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1 Introduction

This paper addresses a classic question in macroeconomics, namely, how should a benevolent

government conduct stabilization policy. A central characteristic of all existing studies is

that optimal policy is derived in highly stylized environments. Typically, optimal policy

is characterized for economies with a single or a very small number of deviations from the

frictionless neoclassical paradigm. A case in point are the numerous recent studies concerned

with optimal stabilization policy within the context of the two-equation, one-friction, neo-

Keynesian model without capital accumulation.1 Other cases in which the optimal policy

design problem is studied within theoretical frameworks featuring a small number of rigidities

include models with distorting income taxes (Lucas and Stokey, 1983; Schmitt-Grohé and

Uribe, 2004b), and models with sticky product and factor prices (Erceg, et al., 2000). An

advantage of this stylized approach is that it facilitates understanding the ways in which

policy should respond to mitigate the distortionary effects of a particular friction in isolation.

An important drawback of studying optimal stabilization policy one distortion at a time

is that highly simplified models are unlikely to provide a satisfactory account of cyclical

movements for more than just a few macroeconomic variables of interest. For this reason,

the usefulness of this strategy to produce policy advice for the real world is necessarily

limited.

The approach to optimal policy that we propose in this paper departs from the literature

extant in that it is based on a rich medium-scale theoretical framework capable of explaining

observed business cycle fluctuations for a wide range of nominal and real variables. Following

the lead of Kimball (1995), the model emphasizes the importance of combining nominal as

well as real rigidities in explaining the propagation of macroeconomic shocks. Specifically,

the model features four nominal frictions, sticky prices, sticky wages, a demand for money

by households, and a cash-in-advance constraint on the wage bill of firms, and five sources

of real rigidities, investment adjustment costs, variable capacity utilization, habit formation,

imperfect competition in product and factor markets, and distortionary taxation. Aggregate

fluctuations are driven by supply shocks, which take the form of stochastic variations in

total factor productivity, and demand shocks stemming from exogenous innovations to the

level of government purchases and the level of government transfers. Altig et al. (2004) and

Christiano, Eichenbaum, and Evans (2005) argue that the model economy for which we seek

to design optimal policy can indeed explain the observed responses of inflation, real wages,

nominal interest rates, money growth, output, investment, consumption, labor productivity,

1Examples of this line of research include Ireland (1997), Rotemberg and Woodford (1997), Woodford
(2003), and Clarida, Gaĺı, and Gertler (1999), among many others.
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and real profits to productivity and monetary shocks in the postwar United States. In this

respect, the present paper aspires to be a step ahead in the research program of generating

policy evaluation that is of relevance for the actual policy making.

The government is assumed to be benevolent in the Ramsey sense, that is, it seeks to bring

about the competitive equilibrium that maximizes the lifetime utility of the representative

agent and has access to a commitment technology that allows it to honor its promises. The

policy instruments available to the government are assumed to be taxes on income, possibly,

differentiated across different sources of income, and the short-term nominal interest rate.

Public debt is assumed to be nominal and non-state contingent.

A key finding of the paper is that price stability appears to be a central goal of optimal

monetary policy. The optimal rate of inflation under an income tax regime is 0.5 percent

per year with a volatility of 1.1 percent. In this sense, price stickiness emerges as the single

most important distortion shaping optimal policy. This result is surprising given that the

model features a number of other frictions that in isolation would call for a volatile rate of

inflation with a mean different from zero.

Consider first the forces calling for an optimal inflation rate that is different from zero.

As is well known, the presence of a demand for money by households provides an incentive to

drive inflation down to a level consistent with the Friedman rule. In this paper, we identify

two additional reasons why the Ramsey planner may want to deviate from price stability.

First, under an income tax regime, i.e., when all sources of income are taxed at the same

rate, the Ramsey planner has an inflationary bias originating from the fact that it is less

distorting to tax labor income than it is to tax capital income. With a cash-in-advance

constraint on the wage bill of firms, inflation acts as a tax on labor income. Second, the

Ramsey planner has an incentive to tax away transfers as they represent pure rents accruing

to households. Without a direct instruments to tax transfers, the government imposes an

indirect levy on this source of household income via the inflation tax.

Optimal policy calls for low inflation volatility in spite of the following two distortions

that by themselves call for high inflation volatility. First, the fact that nominal government

debt is non-state contingent and that regular taxes are distortionary, makes it attractive

for the Ramsey planner to use unexpected variations in inflation as a lump-sum tax on

nominal asset holdings. This is the reason why in flexible price environments the optimal

inflation volatility is very high (Chari et al. 1995). Second, the fact that nominal wages

are sticky provides an incentive for the government to set the price level so as to engineer

the efficient real wage. This practice, when studied in isolation, also makes high inflation

volatility optimal.

When the fiscal authority is allowed to tax capital and labor income at different rates,
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optimal fiscal policy is characterized by a large and volatile subsidy on capital. It is well

known from the work of Judd (2002) that in the presence of imperfect competition in product

markets optimal taxation calls for a subsidy on capital of a magnitude approximately equal

to the markup of prices over marginal cost. However, our results suggest that the optimal

capital subsidy is much larger than the one identified in the work of Judd. The reason for this

discrepancy is that capital depreciation, which is ignored in the work of Judd, exacerbates

the need to subsidize capital. This is because the markup distorts the gross rate of return

on capital whereas the subsidy applies to the return on capital net of depreciation.

In our model, the optimal capital subsidy is extremely volatile. Its standard deviation is

150 percent. The high volatility of capital income taxes emerges for the familiar reason that

capital is a fixed factor of production in the short run, so the fiscal authority uses unexpected

changes in the capital income tax rate as a shock absorber for innovations in its budget. We

identify two frictions capable of driving this high volatility down significantly. One is time

to tax. When tax rates are determined four quarters in advance the optimal volatility of

the capital income tax rate falls to about 50 percent. This is because the tax elasticity of

the demand for capital increases with the number of periods between the announcement of

the tax rate and its application. The second friction that is important in understanding

the volatility of capital taxes is investment adjustment cost. Intuitively, the higher are the

impediments to adjust the level of investment, the lower is the elasticity of capital with

respect to temporary changes in tax rates. In the absence of investment adjustment costs,

the optimal volatility of the capital income tax rate falls to 65 percent. Furthermore, in

an environment with 4 periods of time to tax and no capital adjustment cost, the optimal

capital income tax has a volatility of 25 percent.

Ramsey outcomes are mute on the issue of what policy regimes can implement them.

The information on policy one can extract from the solution to the Ramsey problem is

limited to the equilibrium behavior of policy variables such as tax rates, the nominal interest

rate, etc. as a function of the state of the economy. Even if the policymaker could observe

the state of the economy, using the equilibrium process of the policy variables to define

a policy regime would not guarantee the Ramsey outcome as the competitive equilibrium.

The problem is that such a policy regime could give rise to multiple equilibria. We address

the issue of implantation of optimal policy by limiting attention to simple monetary and

fiscal rules. These rules are defined over a small set of readily available macro indicators

and are designed to ensure local uniqueness of the rational expectations equilibrium. We

find parameterizations of such policy rules capable of inducing equilibrium dynamics in

output, consumption, investment, and hours fairly close to those associated with the Ramsey

equilibrium.
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Finally, a methodological contribution of this paper is the development of a set of nu-

merical tools that allow the computation of Ramsey policy in a general class of stochastic

dynamic general equilibrium models.

2 The Model

2.1 Households

The economy is populated by a large representative family with a continuum of members.

Consumption and hours worked are identical across family members. The household’s pref-

erences are defined over per capita consumption, ct, and per capita labor effort, ht, and are

described by the utility function

E0

∞∑

t=0

βtU(ct − bct−1, ht), (1)

where Et denotes the mathematical expectations operator conditional on information avail-

able at time t, β ∈ (0, 1) represents a subjective discount factor, and U is a period utility

index assumed to be strictly increasing in its first argument, strictly decreasing in its second

argument, and strictly concave. Preferences display internal habit formation, measured by

the parameter b ∈ [0, 1). The consumption good is assumed to be a composite made of a

continuum of differentiated goods cit indexed by i ∈ [0, 1] via the aggregator

ct =

[∫ 1

0

cit
1−1/ηdi

]1/(1−1/η)

, (2)

where the parameter η > 1 denotes the intratemporal elasticity of substitution across differ-

ent varieties of consumption goods.

For any given level of consumption of the composite good, purchases of each individual

variety of goods i ∈ [0, 1] in period t must solve the dual problem of minimizing total

expenditure,
∫ 1

0
Pitcitdi, subject to the aggregation constraint (2), where Pit denotes the

nominal price of a good of variety i at time t. The demand for goods of variety i is then

given by

cit =

(
Pit

Pt

)−η

ct, (3)
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where Pt is a nominal price index defined as

Pt ≡
[∫ 1

0

P 1−η
it di

] 1
1−η

. (4)

This price index has the property that the minimum cost of a bundle of intermediate goods

yielding ct units of the composite good is given by Ptct.

Labor decisions are made by a central authority within the household, a union, which

supplies labor monopolistically to a continuum of labor markets of measure 1 indexed by j ∈
[0, 1].2 In each labor market j, the union faces a demand for labor given by

(
W j

t /Wt

)−η̃
hd

t .

Here W j
t denotes the nominal wage charged by the union in labor market j at time t, Wt is

an index of nominal wages prevailing in the economy, and hd
t is a measure of aggregate labor

demand by firms. We postpone a formal derivation of this labor demand function until we

consider the firm’s problem. In each particular labor market, the union takes Wt and hd
t

as exogenous. The case in which the union takes aggregate labor variables as endogenous

can be interpreted as an environment with highly centralized labor unions. Higher-level

labor organizations play an important role in some European and Latin American countries,

but are less prominent in the United States. Given the wage charged in each labor market

j ∈ [0, 1], the union is assumed to supply enough labor, hj
t , to satisfy demand. That is,

hj
t =

(
wj

t

wt

)−η̃

hd
t , (5)

where wj
t ≡ W j

t /Pt and wt ≡ Wt/Pt. In addition, the total number of hours allocated to

the different labor markets must satisfy the resource constraint ht =
∫ 1

0
hj

tdj. Combining this

restriction with equation (5), we obtain

ht = hd
t

∫ 1

0

(
wj

t

wt

)−η̃

dj. (6)

The household is assumed to own physical capital, kt, which accumulates according to

the following law of motion

kt+1 = (1 − δ)kt + it

[
1 − S

(
it
it−1

)]
, (7)

2This setup departs slightly from most existing expositions of models with nominal wage inertia. It
avoids the need to assume separability of preferences in leisure and consumption to ensure homogeneity of
consumption across households.
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where it denotes gross investment and δ is a parameter denoting the rate of depreciation of

physical capital. The function S introduces investment adjustment costs and is assumed to

satisfy S(1) = S ′(1) = 0 and S ′′(1) > 0. These assumptions imply the absence of adjustment

costs up to first order in the vicinity of the deterministic steady state.

Owners of physical capital can control the intensity at which this factor is utilized. For-

mally, we let ut measure capacity utilization in period t. We assume that using the stock

of capital with intensity ut entails a cost of a(ut)kt units of the composite final good. The

function a is assumed to satisfy a(1) = 0, and a′(1), a′′(1) > 0. Both the specification of cap-

ital adjustment costs and capacity utilization costs are somewhat peculiar. More standard

formulations assume that adjustment costs depend on the level of investment rather than

on its growth rate, as is assumed here. Also, costs of capacity utilization typically take the

form of a higher rate of depreciation of physical capital. The modeling choice here is guided

by the need to fit the response of investment and capacity utilization to a monetary shock

in the US economy. For further discussion of this point, see Christiano, Eichenbaum, and

Evans (2003, section 6.1) and Altig et al. (2004).

Households rent the capital stock to firms at the real rental rate rk
t per unit of capital.

Thus, total income stemming from the rental of capital is given by rk
t utkt. The investment

good is assumed to be a composite good made with the aggregator function (2). Thus,

the demand for each intermediate good i ∈ [0, 1] for investment purposes, iit, is given by

iit = it (Pit/Pt)
−η .

As in earlier related work (Schmitt-Grohé and Uribe, 2004a), we motivate a demand for

money by households by assuming that purchases of consumption are subject to a propor-

tional transaction cost that is increasing in consumption based money velocity. Formally,

the purchase of each unit of consumption entails a cost given by `(vt). Here,

vt ≡
ct
mh

t

(8)

is the ratio of consumption to real money balances held by the household, which we denote

by mh
t . The transaction cost function ` satisfies the following assumptions: (a) `(v) is

nonnegative and twice continuously differentiable; (b) There exists a level of velocity v > 0, to

which we refer as the satiation level of money, such that `(v) = `′(v) = 0; (c) (v−v)`′(v) > 0

for v 6= v; and (d) 2`′(v)+v`′′(v) > 0 for all v ≥ v. Assumption (b) ensures that the Friedman

rule, i.e., a zero nominal interest rate, need not be associated with an infinite demand for

money. It also implies that both the transaction cost and the distortion it introduces vanish

when the nominal interest rate is zero. Assumption (c) guarantees that in equilibrium money

velocity is always greater than or equal to the satiation level. As will become clear shortly,
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assumption (d) ensures that the demand for money is decreasing in the nominal interest rate.

(Note that assumption (d) is weaker than the more common assumption of strict convexity

of the transaction cost function.)

Households are assumed to have access to a complete set of nominal state-contingent

assets. Specifically, each period t ≥ 0, consumers can purchase any desired state-contingent

nominal payment Xh
t+1 in period t + 1 at the dollar cost Etrt,t+1X

h
t+1. The variable rt,t+1

denotes a stochastic nominal discount factor between periods t and t+ 1. Households must

pay taxes on labor income, capital income, and profits. We denote by τh
t , τk

t , and τφ
t ,

respectively, the labor income tax rate, the capital income tax rate, and the profit tax rate

in period t A tax allowance is assumed to apply to costs due to depreciation. Households

receive real lump-sum transfers from the government in the amount nt per period. The

household’s period-by-period budget constraint is given by:

Etrt,t+1x
h
t+1 + ct[1 + `(vt)] + it +mh

t = (1 − τk
t )[rk

t ut − a(ut)]kt + (1 − τh
t )hd

t

∫ 1

0

wj
t

(
wj

t

wt

)−η̃

dj(9)

+(1 − τφ
t )φt + τk

t qtδkt + nt +
xh

t +mh
t−1

πt

.

The variable xh
t /πt ≡ Xh

t /Pt denotes the real payoff in period t of nominal state-contingent

assets purchased in period t − 1. The variable φt denotes dividends received from the own-

ership of firms, qt denotes the price of capital in terms of consumption, and πt ≡ Pt/Pt−1

denotes the gross rate of consumer-price inflation.

We introduce wage stickiness in the model by assuming that each period the household

(or union) cannot set the nominal wage optimally in a fraction α̃ ∈ [0, 1) of randomly chosen

labor markets. In these markets, the wage rate is indexed to the previous period’s consumer-

price inflation according to the rule W j
t = W j

t−1π
χ̃
t−1, where χ̃ is a parameter measuring the

degree of wage indexation. When χ̃ equals 0, there is no wage indexation. When χ̃ equals

1, there is full wage indexation to past consumer price inflation. In general, χ̃ can take any

value between 0 and 1.

The household chooses processes for ct, ht, x
h
t+1, w

j
t , kt+1, it, ut, and mh

t so as to maximize

the utility function (1) subject to (6)-(9), the wage stickiness friction, and a no-Ponzi-

game constraint, taking as given the processes wt, r
k
t , h

d
t , rt,t+1, qt, πt, φt, τ

h
t , τk

t , and

τφ
t and the initial conditions xh

0 , k0, and mh
−1. Of course, the household’s optimal plan

must satisfy constraints (6)-(9). In addition, letting βtλtwt(1 − τh
t )/µ̃t, β

tq̃tλt, and βtλt

denote Lagrange multipliers associated with constraints (6), (7), and (9), respectively, the
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Lagrangian associated with the household’s optimization problem is

L = Et

∞∑

j=0

βj {U(ct+j − bct+j−1, ht+j)

+λt+j

[
(1 − τh

t+j)h
d
t+j

∫ 1

0

wi
t+j

(
wi

t+j

wt+j

)−η̃

di+ (1 − τk
t+j)[r

k
t+jut+j − a(ut+j)]kt+j + (1 − τφ

t+j)φt+j

−ct+j

[
1 + `

(
ct+j

mh
t+j

)]
− it+j + τk

t+jqt+jδkt+j − rt+j,t+j+1x
h
t+j+1 −mh

t+j +
mh

t+j−1 + xh
t+j

πt+j

]

+
λt+j(1 − τh

t+j)wt+j

µ̃t+j

[
ht+j − hd

t+j

∫ 1

0

(
wi

t+j

wt+j

)−η̃

di

]

+λt+j q̃t+j

[
(1 − δ)kt+j + it+j

[
1 − S

(
it+j

it+j−1

)]
− kt+j+1

]}
.

The first-order conditions with respect to ct, x
h
t+1, ht, kt+1, it, m

h
t , ut, and wj

t , in that order,

are given by

Uc(ct − bct−1, ht) − bβEtUc(ct+1 − bct, ht+1) = λt[1 + `(vt) + vt`
′(vt)], (10)

λtrt,t+1 = βλt+1
Pt

Pt+1
(11)

−Uh(ct − bct−1, ht) =
λt(1 − τh

t )wt

µ̃t
, (12)

λtq̃t = βEtλt+1

[
(1 − τk

t+1)[r
k
t+1ut+1 − a(ut+1)] + q̃t+1(1 − δ) + δqt+1τ

k
t+1

]
, (13)

λt = λtq̃t

[
1 − S

(
it
it−1

)
−
(

it
it−1

)
S ′
(

it
it−1

)]
+ βEtλt+1q̃t+1

(
it+1

it

)2

S ′
(
it+1

it

)
(14)

v2
t `

′(vt) = 1 − βEt
λt+1

λtπt+1
. (15)

rk
t = a′(ut) (16)

wi
t =

{
w̃t if wi

t is set optimally in t

wi
t−1π

χ̃
t−1/πt otherwise

where w̃t denotes the real wage prevailing in the 1− α̃ labor markets in which the union can

set wages optimally in period t. Let h̃t denote the level of employment supplied to those

markets. Note that because the labor demand curve faced by the union is identical across all

labor markets, and because the cost of supplying labor is the same for all markets, one can

assume that wage rates, w̃t, and employment, h̃t, will be identical across all labor markets
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updating wages in a given period. By equation (5), we have that w̃η̃
t h̃t = wη̃hd

t . It is of use to

track the evolution of real wages in a particular labor market. In any labor market j where

the wage is set optimally in period t, the real wage in that period is w̃t. If in period t + 1

wages are not reoptimized in that market, the real wage is w̃tπ
χ̃
t /πt+1. This is because the

nominal wage is indexed by χ̃ percent of past price inflation. In general, s period after the

last reoptimization, the real wage is w̃t

∏s
k=1

(
πχ̃

t+k−1

πt+k

)
. To derive the household’s first-order

condition with respect to the wage rate in those markets where the wage rate is set optimally

in the current period, it is convenient to reproduce the parts of the Lagrangian given above

that are relevant for this purpose,

Lw = Et

∞∑

s=0

(α̃β)sλt+s(1 − τh
t+s)h

d
t+sw

η̃
t+s

s∏

k=1

(
πt+k

πχ̃
t+k−1

)η̃

w̃1−η̃

t

s∏

k=1

(
πt+k

πχ̃
t+k−1

)−1

− wt+s

µ̃t+s
w̃−η̃

t


 .

The first-order condition with respect to w̃t is:

0 = Et

∞∑

s=0

(βα̃)sλt+sw
η̃
t+sh

d
t+s

s∏

k=1

(
πt+k

πχ̃
t+k−1

)η̃



η̃ − 1

η̃

(1 − τh
t+s)w̃t

∏s
k=1

(
πt+k

πχ̃
t+k−1

) −
wt+s(1 − τh

t+s)

µ̃t+s




Using equation (12) to eliminate µ̃t+s, we obtain that the real wage w̃t must satisfy

0 = Et

∞∑

s=0

(βα̃)sλt+s

(
w̃t

wt+s

)−η̃

hd
t+s

s∏

k=1

(
πt+k

πχ̃
t+k−1

)η̃



η̃ − 1

η̃

(1 − τh
t+s)w̃t

∏s
k=1

(
πt+k

πχ̃
t+k−1

) − −Uht+s

λt+s




This expression states that in labor markets in which the wage rate is reoptimized in period

t, the real wage is set so as to equate the union’s future expected average after-tax marginal

revenue to the average marginal cost of supplying labor. The union’s after-tax marginal

revenue s periods after its last wage reoptimization is given by η̃−1
η̃

(1−τh
t+s)w̃t

∏s
k=1

(
πχ̃

t+k−1

πt+k

)
.

Here, η̃/(η̃ − 1) represents the markup of after-tax wages over marginal cost of labor that

would prevail in the absence of wage stickiness. The factor
∏s

k=1

(
πχ̃

t+k−1

πt+k

)
in the expression

for marginal revenue reflects the fact that as time goes by without a chance to reoptimize, the

real wage declines as the price level increases when wages are imperfectly indexed. In turn,

the marginal cost of supplying labor is given by the marginal rate of substitution between
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consumption and leisure, or −Uht+s

λt+s
=

wt+s(1−τh
t+s)

µ̃t+s
. The variable µ̃t is a wedge between the

disutility of labor and the average after-tax real wage prevailing in the economy. Thus, µ̃t

can be interpreted as the average markup that unions impose on the labor market. The

weights used to compute the average difference between marginal revenue and marginal cost

are decreasing in time and increasing in the amount of labor supplied to the market.

We wish to write the wage-setting equation in recursive form. To this end, define

f 1
t =

(
η̃ − 1

η̃

)
w̃tEt

∞∑

s=0

(βα̃)sλt+s(1 − τh
t+s)

(
wt+s

w̃t

)η̃

hd
t+s

s∏

k=1

(
πt+k

πχ̃
t+k−1

)η̃−1

and

f 2
t = −w̃−η̃

t Et

∞∑

s=0

(βα̃)swη̃
t+sh

d
t+sUht+s

s∏

k=1

(
πt+k

πχ̃
t+k−1

)η̃

.

One can express f 1
t and f 2

t recursively as

f 1
t =

(
η̃ − 1

η̃

)
w̃tλt(1 − τh

t )

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

πχ̃
t

)η̃−1(
w̃t+1

w̃t

)η̃−1

f 1
t+1, (17)

f 2
t = −Uht

(
wt

w̃t

)η̃

hd
t + α̃βEt

(
πt+1

πχ̃
t

)η̃ (
w̃t+1

w̃t

)η̃

f 2
t+1. (18)

With these definitions at hand, the wage-setting equation becomes

f 1
t = f 2

t . (19)

The household’s optimality conditions imply a liquidity preference function featuring a

negative relation between real balances and the short-term nominal interest rate. To see this,

we first note that the absence of arbitrage opportunities in financial markets requires that

the gross risk-free nominal interest rate, which we denote by Rt, be equal to the reciprocal

of the price in period t of a nominal security that pays one unit of currency in every state

of period t + 1. Formally, Rt = 1/Etrt,t+1. This relation together with the household’s

optimality condition (11) implies that

λt = βRtEt
λt+1

πt+1
, (20)

which is a standard Euler equation for pricing nominally risk-free assets. Combining this

10



expression with equations (10) and (15), we obtain

v2
t `

′(vt) = 1 − 1

Rt
.

The right-hand side of this expression represents the opportunity cost of holding money,

which is an increasing function of the nominal interest rate. Given the assumptions regarding

the form of the transactions cost function `, the left-hand side is increasing in money velocity.

Thus, this expression defines a liquidity preference function that is decreasing in the nominal

interest rate and unit elastic in consumption.

2.2 Firms

Each variety of final goods is produced by a single firm in a monopolistically competitive

environment. Each firm i ∈ [0, 1] produces output using as factor inputs capital services, kit,

and labor services, hit. The production technology is given by

ztF (kit, hit) − ψ,

where the function F is assumed to be homogenous of degree one, concave, and strictly in-

creasing in both arguments. The variable zt denotes an aggregate, exogenous, and stochastic

productivity shock whose law of motion is given by

ln zt = ρz ln zt−1 + εzt , (21)

where ρz ∈ (−1, 1), and εzt is an i.i.d. innovation with mean zero, standard deviation σεz ,

and bounded support. The parameter ψ > 0 introduces fixed costs of operating a firm in

each period. It implies that the production function exhibits increasing returns to scale. We

model fixed costs to ensure a realistic profit-to-output ratio in steady state.

Aggregate demand for good i, which we denote by yit, is given by

yit = (Pit/Pt)
−ηyt,

where

yt ≡ ct[1 + `(vt)] + it + gt + a(ut)kt, (22)

denotes aggregate absorption. The variable gt denotes government consumption of the com-

posite good in period t.

We rationalize a demand for money by firms by imposing that wage payments be subject

11



to a cash-in-advance constraint of the form:

mf
it ≥ νwthit, (23)

where mf
it denotes the demand for real money balances by firm i in period t and ν ≥ 0 is a

parameter indicating the fraction of the wage bill that must be backed with monetary assets.

Firms must pay capital income taxes on nondistributed operational profits,
(

Pit

Pt

)1−η

yt −
rk
t kit − wthit − φit − (1 − R−1

t )mf
it. Here, the variable φit denotes real dividend payments

that firm i makes to households in period t. To avoid double taxation, distributed dividends

are tax exempt at the firm level. Note that the firm incurs in financial costs in the amount

(1−R−1
t )mf

it stemming from the need to hold money to satisfy the working-capital constraint.

The period-by-period budget constraint of firm i can then be written as

Etrt,t+1x
f
it+1+m

f
it−

xf
it +mf

it−1

πt

= (1−τk
t )

[(
Pit

Pt

)1−η

yt − rk
t kit − wthit − φit

]
+τk

t (1−R−1
t )mf

it,

where Etrt,t+1x
f
it+1 denotes the total real cost of one-period state-contingent assets that the

firm purchases in period t in terms of the composite good.3 We assume that the firm must

satisfy demand at the posted price. Formally, we impose

ztF (kit, hit) − ψ ≥
(
Pit

Pt

)−η

yt. (24)

The objective of the firm is to choose contingent plans for Pit, hit, kit, x
f
it+1, and mf

it so as

to maximize the present discounted value of after tax dividend payments, given by

Et

∞∑

s=0

rt,t+sPt+s(1 − τk
t+s)φit+s,

where rt,t+s ≡
∏s

k=1 rt+k−1,t+k, for s ≥ 1, denotes the stochastic nominal discount factor

between t and t+ s, and rt,t ≡ 1. Firms are assumed to be subject to a borrowing constraint

that prevents them from engaging in Ponzi games.

Clearly, because rt,t+s represents both the firm’s stochastic discount factor and the market

pricing kernel for financial assets, and because the firm’s objective function is linear in asset

3Implicit in this specification of the firm’s budget constraint is the assumption that firms rent capital
services from a centralized market. This is a common assumption in the related literature (e.g., Christiano
et al., 2003; Kollmann, 2003; Carlstrom and Fuerst, 2003; and Rotemberg and Woodford, 1992). A polar
assumption is that capital is sector specific, as in Woodford (2003, chapter 5.3) and Sveen and Weinke (2003).
Both assumptions are clearly extreme. A more realistic treatment of investment dynamics would incorporate
a mix of firm-specific and homogeneous capital.
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holdings, it follows that any asset accumulation plan of the firm satisfying the no-Ponzi

constraint is optimal. Suppose, without loss of generality, that the firm manages its portfolio

so as to ensure that its financial position at the beginning of each period is nil. Formally,

assume that xf
it+1 +mf

it = 0 at all dates and states. Note that this financial strategy makes

xf
it+1 state-noncontingent. In this case, distributed dividends take the form

φit =

(
Pit

Pt

)1−η

yt − rk
t kit − wthit − (1 −R−1

t )mf
it. (25)

For this expression to hold in period zero, we impose the initial condition xf
i0 + mf

i−1 = 0.

The last term on the right-hand side of this expression represents the firm’s financial costs

associated with the cash-in-advance constraint on wages. This financial cost is increasing

in the opportunity cost of holding money, 1 − R−1
t , which is an increasing function of the

short-term nominal interest rate Rt.

Throughout our analysis, we will focus on equilibria featuring a strictly positive nominal

interest rate. This implies that the cash-in-advance constraint (23) will always bind. Then,

letting rt,t+sPt+smcit+s be the Lagrange multiplier associated with constraint (24), the first-

order conditions of the firm’s maximization problem with respect to capital and labor services

are, respectively,

mcitztFh(kit, hit) = wt

[
1 + ν

Rt − 1

Rt

]
(26)

and

mcitztFk(kit, hit) = rk
t . (27)

It is clear from these optimality conditions that the presence of a working-capital requirement

introduces a financial cost of labor that is increasing in the nominal interest rate. We note

also that because all firms face the same factor prices and because they all have access to the

same production technology with the function F being linearly homogeneous, marginal costs,

mcit, are identical across firms. Indeed, because the above first-order conditions hold for all

firms independently of whether they are allowed to reset prices optimally or not, marginal

costs are identical across all firms in the economy.

Prices are assumed to be sticky à la Calvo (1983) and Yun (1996). Specifically, each

period t ≥ 0 a fraction α ∈ [0, 1) of randomly picked firms is not allowed to optimally set

the nominal price of the good they produce. Instead, these firms index their prices to past

inflation according to the rule Pit = Pit−1π
χ
t−1. The interpretation of the parameter χ is the

same as that of its wage counterpart χ̃. The remaining 1 − α firms choose prices optimally.

Consider the price-setting problem faced by a firm that gets to reoptimize the price in period

13



t. This price, which we denote by P̃t, is set so as to maximize the expected present discounted

value of profits. That is, P̃t maximizes the following Lagrangian:

L = Et

∞∑

s=0

rt,t+sPt+sα
s





(
P̃t

Pt

)1−η s∏

k=1

(
πχ

t+k−1

πt+k

)1−η

yt+s − rk
t+skit+s − wt+shit+s[1 + ν(1 − R−1

t+s)]

+mcit+s

[
zt+sF (kit+s, hit+s) − ψ −

(
P̃t

Pt

)−η s∏

k=1

(
πχ

t+k−1

πt+k

)−η

yt+s

]}
.

The first-order condition with respect to P̃t is

Et

∞∑

s=0

rt,t+sPt+sα
s

(
P̃t

Pt

)−η s∏

k=1

(
πχ

t+k−1

πt+k

)−η

yt+s

[
η − 1

η

(
P̃t

Pt

)
s∏

k=1

(
πχ

t+k−1

πt+k

)
−mcit+s

]
= 0.

(28)

According to this expression, optimizing firms set nominal prices so as to equate average

future expected marginal revenues to average future expected marginal costs. The weights

used in calculating these averages are decreasing with time and increasing in the size of the

demand for the good produce by the firm. Under flexible prices (α = 0), the above optimality

condition reduces to a static relation equating marginal costs to marginal revenues period

by period.

It will prove useful to express this first-order condition recursively. To that end, let

x1
t ≡ Et

∞∑

s=0

rt,t+sα
syt+smcit+s

(
P̃t

Pt

)−η−1 s∏

k=1

(
πχ

t+k−1

π
(1+η)/η
t+k

)−η

and

x2
t ≡ Et

∞∑

s=0

rt,t+sα
syt+s

(
P̃t

Pt

)−η s∏

k=1

(
πχ

t+k−1

π
η/(η−1)
t+k

)1−η

.

Express x1
t and x2

t recursively as

x1
t = ytmctp̃

−η−1
t + αβEt

λt+1

λt
(p̃t/p̃t+1)

−η−1

(
πχ

t

πt+1

)−η

x1
t+1, (29)

x2
t = ytp̃

−η
t + αβEt

λt+1

λt

(
πχ

t

πt+1

)1−η (
p̃t

p̃t+1

)−η

x2
t+1. (30)
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Then we can write the first-order condition with respect to P̃t as

ηx1
t = (η − 1)x2

t . (31)

The labor input used by firm i ∈ [0, 1], denoted hit, is assumed to be a composite made

of a continuum of differentiated labor services, hj
it indexed by j ∈ [0, 1]. Formally,

hit =

[∫ 1

0

hj
it

1−1/η̃
dj

]1/(1−1/η̃)

, (32)

where the parameter η̃ > 1 denotes the intratemporal elasticity of substitution across dif-

ferent types of activities. For any given level of hit, the demand for each variety of labor

j ∈ [0, 1] in period t must solve the dual problem of minimizing total labor cost,
∫ 1

0
W j

t h
j
itdj,

subject to the aggregation constraint (32), where W j
t denotes the nominal wage rate paid to

labor of variety j at time t. The optimal demand for labor of type j is then given by

hj
it =

(
W j

t

Wt

)−η̃

hit, (33)

where Wt is a nominal wage index given by

Wt ≡
[∫ 1

0

W j
t

1−η̃
dj

] 1
1−η̃

. (34)

This wage index has the property that the minimum cost of a bundle of intermediate labor

inputs yielding hit units of the composite labor is given by Wthit.

2.3 The Government

Each period, the government consumes gt units of the composite good. We assume that the

variable gt is exogenous and that its logarithm follows a first-order autoregressive process of

the form

ln(gt/ḡ) = ρg ln(gt−1/ḡ) + εgt , (35)

where ρg ∈ (−1, 1) and ḡ > 0 are parameters, and εgt is an i.i.d. innovation with mean zero,

standard deviation σεg , and bounded support. The parameter ḡ represents the nonstochastic

steady-state level of government absorption. We assume that the government minimizes the

cost of producing gt. As a result, public demand for each variety i ∈ [0, 1] of differentiated

goods git is given by git = (Pit/Pt)
−ηgt. A second source of government expenditures are
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transfer payments to households in the amount nt, measured in units of the composite good.

Like government consumption, transfers are assumed to be exogenous and to follow the law

of motion

ln(nt/n̄) = ρn ln(nt−1/n̄) + εnt , (36)

where ρn ∈ (−1, 1) and n̄ > 0 are parameters, and εnt is an i.i.d. innovation with mean zero,

standard deviation σεn, and bounded support. The parameter n̄ represents the nonstochastic

steady-state level of government transfers.

The government levies labor, capital, and profit income taxes, allowing for tax exemptions

for the cost of depreciation. Total tax revenues are given by τt ≡ τk
t [rk

t ut − a(ut) − qtδ]kt +

τh
t h

d
t

∫ 1

0
wj

t (w
j
t/wt)

−η̃dj + τφ
t φt. The government issues money given in real terms by mt ≡

mh
t +

∫ 1

0
mf

itdi. The fiscal authority covers deficits by issuing one-period, nominally risk-free

bonds, Bt. The period-by-period budget constraint of the consolidated government is then

given by bt − (Rt−1/πt)bt−1 +mt −mt−1/πt = gt + nt − τt. Letting at ≡ Rtbt + mt, we can

write the government’s budget constraint as

at

Rt
+mt(1 − R−1

t ) + τt =
at−1

πt
+ gt + nt. (37)

We postpone the presentation of the monetary and fiscal policy regime.

2.4 Aggregation

We limit attention to a symmetric equilibrium in which all firms that get to change their

price optimally at a given time indeed choose the same price. It then follows from (4) that

the aggregate price index can be written as P 1−η
t = α(Pt−1π

χ
t−1)

1−η + (1− α)P̃ 1−η
t . Dividing

this expression through by P 1−η
t one obtains

1 = απη−1
t π

χ(1−η)
t−1 + (1 − α)p̃1−η

t . (38)

In equilibrium, the shadow value of capital, q̃t, must equal the market value of capital, qt,

qt = q̃t. (39)

2.4.1 Market Clearing in the Final Goods Market

Naturally, the set of equilibrium conditions includes a resource constraint. Such a restriction

is typically of the type ztF (kt, ht) − ψ = ct[1 + `(vt)] + it + gt + a(ut)kt. In the present

model, however, this restriction is not valid. This is because the model implies relative price
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dispersion across varieties. This price dispersion, which is induced by the assumed nature

of price stickiness, is inefficient and entails output loss. To see this, consider the following

expression stating that supply must equal demand at the firm level:

ztF (kit, hit) − ψ = [ct + `(vt)ct + it + gt + a(ut)kt]

(
Pit

Pt

)−η

.

Integrating over all firms and taking into account that (a) the capital-labor ratio is common

across firms, (b) that the aggregate demand for the composite labor input, hd
t , satisfies

hd
t =

∫ 1

0

hitdi,

and that (c) the aggregate effective level of capital, utkt satisfies

utkt =

∫ 1

0

kitdi,

we obtain

hd
t ztF

(
utkt

hd
t

, 1

)
− ψ = [ct + `(vt)ct + it + gt + a(ut)kt]

∫ 1

0

(
Pit

Pt

)−η

di.

Let st ≡
∫ 1

0

(
Pit

Pt

)−η

di. Then we have

st =

∫ 1

0

(
Pit

Pt

)−η

di

= (1 − α)

(
P̃t

Pt

)−η

+ (1 − α)α

(
P̃t−1π

χ
t−1

Pt

)−η

+ (1 − α)α2

(
P̃t−2π

χ
t−1π

χ
t−2

Pt

)−η

+ . . .

= (1 − α)
∞∑

j=0

αj

(
P̃t−j

∏j
s=1 π

χ
t−j−1+s

Pt

)−η

= (1 − α)p̃−η
t + α

(
πt

πχ
t−1

)η

st−1.

Summarizing, the resource constraint in the present model is given by the following two

expressions

ztF (utkt, h
d
t ) − ψ = [ct + `(vt)ct + it + gt + a(ut)kt]st (40)

st = (1 − α)p̃−η
t + α

(
πt

πχ
t−1

)η

st−1, (41)
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with s−1 given. The state variable st summarizes the resource costs induced by the inefficient

price dispersion featured in the Calvo model in equilibrium. Three observations are in order

about the price dispersion measure st. First, st is bounded below by 1. That is, price

dispersion is always a costly distortion in this model. To see that st is bounded below by 1,

let vit ≡ (Pit/Pt)
1−η. It follows from the definition of the price index given in equation (4) that[∫ 1

0
vit

]η/(η−1)

= 1. Also, by definition we have st =
∫ 1

0
v

η/(η−1)
it . Then, taking into account

that η/(η − 1) > 1, Jensen’s inequality implies that 1 =
[∫ 1

0
vit

]η/(η−1)

≤
∫ 1

0
v

η/(η−1)
it = st.

Second, in an economy where the non-stochastic level of inflation is nil (i.e., when π = 1)

or where prices are fully indexed to any variable ωt with the property that its deterministic

steady-state value equals the deterministic steady-state value of inflation (i.e., ω = π), the

variable st follows, up to first order, the univariate autoregressive process ŝt = αŝt−1. In these

cases, the price dispersion measure st has no first-order real consequences for the stationary

distribution of any endogenous variable of the model. This means that studies that restrict

attention to linear approximations to the equilibrium conditions are justified to ignore the

variable st if the model features no price dispersion in the deterministic steady state. But st

matters up to first order when the deterministic steady state features movements in relative

prices across goods varieties. More importantly, the price dispersion variable st must be

taken into account if one is interested in higher-order approximations to the equilibrium

conditions even if relative prices are stable in the deterministic steady state. Omitting st

in higher-order expansions would amount to leaving out certain higher-order terms while

including others. Finally, when prices are fully flexible, α = 0, we have that p̃t = 1 and

thus st = 1. (Obviously, in a flexible-price equilibrium there is no price dispersion across

varieties.)

As discussed above, equilibrium marginal costs and capital-labor ratios are identical

across firms. Therefore, one can aggregate the firm’s optimality conditions with respect to

labor and capital, equations (26) and (27), as

mctztFh(utkt, h
d
t ) = wt

[
1 + ν

Rt − 1

Rt

]
(42)

and

mctztFk(utkt, h
d
t ) = rk

t . (43)

18



2.4.2 Market Clearing in the Labor Market

It follows from equation (33) that the aggregate demand for labor of type j ∈ [0, 1], which

we denote by hj
t ≡

∫ 1

0
hj

itdi, is given by

hj
t =

(
W j

t

Wt

)−η̃

hd
t , (44)

where hd
t ≡

∫ 1

0
hitdi denotes the aggregate demand for the composite labor input. Taking

into account that at any point in time the nominal wage rate is identical across all labor

markets at which wages are allowed to change optimally, we have that labor demand in each

of those markets is

h̃t =

(
w̃t

wt

)−η̃

hd
t .

Combining this expression with equation (44), describing the demand for labor of type

j ∈ [0, 1], and with the time constraint (6), which must hold with equality, we can write

ht = (1 − α̃)hd
t

∞∑

s=0

α̃s

(
W̃t−s

∏s
k=1 π

χ̃
t+k−s−1

Wt

)−η̃

Let s̃t ≡ (1− α̃)
∑∞

s=0 α̃
s

(
W̃t−s

∏s
k=1 πχ̃

t+k−s−1

Wt

)−η̃

. The variable s̃t measures the degree of wage

dispersion across different types of labor. The above expression can be written as

ht = s̃th
d
t . (45)

The state variable s̃t evolves over time according to

s̃t = (1 − α̃)

(
w̃t

wt

)−η̃

+ α̃

(
wt−1

wt

)−η̃
(

πt

πχ̃
t−1

)η̃

s̃t−1. (46)

We note that because all job varieties are ex-ante identical, any wage dispersion is inef-

ficient. This is reflected in the fact that s̃t is bounded below by 1. The proof of this

statement is identical to that offered earlier for st. To see this, note that s̃t can be written

as s̃t =
∫ 1

0

(
Wit

Wt

)−η̃

di. This inefficiency introduces a wedge that makes the number of hours

supplied to the market, ht, larger than the number of productive units of labor input, hd
t .

In an environment without long-run wage dispersion, the dead-weight loss created by wage

dispersion is nil up to first order. Formally, a first-order approximation of the law of motion
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of s̃t yields a univariate autoregressive process of the form ˆ̃st = α̃ˆ̃st−1, as long as there is

no wage dispersion in the deterministic steady state. When wages are fully flexible, α̃ = 0,

wage dispersion disappears, and thus s̃t equals 1.

It follows from our definition of the wage index given in equation (34) that in equilibrium

the real wage rate must satisfy

w1−η̃
t = (1 − α̃)w̃1−η̃

t + α̃w1−η̃
t−1

(
πχ̃

t−1

πt

)1−η̃

. (47)

Aggregating the expression for firm’s profits given in equation (25) yields

φt = yt − rk
t utkt − wth

d
t − ν(1 −R−1

t )wth
d
t . (48)

In equilibrium, tax collection and real money holdings can be expressed as

mt = mh
t + νwth

d
t (49)

and

τt = τk
t [rk

t ut − a(ut) − qtδ]kt + τh
t h

d
twt + τφ

t φt (50)

2.5 Competitive Equilibrium

A stationary competitive equilibrium is a set of stationary processes ut, ct, ht, it, kt+1, vt,

mh
t , mt, at, λt, πt, wt, µ̃t, qt, q̃t, r

k
t , φt, f

1
t , f 2

t , w̃t, h
d
t , yt, mct, x

1
t , x

2
t , p̃t, st, s̃t, τt, τ

h
t , τk

t ,

τφ
t , Rt, zt, gt, nt, satisfying (7), (8), (10), (12)-(22), (29)-(31), (37)-(43), and (45)-(50), given

a monetary-fiscal regime (which adds 4 more restrictions), exogenous stochastic processes

{εgt , εzt , εnt }∞t=0, and initial conditions z0, g0, n0, c−1, w−1, s−1, s̃−1, π−1, i−1, a−1, and k0.

2.6 The Ramsey Equilibrium

We assume that at t = 0, the benevolent government has been operating for an infinite

number of periods. In choosing optimal policy, the government is assumed to honor commit-

ments made in the past. This form of policy commitment has been referred to as ‘optimal

from the timeless perspective’ (Woodford, 2003).

Formally, we define a Ramsey equilibrium as a set of stationary processes ut, ct, ht, it,

kt+1, vt, m
h
t , mt, at, λt, πt, wt, µ̃t, qt, q̃t, r

k
t , φt, f

1
t , f 2

t , w̃t, h
d
t , yt, mct, x

1
t , x

2
t , p̃t, st, s̃t, τt,
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τh
t , τk

t , τφ
t , Rt, zt, gt, and nt, for t ≥ 0 that maximize

E0

∞∑

t=0

βtU(ct − bct−1, ht),

subject to the competitive equilibrium conditions (7), (8), (10), (12)-(22), (29)-(31), (37)-

(43), and (45)-(50), and Rt ≥ 1, for t > −∞, given exogenous stochastic processes {εgt , εzt ,
εnt }∞t=0, values of the variables listed above dated t < 0, and values of the Lagrange multipliers

associated with the constraints listed above dated t < 0.

Technically, the difference between the usual Ramsey equilibrium concept and the one

employed here is that here the structure of the optimality conditions associated with the

Ramsey equilibrium is time invariant. By contrast, under the standard Ramsey equilibrium

definition, the equilibrium conditions in the initial periods are different from those applying

to later periods.

Our results concerning the business-cycle properties of Ramsey-optimal policy are com-

parable to those obtained in the existing literature under the standard definition of Ramsey

optimality (e.g., Chari, Christiano, and Kehoe, 1995). The reason is that existing studies of

business cycles under the standard Ramsey policy focus on the behavior of the economy in

the stochastic steady state (i.e., they limit attention to the properties of equilibrium time

series excluding the initial transition).

3 Calibration and Functional Forms

We use the following standard functional forms for utility and technology:

U =

[
(ct − bct−1)

1−φ4 (1 − ht)
φ4

]1−φ3

− 1

1 − φ3

and

F (k, h) = kθh1−θ.

Following Christiano, Eichenbaum, and Evans (2005) we assume an investment adjustment

cost function of the form:

S
(

it
it−1

)
=
κ

2

(
it
it−1

− 1

)2

.

As in Schmitt-Grohé and Uribe (2004a) we assume that the transaction cost technology

takes the form

`(v) = φ1v + φ2/v − 2
√
φ1φ2. (51)
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The money demand function implied by this transaction technology is of the form

v2
t =

φ2

φ1
+

1

φ1

Rt − 1

Rt
.

Note the existence of a satiation point for consumption-based money velocity, v, equal to√
φ2/φ1. The money demand has a unit elasticity with respect to consumption expendi-

tures. This feature is a consequence of the assumption that transaction costs, c`(c/m), are

homogenous of degree one in consumption and real balances and is independent of the par-

ticular functional form assumed for `(·). Further, as the parameter φ2 approaches zero, the

transaction cost function `(·) becomes linear in velocity and the demand for money adopts

the Baumol-Tobin square root form with respect to the opportunity cost of holding money,

(R− 1)/R. That is, the log-log elasticity of money demand with respect to the opportunity

cost of holding money converges to 1/2, as φ2 vanishes.

The costs of higher capacity utilization are parameterized as follows:

a(u) = γ1(u− 1) +
γ2

2
(u− 1)2.

This is the parameterization estimated in Christiano, Eichenbaum, and Evans (2005).

The equilibrium conditions listed in section 2.5 contain 32 equations (without counting

the 4 restrictions defining the monetary/fiscal regime) and 36 variables: 29 endogenous

variables (ut, ct, ht, it, kt+1, vt, m
h
t , mt, at, λt, πt, wt, µ̃t, qt, q̃t, r

k
t , φt, f

1
t , f 2

t , w̃t, h
d
t , yt,

mct, x
1
t , x

2
t , p̃t, st, s̃t, τt), 4 policy variables (τh

t , τk
t , τφ

t , and Rt), and 3 exogenous shocks (zt,

gt, and nt). In addition, the equilibrium conditions feature 27 parameters (φ1, φ2, φ3, φ4,

γ1, γ2, θ, κ, b, β, δ, η̃, α̃, η, α, χ, χ̃, ψ, ν, ρz, σεz , ρg, σεg , , ρn, σεn , ḡ, n̄). This means that

in order to obtain values for the steady-state levels of variables and for the deep structural

parameters, we need to impose 31 restrictions.

We take from Christiano, Eichenbaum and Evans (2005) the following 5 parameter values,

which they estimate:

η = 6

α = 0.6

α̃ = 0.64

b = 0.65

κ = 2.48

We draw from the estimates reported in Altig, et al. (2004) to assign values to the
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following parameter:

εmh,R ≡ 1

4

∂ ln(mh)

∂R
= −0.81

γ2

γ1
= 2.02

The parameter εmh,R denotes the annualized interest semielasticity of money demand.

The assumed form for the transaction cost function implies that

εmh,R = −1

8

1

R (φ2 R +R− 1)
.

We follow Christiano, Eichenbaum and Evans (2005) and impose the following 7 calibration

(i.e., nonestimated) restrictions:

η̃ = 21

mh

m
≡ smh = 0.44

χ̃ = 1

φ = 0

u = 1

φ3 = 1

The last restriction imply that the period utility function is separable in consumption and

leisure.

We set the capital share in value added at 25 percent, the discount rate at 4 percent per

year, and the Frisch elasticity of labor supply with respect to the wage rate equal to 4 (which

implies that households allocate about 20 percent of their time to remunerated work), that

is,
rkuk

y
≡ sk = 0.25

β = 1.04−1/4

h = 0.195

These values are commonly used in business-cycle studies.

Using postwar U.S. data, we measure the average money-to-output ratio as the ratio of

M1 to GDP, and set it equal to 16.95 percent per year. We measure it as gross private

investment and obtain a an average ratio of investment to GDP of 0.1275. We measure

nt as net transfer to private persons and obtain an average ratio of transfers to GDP of
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0.078. Government spending is measured as public consumption expenditure and obtain an

estimate its mean share in GDP to be 0.17. Finally, we measure inflation as the growth rate

of the GDP deflator, and obtain an average annual rate of 4.2 percent. Thus,

m

y
= sm ≡ 0.1695 × 4

i

y
= si ≡ 0.1275

g

y
≡ sg = 0.17

n

y
≡ sn = 0.078

π = 1.0421/4

In calibrating the model, we assume that the economy is in the deterministic steady state

of a competitive equilibrium in which the capital and labor income tax rates are constant.

We follow Mendoza, Razin, and Tesar (1994) in setting values for the income tax rates:

τk = 0.407

τh = 0.285

These tax rates correspond to the year 1988, which is the last year in their sample. Because

tax rates appear to have a trend, we use the last observation rather than an average over

their sample.

Note that because profits are restricted to be nil in the competitive equilibrium at which

we calibrate the economy, the rate at which profits are taxed plays no role for the calibration.

We draw from Cogley and Sbordone (2004) and assume no indexation in product prices:

χ = 0.

We estimate by OLS the processes for government purchases and transfers using data

from 1947:I to 2004:III. In the case of transfers we eliminated the years 1947-1950 because

they contain two outliers in which the government paid unusually high veteran benefits. To

obtain the cyclical behavior of all variables involved in the estimation we use the HP filter

with a parameter of 1600. We obtain

ρg = 0.87,

24



σεg = 0.016,

ρn = 0.78,

and

σεn = 0.022.

Given the multitude of distortions in our model, a simple Solow residual is a poor measure

of the technology shock in our model. Thus, instead of relying on existing estimates for the

stochastic process of Solow residuals, we calibrate the productivity shock process as follows.

We require that the process is such, that is, ρz and σεz are such that the model matches the

observed unconditional standard deviation and serial correlation of the cyclical component

of output during the postwar era, 1.6 percent and 0.84, respectively. This exercise requires

making assumptions about fiscal and monetary policy. We assume that income tax rates are

constant at the levels given above (i.e, τk = 0.407 and τh = 0.285), and that fiscal policy is

passive. Specifically, we assume that lump-sum taxes ensure the stationarity of government

assets for any on- or off-equilibrium path of the price level. We assume that monetary policy

takes the form of a simple Taylor-type rule whereby the current nominal interest rate is

set as a function of contemporaneous inflation and output. We then pick the 4 parameters

describing the technology process and the monetary policy rule so that the model matches

the volatility and serial correlation of output and inflation observed in the postwar U.S.

economy. The resulting parameter values for the technology shock process are ρz = 0.8556

and σεz = 0.0064.

In computing Ramsey equilibria, we assume that the economy has been operating under

the Ramsey policy for a long time and that the average ratio of government debt to GDP is

42 percent per year. That is, we impose that

(a−m)/R

y
= 0.42 × 4

This value corresponds to the average federal debt held by the public as a percent of GDP

in the United States between 1984 and 2003.4

Table 1 gathers the values of the deep structural parameters of the model implied by our

calibration strategy.

4The source is the Economic Report of the President, February 2004, table B79.
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Table 1: Structural Parameters

Parameter Value Description
β 0.9902 Subjective discount factor (quarterly)
θ 0.25 Share of capital in value added
ψ 0.0594 Fixed cost
δ 0.0173 Depreciation rate (quarterly)
ν 0.5114 Fraction of wage bill subject to a CIA constraint
η 6 Price-elasticity of demand for a specific good variety
η̃ 21 Wage-elasticity of demand for a specific labor variety
α 0.6 Fraction of firms not setting prices optimally each quarter
α̃ 0.64 Fraction of labor markets not setting wages optimally each quarter
b 0.65 Degree of habit persistence
φ1 0.0267 Transaction cost parameter
φ2 0.1284 Transaction cost parameter
φ3 1 Preference parameter
φ4 0.75 Preference parameter
κ 2.48 Parameter governing investment adjustment costs
γ1 0.0339 Parameter of capacity-utilization cost function
γ2 0.0685 Parameter of capacity-utilization cost function
χ 0 Degree of price indexation
χ̃ 1 Degree of wage indexation
ḡ 0.0505 Steady-state value of government consumption (quarterly)
n̄ 0.0232 Steady-state value of government transfers (quarterly)
ρz 0.8556 Serial correlation of the log of the technology shock
σεz 0.0064 Std. dev. of the innovation to log of technology
ρg 0.87 Serial correlation of the log of government spending
σεg 0.016 Std. dev. of the innovation to log of gov. consumption
ρn 0.78 Serial correlation of the log of government transfers
σεn 0.022 Std. dev. of the innovation to log of gov. transfers
b/y 1.68 Debt-to-GDP ratio (quarterly)
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Table 2: Ramsey Steady States

Environment Steady-State Outcome

τφ
t χ n̄ γ2 π R τh τk profit share
τk
t 0.2 4.2 35.4 -6.3 0.6
τk
t 1 4.6 8.8 34.7 -6.6 0.6
τk
t 1 0 -3.8 0 24.1 -5.3 2.3
τk
t 0 -0.2 3.8 23.3 -5.2 2.3
1 0.3 4.3 38.2 -44.3 0.8
1 6850 0.3 4.3 37.8 -84.9 1.4

τk
t , τ

h
t 0.5 4.5 30.0 30.0 0.3

Note: The inflation rate, π, and the nominal interest rate, R, are expressed in
percent per year. The labor income tax rate, τh, and the capital income tax rate,
τk, are expressed in percent. Unless indicated otherwise, parameters take their
baseline values, given in table 1.

4 Ramsey Steady States

Consider the long-run state of the Ramsey equilibrium in an economy without uncertainty.

We refer to this state as the Ramsey steady state. Note that the Ramsey steady state is in

general different from the allocation/policy that maximizes welfare in the steady state of a

competitive equilibrium.

Table 2 displays the Ramsey steady-state values of inflation, the nominal interest rate,

and labor and capital income tax rates under a number of environments of interests. The

figures reported in the table correspond to the exact numerical solution to the steady-state

of the Ramsey problem.

4.1 The Optimal Level of Inflation

Consider first the case in which profits are taxed at the same rate as income from capital

(τφ
t = τk

t for all t). In this case, the Ramsey planner chooses to conduct monetary policy

in such a way as to nearly stabilize the price level. The optimal inflation rate is 18 basis

points per year (line 1 of table 2). It is worth noting that, although small, the steady-state

inflation rate is positive. This finding is somewhat surprising, for a well-known result in

the context of simpler versions of the new Keynesian model is that the Ramsey steady-state

level of inflation is negative and lies between the one called for by the Friedman rule and the

one corresponding to full price stabilization. In calibrated example economies, the optimal

deflation rate is, however, small (see, for instance, Schmitt-Grohé and Uribe, 2004a; and
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Khan, et al., 2003). In these simpler models the optimal inflation rate is determined by the

tradeoff between minimizing the opportunity cost of holding money (which requires setting

the inflation rate equal to minus the real interest rate) and minimizing price dispersion

arising from nominal rigidities (which requires setting inflation at zero). Clearly, our finding

of a positive inflation rate suggests that in the medium scale economy we study in this paper

there must be an additional tradeoff that the Ramsey planner faces in setting the rate of

inflation. To make the presence of the third tradeoff nitid, we consider the case of indexation

of product prices to lagged inflation, χ = 1 (line 2 of table 2). In this case, the long-run

distortions stemming from nominal rigidities are nil. (Recall that in our calibration nominal

wages are fully indexed, i.e., χ̃ = 1.) Therefore, in this case there is no tradeoff between

the sticky-price and money-demand frictions. In the absence of any additional tradeoffs, one

should expect the Friedman rule to be optimal in this case. However, line 2 of table 2 shows

that under long-run price flexibility, the optimal rate of inflation is 4.6 percent per year, a

value even further removed from the Friedman rule than the one that is optimal under no

indexation in product markets (line 1 of the table).

The third tradeoff turns out to originate in the presence of government transfer payments

to households, nt. Line 3 of table 2 shows that under full indexation and in the absence of

government transfers, the Friedman rule emerges as the optimal monetary policy. That is,

the nominal interest rate is zero and the inflation rate is negative and equal to the rate of

discount in absolute value. The reason why lump-sum government transfers induce positive

inflation is that from the viewpoint of the Ramsey planner they represent pure rents accruing

to households and as such can be taxed without creating a distortion. In the absence of a

specific instrument to tax transfer income, the government chooses to tax this source of

income indirectly when it is used for consumption. Specifically, in the model consumption

purchases require money. As a result, a positive opportunity cost of holding money—i.e., a

positive nominal interest rate—acts as a tax on consumption.5

Clearly, in the present model, if lump-sum transfers could be set optimally, they would

be set at a negative value in a magnitude sufficient to finance government expenditures

and output subsidies aimed at eliminating monopolistic distortions in product and factor

markets. But in reality government transfers are positive and large. In the United States,

they averaged 7 percent of GDP in the postwar era. Justifying this amount of government

transfers as an optimal outcome lies beyond the scope of this paper. One obvious theoretical

element that would introduce a rationale for positive government transfers would be the

introduction of some form of heterogeneity across households.

5A formal analytical derivation of the result that the Friedman rule fails in the presence of government
transfers is given in Schmitt-Grohé and Uribe (2005).

28



Whether set optimally or not, government transfers must be financed. Comparing lines

1 and 4 of table 2 it follows that the government must increase the labor income tax rate by

12 percentage points to finance transfer payments of 7 percent of GDP. Thus, the economy

featuring transfers is significantly more distorted than the one without transfers. Because, in

general, optimal stabilization policy will depend on the average level of distortion present in

the economy, it is of importance for the purpose of this paper, to explicitly include transfers

into the model. It is noteworthy that under the calibration shown in table 1 (particularly,

under no indexation), allowing for transfers has virtually no effect on the steady-state Ramsey

policy except for the level of the labor income tax rate. Specifically, comparing lines 1 and

4 of table 2 shows that removing transfers has virtually no bearing on the optimal rate of

inflation and capital income taxation in the steady state.

We conclude that the tripodal tradeoff that determines the Ramsey long-run rate of

inflation is resolved in favor of price stability. In this sense, the nominal price friction

appears to dominate the money demand friction and the transfer-taxation motive in shaping

optimal monetary policy in the long run.

4.2 Optimal Tax Rates

Consider first the economy where profit income are taxed at 100 percent (τφ
t = 1). In this

case, shown in line 5 of table 2, the Ramsey plan calls for subsidizing capital at the rate of

44.3 percent in the deterministic steady state. It is well known from the work of Judd (2002)

that in the presence of imperfect competition in product markets, the markup of prices over

marginal costs introduces a distortion between the private and the social returns to capital

that increases exponentially over the investment horizon. As a result, optimal policy calls

for eliminating this distortion by setting negative capital income tax rates. To gain insight

into the nature of the capital income subsidy, note that in steady state the private return

to investment is given by (1 − τk)(uFk/µ − δ − a(u)), where µ denotes the steady-state

markup, uFk denotes the marginal product of capital, δ denotes the depreciation rate, and

a(u) denotes the cost of utilizing capital at the rate u. The social return to capital is given

by uFk − δ− a(u). Equating the private and social returns to investment requires setting τk

so that

(1 − τk)(uFk/µ− δ − a(u)) = uFk − δ − a(u).

Because in the presence of market power in product markets, the markup is greater than

unity (µ > 1), it follows that τk must be negative. Using the fact that in the steady state
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1 = β[(1 − τk)(uFk/µ− δ − a(u)) + 1], we can write the above expression as:

1 − τk = µ

[
(β−1 − 1)

β−1 − 1 − (µ− 1)(δ + a(u))

]
. (52)

It is clear from this expression that if the depreciation rate is zero (δ=0), and capacity

utilization is fixed at unity (so that a(u) = 0), then the optimal capital income tax rate

is equal to the net markup in absolute value. The case of zero depreciation and constant

capacity utilization is the one considered in Judd (2002). We find that the introduction

of depreciation in combination with a depreciation allowance, which is clearly the case of

greatest empirical interest, magnifies significantly the size of the optimal capital subsidy. For

instance, in our economy the markup is 20 percent, the depreciation rate is 7 percent per

year, and the discount factor is 4 percent per year. In the case of no depreciation and fixed

capacity utilization, the formula in equation (52) implies a capital subsidy of 20 percent.

However, with a conservative depreciation rate of 7 percent per year and fixed capacity

utilization—which we induce by increasing γ2 by a factor of 105—the optimal subsidy on

capital income skyrockets to 85 percent (see line 6 of table 2). The reason for this tremendous

rise in the size of the subsidy is that the government taxes the rate of return on capital net of

depreciation, whereas the markup distorts the rate of return on capital gross of depreciation.

Allowing for variable capacity utilization (by setting γ2 at its baseline value of 0.0685),

reduces the capital subsidy from 85 percent (line 6 of table 2) to 44 percent (line 5 of table 2).

The reason why the subsidy is smaller in this case is that a(u) is negative, which results in

a lower effective depreciation rate.6

An additional factor determining the size of the optimal subsidy on capital is the fiscal

treatment of profits. The formula given in equation (52) applies when profits are taxed at a

100 percent rate. Consider instead the case in which profit income is taxed at the same rate

as capital income (τφ
t = τk

t ), which is assumed in lines 1-4 of table 2. Because profits are

pure rents, the Ramsey planner has an incentive to confiscate them. This creates a tension

between setting τk equal to 100 percent, so as to fully tax profits, and setting τk at the

negative value that equates the social and private returns to investment. This explains why

when the Ramsey planner is constrained to tax profits and capital income at the same rate,

the optimal subsidy to capital is 6.3 percent, a number much smaller than the 85 percent

6To see why the level of capacity utilization ut is less than one (which is necessary for (a(ut)) to be
negative) in the Ramsey equilibrium, recall that in the competitive equilibrium used for the calibration of
the function a(·), the tax rate on capital was set at 40.7 percent and ut was set at unity. In the Ramsey
equilibrium, τk is negative, which induces a larger level of capital. With a higher capital stock, its rate of
return at full utilization falls, which induces capitalists to lower it degree of utilization. In the steady state
shown in line 5 of table2, u equals 0.85.
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implied by equation (52).

Line 7 of table 2 displays the case in which the Ramsey planner is constrained to follow

an income tax policy. That is, fiscal policy stipulates τh
t = τk

t = τφ
t . Not surprisingly, the

optimal income tax rate falls in between the values of the labor and capital income tax rates

that are optimal when the fiscal authority is allowed to set these tax rates separately (line

5 of table 2). The optimal rate of inflation under an income tax is small, half a percent per

annum, and not significantly different from the one that emerges when taxes can vary across

income sources.7

5 Ramsey Dynamics Under Income Taxation

In this section, we study the business-cycle implications of Ramsey-optimal policy when tax

rates are restricted to be identical across all sources of income. Specifically, we study the

case in which,

τh
t = τk

t = τφ
t ≡ τ y

t ,

for all t, where τ y
t denotes the income tax rate.

We approximate the Ramsey equilibrium dynamics by solving a first-order approximation

to the Ramsey equilibrium conditions. There is evidence that first-order approximations to

the Ramsey equilibrium conditions deliver dynamics that are fairly close to those associated

with the exact solution. For instance, in Schmitt-Grohé and Uribe (2004b) we compute the

exact solution to the Ramsey equilibrium in a flexible-price dynamic economy with money,

income taxes, and monopolistic competition in product markets. In Schmitt-Grohé and

Uribe (2004a) we then compute the solution to the exact same economy using a first-order

approximation to the Ramsey equilibrium conditions. We find that the exact solution is not

significantly different from the one based on a first-order approximation.

It has also been shown in the context of environments with fewer distortions than the

medium-scale macroeconomic model studied here that a first-order approximation to the

Ramsey equilibrium conditions implies dynamics that are very close to the dynamics asso-

ciated with a second-order approximation to the Ramsey system. Specifically, in Schmitt-

Grohé and Uribe (2004a) we establish this result using a dynamic general equilibrium model

with money, income taxes, sticky prices in product markets, and imperfect competition.8

7The reason why the inflation rate is higher than in the baseline case is that in this way the Ramsey
planner can tax labor at a higher rate than capital, a point we discuss in detail below.

8More recently, Benigno and Woodford (2005) arrive at a similar conclusion in the context of optimal
taxation in the standard RBC model. They show that the first- and second-order approximations of the
Ramsey equilibrium conditions are similar to the approximation based on a minimum-weighted-residual
method reported in Chari et al. (1995).
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Table 3: Cyclical Implications of Optimal Policy Under Income Taxation

Variable Steady Standard Serial Correlation
state deviation correlation with output

τ y
t 30 1.1 0.62 -0.51
Rt 4.53 1.43 0.74 -0.11
πt 0.51 1.1 0.55 0.11
yt 0.3 1.96 0.97 1
ct 0.21 1.16 0.98 0.89
it 0.04 7.87 0.98 0.95
ht 0.19 1.34 0.75 0.59
wt 1.17 0.94 0.93 0.80
at 0.72 4.44 0.99 0.31

Note: Rt and πt are expressed in percent per year, and τ y
t is expressed in percent.

The steady-state values of yt, ct, it, wt, and at are expressed in levels. The
standard deviations, serial correlations, and correlations with output of these 5
variables correspond to percent deviations from their steady-state values.

Table 3 displays the standard deviation, serial correlation, and correlation with output

of a number of macroeconomic variables of interest in the Ramsey equilibrium with income

taxation. In computing these second moments, all structural parameters of the model take

the values shown in table 1. Second moments are calculated using Monte Carlo simulations.

We perform 1000 simulations of 200 quarters each. For each simulation, we compute second

moments and then average these figures over the 1000 simulations.

An important result that emerges from table 3 is that under the optimal policy regime

inflation is remarkably stable over the business cycle. This result is akin to the one derived

in the context of models with a single distortion, namely sticky product prices and no

fiscal considerations (Goodfriend and King, 1997 among many others). In the canonical

Neo Keynesian model studied in Goodfriend and King, the optimality of price stability is

a straightforward result. For in that environment, the single cause of inefficiencies is price

dispersion due to exogenous impediments to the adjustment of nominal prices. By contrast,

the medium-scale model studied here features, in addition to price stickiness, distortions

that in isolation would call for a highly volatile inflation rate under the Ramsey plan.

First, the fact that the government does not have access to lump-sum taxation provides

an incentive for the Ramsey planner to use unexpected variations in the inflation rate as a

capital levy on private holdings of nominal assets to finance innovations in the fiscal deficit.

In effect, Chari et al. (1995) show in the context of a flexible-price model that the optimal

rate of inflation volatility is extremely high (above 10 percent per year). So in setting
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the optimal level of inflation volatility, the Ramsey planner faces a tradeoff between using

inflation as a capital levy and minimizing the dispersion of nominal prices. For plausible

calibrations, this tradeoff has been shown to be resolved overwhelmingly in favor of price

stability. Schmitt-Grohé and Uribe (2004) show within a sticky-price model with distorting

taxes that a miniscule amount of price stickiness suffices to induce the Ramsey planner

to abandon the use of inflation as a fiscal instrument in favor of virtually complete price

stability. Table 3 shows that this result survives in the much richer environment studied

here, featuring a relatively large number of nominal and real rigidities.

Second, the fact that our model features sticky wages introduces an incentive for the

Ramsey planner to adjust so as to bring about efficient real wage movements. As will be

shown shortly, nominal wage stickiness in isolation calls for the Ramsey inflation rate to be

highly volatile.

With the inflation rate not playing the role of absorber of fiscal shocks, the Ramsey

planner must finance fiscal disturbances via deficits or changes in tax rates or both. Table 3

shows that in our model the role of shock absorber is picked up to a large extent by fiscal

deficits (i.e., by adjustments in the level of public debt). Total government liabilities, at,

are relatively volatile and display a near-unit-root behavior. The standard deviation of

government liabilities is 4.4 percent per quarter and the serial correlation is 0.99 in our

simulated sample paths. By contrast tax rates do not vary much over the business cycle.

The Ramsey planner is able to implement tax smoothing by allowing the public liabilities

to vary in response to fiscal shocks.

5.1 Nominal Rigidities and Optimal Policy

Table 4 presents the effects of changing the degree of wage or price stickiness on the behavior

of policy variables. Panel A considers the case of no transfers (nt = 0 for all t). This case is

of interest because it removes the government’s incentive to tax transfers through long-run

inflation, making the economy more comparable to existing related studies. When product

and factor prices are fully flexible (α = α̃ = 0), the optimal policy features high inflation

volatility (5.8 percentage points per quarter at an annual rate) and relatively stable tax

rates, with a standard deviation of 0.1 percent. In this case, as discussed earlier, variations

in inflation are used as a state-contingent tax on nominal government liabilities, allowing the

Ramsey planner to smooth taxes. Public debt is stationary with a serial correlation of 0.84.

When prices are sticky but wages are flexible (α = 0.6 and α̃ = 0), the optimal inflation

volatility falls dramatically from its benchmark value of 1.1 percent at an annual rate to

less than 0.1 percent. Because prices are costly to adjust, the Ramsey planner relinquishes
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Table 4: Degree of Nominal Rigidity and Optimal Policy

A. No Transfers (nt = 0)

α α̃ τ y
t Rt πt wt at

Mean 19.0 4.4 0.4 1.2 0.8
0 0 Std. dev. 0.1 0.2 5.8 1.4 2.5

Ser. corr. 0.6 0.8 -0.1 0.8 0.84
Mean 19.0 4.0 0.02 1.2 0.8

0.6 0 Std. dev. 0.4 0.7 0.1 1.4 6.3
Ser. corr. 0.6 0.9 0.1 0.9 1
Mean 19.0 4.4 0.4 1.2 0.8

0 0.64 Std. dev. 1.5 3.1 5.8 1.7 5.1
Ser. corr 0.5 0.9 0.8 0.8 0.99
Mean 19.0 4.0 0.02 1.2 0.8

0.6 0.64 Std. dev. 1.0 1.3 1.1 1 3.6
Ser. corr. 0.6 0.7 0.6 0.9 0.99

B. Baseline Transfers

Mean 27.5 21.2 16.6 1.2 0.7
0 0 Std. dev. 0.5 0.5 6.8 1.5 3.0

Ser. corr. 0.4 0.9 -0.0 0.8 0.84
Mean 30.0 4.5 0.5 1.2 0.7

0.6 0 Std. Dev. 0.6 0.9 0.2 1.3 7.0
Ser. corr. 0.7 0.6 0.1 0.7 1
Mean 27.5 21.2 16.6 1.2 0.7

0 0.64 Std. dev. 1.3 4.6 6.6 1.9 4.3
Ser. corr. 0.5 0.9 0.83 0.8 0.99
Mean 30 4.5 0.5 1.2 0.7

0.6 0.64 Std. dev. 1.1 1.4 1.1 0.9 4.4
Ser. corr. 0.6 0.7 0.6 0.9 0.99

Note: See note to table 3.
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the use of surprise inflation as a fiscal shock absorber. Instead, he uses variations in fiscal

deficits and some small adjustments in the income tax rate to guarantee fiscal solvency. This

practice results in a drastic increase in the serial correlation in government assets, which

become a (near) random-walk process. These effects of price stickiness on optimal monetary

and fiscal policy are known to emerge in the context of models without capital and fewer

nominal and real frictions (e.g., Schmitt-Grohé and Uribe, 2004a).

In the benchmark case, where both prices and wages are sticky (α = 0.6 and α̃ = 0.64),

inflation is more volatile than under product price stickiness alone. As stressed by Erceg et

al. (2000) in the context of a much simpler model without a fiscal sector or capital, the reason

for the increased volatility of inflation in the case of both price and wage stickiness relative to

the case of price stickiness alone, is that the central bank faces a tradeoff between minimizing

relative product price dispersion and minimizing relative wage dispersion. Quantitatively,

however, this tradeoff appears to be resolved in favor of minimizing product price dispersion

rather than wage dispersion. In effect, under price stickiness alone, the volatility of inflation

is 0.09 percent, whereas under wage stickiness alone it is 5.8 percent. When both nominal

rigidities are present, the optimal inflation volatility falls in between these two values, but,

at 1.1 percent, is much closer to the lower one. Interestingly, this result obtains even if

one assumes that nominal wages are not indexed to past inflation (χ̃ = 0). In this case, the

optimal inflation volatility is 0.9 percent, which is even lower than under full wage indexation

(see table 5 and the discussion around it). We note that indexation to past consumer price

inflation, being an arbitrary scheme, may not necessarily be welfare improving in our model.

Panel B of table 4 considers the case of positive transfers. All of the results obtained

under the assumption of no transfers carry over to the economy with transfers, except for the

fact that the mean rate of inflation increases dramatically when product prices are flexible.

As discussed earlier in section 4.1, the reason why the Ramsey planner chooses to inflate

when all prices are flexible, is that inflation is an indirect tax on transfer payments.

We close this section with a short digression. One may wonder why in the case of fully

flexible product and factor prices and no transfers (α = α̃ = nt = 0), the Friedman rule

fails to be Ramsey optimal. The reason is that in this case a positive nominal interest rate

allows the Ramsey planner to effectively tax labor at a rate higher than capital. The planner

engineers this differential tax treatment by exploiting the fact that firms are subject to a

cash-in-advance constraint on the wage bill. The reason why it is optimal for the planner to

tax labor at a higher rate than capital is clear from our analysis of the Ramsey steady state

in section 4. When tax rates on capital and labor income can be chosen independently, the

Ramsey planner selects to subsidize capital and to tax labor. Under the income-tax regime

studied here, the planner is unable to set different tax rates across sources of income. But
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Table 5: Indexation and Optimal Policy

χ χ̃ τ y
t Rt πt wt at

Mean 30 4.1 0.11 1.2 0.72
0 0 Std. dev. 0.66 1.2 0.94 1 4.9

Ser. corr. 0.56 0.6 0.44 0.96 0.99
Mean 30 4.1 0.13 1.2 0.72

1 0 Std. dev. 0.66 1 1.1 1.1 5
Ser. corr. 0.51 0.58 0.77 0.96 0.99
Mean 30 4.5 0.51 1.2 0.72

0 1 Std. dev. 1.1 1.4 1.1 0.95 4.3
Ser. corr. 0.62 0.74 0.55 0.93 0.99
Mean 28 21 17 1.1 0.74

1 1 Std. dev. 1 2.7 2.9 1.2 4
Ser. corr. 0.47 0.88 0.94 0.96 1

Note: See note to table 3.

he does so indirectly by levying an inflation tax on labor. The inflation bias introduced by

the combination of an income tax and a cash-in-advance constraint on wages is large, above

4 percent per year. If one were to lift the cash-in-advance constraint on wage payment by

setting the parameter ν equal to zero, the Friedman rule would reemerge as the Ramsey

outcome.

5.2 Indexation and Optimal Policy

An important policy implication of our analysis of optimal fiscal and monetary policy in a

medium scale model under income taxation is the desirability of price stability. Because our

benchmark calibration assumes full indexation in factor prices but no indexation in product

prices, one may worry that our central policy result may be driven too much by the assumed

indexation scheme. But this turns out not to be the case.

Consider a symmetric indexation specification in which neither factor nor good prices are

indexed (χ = χ̃ = 0). This case is shown in line 1 of table 5 In the non-indexed economy

the Ramsey plan calls for even more emphasis on price stability than in the environment

with factor price indexation. The mean and standard deviation of inflation both fall from

0.51 and 1.1, respectively, in the economy with wage indexation to 0.11 and 0.94 in the

economy without any type of indexation. The reason why the average inflation rate is lower

in the absence of indexation is that removing wage indexation creates an additional source
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of long-run inefficiency stemming from inflation, namely, wage dispersion. The reason why

inflation volatility also falls when one removes wage indexation is less clear. We simply note,

as we did before, that the indexation scheme assumed here, namely indexing to past price

inflation, being arbitrary, may or may not be welfare improving in the short run.

Consider now the case that prices are fully indexed but wages are not (χ = 1 and

χ̃ = 0). If our main result, namely the optimality of inflation stabilization, was driven

by our indexation assumption, then the indexation scheme considered now would stack the

deck against short-run price stability. Line 2 of table table:wage-vs-price-indexation shows

that even when prices are indexed and wages are not, the Ramsey plan calls for the same

low level of inflation volatility as under the reverse indexation scheme considered in the

benchmark economy (line 3 of table table:wage-vs-price-indexation). The reason is that

if the planner were to move prices around over the business cycle so as to minimize the

distortions introduced by nominal wage stickiness, then such price movements still would

lead to important inefficiencies in the product market because prices although indexed are

still sticky. Indexation removes the distortions associated with nominal rigidities only in the

long run, not necessarily in the short run.

The fact that indexation removes the long-run inefficiencies associated with nominal

product and factor price dispersion due to price stickiness is illustrated in line 4 of ta-

ble table:wage-vs-price-indexation, displaying the case of indexation in both product and

factor markets. The Ramsey-optimal mean inflation rate is in this case 17 percent per year.

This large number is driven by two fiscal policy factors identified earlier in this paper: high

inflation allows the Ramsey planner to tax transfers indirectly and at the same time provides

an opportunity to tax labor income at a higher rate than capital income.

6 Optimized Policy Rules

Ramsey outcomes are mute on the issue of what policy regimes can implement them. The

information on policy one can extract from the solution to the Ramsey problem is limited to

the equilibrium behavior of policy variables such as tax rates, the nominal interest rate, etc.

But this information is in general of little use for central banks or fiscal authorities seeking to

implement the Ramsey equilibrium. Specifically, the equilibrium process of policy variables

in the Ramsey equilibrium is a function of all of the states of the Ramsey equilibrium. These

state include all of the exogenous driving forces and all of the endogenous predetermined

variables. Among this second set of variables are past values of the Lagrange multipliers

associated with the constraints of the Ramsey problem. Even if the policymaker could

observe the state of all of these variables, using the equilibrium process of the policy variables
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to define a policy regime would not guarantee the Ramsey outcome as the competitive

equilibrium. The problem is that such a policy regime could give rise to multiple equilibria.

In this section, we do not attempt to resolve the issue of what policy implements the

Ramsey equilibrium in the medium-scale model under study. Rather, we focus on finding

parameterizations of monetary and fiscal rules that satisfy the following 3 conditions: (a)

They are simple, in the sense that they involve only a few observable macroeconomic vari-

ables. (b) They guarantee (local) uniqueness of the rational expectations equilibrium. (c)

They minimize some distance (to be specified shortly) between the competitive equilibrium

they induce and the Ramsey equilibrium. We refer to rules that satisfy criteria (a) and (b)

as implementable. We refer to implementable rules that satisfy criterion (c) as optimized

rules.

We define the distance between the competitive equilibrium induced by an implementable

rule and the Ramsey equilibrium as follows. Let IRR
T,S,Y denote the impulse response function

associated with the Ramsey equilibrium of length T quarters, for shocks in the set S, and

variables in the set Y . Similarly, let IRCE
T,S,Y denote the impulse responses associated with

the competitive equilibrium induced by a particular policy rule. Let x ≡ vec(IRR
T,S,Y −

IRCE
T,S,Y ). Then, we define the distance between the Ramsey equilibrium and the competitive

equilibrium associated with a particular implementable rule as x′x.

In the present analysis, we take as reference the Ramsey equilibrium under the restriction

of an income tax. We set the length of the impulse response function at 20 quarters (T = 20).

The set of shocks is given by the three shocks that drive business cycles in the model presented

above, productivity, government consumption, and government transfers shocks. That is,

S = {zt, gt, nt}. Finally, we limit attention to two endogenous variables, consumption and

hours. That is, we let Y = {ct, ht}. Although we focus on this small set of endogenous

variables, we will explore the fit of other endogenous variables of interest not included in the

set Y .9

The family of rules that we will consider here consists of an interest-rule and a tax-rate

rule. In the interest-rate rule, the nominal interest rate depends linearly on its own lag, the

rates of price and wage inflation, and the log deviation of output from its steady state value.

The tax-rate rule features the tax rate depending linearly on its own lag and log deviations

of government liabilities and output from their respective steady-state values. Formally, the

interest-rate and tax-rate rules are given by

ln(Rt/R
∗) = απ ln(πt/π

∗) + αW ln(πW
t /π

∗) + αy ln(yt/y
∗) + αR ln(Rt−1/R

∗)

9Ideally, we would like to include in the set Y all the endogenous variables that appear in a second-order
expansion of utility after all first-order terms have been substituted out as in the methodology pioneered by
Woodford (2003).
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and

τ y
t − τ y∗ = βa ln(at/a

∗) + βy ln(yt/y
∗) + βτ ln(τ y

t−1 − τ y∗).

The target values R∗, π∗, y∗, τ y∗, and a∗ are assumed to be the Ramsey steady-state values

of their associated endogenous variables, given in the second column of table 3. The variable

πW
t ≡ Wt/Wt−1 denotes wage inflation. It follows that in our search for the optimized policy

rule, we pick 7 parameters so as to minimize the Euclidean norm of the vector x containing

120 elements. We set the initial impulse equal to 1 standard deviation of the innovation in

the corresponding shock. That is, for impulse responses associated with shocks zt, gt, and

nt, the initial impulse is given by
√

σ2
εz

(1−ρ2
z)

,

√
σ2

εg

(1−ρ2
g)

, and
√

σ2
εn

(1−ρ2
n)

, respectively.

The optimized rule is given by

ln(Rt/R
∗) = −1.4 ln(πt/π

∗) + 1.68 ln(πW
t /π

∗) − 0.077 ln(yt/y
∗) + 0.42 ln(Rt−1/R

∗)

and

τ y
t − τ y∗ = −0.26 ln(at/a

∗) + 0.18 ln(yt/y
∗) + 0.29 ln(τ y

t−1 − τ y∗)

The optimized interest-rate rule turns out to be active with a negative coefficient on

product price inflation and a positive coefficient on wage inflation. The coefficient of output

is close to zero and the optimal rule features a mild degree of interest rate smoothing.

The optimized tax-rate rule is active in the sense that an increase in government liabilities

is met by a decrease in the income tax rate and an increase in the income tax base calls for

tightening fiscal policy. Taken together these two response coefficients will force tax revenues

to increase at a time when the financing need of the government is lower. The tax-rate rule

also displays a mild degree of tax rate inertia, in the sense that the coefficient on lagged tax

rates is positive but significantly less than unity.

TO BE ADDED: Second-order-accurate welfare difference between the Ramsey equilib-

rium and the optimized rule.

6.1 Ramsey and Optimized Impulse Responses

To provide a sense of how close the dynamics induced by the Ramsey policy and the optimized

rule are, in this section we study theoretical impulse responses to the three shocks driving

business cycles in our model economy. Figure 1, displays impulse response functions to a

one-standard-deviation increase in productivity (z0 = 1.2 percent). Solid lines correspond to

the Ramsey equilibrium, and broken lines correspond to the optimized policy rules.

Remarkably, in response to an increase in productivity, hours worked fall more than one

for one. The reason for this sharp decline in labor effort is the presence of significant costs of
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Figure 1: Impulse Response To A Productivity Shock
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adjustment in investment and consumption. Notice that neither consumption nor investment

move much on impact. As a result, the increase in productivity must be accompanied by an

increase in leisure large enough to ensure that output remains little changed on impact. The

contraction in hours following a positive productivity shock is in line with recent econometric

studies using data from the U. S. economy (see, for example, Gaĺı, 2004 NBER Macro

Annual).

The equilibrium dynamics induced by the optimized policy rules mimic those associated

with the Ramsey economy not just for consumption and hours, which would be somewhat

less surprising because these two variables enter in the distance measure used to estimate

the optimized rule, but also along other dimensions, particularly investment, output, and to

a lesser extend inflation and the nominal interest rate. In response to a positive productivity

shock, the monetary authority reacts by sharply increasing the nominal interest rate. This

reaction is more vigorous under the simple optimized rule. As a result of the monetary

contraction, inflation falls significantly. In the ensuing periods, inflation accelerates quickly,

displaying overshooting in the Ramsey regime. It is remarkable that the income tax behaves

very different under each regime. In the Ramsey economy, the slow initial response of output

is accompanied by a sharp increase in taxes on impact followed by a vertical decline to a

level below the steady-state value. By contrast, under the optimized rule regime, the tax

rate is virtually flat. That is, the optimized rule induces more tax smoothing than is Ramsey

optimal.

Figures 2, and 3, display impulse responses to a government spending shock and a gov-

ernment transfer shock, respectively. In both cases, the size of the initial impulse equals one

standard deviation of the shock 3.2 percent for the government spending shock, and 3.5 for

the government transfer shock). The equilibrium dynamics under the optimized policy rule

appears to mimic those associated with the Ramsey policy not as closely as in the case of a

productivity shock. This is understandable, however, if one takes into account that these two

shocks explain only a small fraction of aggregate fluctuation. In effect productivity shocks

alone explain 97 percent of variations in consumption and 88 percent of variations in hours

under the Ramsey policy. The optimization estimation procedure therefore naturally assigns

a smaller weight on fitting the dynamics induced by gt and nt.

7 Capital and Labor Taxation

In this section, we characterize dynamic Ramsey policy under the assumption that the fiscal

authority has access to three tax instruments, taxes on capital income (τk
t ), taxes on labor

income (τh
t ), and taxes on pure profits (τφ

t ). Clearly, the optimal tax rate on profits is 100
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Figure 2: Impulse Response To A Government Spending Shock
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Figure 3: Impulse Response To A Government Transfer Shock
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percent. We thus set τφ
t = 1 for all t for the remainder of the section.

We analyzed the Ramsey steady state of this economy earlier in section 4. As shown on

line 5 of table 2, in the Ramsey steady state the labor income tax rate is 38.2 percent and the

capital subsidy is 44.3 percent. For the calibration shown in table 1, we find that the standard

deviation of the capital income tax rate under the Ramsey policy is 148 percent. The natural

reaction to this number is that in this economy the constraint that capital subsidies and

taxes should be less than 100 percent will be frequently violated and in this regard the

optimal policy makes little economic sense.10 Qualitatively, however, the intuition for why

the volatility of the capital income tax is high is clear. Because capital is a predetermined

state variable, unexpected variations in the capital income tax rate act as a nondistorting

levy, which the fiscal authority uses to finance innovations in the government budget. The

(population) serial correlation of capital tax rates is very close to zero at -0.07. When

capital income tax rates can play the role of a fiscal shock absorber, government liabilities

no longer display the near random walk behavior as in the case of an income tax. In fact,

the (population) serial correlation of at now is only 0.6.

To put the number we obtain for the optimal volatility of τk
t into perspective, we use as

a point of reference two simpler but related economies. First, Chari et. al. (1995), study

optimal taxation in a standard real-business-cycle model with exogenous long-run growth

and report a standard deviation of the capital income tax rate of 40 percentage points for

the stochastic steady state of the Ramsey equilibrium.11 Recently, Benigno and Woodford

(2005) using a different numerical technique replicate this finding. As a test of our numerical

procedure, we also study this economy and are able to reproduce the numbers reported in

Benigno and Woodford.12

The second economy we study as a point of reference is a stationary version of the RBC

model of Chari et al. (1995). We find that if one assumes no long-run growth in the Chari et

al. economy, the standard deviation of capital income taxes shoots up to about 60 percent

(assuming that the steady state level of government assets in the steady state is the same

as in the economy with growth). This result illustrates that relatively minor modifications

in the economic environment can lead to drastic changes in the optimal volatility of capital

income tax rates. Still, these values are not as high as the ones we find in our much more

complex model economy. In what follows we complete the reconciliation of our finding with

10Our computational strategy does not allow us to consider the case that tax rates are bounded above
and below explicitly. But even if one were to use an alternative computational method, one should find that
Ramsey capital income tax rates vary significantly over the business cycle.

11Chari et. al. consider an annual calibration (that is somewhat different from the one considered here)
with business cycles driven by government purchases and technology shocks.

12The matlab code for this case will also be available at the authors websites shortly.
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those available in the existing literature.

7.1 Time To Tax

Two modifications to our medium-scale macroeconomic model allow us to drive the optimal

volatility of capital tax rates down to a level that is comparable to the one that obtains in

the standard real business cycle model without growth. First, the model studied by Chari

et al. features no impediments to adjusting the level of investment over the business cycle,

whereas our model economy incorporates significant investment adjustment costs. Lowering

the investment adjustment cost parameter κ by a factor of 1,000 reduces the optimal capital

income tax volatility from 148 percent to 66 percent which is close to the volatility of the RBC

model without growth. If in addition we assume that tax rates are set one period in advance,

then the optimal capital tax volatility falls to 20 percent. The reason why adjustment costs

induce a higher optimal volatility of the capital income tax is that investment adjustment

costs make capital more akin to a fixed factor of production thereby making movements in

the capital tax rate less distorting.

Second, the time unit in the Chari et al. model is one year. By contrast, the time unit

in our model is one quarter. Our choice of a time unit is guided by the fact that we study

optimal monetary policy as well as optimal fiscal policy. It is unrealistic to assume that the

government adjusts monetary policy only once a year. For example, in the United States

the FOMC meets every 8 weeks. At the same time, it is equally unrealistic to assume that

tax rates change every quarter. One possible way to resolve this conflict is to continue to

assume that the time unit is one quarter and to impose that tax rates are determined several

quarters in advance, that is, that there are tax lags.

Figure 4 depicts the standard deviation of the capital income tax as a function of the

number of tax lags. It shows the results for the economy calibrated using the parameter

values shown in table 1. The graph illustrates that the optimal volatility of the capital

income tax rate falls steadily with the number of tax lags. Under the assumption that tax

rates are determined four quarters in advance, the optimal volatility of capital taxes is driven

down to about 49 percentage points. This level of volatility is lower than the values obtained

in a non-growing RBC model. (If one constructs a time series of annual tax rates from the

arithmetic mean of the quarterly tax rates, then the optimal tax rate volatility at the annual

frequency is just 17 percent.)
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Figure 4: Time to Tax and Capital Tax Rate Volatility
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7.2 Capital Tax Volatility and Cost of Varying Capacity Utiliza-

tion

Another difference between the simple RBC model of Chari et al. (1995) and the model

studied here, is that our model economy incorporates variable capacity utilization. One may

think that the presence of variable capacity utilization could induce lower capital income tax

volatility. For in this case the effective stock of capital is no longer predetermined. As a result,

one would expect that variations in the capital income tax rate should be more distorting

and hence used less. It turns out, however, that the volatility of the capital income tax rate

is not significantly affected when the cost of varying the intensity of capacity utilization falls

(in our model, when γ2 is reduced). For example, when we hold γ1 constant and reduce γ2

by a factor of 2, the optimal capital tax volatility increases from 149 percent to 153 percent.

[Discussion to be added]

8 Conclusion

[To be added]
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