The above results also shed light on a famous asset pricing puzzle which first arose when
the Federal Reserve started raising the Federal Funds rate in 2004. That increase in the short-
term interest rate was not associated with nearly as large an increase in long-term interest rates as
would have been expected based on experience over the previous 20 years. The puzzle was
coined the “conundrum” by former Federal Reserve Chairman Alan Greenspan; it was a great
concern for policymakers for it appeared that the tightening of monetary policy would not have
had the bite that it had in previous periods of tightening. There have been many explanations for
the conundrum, including the idea of a global saving glut that drove down the world real interest
rate. But that explanation has been challenged because world saving as a share of world GDP
had actually fallen during this period.

An alternative explanation naturally emerges from the theory in this paper. During this
period, the Federal Funds rate deviated significantly from what would have been predicted by the
Fed’s typical response as exemplified by the estimates we reported in Section 1 of this paper for
the sample period from 1984Q1 to 2006Q4. While it is difficult to determine whether this was a
shift in the policy response coefficients or simply an additive deviation from the rule, there is
econometric evidence that it may have been interpreted as a regime shift. To see this, we

estimated the following regression over the 1984Q1 —2006Q4 period:
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r, =2.056+1.016y, +1.4287, —1.327x7,

where 7”is a multiplicative dummy variable in which the actual inflation rate is multiplied by a

dummy variable that equals one from 2002Q4 through 2005Q4, and zero elsewhere. This is the
period when, by all accounts, the actual Federal Funds rate deviated significantly from the
estimated Taylor rule. All the coefficients in this equation are statistically significant, and in
particular the inflation terms and the multiplicative dummy are highly significant. The equation
clearly suggests the possibility that the response coefficient on inflation dropped significantly
during this period. The short-term interest rate response to inflation (J,) would seem much lower
to market participants trying to assess Federal Reserve policy. To investigate other possibilities,
we also included an additive dummy along with the multiplicative dummy to the regression; we
still found a significant downward shift in the inflation response. We note that Davig and Leeper
(2006) found a similar shift using an estimated Markov switching model.

Now, according to the theory presented in this paper, a perception of a smaller response
coefficient in the policy rule could well have led market participants to expect smaller interest
rate responses to inflation in the future, and therefore lower long term interest rate responses.
That is, we would predict that the lower response J, would have lowered the response coefficient
b, , for inflation. Hence, our model provides a simple consistent explanation for the conundrum.
While the regime shift was clearly temporary when viewed from the perspective of todays, it
would have been difficult to assess at the time whether the Federal Reserve would have returned

to the typical rule followed during the post 1984Q1 period.
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7. Conclusion

In this paper, we have shown that the theory of monetary policy rules helps explain and
understand the dramatic changes in the comovement of note and bond yields and macroeconomic
variables over the past several decades. We showed that a more aggressive policy regime has a
substantial impact on the entire term structure of interest rates: a more responsive monetary
policy increases the response of longer-term yields to macroeconomic variables. Our model also
helps explain the behavior of the longer-term interest rates during the recent spell in 2002 —
2005, where standard models predicted that longer-term yields would increase far more than they
did.

There are several directions that future research might take. Using models of stochastic
regime shifting, such as Davig and Leeper (2007), along with no-arbitrage restrictions may help
pin down the exact patterns of bond yields and macroeconomic variables. Including longer-term
interest rates directly in the macro model would be an important check for robustness. Applying
the model to policy changes in other countries—even more dramatic changes than studied here—
would also be valuable. For example, do we see the same shift in the reaction coefficients for
Brazil when comparing the 1980s and 1990s to the 2000s?  All of these topics are worth
pursuing and will help shed light upon how the decisions of monetary policymakers at the short

end of the yield curve affect behavior at the long end.
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Appendix A

Derivation of the Relationship between the Policy Rule and Response Coefficients
We use the method of undetermined coefficients, and begin by conjecturing that the n-

period bond prices have the following form:

(Al) B(") = eXp(An + Bnﬂ-t)'

The continuously-compounded yields on n-period bonds are then:

(42) i =log(P"")/n

=a,+b 1,

where a, =—n"'4, andb, =—n"'B

n

Using the same approach we used for the case of n=2 in the text we have:

(A3) R(iHl) =Et [m P(n)]

t+17 t+1

=E [exp(-r,—052 — A&, +A +B x,.)]

t“t+1
=E [exp (=07, —0.54’ = A¢,,, + A, + B, (1 + §)x, — por, + 0¢,,,))]
=exp (—or, —0.54 + A, + B, (1+ ¢ —pS)x,) E [exp((oB, — 1,)¢,.,)]
=exp (-0, —0.54 + 4, + B,(1- (5 —1))z, +0.50° B} +0.52} — oA, B,)
=exp (4, +oy,B, +0.56°B +(B,(1—-$(5 - 1)+ o7,) - O)*,).

Then, it must be the case that:
(44) exp(4,, +B,.,7,)=exp(4, +0y,B, +0.50°B; +(B,(1-¢( 1)+ 0y,) - )x,).
Matching coefficients, we find that:

(45) A, =A +oy,B,+0.506°B’ with4, =0, B, =-3
and

(46) B, =B (1-¢(0-1)+o0oy,)-0.
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We can then derive the yield response coefficients in a recursive fashion. For n =2:

(A7) B, =-0(2-¢(6 -1)+07,))

and

(48) A, =—o0y,0+0.50°5".
Forn=3:
(49) By ==06(1+2-¢(6 -1 +oy)A-¢(6-1)+0y,))

and

(A10) 4, = 07,0 +0.56°5> — 67,02 — $(5 —1) + 67,)) + 0.56°5> (2 — ¢(5 = 1) + 67,))".

And in general:

(A1) B, =-5Y"(1-¢(5~1)+07,)’

(A12) 4,=07,Y B + 0.502(2’:‘1‘35)
2O M ) I IE CENIETAY) IRyl S SAIEY CRN ROl
- —07/062:11(22_:0 1-¢ -1 +07,)’ )+ 0.5625> z:j(z;jo A-¢(S -1 +0y,)’ )2.

A simple transformation gives us the bond yield response coefficients:

5> (1-¢(-1)+0y,)

n

(A13) b, =

n

d) 07,63 (X =g -+ or) J-050°8 Y (T =g -1+ oy |

n
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Finding the Derivative of the Response Coefficient to Inflation

b
We find 865” from equation (413) by differentiating each element in (413) separately.

Consider the first few elements and ignoring #:

(s AOU=HODror)

1- (28 - 1)+ o7,

o(s1-¢-D+0y)°) _
00

(A16) (1=¢G36 1) +oy)1=¢(6 - 1)+ o7,)

o(s(1-¢-D+o0y)’) _

(A17) —

(1-¢(45 -1 +oy)1-¢(5 - 1) +07,)’

So that in general the emerging pattern is given by:

ob n-2 : n-2 :
(d18) =%(1+Zi0(1+¢+am(1—¢<5—1>+am’ — 98y i+ 21~ g~ D +0p,)).
Appendix B

The Relation between the Policy Rule and Response Coefficient Vector

Following Ang and Piazzesi (2003) we have

(Bl) A,,=A4, +B (Zy)+0.5B, XX'B, with 4, =0, B, =-9'
and

(B2) B, =B, (®-XI)-9"

From these we find the response coefficient vector b,. Using (B2) and the fact that

-1 -1
a,=-n A,andb, =-n""B, we have:
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(B3) —(n+1)b,,, =-nb (®-XI)-3
and

(B4) —(n+Da,, =-n(a, +b, (Zy)+0.5b,XX'b,).
Since b; = &, we can derive the recursive relationship for the response coefficient vector as we

did in Appendix A:
(B5) b, = 1@7_‘;@ —¥r)’ ) 5.
v

Finding the Derivative of the Response Coefficient Vectors

We assume that y,, = y,, =0, so that:

(B6) H:(h“ hle

hy,  hy,

=@ -xT

_ a2_a1§y+0-177/11 —a,(6, -1
¢(az_a15y)+0'77711 - (6, - +0,7, |

We differentiate each term of the sum, as we did in Appendix A. Ignoring n, we see the

following pattern emerging when we differentiate with respect to d,:
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gy DO _(hima(, 5450
0o, hy,

(BS) 0(d H?) _ h121 —2a,(6,hy, + 90, hy)
09, hiy

(BY) 06 H?) B ) =3a, (5yh121 +¢8,h3y)
03, ) |

Similarly, when we differentiate with respect to d,:

510y 2OH :( by J

05, |\ hn-a,(5,+45,)
' 2 h2 '
iy 2CHD I 21
657: hzz - Zal (5yh12 + ¢5nh22)
' 3 h3 '
(B12) OB H") = | 212 |
857r hzz —30{1 (5yh12 + ¢5nh22)

Combining the above and recognizing the patterns, we thus have:

n-1f. i— i n=1, ;
(B16) ob, 1 l_alz,ﬂ(l(é‘yhnl +¢5nh211))+zi:1h22
- n—=1, ;
0o, n ",
n=1,;
g7 Pl 2.0
06 n\1-a, Y6, + g3, )+ Y,

36



Appendix C

Standard Errors of the Regressions Estimates

Tables C1, C2, C3 and C4 contain additional details about the regressions reported in Tables 1,

2, 3, and 4, respectively. Under each point estimate, the standard error is reported in parenthesis.

We also report the R’ for each regression.

Table Cl1
Maturity a, for b, for R’ for a, for b, for R’ for
(Years) 1960Q1 — | 1960Q1 — | 1960Q1 — | 1984Q1 — | 1984Q1— | 1984Q1 —
1979Q4 1979Q4 1979Q4 200604 200604 20060Q4
1 2.913 0.605 0.681 1.487 1.549 0.279
(0.244) (0.047) (0.698) (0.263)
2 2.989 0.603 0.758 1.790 1.566 0.286
(0.201) (0.039) (0.693) (0.261)
3 3.188 0.580 0.797 2.114 1.540 0.291
(0.173) (0.033) (0.674) (0.253)
4 3.282 0.573 0.816 2.338 1.536 0.297
(0.161) (0.031) (0.663) (0.249)
5 3.319 0.573 0.832 2.480 1.528 0.305
(0.152) (0.029) (0.646) (0.243)
Table C2
Maturity a, for b, for b2,n for R? for a, for bl,n for szn for R for
(Years) 1960Q1 — | 1960Q1 — | 1960Q1— | 1960Q1— 1 1984Q1 - | 1984Q1— | 1984Q1— | 1984QI—
1979Q4 1979Q4 1979Q4 1979Q4 2006Q4 2006Q4 2006Q4 2006Q4
1 2.874 0.454 0.604 0.847 2.155 1.244 1.224 0.513
(0.170) (0.050) (0.033) (0.586) (0.190) (0.223)
2 2.960 0.335 0.602 0.860 2.394 1.124 1273 0.478
(0.154) (0.045) (0.030) (0.605) (0.196) (0.230)
3 3.166 0.259 0.580 0.865 2.652 1.000 1.279 0.451
(0.142) (0.041) (0.027) (0.606) (0.197) (0.230)
4 3.263 0.222 0.572 0.868 2.815 0.888 1.304 0.426
(0.137) (0.040) (0.026) (0.611) (0.198) (0.232)
5 3.303 0.191 0.573 0.872 2913 0.806 1318 0.416
(0.134) (0.039) (0.026) (0.605) (0.196) (0.230)

37




Table C3

Maturity a, for b, for R’ for a, for b, for R’ for
(Years) 1960Q1 — 1960Q1 — 1960Q1 — 1984Q1 — 1984Q1 — 1984Q1 —
1979Q4 1979Q4 1979Q4 20060Q4 20060Q4 20060Q4
1 2.840 0.637 0.695 1.449 1.579 0.282
(0.249) (0.048) (0.707) (0.266)
3 3.246 0.595 0.796 2.017 1.604 0.296
(0.178) (0.034) (0.693) (0.261)
5 3.370 0.591 0.831 2.391 1.583 0.313
(0.157) (0.030) (0.658) (0.247)
10 3.468 0.584 0.844 2.868 1.543 0.326
(0.148) (0.028) (0.622) (0.234)
20 3.354 0.610 0.877 3.477 1.432 0.211
(0.135) (0.026) (0.832) (0.349)
Table C4
Maturity a, for bl,n for b2,n for R? for a, for bl’n for szn for R for
(Years) 1960Q1 — | 1960Q1— | 1960Q1— | 1960Q1— | 1984Q1— | 1984Q1— | 1984Q1— | 1984Ql-
1979Q4 1979Q4 1979Q4 1979Q4 2006Q4 2006Q4 2006Q4 2006Q4
1 2.802 0.446 0.636 0.842 2.112 1.233 1.257 0.506
(0.180) (0.053) (0.035) (0.599) (0.194) (0.227)
3 3.224 0.262 0.595 0.863 2.571 1.031 1.335 0.456
(0.147) (0.043) (0.028) (0.622) (0.202) (0.236)
5 3.353 0.194 0.590 0.870 2.830 0.817 1.370 0.421
(0.139) (0.040) (0.027) (0.617) (0.200) (0.234)
10 3.455 0.143 0.584 0.866 3.186 0.591 1.389 0.388
(0.139) (0.040) (0.027) (0.605) (0.196) (0.230)
20 3.343 0.132 0.610 0.895 3.789 0.745 1.246 0.295
(0.126) (0.037) (0.024) (0.801) (0.273) (0.340)
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