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Abstract 

 

We first document a large secular shift in the estimated response of the entire term structure of 
interest rates to inflation and output in the United States.  The shift occurred in the early 1980s. 
We then derive an equation that links these responses to the coefficients of the central bank's 
monetary policy rule for the short-term interest rate.  The equation reveals two countervailing 
forces that help explain and understand the nature of the link and how its sign is determined. 
Using this equation, we show that a shift in the policy rule in the early 1980s provides an 
explanation for the observed shift in the term structure.  We also explore a shift in the policy rule 
in the 2002-2005 period and its possible effect on long-term rates.   
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One of the most debated issues in monetary economics concerns the impact of monetary 

policy on the term structure of interest rates.  Approaching this issue from the perspective of 

monetary policy rules seems promising because long-term interest rates depend on expectations 

of future short-term rates, which are determined by the response of the central bank to future 

developments in the economy, a response most easily captured by a policy rule. 

 In this paper we investigate how shifts in the central bank’s policy rule cause shifts in the 

term structure of interest rates.  We focus on a new representation of the term structure in which 

long-term interest rates are related to inflation and output, much as a monetary policy rule 

describes how the short-term interest rate is related to inflation and output.   The term structure is 

thus simply a series of implied “policy rules” for long-term interest rates—one policy rule for 

each maturity—with “response coefficients” measuring the size of the interest rate reaction.  We 

find that these implied policy rules are very useful for understanding the impact of monetary 

policy because longer-term interest rates have powerful effects on spending and asset allocation 

decisions not captured by short-term interest rates.     

 To begin our analysis, we empirically document a dramatic secular shift over the last 

several decades in the size of the response coefficients of long-term interest rates to inflation and 

output in the United States.  One important characteristic of this shift is that an increase in 

inflation has been associated with a larger rise in long-term interest rates in the decades since the 

mid 1980s than in the 1960s and 1970s.  Another is that long-term interest rates have been 

responding more to real output fluctuations. We then show that a theory of monetary policy 

based on policy rules can explain and help understand this empirical finding. Using no-arbitrage 

pricing methods developed by Ang, Dong, and Piazzesi (2005), we derive analytically an 

equation relating the response coefficients in the implied long-term interest rate rules to the 
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response coefficients of the short-term interest rate rule of the central bank. This equation takes 

risk premia into account and reveals two countervailing effects of shifts in the policy rule on the 

long-term yield equations.  By differentiating this equation with respect to the response 

coefficients in the monetary policy rule, we derive our main result: a secular shift in the 

monetary policy rule in the mid 1980s in United States explains the large shift in the term 

structure. Previous work exploring the impacts of monetary policy rule shifts on longer-term 

interest rates by Fuhrer (1996) used the pure expectations model of the term structure and thus 

did not examine these longer-term response coefficients. 

 The secular shift in the mid 1980s is not the only possible regime shift in monetary policy 

in recent years in the United States.  During the period from 2003 to 2005, the Federal Funds rate 

deviated significantly from what would have been predicted by the policy response that was 

typical over the period since the mid-1980s.  Though this two- to three-year period is 

comparatively short for determining whether market participants interpreted this as a regime shift 

or a temporary deviation from the post mid-1980s regime, the interest rate response to inflation 

does seem much lower.  A perception of a smaller response coefficient could have led market 

participants to expect smaller interest rate responses to inflation in the future, and therefore lower 

long term interest rate responses. If so, our model provides an explanation for the puzzle—

coined the “conundrum” by former Federal Reserve Chairman Alan Greenspan—that the rise in 

the Federal Funds rate starting in 2004 did not bring about an increase in long-term interest rates 

as would have been expected based on experience over the previous 20 years.   
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1. The Response Coefficients  

 We consider a representation of the term structure in which long-term interest rates are 

linear functions of macroeconomic variables.  The specific objects of our investigation are the 

slopes of these linear functions, which we refer to as the response coefficients, because they 

describe how yields on bonds of different maturities respond to macroeconomic developments.  

These response coefficients are not individual behavioral parameters; rather they represent the 

interaction of all participants in the bond markets and other parts of the economy.  We are 

interested in the term structure pattern of these response coefficients and how they change over 

time. We focus on the responses to two macroeconomic variables—inflation and the real GDP 

gap—because these are the two variables that are most important in short-term interest rate rules 

that describe the behavior of central banks.   

  The simplest linear function occurs when long term rates depend only on inflation and a 

random error term.  Letting )(n
ti be the yield to maturity on bonds with maturity n, we then have: 

 

,)1( )(
ttnn

n
t bai ηπ ++=  

 

where tπ  is the inflation rate and ηt is an error term. The coefficients na  are the intercepts and 

the coefficients nb  are the response coefficients for maturities n = 1,…, N.   Clearly, the sizes of 

nb  are important for the overall behavior of the economy. If the nb  are large, then an increase in 

inflation will bring about an increase in the yields on bonds with those maturities and thereby 

affect spending by firms or consumers who are borrowing funds at those maturities.  A very 

small value of the response coefficients—say less than one—could lead to such a small increase 

in yields that the real interest rate (computed with an expected inflation rate corresponding to the 
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maturity of the bonds) could fall with an increase in inflation and thereby exacerbate the rise in 

inflation.    

 Table 1 presents ordinary least squares estimates of the response coefficients nb  for a 

range of maturities and for two sample periods: 1960Q1 – 1979Q4 and 1984Q1 – 2006Q4.  The 

zero-coupon bond yields are quarterly averages of monthly CRSP data on U.S. Treasury yields at 

one- through five-year maturities.  We choose these maturities since they are the available 

maturities in the CRSP database that have been converted to zero-coupon yields.  The inflation 

measure is the four-quarter moving average of the percentage change of the U.S. GDP chain-

weighted price index. Figure 1 depicts the pattern of the coefficients graphically.  

 Note the dramatic secular shift in these coefficients between the two sample periods. For 

all maturities, the response coefficients are much larger in the second period than in the first 

period. There is little or no tendency for the coefficients to decline with maturity in either period; 

tests of the null hypothesis that the coefficients are equal at all maturities cannot be rejected for 

either period. 

 

Table 1: Estimated Term Structure Response Coefficients for Inflation 

Maturity 
(years) 

bn  for 
1960Q1 – 1979Q4

bn for  
1984Q1 – 2006Q4

1 0.605 1.549 
2 0.603 1.566 
3 0.580 1.540 
4 0.573 1.536 
5 0.573 1.528 
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Figure 1: Pattern of the Response Coefficients  
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A similarly large shift is seen if we include a real macroeconomic variable along with the 

inflation rate in the linear term structure equations. Consider the series of equations: 

 

,)2( ,2,1
)(

ttntnn
n

t bybai ηπ +++=  
 
 
where yt is the percentage deviation of real GDP from trend (estimated by a Hodrick-Prescott 

filter).   Table 2 reports least squares estimates of the two response coefficients  nb ,1  and nb ,2  in 

equation (2), and their term structure pattern is shown graphically in Figures 2A and 2B.  Note 

that the response coefficients for inflation are again much larger in the second period, and a 

similar upward shift is now evident for the responses of the yields to the output gap. Observe that 

the response coefficients to the output gap decline with maturity, but, as with the simple 
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regressions, there is no such tendency for the response coefficients to inflation to decline with 

maturity. 

    

Table 2: Estimated Term Structure Response Coefficients for Inflation and Output   

Maturity 
(years) 

nb ,1  for   
1960Q1 – 1979Q4 

nb ,2 for  
1960Q1 – 1979Q4 

nb ,1 for  
1984Q1 – 2006Q4

nb ,2 for  
1984Q1 – 2006Q4

1 0.454 0.604 1.244 1.224 
2 0.335 0.602 1.124 1.273 
3 0.259 0.580 1.000 1.279 
4 0.222 0.573 0.888 1.304 
5 0.191 0.573 0.806 1.318 

 

 

Figure 2A: Pattern of Output Gap Response Coefficients 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1 2 3 4 5

Maturity (Years)

Coefficient on Output Gap

Post 1984Q1

Pre 1980Q1

 

 

 



 8

Figure 2B: Pattern of Inflation Response Coefficients 
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 The regressions reported in Tables 1 and 2 only go out to a maturity of five years because 

of CRSP data availability for zero-coupon Treasury yields. To help assess how longer-term 

yields might respond, we also estimated equations (1) and (2) using monthly Constant Maturity 

Treasury (CMT) yields averaged to create a quarterly series for each of the one-, three-, five-, 

ten-, and twenty-year bond yields.  The CMT yields are estimated with a cubic spline which 

approximates the zero-coupon yields used in (1) and (2), thereby enabling us to examine how the 

longer-term yields respond to inflation and output.  We obtained the CMT data from the FRED 

database of the St. Louis Federal Reserve Bank.  Tables 3 and 4 report the estimated regressions 

(1) and (2), respectively, using the CMT yields. 
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Table 3: Estimated Term Structure Response Coefficients for Inflation using CMT Yields 

Maturity 
(years) 

bn  for 
1960Q1 – 1979Q4

bn for  
1984Q1 – 2006Q4

1 0.637 1.579 
3 0.595 1.604 
5 0.591 1.583 
10 0.584 1.543 
20 0.610 1.432 

 

Table 4: Estimated Term Structure Response Coefficients for Inflation and Output using CMT 
Yields   

 
Maturity 
(years) 

nb ,1  for   
1960Q1 – 1979Q4 

nb ,2 for  
1960Q1 – 1979Q4 

nb ,1 for  
1984Q1 – 2006Q4

nb ,2 for  
1984Q1 – 2006Q4

1 0.446 0.636 1.233 1.257 
3 0.262 0.595 1.031 1.335 
5 0.194 0.590 0.817 1.370 

10 0.143 0.584 0.591 1.389 
20 0.132 0.610 0.745 1.246 

 

We see a similar pattern occurring with the CMT yields as with the zero-coupon yields; the 

second sub-sample has higher response coefficients for the macro variables, even if we go out as 

far as twenty years.  For the shorter maturities the estimated coefficients with CMT yields are 

almost identical to those with the zero-coupon yields.  It should be noted that the twenty-year 

yield is not available for 1987Q1 – 1993Q3, thus slightly reducing the accuracy of the estimates 

of the response coefficients for the second sub-sample.1 

 This evidence of a shift in response coefficients is not sensitive to the exact choice of 

sample periods. Similar results are obtained, for example, if the observations between 1980Q1 

and 1984Q1 are included in the second sample.  We have chosen the early- to mid-1980s as a 

break point because it is around that period that many researchers have documented a regime 

                                                 
1 We performed similar regressions using the Treasury yield curve derived in Gurkaynak, Sack, and Wright (2006).  
The empirical shift is robust across these zero-coupon bond yields, and the quantitative difference between the 
reported coefficient estimates and those using this new zero-coupon bond data is extremely small. 
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change in monetary policy. The change occurred around the time that Paul Volcker began to 

pursue a different approach to monetary policy, and has lasted for the next two decades under his 

successors.  Clarida, Gali, and Gertler (2000), Taylor (1999), and Woodford (2003) have 

previously reported that the response coefficients to inflation and output in a Taylor rule shifted 

upwards around that time, and such a policy regime shift is also evident in the data and time 

periods in Tables 1 through 4. Using the federal funds rate, denoted ,tr the policy rule regression 

results are as follows: 

 

1960Q1 – 1979Q4:   ttr π970.0448.2 +=
 

1984Q1 – 2006Q4:   ttr π579.1312.1 +=
 

1960Q1 – 1979Q4:   ttt yr π975.0475.0435.2 ++=
 

1984Q1 – 2006Q4:   .234.1322.1022.2 ttt yr π++=
 

 

Note how the monetary policy response coefficients are much larger in the second sub-sample.  

The reaction coefficient on inflation is less than one in the first sub-sample and shifted to a value 

substantially greater than one in the second sub-sample.  The reaction coefficient on output also 

shows a much greater responsiveness in the second period.   

The obvious question is whether this change in the monetary policy response coefficients 

can explain the changes in the entire term structure of response coefficients.  In the next two 

sections, we introduce a simple model and use it to derive an equation that shows that there is 

indeed an intimate connection between the policy rule and the term structure that helps us 

explain and understand the empirical results for the term structure.  
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2.  The Case where the Monetary Policy Rule Depends Only On Inflation 

 We begin with a model that enables us to derive a simple equation relating the response 

coefficient on inflation in equation (1) to the central bank’s policy rule coefficients.  In this 

model, the central bank responds to inflation, but not to output. Hence, as we will show, long-

term interest rates also respond to inflation, but not independently to output, so that the model 

implies a relationship of the form of equation (1).  The model has the following equations:  
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where the shock 1) (0,   ~ t Niidε . Equation (3) is the monetary policy rule in which the short-

term nominal interest rate rt depends on the inflation rate with a policy response coefficient δ > 

0.   Equation (4) gives the yield to maturity of a zero-coupon bond with a face value of 1, where 

Pt
(n)  is the price of the bond at time t. Equation (5) is a no-arbitrage condition showing that the 

price of an n+1 period bond at time t must equal the expected present discounted value of the 

price of an n period bond at time t+1, where mt is the stochastic discount factor (or pricing 

kernel). Equation (6) describes this stochastic discount factor, which has the convenient 
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functional form used in the affine term structure literature. Equation (7) shows that the risk term 

λt in equation (6) depends on two coefficients: γ0, which represents a constant risk premium, and 

γ1, which represents the time-varying risk premium attributed to changes in inflation.  As we will 

show the more positive is γ1, the more long-term yields respond positively to shocks in inflation. 

Finally, equation (8) describes how monetary policy affects inflation.  It is a price adjustment 

equation in which the change in inflation depends on the lagged real interest rate, which we 

simply assume depends on the ex-post real interest rate through the parameter  φ > 0.  

 The affine term structure equations (4) through (7) are simplifications of assumptions in 

Ang, Dong, and Piazzesi (2005).  These authors also assume that macroeconomic variables (π in 

this simple model) evolve according to an autoregression, which does not depend on the policy 

rule.  To answer the questions posed here about the impact of regime shifts on the term structure, 

it is necessary to describe how the interest rate affects inflation, and for this reason we introduce 

a simple structure which assumes the interest rate transmission mechanism in equation (8).  This 

effect would be ignored by a vector autoregression model with constant coefficients, leading to 

errors similar to those pointed out in the Lucas critique.  It is possible, of course, to improve on 

equation (8) and perhaps better account for the Lucas critique by introducing, for example, a 

forward-looking optimization model, or perhaps staggered price setting, but the simple form of 

(8) allows us to obtain analytic results and focus on the term structure relations.  Examples where 

more complex structural models have been combined with affine models of the term structure are 

Bekaert, Cho, and Moreno (2005), Rudebusch and Wu (2006), and Gallmeyer, Hollifield, 

Palomino, and Zin (2007). 

Equations (3) through (8) imply that the yields )(n
ti  are linear functions of the inflation 

rate: 
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where we use the normal distribution assumption for εt+1 to evaluate the expectation in the 

second line of  (10). Since the yield it
(2) is given by )log(5.0 )2(

tP  we have that: 
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which is the linear form of (9), with the response coefficient for the two period yield given by:  
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 A similar result holds for all maturities, as shown in Appendix A.  The response 

coefficient on the current inflation rate for yields to maturity of n periods is: 
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Observe that the numerator of equation (13) is a geometric series in which each term equals the 

previous term multiplied by the common ratio ( ))1(1 1σγδφ +−− .  While it is algebraically 

possible for this common ratio to be negative, this would imply implausible values for the 

parameters, such as an enormous response coefficient δ for the central bank.  Hence we will 

assume throughout that the common ratio is positive and focus on whether it is greater than one 

or not. 

We noted in Section 1 that the estimated response coefficients are nearly constant as 

maturity increases. In particular they show no tendency to increase with n. Under what 

conditions is this empirical observation explained by the simple model?  Consider first the case 

of n = 2 and examine equation (12).  It shows that b2 < δ if   

 

 

 

 

Condition (14) is closely related to the monetary policy principle that δ > 1 (called the “Taylor 

principle,” by Woodford (2001) and others).  This same condition (14) is sufficient to prevent bn 

from exploding as n increases. To see this, note that if (14) holds, then the common ratio of 

terms in the geometric series in the numerator of equation (13) is less than one.  For each 

.1)14( 1

φ
σγδ +>
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increase in maturity n, we calculate bn by (i) adding a term in the numerator which is less than 

the previous term and (ii) adding a term in the denominator greater than the previous term. Thus 

we conclude that bn cannot increase geometrically.  Note, however, that while the estimated 

response coefficients do not explode, they do not significantly decline.  This implies that 

inequality (14) is nearly an equality.  

 The close connection between condition (14) and the Taylor principle is important 

because the latter is usually viewed as the sine qua non of a good monetary policy. If that 

principle does not hold (as appears to have been the case in the first sub-sample 1960Q1 – 

1979Q4 in Section 1), then the model is not even stable, which is one way to understand why 

that period showed such macroeconomic turbulence; but it is possible for (14) to hold if γ1 is 

negative which causes longer-term yields to have a more muted response to inflation.  If the 

Taylor principle holds, it is possible that (14) does not hold if γ1 is sufficiently large and positive. 

In the case of no risk aversion (γ1 = 0), the Taylor principle and condition (14) are exactly the 

same. We note that Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2005) estimated the 

time-varying risk parameter corresponding to inflation to be positive, though in somewhat 

different set-ups.   

  

3.  Impact of Shifts in the Monetary Policy Rule 

 As shown in Section 1, policy actions have gotten more aggressive in responding to 

inflation; that is, δ in equation (3) has increased. The question we focus on now is whether that 

increase may have affected the behavior of the whole term structure. In other words, can such a 

shift in the response coefficients in the policy rule explain the shift in the response coefficients of 

longer term interest rates? 
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 First, recall equation (12) for the n = 2 bond yield: .
2

))1(2( 1
2

σγδφδ +−−
=b   One can 

easily see that the response coefficient in the policy rule has a direct impact on the response of 

this longer-term yield to inflation. However, there are countervailing effects.  A larger reaction 

coefficient δ means that expected future short-term interest rates will rise by a larger amount 

when future inflation rises; this effect is measured by the presence of δ outside the parentheses in 

(12) and it depends on the risk premium parameter γ1; but a higher δ also means that inflation is 

expected to increase by a smaller amount in the future for a given increase in inflation today, 

because the persistence in inflation declines; this effect is measured by the term )1( −δφ in 

equation (12). 

 To sort out these countervailing effects, consider the derivative of (12) with respect to δ:   
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Note that unless δ is already very large, the derivative is likely to be positive and we will 

generally make this assumption, as indicated by the inequality sign in (15).  Then increasing δ 

will raise the reaction of the 2-period rate to inflation.  Here, the reduced persistence has less 

effect than the size of the reaction. For high values of δ the derivative could be negative, 

reflecting that reduced persistence has a larger effect. 
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 Now consider the general case of maturity n and differentiate equation (13) with respect 

to δ.  As shown in Appendix A, the derivative for n = 2, 3,…,N is: 

 

).))1(1)(2())1(1)(1(1(1)16( 1
2

01
2

0 1
in

i
in

i
n i

n
b

σγδφφδσγδφσγφ
δ

+−−+−+−−+++=
∂
∂ ∑∑ −

=

−

=  

Observe that equation (16), much like equation (15), is composed of two countervailing terms.  

Both terms are strictly monotonically increasing and multiplied by 1/n.  The first term is a 

geometric sum with common factor equal to ,)1(1 1σγδφ +−−  while the second term, which is 

subtracted from the first, is an arithmetic-geometric sum with the same common factor.  Much as 

in equation (15), there are two countervailing effects: the first term is the direct effect of policy 

while the second term is the indirect persistence effect.
   

 
Figure 3 depicts these two terms as functions of the maturity length n and for some 

example parameter values.  Note how the curves cross at a particular maturity, which we call n*.  

The derivative is the difference between the two curves, shown by the distance between them in 

Figure 3.  For all n < n*, the first term is larger so equation (16) is positive and ,0>
∂
∂
δ

nb
 but the 

second term is larger starting at n* so that equation (16) becomes positive and .0<
∂
∂
δ

nb
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Figure 3: The Countervailing Effects of a More Responsive Policy 
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To be precise we summarize this argument  with the following: 
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for n = 2,3,…, N.  Figure 4 illustrates )(1 nS and )(2 nS for the same parameter values used in 

Figure 3.  It is clear that these two series are both monotonically increasing in n. 

 

Figure 4: Graphical Illustration Proof of Proposition 1 
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Now, note that: 

 

),12(2)2()2( 121 −−+=− δφσγSS  

 

and since (15) holds, we have .0)2()2( 21 >− SS  
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 We next consider maturities longer than n = 2 and define )1()()( 111 −−= nSnSnD  and 

,)1()()( 222 −−= nSnSnD which are simply the terms in the two sums and are given by 
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larger than ).(1 nD   Unless ,0=φδ  which would only occur under the case of inflation following 

a simple AR(1) process, there must exist some finite n̂ .  In fact, if ,0=φδ  then it would always 

be the case that .0>
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 Now consider n = 3 < .n̂   We know that: 

).3()2()3(

and )3()2()3(

222

111

DSS

DSS

+=

+=
 

Thus ( ) ( ) .0)3()3()2()2()3()3( 212121 >−+−=− DDSSSS   

 Similarly, using induction on n for all ,n̂n <  

( ) ( ) )1()1()()()1()1()()( 21212121 −−−=−+−−−=− nSnSnDnDnSnSnSnS  

so that  .0)()( 21 >− nSnS   

 Finally, we let n approach infinity, and use the formula for the limits of a geometric and 

arithmetic-geometric series to compute that: 
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and therefore given the assumptions on our parameters, 
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Now we have that  

(i) 0)2()2( 21 >− SS ,  

(ii) 0)()( 12 >− nSnS  for n sufficiently large, and 

(iii) )(2 nD > )(1 nD  and for all ,n̂n >  

So there must be a single point at which these two curves cross, given by n*.   Thus we 

have proved that  .for  0 and* allfor  0 *nn
b

nn
b nn ><

∂
∂

<>
∂
∂

δδ
  

 We illustrate the proof in Figure 4.  The slopes of )( and )( 21 nSnS  are graphical 

representations of )(1 nD  and )(2 nD ,  respectively.  Note that the number n̂ lies at the point 

where these two slopes are equal.  The proof first considers values of n greater than 2 but to the 

left of n̂ and then goes on to consider values of n to the right of n̂ . In the first region 

)(  )( 21 nSnS >  because 0)2()2( 21 >− SS  and, as n increases, a smaller term is added to the 

smaller sum than to the larger sum. In the second region, which begins with a value of n where 

)(  )( 21 nSnS > ,  there is a single crossing point n* at which the two curves are shown to intersect.  
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 We feel that the assumptions underlying Proposition 1 are empirically realistic. It is 

reasonable to assume that (14) holds because the estimated response coefficients in Section 1 do 

not explode. Condition (15) holds unless δ is extremely large. The assumption of a positive 1γ  

falls in line with previous empirical estimates, and even if it is not positive and thus n* is infinite, 

this does not contradict our empirical findings.  Hence, the model does explain the facts: a 

monetary policy that reacts more aggressively against inflation implies that bond yields respond 

more aggressively to inflation. 

 Recall that the regressions reported in Section 1 went out to a five-year or twenty- quarter 

maturity.  These regressions showed no indication that the response coefficients declined with 

the large increase in the policy response parameter δ we saw in the two sub-samples.  This 

suggests that all these maturity lengths are less than  n*.  It would be interesting to see if the sign 

reversed for longer maturity U.S. zero-coupon Treasuries, as well as for zero-coupon bond issued 

by other countries.  

 

4. A Model with Both Inflation and Output in the Policy Rules   

 Now, consider the following model which includes real output as well as inflation. 

Equation (17) is the policy rule; it replaces  the simpler policy rule of  equation (3), incorporating 

a measure of the real output gap in the interest rate rule of the central bank. We specify bond 

prices analogous to (6), but the pricing kernel mt+1 now has the matrix form shown in equation 

(18). Equation (19) shows how inflation and real output affect risk aversion in the pricing kernel, 

a generalization of equation (7). The risk term tλ  is now two-dimensional. The first element 

corresponds to the risk term associated with real output, whereas the second element corresponds 

to the risk term associated with inflation. Equations (20) and (21) replace equation (8).  Equation 
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(20) shows how real output depends on its own lag and on the ex post real interest rate. Equation 

(21) is a price adjustment equation in which inflation depends on lagged inflation and lagged real 

output: 
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Analogously with the model of Section 2, the yield on an n-period bond is a linear 

function of inflation and output: 
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with the n-period yield intercept term given by an and the n-period response coefficient vector 
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To show that (22) holds, we first consider the two-period bond yield and derive a2 and b2.  

Observe that we can rewrite (20) – (21) as a VAR(1) in the following way: 

 

,)23( 1 ttt ΣνΦzz += −
 

 

where 

 

.
0

=,
1)(1)(

1)(
=

112

112

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−
−−−

εη

η

π

π

σφσ
σ

δφαδααφ
δαδαα

ΣΦ
y

y

 

 

Using the same method we used in the univariate model, we first write the two-period 

bond as: . )]exp([][ 11
)1(
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++++ −== ttttttt rmEPmEP  Substituting in for 11 and ++ tt  rm , we find: 
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Therefore, the two-period bond yield is given by: 
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where we see that a2 = )5.025.0( ''' ΣγδδΣΣδ +− and ).(0.5 ''
2 ΣΓΦIδb −+=  Note the 

similarities and differences between equation (25) which includes real output and equation (11) 

which does not. In both equations the policy parameters affect the coefficient in predictable 

ways.  

 More generally (see Appendix B), the n-maturity bond yield response coefficient vector 

is: 
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which an obvious generalization of equation (13).   

 

5. Impacts of Shifts in the Policy Rule on the Term Structure Response Coefficients 

In our simple, univariate model, we saw that the inflation response coefficient in the simple 

policy rule had a direct impact on the response of longer-term yields to inflation, yet the 

direction of the reaction had two countervailing forces. We can also examine how longer-term 

yields are impacted by the policy reaction coefficients in this two-dimensional model. Empirical 

estimates of monetary policy rules have shown that both δy and δπ significantly increased in the 

1980s, and our regressions from Section 1 indicate that when output and inflation are both used 

as factors determining bond yields, more aggressive policy is associated with substantial 

increases in bond yield reaction coefficients. We want to see how such a policy change might 

impact the response coefficients of the output gap and inflation for bond yields in our analytical 

model, in order to reconcile the observed empirics. To simplify the analytics we set 

.02112 == γγ   The existing empirical literature does not provide much guidance about the values 
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of these off-diagonal elements, though we can compute the response coefficients numerically for 

any values. 

Expanding the coefficient vector we derived for the two-period yield in (27) gives: 
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Consider the derivative of the response coefficient vector for the two-period yield with 

respect to the elements of :δ  
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The first element of each of these expressions corresponds to the real output gap coefficient in 

the bond yield equation (22), and the second element of each of these expressions corresponds to 

the inflation coefficient.   

 If we examine the element b2,2 corresponding to inflation, we see that 
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 Recall from (14), the derivative from the univariate 

model at n = 2: ( ).22
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Now compare 

πδ∂
∂ 2,2b

and  
δ∂

∂ 2b .  We now 

have φφα n rather tha 1 .  If we let 0=yδ to allow for only inflation as in the univariate model and 
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let ,122 σγγσ ε =  we see the similarities between the two models.  The only addition compared to 

the simpler model is the term .1 yδα  Unless this term is very large, a reasonable assumption is 

that .02,2 >
∂

∂

πδ
b

 

  We can also examine how the coefficient vector of the n-period bond yield responds to 

policy changes.  Let .
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 Using this notation, the derivative of bn with 

respect to each of the elements of δ is: 

 

( )

( )
.

)(1

                            1)31(

                            

)(11(30)

1

1

1

1 22
1

22
1

121

1

1 21

1

1 12

1

1

1

1 22
1

21
1

111

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

++−
=

∂
∂

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛ ++−
=

∂
∂

∑ ∑
∑

∑
∑ ∑

−

=

−

=
−−

−

=

−

=

−

=

−

=
−−

n

i

n

i
iii

y

n

i
i

n

n

i
i

n

i

n

i
iii

y

y

n

hhhi

h

n

h

hhhi

n

ππ

π

φδδαδ

φδδα

δ

b

b

 

as shown in Appendix B.   

 Now consider the derivative: ( ) ( ).)(111 1
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Observe that this derivative is very similar to (16); we again have countervailing forces at work.  

We have two sums, one is geometric and the other is arithmetic-geometric.  The geometric term 

represents the direct effect of policy, while the arithmetic-geometric term is a combination of the 

persistence of inflation and the output gap. And as in the simpler case we can calculate how the 

response coefficients for the longer yields are affected by the policy response coefficients.   
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 Figure 5 shows how the response coefficients shift with a change in policy parameters.  

The dashed lines represents a regime with ,4.1 and 1.3 == πδδ y while the solid represents a 

more responsive regime with .8.1 and 1.7 == πδδ y   These policy parameters are much greater 

than those estimates in the pre-1980 regime. 

 

Figure 5: Behavior of Response Coefficients with a More Aggressive Policy Regime 
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.15.0,15.0,36.0,75.0,2.0,7.0,2.0at set  are Parameters :Note 221121 ======= γγσσφαα εη  

 First, notice how the output gap coefficients decline much more rapidly than the inflation 

coefficients, much as in the empirical estimates.  This is due to the persistence of output being 

smaller than the persistence of inflation, a common stylized fact we see in the data.  Even more 

intriguing, however, is how the slope of the response coefficient curves change as the policy 

parameters change.  As the monetary policy rule becomes more responsive, shorter-term yields 
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respond more than longer-term yields to both the output gap and inflation.  This is the 

coutervailing forces at work; as the indirect persistence effect grows larger than the direct effect 

of higher policy reaction coefficients, the bond yield response coefficients change and longer-

term response coefficients adjust downward.   

 

 6. An Explanation of the Term Structure Conundrum 

 The above results also shed light on a famous asset pricing puzzle which first arose when 

the Federal Reserve started raising the Federal Funds rate in 2004. That increase in the short-

term interest rate was not associated with nearly as large an increase in long-term interest rates as 

would have been expected based on experience over the previous 20 years. The puzzle was 

coined the “conundrum” by former Federal Reserve Chairman Alan Greenspan; it was a great 

concern for policymakers for it appeared that the tightening of monetary policy would not have 

had the bite that it had in previous periods of tightening. There have been many explanations for 

the conundrum, including the idea of a global saving glut that drove down the world real interest 

rate.  But that explanation has been challenged because world saving as a share of world GDP 

had actually fallen during this period.  

 An alternative explanation naturally emerges from the theory in this paper.  During this 

period, the Federal Funds rate deviated significantly from what would have been predicted by the 

Fed’s typical response as exemplified by the estimates we reported in Section 1 of this paper for 

the sample period from 1984Q1 to 2006Q4.   While it is difficult to determine whether this was a 

shift in the policy response coefficients or simply an additive deviation from the rule, there is 

econometric evidence that it may have been interpreted as a regime shift. To see this, we 

estimated the following regression over the 1984Q1 – 2006Q4 period:  
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where D
tπ is a multiplicative dummy variable in which the actual inflation rate is multiplied by a 

dummy variable that equals one from 2002Q4 through 2005Q4, and zero elsewhere. This is the 

period when, by all accounts, the actual Federal Funds rate deviated significantly from the 

estimated Taylor rule. All the coefficients in this equation are statistically significant, and in 

particular the inflation terms and the multiplicative dummy are highly significant.  The equation 

clearly suggests the possibility that the response coefficient on inflation dropped significantly 

during this period.  The short-term interest rate response to inflation (δπ) would seem much lower 

to market participants trying to assess Federal Reserve policy.  To investigate other possibilities, 

we also included an additive dummy along with the multiplicative dummy to the regression; we 

still found a significant downward shift in the inflation response.  We note that Davig and Leeper 

(2006) found a similar shift using an estimated Markov switching model. 

 Now, according to the theory presented in this paper, a perception of a smaller response 

coefficient in the policy rule could well have led market participants to expect smaller interest 

rate responses to inflation in the future, and therefore lower long term interest rate responses. 

That is, we would predict that the lower response δπ would have lowered the response coefficient 

b2,n for inflation.  Hence, our model provides a simple consistent explanation for the conundrum.  

While the regime shift was clearly temporary when viewed from the perspective of today, it 

would have been difficult to assess at the time whether the Federal Reserve would have returned 

to the typical rule followed during the post 1984Q1 period.  
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7. Conclusion 

In this paper, we have shown that the theory of monetary policy rules helps explain and 

understand the dramatic changes in the comovement of note and bond yields and macroeconomic 

variables over the past several decades.   We showed that a more aggressive policy regime has a 

substantial impact on the entire term structure of interest rates: a more responsive monetary 

policy increases the response of longer-term yields to macroeconomic variables.  Our model also 

helps explain the behavior of the longer-term interest rates during the recent spell in 2002 – 

2005, where standard models predicted that longer-term yields would increase far more than they 

did.   

There are several directions that future research might take.  Using models of stochastic 

regime shifting, such as Davig and Leeper (2007), along with no-arbitrage restrictions may help 

pin down the exact patterns of bond yields and macroeconomic variables.  Including longer-term 

interest rates directly in the macro model would be an important check for robustness.  Applying 

the model to policy changes in other countries—even more dramatic changes than studied here—

would also be valuable.  For example, do we see the same shift in the reaction coefficients for 

Brazil when comparing the 1980s and 1990s to the 2000s?    All of these topics are worth 

pursuing and will help shed light upon how the decisions of monetary policymakers at the short 

end of the yield curve affect behavior at the long end.      
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Appendix A 

Derivation of the Relationship between the Policy Rule and Response Coefficients  

 We use the method of undetermined coefficients, and begin by conjecturing that the n-

period bond prices have the following form: 
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 Using the same approach we used for the case of n=2 in the text we have: 
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Then, it must be the case that: 
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Matching coefficients, we find that: 
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We can then derive the yield response coefficients in a recursive fashion.  For n = 2: 
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A simple transformation gives us the bond yield response coefficients: 
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Finding the Derivative of the Response Coefficient to Inflation 

 We find 
δ∂

∂ nb
 from equation (A13) by differentiating each element in (A13) separately. 

Consider the first few elements and ignoring  n: 
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So that in general the emerging pattern is given by: 
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Appendix B 

The Relation between the Policy Rule and Response Coefficient Vector 

Following Ang and Piazzesi (2003) we have  
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 From these we find the response coefficient vector bn.  Using (B2) and the fact that 
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we have: 
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Since b1 = δ, we can derive the recursive relationship for the response coefficient vector as we 

did in Appendix A: 
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Finding the Derivative of the Response Coefficient Vectors  

We assume that ,02112 == γγ so that: 
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We differentiate each term of the sum, as we did in Appendix A.  Ignoring n, we see the 

following pattern emerging when we differentiate with respect to δy: 
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Similarly, when we differentiate with respect to δπ: 

 

 

 

Combining the above and recognizing the patterns, we thus have: 
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Appendix C 

Standard Errors of the Regressions Estimates  

Tables C1, C2, C3 and C4 contain additional details about the regressions reported in Tables 1, 

2, 3, and 4, respectively.  Under each point estimate, the standard error is reported in parenthesis.  

We also report the R2 for each regression. 

Table C1  

 

Maturity 
(Years) 

an  for 
1960Q1 – 
1979Q4 

bn  for 
1960Q1 – 
1979Q4 

R2
  for 

1960Q1 – 
1979Q4 

an for  
1984Q1 – 
2006Q4 

bn for  
1984Q1 – 
2006Q4 

R2 for  
1984Q1 – 
2006Q4 

1 2.913 0.605 0.681 1.487 1.549 0.279 
 (0.244) (0.047)  (0.698) (0.263)  
2 2.989 0.603 0.758 1.790 1.566 0.286 
 (0.201) (0.039)  (0.693) (0.261)  
3 3.188 0.580 0.797 2.114 1.540 0.291 
 (0.173) (0.033)  (0.674) (0.253)  
4 3.282 0.573 0.816 2.338 1.536 0.297 
 (0.161) (0.031)  (0.663) (0.249)  
5 3.319 0.573 0.832 2.480 1.528 0.305 
 (0.152) (0.029)  (0.646) (0.243)  

 

Table C2  

 

Maturity 
(Years) 

na  for 
1960Q1 – 
1979Q4 

nb ,1  for 

1960Q1 – 
1979Q4 

nb ,2 for 

1960Q1 – 
1979Q4 

2R  for 
1960Q1 – 
1979Q4 

na for 
1984Q1 – 
2006Q4 

nb ,1 for 

1984Q1 – 
2006Q4 

nb ,2 for 

1984Q1 – 
2006Q4 

2R for 
1984Q1 – 
2006Q4 

1 2.874 0.454 0.604 0.847 2.155 1.244 1.224 0.513 
 (0.170) (0.050) (0.033)  (0.586) (0.190) (0.223)  
2 2.960 0.335 0.602 0.860 2.394 1.124 1.273 0.478 
 (0.154) (0.045) (0.030)  (0.605) (0.196) (0.230)  
3 3.166 0.259 0.580 0.865 2.652 1.000 1.279 0.451 
 (0.142) (0.041) (0.027)  (0.606) (0.197) (0.230)  
4 3.263 0.222 0.572 0.868 2.815 0.888 1.304 0.426 
 (0.137) (0.040) (0.026)  (0.611) (0.198) (0.232)  
5 3.303 0.191 0.573 0.872 2.913 0.806 1.318 0.416 
 (0.134) (0.039) (0.026)  (0.605) (0.196) (0.230)  
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Table C3  

 

Maturity 
(Years) 

an  for 
1960Q1 – 
1979Q4 

bn  for 
1960Q1 – 
1979Q4 

R2
  for 

1960Q1 – 
1979Q4 

an for  
1984Q1 – 
2006Q4 

bn for  
1984Q1 – 
2006Q4 

R2 for  
1984Q1 – 
2006Q4 

1 2.840 0.637 0.695 1.449 1.579 0.282 
 (0.249) (0.048)  (0.707) (0.266)  
3 3.246 0.595 0.796 2.017 1.604 0.296 
 (0.178) (0.034)  (0.693) (0.261)  
5 3.370 0.591 0.831 2.391 1.583 0.313 
 (0.157) (0.030)  (0.658) (0.247)  

10 3.468 0.584 0.844 2.868 1.543 0.326 
 (0.148) (0.028)  (0.622) (0.234)  

20 3.354 0.610 0.877 3.477 1.432 0.211 
 (0.135) (0.026)  (0.832) (0.349)  

 

 

Table C4 

 

Maturity 
(Years) 

na  for 
1960Q1 – 
1979Q4 

nb ,1  for 

1960Q1 – 
1979Q4 

nb ,2 for 

1960Q1 – 
1979Q4 

2R  for 
1960Q1 – 
1979Q4 

na for 
1984Q1 – 
2006Q4 

nb ,1 for 

1984Q1 – 
2006Q4 

nb ,2 for 

1984Q1 – 
2006Q4 

2R for 
1984Q1 – 
2006Q4 

1 2.802 0.446 0.636 0.842 2.112 1.233 1.257 0.506 
 (0.180) (0.053) (0.035)  (0.599) (0.194) (0.227)  
3 3.224 0.262 0.595 0.863 2.571 1.031 1.335 0.456 
 (0.147) (0.043) (0.028)  (0.622) (0.202) (0.236)  
5 3.353 0.194 0.590 0.870 2.830 0.817 1.370 0.421 
 (0.139) (0.040) (0.027)  (0.617) (0.200) (0.234)  

10 3.455 0.143 0.584 0.866 3.186 0.591 1.389 0.388 
 (0.139) (0.040) (0.027)  (0.605) (0.196) (0.230)  

20 3.343 0.132 0.610 0.895 3.789 0.745 1.246 0.295 
 (0.126) (0.037) (0.024)  (0.801) (0.273) (0.340)  
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