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Abstract

We develop a theoretical framework for understanding how agents form expectations about

economic variables with a partially predictable component. Our model incorporates the e¤ect

of measurement errors and heterogeneity in individual forecasters�prior beliefs and their infor-

mation signals and also accounts for agents�learning in real time about past, current and future

values of economic variables. We use the model to develop insights into the term structure of

forecast errors, and test its implications on a data set comprising survey forecasts of annual

GDP growth and in�ation with horizons ranging from 1 to 24 months. The model is found to

closely match the term structure of forecast errors for consensus beliefs and is able to replicate

the cross-sectional dispersion in forecasts of GDP growth but not for in�ation - the latter ap-

pearing to be too high in the data at short horizons. Our analysis also suggests that agents

systematically underestimated the persistent component of GDP growth but overestimated it

for in�ation during most of the 1990s.
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1 Introduction

How agents form expectations and learn about the state of the economy plays an important role in

modern macroeconomic analysis. In recent remarks, Chairman of the Federal Reserve Ben Bernanke

quotes academic work as showing that �the process of [the public�s] learning can a¤ect the dynamics

and even the potential stability of the economy.� He goes on to state that �Undoubtedly, the state

of in�ation expectations greatly in�uences actual in�ation and thus the central bank�s ability to

achieve price stability.�(Bernanke (2007)).

The rate at which uncertainty about macroeconomic variables is resolved through time is an

important part of agents� learning process due to the irreversibility and lags in many economic

decisions (�time to build�; Kydland and Prescott (1982) and Dixit and Pindyck (1994)) and may

also have welfare implications: Ramey and Ramey (1995) link output growth to the degree of

uncertainty surrounding it, arguing that �rms scale back planned output during periods with

high levels of uncertainty. Macroeconomic uncertainty has also been shown to be an important

determinant of asset prices and volatility in �nancial markets.1

Agents�expectations and their degree of uncertainty about macroeconomic variables can vary

considerably through time, even when the date of the variable in question remains �xed. Conse-

quently, much can be learned by studying how agents update their beliefs about the same �event�.

Figure 1 provides an illustration of this by showing Consensus forecasts of US GDP growth for 2002

as this evolved each month from January 2001 (corresponding to a 24-month horizon) to December

2002 (a one-month horizon).2 The participants in these surveys are professional forecasters such as

investment banks, think tanks or quasi-public research institutions. A comparison of the initial and

�nal forecasts�at 3.5% and 2.5%, respectively�shows a fairly sizeable reduction in the projected

growth, but fails to incorporate the full picture of the dramatic revisions that occurred in the in-

terim. At the beginning of September 2001, the growth forecast for 2002 was 2.7%. Following the

events of 9/11, the October 2001 forecast fell to 1.2%, i.e. by a full 1.5%�the largest single-month
1Ederington and Lee (1996) and Andersen et al (2003) �nd that macroeconomic announcements have a signi�cant

e¤ect on T-bill futures and exchange rates, respectively, whose mean often jumps following such news, while Beber

and Brandt (2006) �nd that implied volatilities and trading volumes in options markets for stocks and bonds are

closely related to macroeconomic uncertainty. Veronesi (1999) links stock prices to uncertainty about the state of the

economy.
2The data is described in further detail in Section 3.1.
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forecast revision observed in more than a decade. It declined even further to 0.8% in November

2001 before stabilizing. Expectations of 2002 GDP growth then increased by 1.7% from January

through April of 2002, from which point the subsequent forecasts were within 0.5% of the actual

growth �gure, which came in just below 2.5%.

Theoretical models such as Lucas (1973) and Townsend (1983) suggest that heterogeneity in

agents�beliefs a¤ect the dynamics of the economy and uncertainty about the state of the economy

is re�ected not only in the size of the consensus forecast errors but also in the degree of cross-

sectional dispersion in agents�beliefs. Indeed, authors such as Mankiw, Reis and Wolfers (2003,

p.2) have recently suggested the possibility that �.. disagreement may be a key to macroeconomic

dynamics.�Cross-sectional dispersion in beliefs is thus an integral part of agents�learning process

and Figure 1 shows that this measure saw similarly dramatic changes in 2001 and 2002: Prior to

9/11 the dispersion across forecasters was close to 0.7%. Dispersion then more than doubled to

1.6% in October through December of 2001, before falling back to its normal level once again.

This is only one historical episode, but it illustrates several of the features of professional

forecasters�real-time updating processes that survey data can shed light on: rapid adjustment to

news (re�ected both in the consensus belief and in the cross-sectional dispersion) accompanied by

decreasing forecast errors and declining cross-sectional dispersion as the forecast horizon is reduced.

Survey data such as that presented in Figure 1 have only been used to a very limited extent to

shed light on agents�learning process.3 To address this lacuna, our paper proposes a new approach

for extracting information about how agents learn about the state of the economy and why they

disagree. Using a panel data set containing survey forecasts of GDP growth and in�ation across

many di¤erent horizons (T di¤erent time periods and H di¤erent horizons, say), we are able to

estimate the rate at which economic forecasters learn about these macroeconomic variables and

identify the key sources leading to cross-sectional dispersion in agents�predictions. We do so by

modeling agents� learning problem and then matching the term structure of forecast errors and

dispersions at di¤erent forecast horizons with the moments implied by our model.

3Exceptions include Davies and Lahiri (1995), Clements (1997), Swidler and Ketcher (1990) and Chernov and

Müller (2007). The �rst three studies are, however, concerned only with rationality testing and do not address

the question of extracting information about agents�updating process, nor do they address the dispersion among

forecasters. Chernov and Müller construct a parametric model of the term structure of U.S. in�ation forecasts from

four di¤erent surveys, in order to combine them with information from Treasury yields and macroeconomic variables.
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Our paper develops a framework for studying panels of forecasts containing numerous di¤erent

forecast horizons (�large H�), and presents empirical results that shed new light on the speed at

which the uncertainty surrounding realizations of macroeconomic variables is resolved. The �large

H�nature of our panel enables us to answer a number of interesting questions that are intractable

with forecasts of just one or two di¤erent horizons. For example, we are able to separately identify

the relative importance of the predictable and unpredictable components of a given variable, as

well as the degree of persistence in the persistent component. With some further structure and

extensions, we are also able to estimate the extent of measurement error in the forecasters�estimates

of the current and lagged value of the variable of interest and the sources of disagreement among

forecasters.

Our analysis o¤ers a variety of contributions. First, we develop a simulation-based framework

for estimating the parameters of our model and extracting agents� beliefs when the predicted

variable contains an unobserved persistent component as well as measurement errors so agents are

required to simultaneously backcast, nowcast and forecast past, current and future values of the

variables of interest. We view the squared forecast errors at di¤erent horizons as the objects to

be minimized and use GMM estimation to account for the complex covariance patterns arising in

forecasts recorded at di¤erent (overlapping) horizons. We test the validity of the model through its

ability to �t the term structure of expectations under the assumption that agents use information

e¢ ciently. Moreover, we extract estimates of agents� beliefs about the persistent component of

variables such as GDP growth or in�ation which can then be compared with their actual values

so as to characterize the main forecast errors agents made during a particular sample. Finally,

we develop a procedure for calculating the relative importance of di¤erences in prior beliefs versus

di¤erential information through the di¤erent e¤ect that these sources of disagreement have on

dispersion in beliefs at di¤erent horizons.

We �nd many interesting empirical results. First, we �nd that uncertainty about output growth

and in�ation as measured both by consensus forecast errors and the cross-sectional dispersion

declines as the forecast horizon gets shorter. Second, consistent with a simple model containing

a persistent component in the predicted variable, uncertainty falls at a slower rate in the �next-

year� forecasts than in the �current-year� forecasts, following a concave pattern. Third, we �nd

that di¤erences among agents�priors appear more important than di¤erences in their information

in explaining the cross-sectional dispersion in beliefs about GDP growth. Moreover, we �nd that
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GDP growth forecast dispersion has a strong and signi�cant counter-cyclical component, whereas

in�ation forecast dispersion appears only weakly counter-cyclical. Furthermore, we �nd �excess

dispersion� in in�ation forecasts at short horizons; the disagreement between agents�predictions

of in�ation is high relative both to the prediction of our model, and to the objective degree of

uncertainty about in�ation at horizons of less than 6 months.

Finally, our analysis of GDP growth reveals that the panel of forecasters were consistently

surprised by the strong GDP growth in the mid to late 1990s while the persistent component of their

forecasts has consistently been above the realized values of GDP growth since the 2001 recession.

Conversely, the forecasters were consistently surprised by the declining in�ation of the 1990s, with

our estimated persistent component generally lying above the realized values of in�ation. In the

latter part of the sample the estimated persistent component is more in line with realized in�ation,

consistent with the view that forecasters took some time to adjust their views on long-run in�ation

in the US.

The plan of the paper is as follows. Section 2 presents a simple framework for understanding

how uncertainty is resolved through time, how the consensus forecast is updated as the forecast

horizon is reduced and extends the model to cover cross-sectional dispersion among forecasters by

allowing for heterogeneity in agents� information and their prior beliefs. Section 3 presents our

empirical results on the consensus forecasts while Section 4 covers the cross-sectional dispersion.

Section 5 concludes. Technical derivations and details are provided in an appendix.

2 A Model for the Term Structure of Forecast Errors

This section develops a simple benchmark model for how agents update their beliefs about macro-

economic variables such as output growth and in�ation rates. Our analysis exploits the rich infor-

mation available by studying how forecasts of a variable measured at a low frequency (e.g., annual

GDP growth) are updated at a higher frequency (monthly, in our case). Moreover, since we shall

be concerned with �ow variables that agents gradually learn about as new information arrives prior

to and during the period of their measurement, the fact that part of the outcome may be known

prior to the end of the measurement period (the �event date�) introduces complications. It also

means that the timing of the forecasts has to be carefully considered.

Our analysis assumes that forecasters choose their forecasts to minimize the expected value of
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a loss function L that depends on the forecast error, et;t�h = zt � ẑt;t�h, where zt is the predicted

variable, ẑt;t�h is the forecast computed at time t � h, t is the event date and h is the forecast

horizon. Assuming squared loss, L(e) = e2, the optimal h�period forecast is simply the conditional

expectation of zt given information at time t� h;Ft�h:4

ẑ�t;t�h = E[ztjFt�h]: (1)

Survey data on expectations has been the subject of many studies�see Pesaran and Weale

(2006) for a recent review. The focus of this literature has, however, mainly been on testing the

rationality of survey expectations as opposed to understanding how the precision of the forecasts

evolves over time. This is related to the fact that survey data usually takes the form of �rolling

event�forecasts of objects measured at di¤erent points in time (using a �xed forecast horizon but

a varying date) such as a sequence of year-ahead forecasts of growth in GDP. While it may be of

economic interest to ask if the standard deviation of the forecast error is the same across di¤erent

subsamples, forecast e¢ ciency implies no particular ranking of the error variances across di¤erent

subsamples since the variance of the predicted variable need not be constant. For example, the

forecast error associated with US GDP growth may have declined over time, but this need not

imply that forecasters are getting better if, as is widely believed, the volatility of US output growth

has also come down (Kim and Nelson (1999) and McConnell and Perez-Quiros (2000)).

To study agents�learning process we keep the event date, t, �xed and vary the forecast horizon,

h. As illustrated in Figure 1, this allows us to track how agents update their beliefs through time.

As pointed out by Nordhaus (1987) and Clements (1997), such ��xed-event�forecasts are a largely

unexplored resource compared with rolling-event forecasts which vary the date of the forecast while

holding the horizon constant.

2.1 Benchmark Model

We �rst propose a simple model that ignores heterogeneity among agents along with measurement

errors in the predicted variable. This model is su¢ ciently simple and tractable that it allows us to

establish intuition for the factors determining the full term structure of forecast errors. Derivations

4The assumption that forecasters make e¢ cient use of the most recent information is most appropriate for pro-

fessional forecasters such as those we shall consider in our empirical analysis, but is less likely to hold for households

which may only update their views infrequently, see Carroll (2003).
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get complicated very quickly as additional features are added.

Since the predicted variable in our application is measured less frequently than the forecasts

are revised, it is convenient to describe the target variable as a rolling sum of a higher-frequency

variable. To this end, let yt denote the single-period variable (e.g., log-�rst di¤erences of GDP or a

price index tracking in�ation), while the rolling sum of the 12 most recent single-period observations

of y is denoted zt :

zt =

11X
j=0

yt�j : (2)

Our benchmark model is based on a decomposition of yt into a persistent (and thus predictable)

�rst-order autoregressive component, xt, and a temporary component, ut:

yt = xt + ut (3)

xt = �xt�1 + "t; � 1 < � < 1

ut � iid (0; �2u);

"t � iid (0; �2")

E[ut"s] = 0 8 t; s:

� measures the persistence of xt, while ut and "t are innovations that are both serially uncorrelated

and mutually uncorrelated. Without loss of generality, we assume that the unconditional mean of xt,

and thus yt and zt, is zero. Assuming that both xt and yt are observed at time t, the forecaster�s

information set at time t is Ft = � ([xt�j ; yt�j ] ; j = 0; 1; 2; :::). Less parametric approaches are

possible but are unlikely to be empirically successful given the relatively short time series typically

available for survey data.

Our approach of using survey expectations to shed light on the process whereby agents learn and

form expectations in real time can be compared with a more structural approach (e.g. Primiceri

(2006)) which extracts expectations from a dynamic model of the economy. A formal modeling

approach requires simultaneously making assumptions about the structure of the economy and

about the forecasting models and predictor variables used by agents. As such, this approach

is complicated by the existence of literally hundreds of economic state variables that could be

adopted in such models, (Stock and Watson (2006)), and the lack of information about which

models individual agents actually use. While our analysis makes some simplifying assumptions, it

does not otherwise require making strong assumptions about the structure of the economy.
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The assumption that the predicted variable contains a �rst-order autoregressive component,

while clearly an approximation, is likely to capture well the presence of a persistent component in

most macroeconomic data. For example, much of the dynamics in the common factors extracted

from large cross-sections of macroeconomic variables by Stock and Watson (2002) is captured by

low-order autoregressive terms. Furthermore, the simplicity of the benchmark model allows a

complete analytic characterization of how the mean squared forecast error (MSE) evolves as a

function of the forecast horizon (h):

Proposition 1 Suppose that yt can be decomposed into a persistent component (xt) and a tempo-

rary component (ut) satisfying (3) and forecasters minimize the squared loss given the information

set Ft = � ([xt�j ; yt�j ] ; j = 0; 1; 2; :::).

(1) The optimal forecast of zt =
P11

j=0 yt�j given information at time t� h, ẑ�t;t�h, is given by

ẑ�t;t�h =

8<:
�h�11(1��12)

1�� xt�h; for h � 12
�(1��h)
1�� xt�h +

P11
j=h yt�j ; for h < 12

:

(2) The mean squared forecast error as a function of the forecast horizon is given by

E
�
e2t;t�h

�
=

8>><>>:
12�2u +

1
(1��)2

�
12� 2�(1��

12)
1�� +

�2(1��24)
1��2

�
�2" +

�2(1��12)
2
(1��2h�24)

(1��)3(1+�) �2" for h � 12

h�2u +
1

(1��)2

�
h� 2�(1��

h)
1�� +

�2(1��2h)
1��2

�
�2" for h < 12

(3) As the forecast horizon is reduced from h to h� 1 periods, the decline in the mean squared

forecast error is given by

�MSEh � E
�
e2t;t�h

�
� E

�
e2t;t�h+1

�
=

8><>:
�2"
(1��12)

2

(1��)2 �2h�24, for h � 12

�2u + �
2
"
(1��h)

2

(1��)2 , for h < 12
:

The proof of Proposition 1 is in the Appendix. Proposition 1 is simple to interpret: At each

point in time an optimal forecast makes e¢ cient use of the most recent information. Forecasts

computed prior to the measurement period (i.e., those with h � 12) make use of the most recent

value of x since this is the only predictable component of y. During the measurement period (when

h < 12), those values of y that are already observed are used directly in the forecast, which is the

second term in the expression for ẑ�t;t�h for h < 12:

Turning to part 2 of Proposition 1, the �rst term in the expression for the MSE captures the

unpredictable component, ut: The second term captures uncertainty about shocks to the remaining
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values of the persistent component, xt, over the measurement period. The additional term in

the expression for h � 12 comes from having to predict xt�11, the initial value of the persistent

component at the beginning of the measurement period.

As h!1, the optimal forecast converges to the unconditional mean of zt (normalized to zero

in our model). This forecast generates the upper bound for the MSE of an optimal forecast, which

is the unconditional variance of zt :

lim
h!1

E
�
e2t;t�h

�
= 12�2u +

�2"

(1� �)2

 
12� 2

�
�
1� �12

�
1� � +

�2
�
1� �24

�
+ �2

�
1� �12

�2
1� �2

!
: (4)

The third part of Proposition 1 shows the e¤ect of reducing the forecast horizon by a single

period, from h to h � 1, so the forecasters� information set expands from Ft�h to Ft�h+1. Un-

certainty, as measured by the MSE-value, should of course (weakly) decline and part 3 provides

the magnitude of this decline. The speed of uncertainty resolution generally rises and then falls

as the forecast horizon is reduced. The reason is twofold. First, prior to the measurement period

(h � 12) the only new information relevant to forecasting z is that which helps predict the value

of x at the start of the measurement period. The further back in time the forecast is produced,

the less valuable the information is. In the limit as h ! 1, �MSE ! 0. Second, during the

measurement period the forecaster observes part of the actual variable and so uncertainty about

the current value of y gets completely removed by adding one more observation. If the process is

at all predictable, i.e. � > 0; then the speed of uncertainty resolution peaks at h = 12 and declines

as h! 0: 5

To illustrate Proposition 1, Figure 2 plots the root mean squared error (RMSE) for h =

1; 2; :::; 24 using parameters similar to those we obtain in the empirical analysis for U.S. GDP

growth. Holding the unconditional variance of annual GDP growth, �2z; and the ratio of the tran-

sitory component variance to the persistent component variance, �2u=�
2
x, �xed we show the impact

of varying the persistence parameter, �. The �gure shows the large impact that this parameter has

on the shape of the MSE function. The variance of the forecast error grows linearly as a function

of the length of the forecast horizon if y has no persistent component (� = 0). Conversely, the per-

sistent component gives rise to a more gradual decline in the forecast error variance as the horizon

is reduced. In e¤ect uncertainty is resolved more gradually the higher the value of �. Notice also

5 Isiklar and Lahiri (2007) use observed values of �MSEh across 18 countries to estimate the longest horizons at

which survey forecasts provide useful information.
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how the change in RMSE gets smaller at the longest horizons, irrespective of the value of �.

The benchmark model (3) is helpful in establishing intuition for the drivers of how macroeco-

nomic uncertainty gets resolved through time. However, it also has some signi�cant shortcomings.

Most obviously, it assumes that forecasters observe the predicted variable without error, and so

uncertainty vanishes completely as h ! 0: Our empirical work, described in detail in Section 3,

indicates that this assumption is in con�ict with the data. To account for this, we next extend the

model to allow for measurement errors.

2.2 Introducing Measurement Errors

Macroeconomic variables are, to varying degrees, subject to measurement errors as re�ected in

data revisions and changes in benchmark weights. Such errors are less important for survey-based

in�ation measures such as the consumer price index (CPI). Revisions are, however, very common

for measures of GNP which are generally calculated once a quarter (e.g., Croushore and Stark

(2001), Mahadeva and Muscatelli (2005) and Croushore (2006)). Measurement errors make the

forecasters�signal extraction problem more di¢ cult: the greater the measurement error, the noisier

are past observations of y and hence the less precise the forecasters�readings of the state of the

economy. They also mean that forecasters cannot simply �plug in� observed values of past y�s

during the measurement period (h < 12).

To account for these e¤ects in our empirical work in Sections 3 and 4 we use a state-space

model and Kalman �ltering. While this approach yields a realistic model for the signal extraction

problem facing forecasters in practice, such an approach does not lend itself to easily interpretable

formulas for the term structure of forecast errors. In order to gain some intuition, we �rst consider a

simpli�ed model which captures the spirit of the measurement error problem. We assume here that

the persistent component, xt; is perfectly observable while the predicted variable, yt; is observable

only with noise:

~yt = yt + �t; �t � iid(0; �2�): (5)

We further assume here that the measurement error is mean zero and uncorrelated with all other

innovations, i.e. for all t; s; E [�t] = E ["s�t] = E [us�t] = 0: This model nests the �no noise�model

for �2� = 0: Measurement errors clearly a¤ect variables such as the GNP. In addition, the persistent

component is likely to be surrounded by considerable noise, particularly if it is extracted not just
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from the underlying variable itself but, as seems more likely, also is based on additional information

sources. We discuss this further below.

Proposition 2 establishes the optimal forecast along with the variance of the forecast error for

this model assuming that the forecasters information set is given by ~Ft = � ([xt�j ; ~yt�j ] ; j = 0; 1; 2; :::) :

Proposition 2 Suppose that the predicted variable, yt, follows the process (3) but is subject to

measurement error (5) so the forecasters�information set is ~Ft = � ([xt�j ; ~yt�j ] ; j = 0; 1; 2; :::).

(1) The optimal estimate of yt conditional on ~Ft+j (j � 0) takes the form

E
h
ytj ~Ft+j

i
=

�2�
�2u + �

2
�

� xt +
�2u

�2u + �
2
�

� ~yt :

(2) The optimal forecast of zt =
P11

j=0 yt�j is given by

ẑ�t;t�h =

8<:
�h�11(1��12)

1�� xt�h; for h � 12
�(1��h)
1�� xt�h +

P11
j=h

�
�2�

�2u+�
2
�
xt�j +

�2u
�2u+�

2
�
~yt�j

�
; for h < 12

:

(3) The mean squared forecast error is given by

E
�
e2t;t�h

�
=

8>><>>:
12�2u +

1
(1��)2

�
12� 2�(1��

12)
1�� +

�2(1��24)
1��2

�
�2" +

�2(1��12)
2
(1��2j�24)

(1��)3(1+�) �2"; for h � 12

h�2u +
1

(1��)2

�
h� 2�(1��

h)
1�� +

�2(1��2h)
1��2

�
�2" + (12� h)

�2u�
2
�

�2u+�
2
�
; for h < 12

Allowing for measurement error in the reported value of yt, the forecaster has two imperfect

estimates of the true value of yt, namely the persistent component, xt, and the value ~yt, which is

measured with noise: The �rst part of Proposition 2 shows that an optimal estimate of the true

value of yt combines information from these two sources according to their relative accuracy. If the

measurement error is very small (�2� ! 0), then the weight given to the measured variable ~yt goes

to one and the weight on xt goes to zero. Conversely, if the measured value of yt is very noisy, so

�2� is large, then the weight attached to ~yt goes to zero and the forecaster just uses the predictable

component, xt; to proxy for yt: Finally, if �2u ! 0 then the predictable component dominates yt;

making xt a good proxy for yt and so again the weight attached to ~yt goes to zero.

The second part of the proposition reiterates that the measurement error does not a¤ect

V (et;t�h) for h � 12: Only the initial value of x at the start of the measurement period, xt�11,

matters to these forecasts and x is assumed to be known. However, such errors give rise to an ad-

ditional term in the variance of the forecast error during the measurement period (h < 12) because
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the realized values of yt no longer are fully observed. Once again, if �2� ! 0 or �2u ! 0, then this

term vanishes.

Agents�updating processes allow us to characterize the precision of their information signals�or

conversely quantify the size of the measurement error in the underlying variable. Figure 3 illustrates

the impact of measurement error on the structure of MSE. The degree of measurement error is

described as �2� = k2�2u so k measures the size of the measurement error in terms of the innovation

variance for y. The greater is k, the larger the measurement error. In the absence of measurement

errors the MSE will converge to zero as h ! 0, whereas in the presence of measurement error the

MSE will converge to some positive quantity. However as the horizon, h, shrinks towards zero, the

relative importance of measurement errors grows. Moreover, the slope of the term structure gets

�atter as the size of the measurement error increases. In contrast to Figure 2, however, measurement

error plays no part for long-horizon forecasts, since its impact on overall uncertainty is small relative

to other sources of uncertainty. This also shows that the persistence (�) and measurement error

(�2�) parameters are separately identi�ed by jointly considering short and long ends of the term

structure of MSE-values.

2.3 Dispersion Among Forecasters

So far our analysis concentrated on explaining properties of the evolution in the consensus forecasts

and forecast errors and we ignored heterogeneity among forecasters. In actuality, as indicated by

Figure 1, there is often considerable disagreement among forecasters. To be able to understand

the cross-sectional dispersion in beliefs, we next extend our baseline model for consensus beliefs

to incorporate heterogeneity.6 We shall model disagreement as arising from two possible sources:

di¤erences in the information obtained by each individual forecaster, or di¤erences in their prior

beliefs. We de�ne the cross-sectional dispersion among forecasters as

d2t;t�h �
1

Nt;t�h

Nt;t�hX
i=1

(ẑi;t;t�h � �zt;t�h)2 (6)

where �zt;t�h � 1
Nt;t�h

PNt;t�h
i=1 ẑi;t;t�h is the consensus forecast of zt; computed at time t� h, ẑi;t;t�h

is forecaster i0s prediction of zt at time t�h and Nt;t�h is the number of forecasts available at time

6Lahiri and Sheng (2006) also study forecast dispersions, though their econometric approach is quite di¤erent

from ours.
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t for forecast horizon h: In our data set Nt;t�h does not vary much over time and is close to 30 so

we set Nt;t�h = 30 for all t; h:

To capture heterogeneity in the forecasters�information, we assume that each forecaster observes

a di¤erent signal of the current value of yt; denoted ~yi;t :

~yi;t = yt + �t + �i;t (7)

�t s iid
�
0; �2�

�
8 t

�i;t s iid
�
0; �2�

�
8 t; i

E [�i;t�s] = 0 8 t; s; i:

Individual forecasters�measurements of yt are contaminated with a common source of noise, denoted

�t as in the model for consensus views, and independent idiosyncratic noise, denoted �i;t: The

participants in the survey we use are not formally able to observe each others� forecasts for the

current period but they do observe previous survey forecasts.7 For this reason, we include a

second measurement variable, ~yt�1; which is the measured value of yt�1 contaminated with only

the common noise:

~yt�1 = yt�1 + �t�1 (8)

From this, the individual forecaster is able to compute the optimal forecast from the variables

observable to him:

ẑ�i;t;t�h � E
h
ztj ~Fi;t�h

i
; ~Fi;t�h = f~yi;t�h�j ; ~yt�h�1�jgt�hj=0: (9)

Di¤erences in signals about the predicted variable alone are unlikely to explain the observed

degree of dispersion in the forecasts. The simplest way to verify this is to consider dispersion for

very long horizons: as h!1 the optimal forecasts converge towards the unconditional mean of the

predicted variable. Since we assume that all forecasters have the same (true) model this implies

that dispersion should asymptote to zero as h ! 1: As we shall see in the empirical analysis,

this implication is in stark contrast with our data, which suggests instead that the cross-sectional

dispersion converges to a constant but non-zero level as the forecast horizon grows. Thus there

must be a source of dispersion beyond that deriving from di¤erences in signals.
7As the participants in this survey are professional forecasters they may be able to observe each others�current

forecasts through published versions of their forecasts, for example: investment bank newsletters or recommendations.

If this is possible, then we would expect to �nd �� close to zero.
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We therefore consider a second source of dispersion by assuming that each forecaster comes

with prior beliefs about the unconditional average of zt, denoted �i. We assume that forecaster

i shrinks the optimal forecast based on his information set Fi;t�h towards his prior belief about

the unconditional mean of zt. The degree of shrinkage is governed by a parameter �2 � 0; with

low values of �2 implying a small weight on the data-based forecast ẑ�i;t;t�h (i.e., a large degree of

shrinkage towards the prior belief) and large values of �2 implying a high weight on ẑ�i;t;t�h. As

�2 ! 0 the forecaster places all weight (!h) on his prior beliefs and none on the data; as �2 !1

the forecaster places no weight on his prior beliefs.

ẑi;t�h;t = !h�i + (1� !h)E [ztjFi;t�h] ; (10)

!h =
E
h
e2i;t;t�h

i
�2 + E

h
e2i;t;t�h

i
ei;t;t�h � zt � E [ztjFi;t�h] :

Notice that we allow the weights placed on the prior and the optimal expectation E
h
ztj ~Fi;t�h

i
to

vary across the forecast horizons in a manner consistent with standard forecast combinations: as

ẑ�i;t;t�h � E
h
ztj ~Fi;t�h

i
becomes more accurate (i.e., as E

h
e2i;t;t�h

i
decreases) the weight attached

to that forecast increases. Thus for short horizons the weight put on the prior is reduced, while for

long horizons the weight attached to the prior grows.8 Furthermore, note that

!h !
V [zt]

�2 + V [zt]
as h!1:

For analytical tractability, and for better �nite sample identi�cation of �2, we impose that �2 is

constant across all forecasters.9

The additional term �i could arise even in a classical setting if we consider that the forecasters

may use di¤erent models for long-run growth or in�ation (for example, models with or without

cointegrating relationships imposed) or if forecasters choose to use di¤erent sample periods for the

computation of their forecasts. In both cases, the �i term would generally be time-varying, but we

leave that possibility aside for now.
8Lahiri and Sheng (2006) also propose a parametric model for the cross-sectional dispersion of macroeconomic

forecasts as a function of the forecast horizon. They model the dispersion term structure directly, rather than through

a combined model of the data generating process and the individual forecasters�prediction process as above.
9As a normalization we assume that N�1PN

i=1 �i = 0 since we cannot separately identify N�1PN
i=1 �i and

�2� � N�1PN
i=1 �

2
i from our data on forecast dispersions. This normalization is reasonable if we think that the

number of �optimistic� forecasters is approximately equal to the number of �pessimistic� forecasters.
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Alternatively, the dispersion of forecasts at long horizons could be the outcome of a game

played between individual forecasters, with only limited connection to the statistical properties of

the underlying data. Laster et al. (1999), for example, show that under certain conditions the

equilibrium distribution of individual forecasts is proportional to the conditional distribution of

the target variable, which has some similarities with our speci�cation above. Lamont (2002) and

Ottaviani and Sørensen (2006) consider other strategic environments that can generate increased

cross-sectional dispersion in individual forecasts.

In Figure 4, we plot the theoretical term structures of dispersion coming from our empirical

model, for various values of ��; setting the other parameters to resemble those obtained for US

GDP growth. This �gure shows that for low values of ��; the dispersion term structure is almost

�at, while for larger values dispersion is quite high for long horizons and declines sharply as the

forecast horizon shrinks towards zero.

3 Empirical Results: The Term Structure of Consensus Forecasts

This section presents empirical results for the consensus forecasts. After describing the data source,

we present estimation results both for the simple model that ignores measurement errors and for

an extended model that accounts for such errors. Finally, we use our estimates to shed light on

agents�beliefs about the persistent and transitory components of GDP growth and in�ation over

our sample period.

3.1 Data

Our data is taken from the Consensus Economics Inc. forecasts which comprise polls of more than

600 private sector forecasters. Each month participants are asked about their views of a range of

variables for the major economies and the consensus (average) forecast as well as the dispersion in

views across survey participants are recorded. Our analysis focuses on US real GDP growth and

in�ation for the current and subsequent year. This gives us 24 monthly next-year and current-year

forecasts over the period 1991-2004 or a total of 24 � 14 = 336 monthly observations. Naturally

these observations are not independent draws but are subject to a set of tight restrictions across

horizons, as revealed by the term structure analysis in the previous section. To measure the realized
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value of the target variable (GDP growth or in�ation), we use second release data.10

As a prelude to our analysis of the term structure of forecast errors, we initially undertook a

range of statistical tests that check for biases and serial correlation in the forecast errors. We tested

for biases in the forecasts, for individual forecast horizons and jointly across all horizons, by testing

whether the forecast errors were mean zero and by estimating �Mincer-Zarnowitz�(1969) regres-

sions. Few of these tests suggested lack of optimality for our forecasts, and hence we shall proceed

to estimate the parameters of our model under the assumption that forecasters use information

e¢ ciently. Full details of these test results are available from the authors upon request.

3.2 Parameter Estimates and Tests

The simple benchmark model contains just three free parameters, namely the variance of the

innovations in the temporary (�2u) and persistent (�
2
") components, and the persistence parameter,

�, for the predictable component. The expressions for the MSE as a function of h; stated in

Proposition 1 for the benchmark model and in the appendix for the learning-based model that

uses a Kalman �lter; enable us to use GMM to estimate the unknown parameters given a panel

of forecast errors measured at various horizons. These parameters are not separately identi�able if

forecasts for a single horizon are all that is available so access to multi-horizon forecasts is crucial

to our analysis. In contrast, since the variance of the h-period forecast error grows linearly in �2u

while �2" and � generally a¤ect the MSE in a non-linear fashion, these parameters can be identi�ed

from a sequence of MSE-values corresponding to di¤erent forecast horizons, h, provided at least

three di¤erent horizons are available.

We estimate the parameters using the moment conditions obtained by matching the sample

MSE at various forecast horizons to the population mean squared errors implied by our model:

�̂T � argmin
�2�

gT (�)
0WT gT (�) (11)

gT (�) � 1

T

TX
t=1

26666664
e2t;t�1 �MSE1 (�)

e2t;t�2 �MSE2 (�)
...

e2t;t�24 �MSE24 (�)

37777775 (12)

where � �
�
�2u; �

2
"; �
�0 and MSEh (�) is obtained using Proposition 1 and the Appendix.

10Results are very similar when the �rst release is used instead.
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Clearly, we have over-identifying restrictions available, and so the choice of weighting matrix,

WT , in the GMM estimation is important. We use the identity matrix as the weighting matrix

so that all horizons get equal weight in the estimation procedure; this is not fully e¢ cient, but is

justi�ed by our focus on modeling the entire term structure of forecast errors. Nevertheless, we still

require the covariance matrix of the sample moments to compute standard errors and a test of the

over-identifying conditions. Given that our sample is only 14 years long it is not feasible to estimate

this matrix directly from the data since this would require controlling for the correlation between

the sample moments induced by overlaps across the 24 horizons. Fortunately, given the simple

structure of our model, for a given parameter value we can compute a full-rank model-implied

covariance matrix of the sample moments despite the fact that our time series is shorter than

the number of horizons. Under the assumption that the model is correctly speci�ed, this matrix

captures the correlation between sample moments induced by overlaps and serial persistence.11

Figure 5 plots the sample root mean squared forecast error (RMSE) for output growth and

in�ation at the 24 di¤erent horizons. In the case of output growth the RMSE shrinks from about

1.8% at the 24-month horizon to 1% at the 12-month horizon and 0.5% at the 1-month horizon.

For in�ation it ranges from 0.8% at the two-year horizon to 0.4% at the 12-month horizon and less

than 0.1 at the 1-month horizon. Forecast precision improves systematically as the forecast horizon

is reduced, as expected. Moreover, consistent with Proposition 1, the rate at which the RMSE

declines is smaller in the next-year forecasts (h � 12) than in current-year forecasts (h < 12).12

The �tted values from the models with and without measurement error; also shown in Figure 5;

clearly illustrate the limitation of the speci�cation with no measurement error. This model assumes

that forecasters get a very precise reading of the outcome towards the end of the current year and

hence forces the �tted estimate of the RMSE to decline sharply as the forecast horizon shrinks.

This property is clearly at odds with the GDP growth data and means that the benchmark model

11While it is possible to derive analytical expressions characterising the covariance matrix, these expressions are

extremely long and tedious. We instead simulated 10,000 non-overlapping �years�of data from the model to compute

the covariance matrix of the sample moments. Details on this are provided in the appendix.
12Note that Figure 5 reveals no �lumps� in the term structure of forecast errors. One might have expected that

around the time of quarterly releases of macroeconomic data the RMSE plot would drop sharply downwards. This

is not the case for either GDP growth or in�ation, which is consistent with the work of Giannone, et al. (2007) who

consider how macroeconomic forecasts smoothly incorporate news about the economy between formal announcement

dates.
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without measurement error does not succeed in capturing the behavior of the RMSE at both the

short and long horizons. For in�ation forecasts the assumption of zero measurement error appears

consistent with the data.

3.3 The Structure of the Consensus Economics Target Variables

Our analysis in the previous sections take the target variable, zt; as the December-on-December

change in the log-level of US real GDP or the Consumer Price Index, which can of course be

written as the sum of the month-on-month changes in the log-levels of these series, denoted yt; as

in equation (2) : In the Consensus Economics survey, however, the target variables are de�ned as

GDP growth zGDPt �
�Pt
�Pt�1

� 1

In�ation zINFt � P t

P t�1
� 1;

where �Pt � 1
4

P3
j=0 P

GDP
t�3j , P t � 1

12

P11
j=0 P

INF
t�j and PGDPt and P INF denote the level of real GDP

and the Consumer Price Index respectively. For reasonable values of yt, the variables zGDPt and

zINFt can be shown to be accurately approximated as a linear combination of (yt; yt�1; :::; yt�23) :13

zt (w) �
23X
j=0

wjyt�j (13)

wGDPj =

8<:
1+b j3c
4 ; 0 � j � 11

3�b j�123 c
4 ; 12 � j � 23

, j = 0; 1; ::23

wINFj =

8<:
j+1
12 ; 0 � j � 11
23�j
12 ; 12 � j � 23

, j = 0; 1; ::; 23

w�j =

8<: 1; 0 � j � 11

0; 12 � j � 23
, j = 0; 1; ::23

where bac rounds a down to the nearest integer and w is the vector of weights on the individual

observations. The in�ation weights are �tent-shaped� and thus similar to the Bartlett (1946)

kernel, while the GDP weights have ��at segments�relative to the in�ation weights, re�ecting the

averaging over quarterly observations rather than monthly observations.

13Details are available from the authors on request.
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Writing the Consensus Economics target variables in this way allows us to generalize the results

given in the previous section, at the cost of simplicity and interpretability. For example, the key

variables in Proposition 1 in this general case can be shown to be

ẑ�t;t�h (w) =
23X
j=h

wjyt�j +
h�1X
j=0

wj�
h�jxt�h;

V [zt (w)] = �2uw
0w + �2"

8<: �2

1� �2

0@ 23X
j=0

wj�
23�j

1A2 + 23X
k=0

0@ kX
j=0

wj�
k�j

1A29=; ;

E
�
e2t;t�h (w)

�
= �2u

h�1X
j=0

w2j + �
2
"

h�1X
k=0

0@ kX
j=0

wj�
k�j

1A2 :
The representation in equation (13) further enables us to relate our model, which has the simple

weight vector denoted w� above, to the data. Since both wGDP and wINF allocate weight to the

previous year�s growth rates (wj > 0 for some j � 12) a target variable de�ned with either of

these weights will tend to be smoother and more autocorrelated than a target variable de�ned using

w�; ceteris paribus. Thus if the Consensus Economics survey respondents are actually targeting

zt
�
wGDP

�
, for example, while our model assumes zt (w�) as the target, then our estimates of

� may be upward biased, since our model assumes that any predictability in zt is the result of

predictability in yt; whereas in such a case some of the predictability would be purely due to the

smoothed nature of the target variable.

As we detail in the following section, the �exibility of our model, even with just a few parameters,

means that we are able to �t the observed data even when �xing w = w�: Making this assumption

simpli�es the presentation of our model and results, at the cost of some precision of the parameter

estimates. The precision of these estimates is limited in the �rst instance due to the short time

series of data we have (T is just 14), and so we choose to retain the simple, interpretable model

and set w = w� for the remainder of the paper.14

14Moreover, it is not clear that the survey participants report a weighted forecast rather than the simple year-on-

year forecast that we assume in our analysis. In private correspondence, Consensus Economics noted that �When we

survey panelists for an annual forecast, i.e. real GDP growth in 2007, we are asking for the percentage change from

2006.�, which leaves the precise de�nition of the target variable open to interpretation.
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3.4 Allowing for Measurement Errors

Although the model used in Proposition 2 is useful for understanding how measurement error im-

pacts the term structure of MSE-values, it is unrealistic in its treatment of the two components of

the predicted variable: it allows for a measurement error in the unpredictable component, while as-

suming that the predictable component, xt; is perfectly observable. In reality, xt must be extracted

from data and thus it is likely measured with substantial error. A more realistic approach allows

both xt and yt to be measured with error and is best-handled by writing the model in state-space

form and estimating it using the Kalman �lter. Using this framework leaves the state equation

unchanged: 24 1 �1

0 1

3524 yt

xt

35 =

24 0 0

0 �

3524 yt�1

xt�1

35+
24 ut

"t

35 (14)

24 ut

"t

35 s iid

0@0;
24 �2u 0

0 �2"

351A ;

while the measurement equation becomes:24 ~yt

~xt

35 =

24 yt

xt

35+
24 �t

 t

35 ; (15)

24 �t

 t

35 s iid

0@0;
24 �2� 0

0 �2 

351A :

This is a very simple state-space system.15 Unfortunately, however, it does not yield a formula

for the term structure of MSEs that is readily interpretable. The key di¢ culty that arises is best

illustrated by considering current-year forecasts. When producing a current-year forecast at time

t�h, economic agents must use past and current information to backcast realizations dated at time

t � 11; :::; t � h � 1; they must also produce a �nowcast� for the current month and, �nally, must

predict future realizations, yt�h+1; ::; yt. When the persistent component, xt, is not observable,

the resulting forecast errors will generally be serially correlated even after conditioning on all

information that is available to the agents. For example, a large positive realization of �t�h will

15Faust et al. (2005) �nd that revisions to U.S. GDP �gures are essentially unpredictable, motivating the simple

iid noise structure used above. As noted in the previous section, measurement error does not appear important for

our in�ation data and so the structure of the measurement equation is less important for this variable.
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not only lead to overly optimistic projections for current and future values of y, but will increase

the entire sequence of backcast values. Handling this problem is di¢ cult and requires expressing

the backcast, nowcast and forecast errors in terms of the primitive shocks, ut; "t, �t and  t, which

are serially uncorrelated. We show how to accomplish this in the appendix.

This extended model introduces two further parameters which re�ect the magnitude of mea-

surement errors (�2� and �
2
 ). To reduce the set of unknown parameters to a tractable number, we

do two things. First, as a normalization we set �2 !1; e¤ectively removing ~xt from the measure-

ment equation. This choice re�ects that, in practice, it is the predicted variable that is observed

with noise, i.e. ~yt; whereas the persistent component is a latent variable that must be extracted

from the observations of the predicted variable. Furthermore, even though both �2� and �
2
u are well-

identi�ed in theory, in practice they are di¢ cult to estimate separately. We therefore set �� to be

proportional to �u : �� = k ��u and estimate the model for k = f0:01; 0:25; 0:5; 1; 2; 3; 4; 5; 10g. The

goodness-of-�t of the model (as measured by Hansen�s (1982) J-test of over-identifying restrictions)

is generally robust for 1 � k � 4: We set k = 2 in the estimation.

Table 1 presents parameter estimates for the model with measurement errors �tted to the

Consensus forecasts. The predictable component in in�ation appears to be slightly more persistent

than that in output growth.16 Moreover, the model passes the speci�cation tests for both variables

and thus there is little statistical evidence against our simple speci�cation, once measurement errors

are considered.

The parameter estimates in Table 1 can be di¢ cult to interpret since the �explained�part of

the predicted variable also depends on �. Plots of the predictive R2 as a function of the forecast

horizon, h, are easier to interpret. We show these in Figure 6 for US GDP growth and in�ation.17

16The implied �rst-order autocorrelation coe¢ cients for quarterly (annual) GDP growth and in�ation are 0.80 and

0.88 (0.60 and 0.69) respectively.
17For the computation of the R2h = 1 �MSEh=V [Z] ; we use the model-implied MSE in the numerator, and the

sample variance of the variables in the denominator. This is done because the sample variance is not one of the

moments matched in our estimation (it corresponds to matching the h ! 1 forecast horizon) and so the model-

implied unconditional variance is a poor estimate of the true variance. Also note that we use data from 1991-2004

to estimate the variance of in�ation, and data from 1971-2004 to estimate the variance of GDP growth. We use a

longer sample for GDP growth because we obtain negative R2 values using sample starting in 1991. (This is true

using sample MSEs as well as model-implied MSEs.) Presumably this is because the sample variance of GDP growth

since 1991 is very low relative to historical data, see McConnell and Perez-Quiros (2000). Using any starting point

after about 1980 led to negative R2 values, while using almost any starting point before 1980 lead to very similar R2
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In the case of GDP growth, the R2 rises from 0.3 at the 24-month horizon to values of 0.6 and 0.9

at the 12-month and 1-month horizons, respectively. These values suggest great uncertainty about

output growth two-years ahead of time, but also show that uncertainty is greatly reduced over the

following months.

Figure 5 shows that this speci�cation does a much better job at matching the decay pattern

in observed RMSE for US output growth as the forecast horizon, h, shrinks to zero. In the case

of US in�ation, there is little to distinguish between the models with and without measurement

error. This is consistent with Croushore and Stark (2001) who report that revisions in reported

GDP �gures tend to be larger than those in reported in�ation �gures.

Turning to the in�ation plots in the lower panels of Figure 6, these suggest that more is known

about in�ation than about GDP growth two years ahead of time. In part this re�ects the higher

degree of persistence of in�ation. The R2 associated with the 24, 12 and 1-month forecast horizons

are 0.8, 0.9 and close to 1, respectively. At least during the sample period covered here, a great deal

appears to have been known about in�ation even two years ahead of time. While additional news

about in�ation emerge during the course of the year, there is clearly less incremental information

to be gained about in�ation than about output growth during the year in question.

3.5 The estimated components of GDP growth and in�ation

Our model for the term structure of consensus forecast errors is based on the decomposition of the

target variable, GDP growth or in�ation, into a persistent component, xt; and an unpredictable

component, ut. Our GMM estimation procedure does not require the estimation of the sample

paths for xt and ut. However with the estimated parameter vector and the panel of forecasts we

are able to infer the forecaster�s estimated values of these variables. Since they rely on estimates

of �; �u; �" and ��, these beliefs about the persistent component of the macroeconomic variables

cannot be extracted without resorting to a model for the term structure of consensus forecasts.

We use the long-horizon forecasts (h � 12) to infer the forecaster�s estimate of the persistent

component, and the short-horizon (h < 12) forecasts to infer the forecaster�s estimate of the un-

predictable component. Intuitively, one can think of our estimates of these two components as an

alternative representation of the two forecasts the forecaster makes at each point in time (the �next

year�, h � 12; and the �current year�, h < 12; forecasts). We can obtain both of these components

values.
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without needing to make any further identifying assumptions, and without needing to employ any

data other than the panel of forecasts. Details are presented in the appendix.

In Figure 7 we present for each month in our sample the estimated persistent components of

GDP growth and in�ation, as implied by the observed consensus forecasts and the parameters of our

model. For reference we plot both the ��ltered�estimates, which are estimates of E
h
xtj ~Ft

i
; and

the �smoothed�estimates, which are estimates of E
h
xtj ~FT

i
: The estimates for GDP growth reveal

that the forecasters in our panel estimated the level of GDP growth in the early 1990s quite well,

but were consistently surprised by the strong GDP growth in the mid to late 1990s: the estimated

persistent component of GDP growth hovered around 1.5% annualized, whereas the actual GDP

growth in that period was closer to 4%. Since the 2001 recession the persistent component has

consistently been above the realized values of GDP growth.

Similarly, our forecasters in our panel were consistently surprised by the declining in�ation of

the 1990s, with our estimated persistent component generally lying above the realized values of

in�ation. In the latter part of the sample the estimated persistent component is more in line with

realized in�ation, consistent with the view that forecasters took some time to adjust their views on

long-run in�ation in the US.

4 Empirical Results: Cross-Sectional Dispersion

This section studies disagreements among survey participants� forecasts of GDP growth and in-

�ation. Rather than analyzing the forecasts reported by the individual survey participants, we

study the cross-sectional dispersion. This measure matches our theoretical model in Section 2 and

has the important advantage that it is not a¤ected by incomplete data records due to the entry,

exit and re-entry of individual forecasters.18 Our analysis exploits the multi-horizon feature of the

data: if cross-sectional dispersion was only available for a single horizon it would not be possible

to infer the relative magnitude of priors versus information signals underlying the cross-sectional

dispersion.

18Entry and exit is a large problem for most survey data and makes it di¢ cult to get long track records for

individual forecasters.
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4.1 Estimation

Equations (7) to (10) in Section 2 allow us to characterize the mean of the cross-sectional dispersion,

�2h � E
h
d2t;t�h

i
. Given our model for the mean of the term structure of dispersion in beliefs, all that

remains is to specify a residual term for the model. Since the dispersion is measured by the cross-

sectional variance, it is sensible to allow the innovation term to be heteroskedastic, with variance

related to the level of the dispersion. This form of heteroskedasticity, where the cross-sectional

dispersion increases with the level of the predicted variable, has been documented empirically for

in�ation data by e.g. Grier and Perry (1998). We use the following model:

d2t;t�h = �2h � �t;t�h

E [�t;t�h] = 1 (16)

V [�t;t�h] = �2�;

where d2t;t�h is the observed value of the cross-sectional dispersion. In particular, we assume that

the parameter capturing time variation in the cross-sectional dispersion, �t;t�h, is log-normally

distributed with unit mean:

�t;t�h s iid logN

�
�1
2
�2�; �

2
�

�
:

Thus, our model for dispersion introduces four additional parameters relative to the model based

only on the consensus forecast. Three parameters, �2�, �
2
� and �

2; relate to the term structure of

forecast dispersions�i.e. how the dispersion changes as a function of the forecast horizon, h�while

the fourth parameter, �2�; relates to the variance of forecast dispersions through time.

To estimate �2� we need to incorporate information from the degree of variability in dispersions.

In addition to the term structures of consensus MSE-values and cross-sectional dispersion (each

yielding up to 24 moment conditions) we also include moments implied by the term structure of

dispersion variances to estimate the parameters of our full model. In total our model generates 72

moment conditions and contains 8 unknown parameters. As in the analysis of the consensus data,

to reduce the number of parameters we �x �� = k � �u with k = 2 and we estimate the remaining
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parameters by GMM (see the appendix for details):

�̂T � argmin
�2�

gT (�)
0 gT (�) (17)

gT (�) � 1

T

TX
t=1

266666666666666666666664

e2t;t�1 �MSE1 (�)
...

e2t;t�24 �MSE24 (�)

d2t;t�1 � �21 (�)
...

d2t;t�24 � �224 (�)�
d2t;t�1 � �21 (�)

�2 � �41 (�) �exp ��2��� 1�
...�

d2t;t�24 � �224 (�)
�2 � �424 (�) �exp ��2��� 1�

377777777777777777777775

(18)

Panel A of Table 2 reports parameter estimates for this model. Compared with Table 1, the esti-

mates of the parameters de�ning the dynamics of the target variables are essentially unchanged. The

estimates of � and �� suggest considerable heterogeneity across forecasters in our panel, whereas

the estimates of �� indicate that di¤erences in individual signals may not be important, consistent

with the possibility that the individual forecasters in our panel are able to observe each others�

contemporaneous forecasts, rather than with a one-period lag.

Figure 8 shows the cross-sectional dispersion (in standard deviation format) in output growth

and in�ation forecasts as a function of the forecast horizon. The cross-sectional dispersion of output

growth declines only slowly for horizons in excess of 12 months, but declines rapidly for h < 12

months from a level near 0.4 at the 12-month horizon to around 0.1 at the 1-month horizon. For

in�ation, again there is a systematic reduction in the dispersion as the forecast horizon shrinks.

The cross-sectional dispersion declines from around 0.45 at the 24-month horizon to 0.3 at the

12-month horizon and 0.1 at the 1-month horizon.

Our tests of the over-identifying restrictions for each model indicate that the model provides a

good �t to the GDP growth consensus forecast and forecast dispersion, with the p-value for that

test being 0.86. Moreover, the top panel of Figure 8 con�rms that the model provides a close �t

to the empirical term structure of forecast dispersions. This panel also shows that the model with

�� set to zero provides almost as good a �t as the model with this parameter freely estimated.

This indicates that di¤erences in individual information about GDP growth, modelled by �it; are
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not important for explaining forecast dispersion; the most important features are the di¤erences

in prior beliefs about long-run GDP growth and the accuracy of Kalman �lter-based forecasts (as

they a¤ect the weight given to the prior relative to the Kalman �lter forecast).

The model for in�ation forecasts and dispersions is rejected by the test of over-identifying

restrictions. The model �ts dispersion well for horizons greater than 12 months, but for horizons

less than 9 months the observed dispersion is systematically above what is predicted by our model.

Given the functional form speci�ed for the weight attached to the prior belief about long-run

in�ation versus the Kalman �lter-based forecast, the model predicts that each forecaster will place

95.0% and 99.1% weight on the Kalman �lter-based forecast for h = 3 and 1. The Kalman �lter

forecasts are very similar across forecasters at short horizons and thus our model predicts that

dispersion will be low.

In contrast, the observed dispersion is relatively high, particularly when compared with the

observed forecast errors: observed dispersion (in standard deviations) for horizons 3 and 1 are 0.11

and 0.07, compared with the RMSE of the consensus forecast at these horizons of 0.08 and 0.05.

Contrast this with the corresponding �gures for the GDP forecasts, with dispersions of 0.14 and

0.08 and RMSE of 0.61 and 0.56. Thus, the dispersion of in�ation forecasts is around 25% greater

than the RMSE of the consensus forecast for short horizons, whereas the dispersion of GDP growth

forecasts is around 75% smaller than the RMSE of the consensus forecast. Examining this ratio as

h goes from 24 down to 1 month we �nd that dispersion/RMSE ranges from 0.32 to 0.15 for GDP

growth, while it ranges from 0.60 to 1.45 for in�ation. So dispersion/RMSE decreases slightly from

long to short horizons for GDP growth, whereas it rises substantially for in�ation. This is di¢ cult

to explain within the con�nes of our model, or indeed any model assuming a quadratic penalty for

forecast errors and e¢ cient use of information, and thus poses a puzzle.

4.2 Time-varying dispersion

There is a growing amount of theoretical and empirical work on the relationship between the uncer-

tainty facing economic agents and the economic environment. Veldkamp (2006) and van Nieuwer-

burgh and Veldkamp (2006) propose endogenous information models where agents�participation in

economic activity leads to more precise information about unobserved economic state variables such

as (aggregate) technology shocks. In these models the number of signals observed by the agents is

proportional to the economy�s activity level so more information is gathered in a good state of the
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economy than in a bad state. Recessions are therefore times of greater uncertainty which in turn

means that dispersion among agents�forecasts can be expected to be wider during such periods.

This is a natural consequence of our model to the extent that information signals contain a common

component and so lead to more similar beliefs during periods where more information is available.

To address such issues, we extend our model to allow for time-varying dispersion of forecasts.

Given our focus on GDP growth and in�ation, a business cycle indicator is a natural variable to

consider as a determinant of forecast dispersion. However, as our sample only runs from 1991 to

2004, such a variable would likely not exhibit su¢ cient variability. Instead we employ the default

spread (the di¤erence in average yields of corporate bonds rated by Moody�s as BAA vs. AAA),

which is known to be strongly counter-cyclical and increases during economic downturns. Over

our sample period, for example, the default spread ranges from 55 basis points in September and

November 1997 to 141 basis points in January 1991 and January 2002.

The most natural way to allow the default spread to in�uence dispersion in our model is through

the variance of the individual signals received by the forecasters, �2� ; or through the variance of the

prior beliefs about the long-run values of the series, �2�: Given that the former variable explained

very little of the (unconditional) dispersion term structure, we focus on the latter channel. We

specify our model as

log �2�;t = ��0 + �
�
1 logSt; (19)

where St is the default spread in month t. In this model, if �
�
1 > 0 then increases in the default

spread coincide with increased di¤erences in beliefs about the long-run value of the series, which

in turn lead to an increase in the observed dispersion of forecasts.

Leaving the rest of the model unchanged, we estimated this extension and present the results in

Panel B of Table 2. The �t of the models were not much changed by this extension. Interestingly,

the results reveal a positive relationship between default spreads and ��, as evidenced by the signs

of �̂
�

1 in Table 3. This parameter is not signi�cantly di¤erent from zero for the in�ation forecast

model, but is signi�cant at the 10% level for the GDP growth forecast model.

In Figure 9 we plot the estimated dispersions as a function of the level of default spreads. When

the default spread is equal to its sample 95th percentile (131 basis points), GDP growth forecast

dispersion is approximately double what it is when the default spread is equal to its sample average

(83 basis points). Similarly, when the default spread is equal to its 5th percentile (58 basis points)
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GDP growth forecast dispersion is approximately one-half of the average �gure. In contrast, the

dispersion of in�ation forecasts is only weakly a¤ected by the default spread, with changes of

approximately no more than 10% when the default spread moves from its average value to its 5th

or 95th percentile value.

We conclude that GDP growth forecast dispersion has a strong and signi�cant counter-cyclical

component, whereas in�ation forecast dispersion appears only weakly counter-cyclical.

5 Conclusion

This paper studied how macroeconomic uncertainty; measured through consensus forecast errors

and the cross-sectional dispersion in forecasters�beliefs; is resolved over time. To this end we con-

sidered forecasts of macroeconomic variables which hold the �event�date constant, while reducing

the length of the forecast horizon. We proposed a new model for the evolution in the consensus

forecast which accounts for measurement errors and incorporates the forecasters��ltering prob-

lem, and developed a model for the cross-sectional dispersion among forecasters that accounts for

di¤erences in forecasters�information signals and di¤erences in their prior beliefs. Though highly

parsimonious, our simple models succeed in capturing the level, slope and curvature of the term

structure of forecast errors, and shed light on the primary sources of the cross-sectional dispersion

among forecasters.

Our �nding of a persistent component in agents�forecast errors �indicated by the fact that our

sample of survey forecasters underpredicted US output growth and overpredicted in�ation for much

of the 1990s �lends empirical credibility to models with gradual learning. This could be important

since many macroeconomic series appear more persistent than standard dynamic stochastic general

equilibrium models can match and, as shown by Milani (2007), allowing for agents�learning bring

these models closer to matching the data.

Our empirical �ndings suggest that forecast dispersion is primarily driven by di¤erences in

beliefs about long-run values of GDP growth and in�ation, as opposed to di¤erences in information

about the current state of the economy. Di¤erences in beliefs about GDP growth appear to be

strongly counter-cyclical (increasing during bad states of the world) whereas di¤erences in in�ation

forecasts are less state dependent. While our model can match the dispersion observed among

survey participants forecasts of GDP growth, we found that it could not match the dispersion in
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in�ation forecasts observed at short horizons. Why professional forecasters�views of in�ation at

short horizons displays such �excess dispersion�is di¢ cult to understand and poses a puzzle to any

model based on agents�e¢ cient use of information.

6 Appendix: Proofs

Proof of Proposition 1. Since zt =
P11

j=0 yt�j and yt = xt + ut, where xt is the persistent

component, forecasting zt given information h months prior to the end of the measurement period,

Ft�h = fxt�h; yt�h; xt�h�1; yt�h�1; :::g, requires accounting for the persistence in x. Note that

xt�h+1 = �xt�h + "t�h+1

xt�h+2 = �2xt�h + �"t�h+1 + "t�h+2

xt�h+3 = �3xt�h + �
2"t�h+1 + �"t�h+2 + "t�h+3

...

xt = �hxt�h + �
h�1"t�h+1 + �

h�2"t�h+2 + :::+ �"t�1 + "t

Adding up these terms we �nd that, for h � 12,

zt =
11X
j=0

xt�j +
11X
j=0

ut�j (20)

=
�(1� �12)
1� � xt�12 +

1

1� �

11X
j=0

(1� �12�j)"t�12+1+j +
11X
j=0

ut�j :

Thus the optimal forecast for h � 12 is

ẑ�t;t�h � E [ztjFt�h] =
11X
j=0

E [yt�j jFt�h] =
11X
j=0

E [xt�j jFt�h] =
11X
j=0

�h�jxt�h;

so ẑ�t;t�h =
�h�11

�
1� �12

�
1� � xt�h , for h � 12:
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For the current year forecasts (h < 12) the optimal forecast of zt makes use of those realizations of

y that have already been observed. Thus the optimal forecast is:

ẑ�t;t�h =
11X
j=0

E [yt�j jFt�h] =
11X
j=h

yt�j +
h�1X
j=0

E [xt�j jFt�h] =
11X
j=h

yt�j +
h�1X
j=0

�h�jxt�h;

so ẑ�t;t�h =
11X
j=h

yt�j +
�
�
1� �h

�
1� � xt�h , for h < 12:

Using these expressions for the optimal forecasts we can derive the forecast error, et;t�h � zt�ẑ�t;t�h;

as a function of the forecast horizon. For h � 12,

et;t�h =
11X
j=0

ut�j +
11X
j=0

xt�j �
�h�11

�
1� �12

�
1� � xt�h

=
11X
j=0

ut�j +
11X
j=0

1� �j+1

1� � "t�j +
h�1X
j=12

�j�11
�
1� �12

�
1� � "t�j :

In computing the variance of et;t�h we exploit the fact that u and " are independent of each other

at all lags. For h �12,

E
�
e2t;t�h

�
=

11X
j=0

E
�
u2t�j

�
+

11X
j=0

�
1� �j+1

�2
(1� �)2

E
�
"2t�j

�
+

h�1X
j=12

�2j�22
�
1� �12

�2
(1� �)2

E
�
"2t�j

�
= 12�2u +

�2"

(1� �)2
11X
j=0

�
1� �j+1

�2
+

�
1� �12

�2
(1� �)2

�2"

h�1X
j=12

�2j�22

= 12�2u +
�2"

(1� �)2

 
12� 2

�
�
1� �12

�
1� � +

�2
�
1� �24

��
1� �2

� !

+
�2
�
1� �12

�2 �
1� �2h�24

�
(1� �)3 (1 + �)

�2"

as presented in the proposition. For h < 12 we have:

et;t�h =

11X
j=0

yt�j �
11X
j=h

yt�j �
�
�
1� �h

�
1� � xt�h

=

h�1X
j=0

ut�j +
h�1X
j=0

1� �j+1

1� � "t�j

so E
�
e2t;t�h

�
=

h�1X
j=0

E
�
u2t�j

�
+
h�1X
j=0

�
1� �j+1

�2
(1� �)2

E
�
"2t�j

�
= h�2u +

�2"

(1� �)2

 
h� 2

�
�
1� �h

�
1� � +

�2
�
1� �2h

�
1� �2

!
:
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Proof of Proposition 2. (1) We �rst need to derive the optimal backcast of yt�j�h given

~Ft�h; for j � 0: Since ut�j�h is iid

E
h
yt�j�hj ~Ft�h

i
= xt�j�h + E

h
ut�j�hj ~Ft�h

i
= xt�j�h + E [ut�j�hj~yt�j�h; xt�j�h] :

Recall ~yt�j�h = xt�j�h + ut�j�h + �t�j�h:

De�ne ~ut�j�h � ~yt�j�h � xt�j�h = ut�j�h + �t�j�h:

Then E [ut�j�hj~yt�j�h; xt�j�h] = E [ut�j�hj~ut�j�h] :

Finally, since 24 ut�j�h

�t�j�h

35 s N

0@0;
24 �2u 0

0 �2�

351A
E [ut�j�hj~ut�j�h] =

�2u
�2u + �

2
�

~ut�j�h;

so E
h
yt�j�hj ~Ft�h

i
= xt�j�h +

�2u
�2u + �

2
�

~ut�j�h

=
�2�

�2u + �
2
�

xt�j�h +
�2u

�2u + �
2
�

~yt�j�h;

as claimed. If [ut; �t]
0 are not jointly normal, this forecast is interpretable as the optimal linear

projection of yt�j�h on elements of ~Ft�h:

(2) We next use these results to �nd the optimal forecast of zt: Note that the presence of

measurement error in yt does not a¤ect optimal forecasts for h � 12 because such predictions rely

only on the measured values of xt: Thus we only need to modify the forecasts for h < 12 :

E
h
ztj ~Ft�h

i
=

11X
j=0

E
h
yt�j j ~Ft�h

i

=

h�1X
j=0

E
h
yt�j j ~Ft�h

i
+

11X
j=h

E
h
yt�j j ~Ft�h

i
; where

h�1X
j=0

E
h
yt�j j ~Ft�h

i
=

h�1X
j=0

E
h
xt�j j ~Ft�h

i
=

h�1X
j=0

�h�jxt�h =
�
�
1� �h

�
1� � xt�h;

11X
j=h

E
h
yt�j j ~Ft�h

i
=

11X
j=h

 
�2�

�2u + �
2
�

xt�j +
�2u

�2u + �
2
�

~yt�j

!
:
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(3) The presence of measurement error adds an extra term to the forecast errors for h < 12;

corresponding to the di¤erence between the true value of y and the forecaster�s best estimate of y,P11
j=h yt�j �

P11
j=hE

h
yt�j j ~Ft�h

i
: The forecast error is therefore

et;t�h =

h�1X
j=0

ut�j +
h�1X
j=0

1� �j+1

1� � "t�j +
11X
j=h

�
yt�j � E

h
yt�j j ~Ft�h

i�
:

Note that yt�j � E
h
yt�j j ~Ft�h

i
= yt�j �

 
�2�

�2u + �
2
�

!
xt�j �

�
�2u

�2u + �
2
�

�
~yt�j;t�h

= xt�j + ut�j �
 

�2�
�2u + �

2
�

!
xt�j �

�
�2u

�2u + �
2
�

��
xt�j + ut�j + �t�j

�
=

�2�
�2u + �

2
�

ut�j �
�2u

�2u + �
2
�

�t�j :

Hence V
h
yt�j � E

h
yt�j j ~Ft�h

ii
=

�2u�
4
��

�2u + �
2
�

�2 + �4u�
2
��

�2u + �
2
�

�2 = �2u�
2
�

�2u + �
2
�

:

As stated in the proposition, the variance of the extra terms in the MSE is then

V

24 11X
j=h

�
yt�j � E

h
yt�j j ~Ft�h

i�35 = (12� h)�2u�2�
�2u + �

2
�

:

7 Technical appendix: Kalman �lter implementation

7.1 Details on the Kalman �lter model for consensus RMSE

We �rst describe the model for the consensus forecasts, using notation similar to that in Hamilton

(1994). We assume that our forecaster knows the form and the parameters of the data generating

process for zt but does not observe this variable: Instead he only observes ~yt which is a noisy

estimate of yt:We further assume that he uses the Kalman �lter (KF) to optimally predict (forecast,

�nowcast�and �backcast�) the values of yt needed for the forecast of zt:

The (scalar) variable of interest is

zt �
11X
j=0

yt�j (21)
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Letting �t = [yt; xt]
0 ; F = [0; ��], where 0 and � are 2 � 1 vectors of zeros and ones, respectively,

and vt = [ut + "t; "t]
0, the state equation is

�t = F�t�1 + vt; (22)

and the measurement equation is

~yt = H 0�t + wt: (23)

In our application the measurement variable is a scalar, ~yt = yt + �t, but we will present our

theoretical framework for the general case that ~yt is a vector. The properties of the innovations to

the state and measurement equations are:

vt s iid N (0; Q) (24)

Q =

24 �2u + �
2
" �2"

�2" �2"

35
wt s iid N (0; R) ;

where in our application R = �2�: Further, we assume

E
�
vtw

0
s

�
= 0 8 s; t: (25)

We also assume that the forecaster has been using the KF long enough that all updating matrices

are at their steady-state values. This is done simply to remove any �start of sample�e¤ects that

may or may not be present in our actual data. But we still need to initialize the KF, which requires

the following:

~Ft = � (~yt; ~yt�1; :::; ~y1)

�̂tjt�1 � E
h
�tj ~Ft�1

i
� Et�1 [�t]

ŷtjt�1 � E
h
~ytj ~Ft�1

i
� Et�1 [~yt] = Et�1 [�t] .
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Following Hamilton (1994),

E
h�
�t � �̂tjt�1

� �
~yt � ŷtjt�1

�0i
= E

��
�t+1 � �̂t+1jt

��
�t+1 � �̂t+1jt

�0�
in our case

� Pt+1jt = (F �Kt)Ptjt�1
�
F 0 �K 0

t

�
+KtRK

0
t +Q

! P �1

Kt � FPtjt�1
�
Ptjt�1 +R

��1 ! K�

Ptjt � E

��
�t � �̂tjt

��
�t � �̂tjt

�0�
= Ptjt�1 � Ptjt�1

�
Ptjt�1 +R

��1
Ptjt�1

! P �1 � P �1 (P �1 +R)
�1 P �1 � P �0 6= P �1

The convergence of Ptjt�1; Ptjt and Kt to their steady-state values relies on j�j < 1; see Hamilton

(1994), Proposition 13.1, and we impose this in the estimation.

To initialize these matrices we use:

P1j0 � E
�
(�t � E [�t]) (�t � E [�t])0

�
=

24 �2"
1��2 + �

2
u

�2"
1��2

�2"
1��2

�2"
1��2

35
and �̂1j0 = E [�t] = [0; 0]

0 :

Updating of the estimates is done via

�̂tjt = �̂tjt�1 + Ptjt�1
�
Ptjt�1 +R

��1 �
~yt � �̂tjt�1

�
,

while the multi-step prediction error uses:

�̂t+sjt = F s�̂tjt

Pt+sjt � E

��
�t+s � �̂t+sjt

��
�t+s � �̂t+sjt

�0�
= F sPtjt

�
F 0
�s
+ F s�1Q

�
F 0
�s�1

++F s�2Q
�
F 0
�s�2

:::

+FQF 0 +Q

= F sPtjt
�
F 0
�s
+

s�1X
j=0

F jQ
�
F 0
�j

! P �s , for s � 1:
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The �current year� forecasts require �smoothed�estimates of current and past values, sometimes

known as �nowcasts�and �backcasts�. The smoothed estimates are obtained from:

�̂tjT = �̂tjt + Jt
�
�̂t+1jT � �̂t+1jt

�
;

where Jt � PtjtF
0P�1t+1jt ! P �0F

0 (P �1 )
�1 � J�:

PtjT = Ptjt + Jt
�
Pt+1jT � Pt+1jt

�
J 0t

! P �0 + J
� �P �t+1�T � P �1 � (J�)0

� P �t�T , for t � T;

where

PT�1jT = PT�1jT�1 + JT�1
�
PT jT � PT jT�1

�
J 0T�1

! P �0 + J
� (P �0 � P �1 ) (J�)

0 � P ��1:

PT�2jT = PT�2jT�2 + JT�2
�
PT�1jT � PT�1jT�2

�
J 0T�2

! P �0 + J
� �P ��1 � P �1 � (J�)0 � P ��2;

so PT�3jT ! P ��3

� P �0 + J
� �P ��2 � P �1 � (J�)0 etc.

Using these results, forecasts of zt can now be computed from

ẑt;t�h � E
h
ztj ~Ft�h

i
=

11X
j=0

E
h
yt�j j ~Ft�h

i
: (26)

For horizons h � 12 these predictions only involve forecasts (no �nowcasts� or �backcasts�) and

these are relatively straight-forward to handle. To illustrate, consider the h = 12 case in particular.

We will look at forecasting the entire state vector, �t; and then just focus on the (1; 1) element of

the MSE matrix, which corresponds to the MSE of the prediction of zt:
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E
h
�t�j j ~Ft�h

i
� �̂t�jjt�h

�t�11 � �̂t�11jt�12 = F
�
�t�12 � �̂t�12jt�12

�
+ vt�11

�t�10 � �̂t�10jt�12 = F 2
�
�t�12 � �̂t�12jt�12

�
+ Fvt�11 + vt�10

:::

�t�1 � �̂t�1jt�12 = F 11
�
�t�12 � �̂t�12jt�12

�
+ F 10vt�11 + F

9vt�10 + :::+ Fvt�2 + vt�1

�t � �̂tjt�12 = F 12
�
�t�12 � �̂t�12jt�12

�
+ F 11vt�11 + F

10vt�10 + :::

+F 2vt�2 + Fvt�1 + vt;

so
11X
j=0

�
�t�j � �̂t�jjt�12

�
=

0@ 11X
j=0

F j+1

1A��t�12 � �̂t�12jt�12�

+

0@ 11X
j=0

F j

1A vt�11 +

0@ 10X
j=0

F j

1A vt�10 +

0@ 9X
j=0

F j

1A vt�9:::

+

0@ 2X
j=0

F j

1A vt�2 +

0@ 1X
j=0

F j

1A vt�1 + vt:

De�ne F (k) �
kX
j=0

F j ; then

11X
j=0

�
�t�j � �̂t�jjt�12

�
= FF (11)

�
�t�12 � �̂t�12jt�12

�
+

11X
k=0

F (k)vt�k;

Cov

24 11X
j=0

�
�t�j � �̂t�jjt�12

�35 = FF (11)P �0

�
FF (11)

�0
+

11X
k=0

F (k)Q
�
F (k)

�0
:

Similarly, it can be shown that for h > 12; we have

Cov

24 11X
j=0

�
�t�j � �̂t�jjt�h

�35 = F h�11F (11)P �0

�
F h�11F (11)

�0
+

11X
k=0

F (k)Q
�
F (k)

�0
+

h�12X
k=1

F kF (11)Q
�
F kF (11)

�0
: (27)

The �rst term arises from being unable to observe �t�h : if �t�h were observable without error then

P �0 = 0 and this term would vanish. The second term is the combined impact of predicting �t�j

over the measurement period (j = t� 11; t� 10; :::; t). This will be larger or smaller depending on
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how predictable the series is, which is determined completely by
�
�2u; �

2
"; �
�
: The third term is the

combined impact of having to predict the intermediate values of �t�j , between the current time,

j = t � h; and the period just before start of the measurement period, j = t � 12: If h = 12 then

this term drops out, as there are no intermediate values to predict.

For horizons less than one year the prediction error will involve a combination of �backcast

errors�, �nowcast error� and forecast errors. Each of these can be worked out in closed-form,

though it is not trivial to combine each of these terms to form a �nal simple expression for any

h < 12: We thus present the prediction error for general h < 12 as a combination of backcast,

nowcast and forecast errors, and then combine these terms in the estimation step:

zt � ẑt;t�h =
11X

j=h+1

�
�t�j � �t�jjt�h

�
+
�
�t�h � �t�hjt�h

�
+

h�1X
j=0

�
�t�j � �t�jjt�h

�
:

All prediction errors for h < 12 can be expressed as a function of the nowcast error at time t� 11

and the shocks to the system between time t � 10 and time t inclusive. These shocks are the vt
and wt terms which are iid and so we end up with an expression containing quantities that are

uncorrelated, facilitating computation of the MSE.

Forecast errors take the general form

�t�j � �t�jjt�h = F h�j
�
�t�h � �t�hjt�h

�
+
h�1X
k=0

F kvt�k, j � h; (28)

while the general form for the backcast errors is:

�t�j � �t�jjt�h = F h�j
�
�t�j � �t�jjt�j

�
�
h�1X
k=0

(J�)k
�
�̂t�j+kjt�j+k � �̂t�j+kjt�j+k�1

�
, j � h

= F h�j
�
�t�j � �t�jjt�j

�
+
h�1X
k=0

(J�)k
�
�t�j+k � �̂t�j+kjt�j+k

�
(29)

�
h�1X
k=0

(J�)k
�
�t�j+k � �̂t�j+kjt�j+k�1

�
:

We also need a rule for expressing the current nowcast error as a function of previous nowcast

errors plus the intervening shocks:

�t � �̂tjt =
�
I � P �1H

�
H 0P �1H +R

��1
H 0
�
F
�
�t�1 � �̂t�1jt�1

�
+
�
I � P �1H

�
H 0P �1H +R

��1
H 0
�
vt

�P �1H
�
H 0P �1H +R

��1
wt

� A
�
�t�1 � �̂t�1jt�1

�
+Bvt + Cwt:
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Iterating backwards, we have

�t � �̂tjt = Ak
�
�t�k � �̂t�kjt�k

�
+

k�1X
j=0

Aj (Bvt�j + Cwt�j) , for k � 0: (30)

The equivalent expression for a one-step forecast error is similarly obtained:

�t � �̂tjt�1 = FAk�1
�
�t�k � �̂t�kjt�k

�
+ vt + F

k�1X
j=1

Aj�1 (Bvt�j + Cwt�j) , for k � 1: (31)

Finally, we express each prediction error as a function of the nowcast error at time t� 11 and the

intervening shocks. The forecast errors take the form:

�t�j � �t�jjt�h = F h�j
�
�t�h � �t�hjt�h

�
+
h�1X
k=0

F kvt�k; for j � h

=

0@h�1X
k=j

F k�jvt�k

1A
+F h�j

(
A11�j

�
�t�11 � �t�11jt�11

�
+
10�hX
s=0

As (Bvt�h�s + Cwt�h�s)

)
:

Then the backcast errors are

�t�j � �t�jjt�h = F h�j
�
�t�j � �t�jjt�j

�
�
h�1X
k=0

(J�)k
�
�̂t�j+kjt�j+k � �̂t�j+kjt�j+k�1

�
, for j � h

= A11�j
�
�t�11 � �t�11jt�11

�
+
10�hX
s=0

As (Bvt�j�s + Cwt�j�s)

�
j�hX
i=1

(J�)i
n
vt�j+i + FA

10�j+i
�
�t�11 � �t�11jt�11

�o

�
j�hX
i=1

(J�)i
(
F

10�j+iX
s=1

As�1 (Bvt�j+i�s + Cwt�j+i�s)

)

+

j�hX
i=1

(J�)i
(
A11�j+i

�
�t�11 � �t�11jt�11

�
+

10�j+iX
s=0

As (Bvt�j+i�s + Cwt�j+i�s)

)
:

Each of these expressions is a function solely of the nowcast error at time t�11;
�
�t�11 � �̂t�11jt�11

�
;

and the shocks to the system between time t�10 and t;
�h
v0t�j ; w

0
t�j

i0
; j = 0; 1; :::; 10

�
: All of these

elements are independent of each other and so the MSE for h < 12 is directly obtained from the

above expressions.
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7.2 Details on the Kalman �lter model for dispersion

The state equations for the individual forecaster are26664
yt

xt

yt�1

37775 =
26664
0 � 0

0 � 0

1 0 0

37775
26664
yt�1

xt�1

yt�2

37775+
26664
ut + "t

"t

0

37775 ; (32)

while the measurement equations are

24 ~yit

~yt�1

35 =
24 1 0 0

0 0 1

35
26664

yt

xt

yt�1

37775+
24 ��t + �it

�t�1

35 : (33)

Ideally, we would have ��t = �t; however that would lead to a violation that the innovation to the

measurement equation is iid through time, since the �rst lag of the �rst element of the innovation

vector would be correlated with the current value of the second element. To avoid this we specify

��t as an independent random variable, but with the same variance as �t; E
�
��2t
�
= E

�
�2t
�
= �2�:

The MSE of the individual forecaster�s prediction is obtained with just minor adjustments to

the expressions presented above for the consensus forecast, and thus can be obtained in closed-form.

The cross-sectional dispersion about the consensus forecast �zt;t�h � 1
N

NP
i=1

ẑi;t;t�h is computed as

d2t;t�h � 1

N

NX
i=1

(ẑi;t;t�h � �zt;t�h)2 :

Let �2h � 1

N

NX
i=1

E
h
(ẑi;t;t�h � �zt;t�h)2

i
Our model for dispersion is based on �2h: Unfortunately, a closed-form expression for �2h is not

available and so we resort to simulations to evaluate �2h. We do this by simulating the state

variables for T observations, and then generating a di¤erent ~yit series for each of the N forecasters.

We assume that the forecasters�priors, �i; are iid N
�
0; �2�

�
in the simulation. For each forecaster

we obtain the optimal KF forecast and then combine this with the forecaster�s prior to obtain his

�nal forecast using equation (10). We then compute the cross-sectional variance of the individual

forecasts to obtain d2t;t�h and average these across time to obtain �̂
2

h:
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7.3 Details on the estimation of the models

To obtain P �1 ; P
�
0 ;...,P

�
�11, K

� and J� we simulate 100 non-overlapping years of data and update

these matrices following Hamilton (1994). We use as estimates these matrices at the end of the

100th year.

We use only six forecast horizons (h = 1; 3; 6; 12; 18; 24) in the estimation, rather than the full

set of 24, in response to studies of the �nite-sample properties of GMM estimates (Tauchen, 1986)

which �nd that using many more moment conditions than required for identi�cation leads to poor

approximations from the asymptotic theory, particularly when the moments are highly correlated,

as in our application. We have also estimated the models presented in this paper using the full set

of 24 moment conditions and the results were qualitatively similar.

To obtain the covariance matrix of the moments, used to compute standard errors and the

test of over-identifying restrictions, we use the model-implied covariance matrix of the moments,

based on the parameter estimate from the �rst-stage GMM parameter estimate. This matrix is not

available in closed-form and so we simulate 1,000 non-overlapping years of data to estimate it. This

is done as follows: First, we simulate "t as an iid N
�
0; �2"

�
time series of length 12; 024 periods.

The xt process is then computed with x0 set equal to its unconditional mean. We simulate ut as

an iid N
�
0; �2u

�
time series of the same length as "t. yt is then computed as xt + ut; and zt is

the rolling 12-period sum of yt; starting at t = 12: Next we compute the time series of forecasts:

For each period, starting at t = 1; we compute the optimal forecasts of zt for all horizons between

one and 24 periods, using the formulas given in part (1) of Proposition 1 and in Section 7.1. We

then drop the �rst 24 observations, so that every retained value of zt has associated with it a full

set of 24 forecasts, ranging from t� 1 to t� 24: To match the sampling frequency of our data, we

drop all but every twelfth time series observation from the simulated data, leaving us with 1; 000

non-overlapping years of data. Finally, for each observation we compute the �term structure�of

squared forecast errors,
�
zt � ẑ�t;t�1

�2
; :::;

�
zt � ẑ�t;t�24

�2
: We then compute the matrix of moment

conditions, using the expression in equation (12), and from this we estimate the covariance matrix

of the moments for the horizons used in estimation.19

A closed-form expression for �2h is not available and so we use simulations to obtain an estimate

19We examined the sensitivity of this estimate to changes in the size of the simulation and to re-simulating the

model, and found that when 1000 non-overlapping years of data are used the changes in the estimated covariance

matrix are negligible.
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of if:For each evaluation of the objective function, we simulated 50 non-overlapping years of data

for 30 forecasters to estimate �2h.
20 The priors for each of the 30 forecasters, �i; were simulated

as iid N
�
0; �2�

�
: The only di¤erence in the dispersion simulation is that we must simulate the

residual term, �t;t�h. We multiply the estimated �2h series by �t;t�h; de�ned in equation (16), which

is iid logN
�
�1
2�

2
�; �

2
�

�
: From this, we obtain �measured�values of dispersion, dt;t�h = �̂

2

h � �t;t�h;

and the squared dispersion residual, �2t;t�h; which are used in the second and third set of moment

conditions respectively. From these, combined with the MSEs, we compute the sample covariance

matrix of the moments.

The model with time-varying dispersion was estimated in a similar way, with the following

changes. We used the stationary bootstrap of Politis and Romano (1994), with average block

length of 12 months, to �stretch� the default spread time series, St; to be 50 years in length for

the simulation. The �standardized priors� for each of the 30 forecasters, ��i ; were simulated as

iid N (0; 1) ; and then the actual �prior� for each time period, �i;t; was set as �
�
i � ��;t; where

��;t = exp f(��0 + �
�
1 logSt) =2g : Following this step the remainder of the simulation was the same

as for the constant dispersion case above. In the estimation stage we need to compute the value of

�2h (��;t) , which is simply the sample mean of d
2
t;t�h in the constant dispersion model, so that we can

compute the dispersion residual. It was not computationally feasible to simulate �2h (��;t) for each

unique value of ��;t in our sample, and so we estimated it for ��;t equal to its sample minimum,

maximum and its [0:25; 0:5; 0:75] sample quantiles, and then used a cubic spline to interpolate this

function, obtaining ~�
2
h (��;t). We checked the accuracy of this approximation for values in between

these nodes and the errors were very small. We then use ~�
2
h (��;t) ; and the data, to compute the

dispersion residuals and used these in the GMM estimation of the parameters of the model.

20Simulation variability for this choice of N and T was small, particularly relative to the values of the time-series

variation in d2t;t�h that we observed in the data.
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7.4 Extracting estimates of the components of the target variable

For concreteness, we will consider estimates based on the �rst row in our panel, so the annual target

variable is z25; and the �rst forecast is ẑ25;1: Let

w25 �
11X
j=0

�25�j =

26664
11P
j=0

y25�j

11P
j=0

x25�j

37775
then ŵ25;1 =

11X
j=0

�̂25�j;1 =

0@ 11X
j=0

F 24�j

1A �̂1;1 � F 13F (11)�̂1;1

where F (k) �
kX
j=0

F j

=

24 1 �(1��k)
1��

0 1��k+1
1��

35 ; since F =
24 0 �

0 �

35
and F k =

24 0k �k � 0k

01+k �k � 01+k

35
So F jF (k) =

24 0j 0j�+�j��1+j+k�0j
1��

01+j 01+j�+�j�01+j��1+j+k
1��

35

Thus F 13F (11)�̂1;1 =

24 0 �13(1��12)
1��

0
�13(1��12)

1��

35 �̂1;1:
Let e01 � [1; 0]

ẑ25;1 = e01ŵ25;1

= e01F
13F (11)�̂1;1

=
�13

�
1� �12

�
1� � �̂

[2]

1;1

=
�13

�
1� �12

�
1� � E

h
x1j ~F1

i
;

so E
h
x1j ~F1

i
=

1� �
�13

�
1� �12

� � ẑ25;1:
Since the 24-month forecast is proportional to the �nowcast�of the predictable component, with

the proportionality constant being a simple function of the parameter of the data generating process

(DGP), we can back out the forecaster�s �nowcast�of the predictable component from the forecast.
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This same steps hold for all �long horizon�forecasts:

ŵ25;25�h = F h�11F (11)�̂25�h;25�h, for h � 12

F h�11F (11) =

24 0 �h�11(1��12)
1��

0
�h�11(1��12)

1��

35 , for h � 12
and E

h
x25�hj ~F25�h

i
=

1� �
�h�11

�
1� �12

� � ẑ25;25�h, for h � 12:
Thus using the long-horizon forecasts we can extract the �ltered estimate of the predictable com-

ponent of the target variable. This is, of course, available monthly, which is more frequently than

data is available on GDP growth, although some in�ation series are available monthly.

Interesting to note, the only parameter that a¤ects our estimate of the predictable component

is �; the other parameters of the DGP and the parameters describing the measurement equation

do not enter this expression.

To extract the �ltered estimate of the unpredictable component we have to work with the short-

horizon forecasts. These forecasts are a combination of pure forecasts, nowcasts and backcasts, and

are a bit trickier to handle. Consider the h = 11 case:

ŵ25;14 =

11X
j=0

�̂25�j;14 =

0@ 11X
j=0

F 11�j

1A �̂14;14 � F (11)�̂14;14;

and ẑ25;14 = e01ŵ25;14 = e01F
(11)�̂14;14

=
h
1

�(1��11)
1��

i
�̂14;14

= E
h
y14j ~F14

i
+
�
�
1� �11

�
1� � E

h
x14j ~F14

i
:

We have an estimate of the second term above from the long-horizon forecast of the following year�s

annual target variable (the h = 23 forecast for the following year)

E
h
x14j ~F14

i
=

1� �
�12

�
1� �12

� � ẑ37;14
and so we can combine this with the short-horizon forecast of this year�s annual target variable to
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back out an estimate of the unpredictable component:

E
h
y14j ~F14

i
= ẑ25;14 �

�
�
1� �11

�
�12

�
1� �12

� � ẑ37;14
and thus E

h
u14j ~F14

i
= E

h
y14j ~F14

i
� E

h
x14j ~F14

i
= ẑ25;14 �

�
�
1� �11

�
�12

�
1� �12

� � ẑ37;14 � 1� �
�12

�
1� �12

� � ẑ37;14
= ẑ25;14 �

�
�
1� �11

�
+ 1� �

�12
�
1� �12

� � ẑ37;14:

Next consider the h = 10 case:

ŵ25;15 = F (10)�̂15;15 + �̂14;14 + J
�
�̂15;15 � F �̂14;14

�
:

From the h = 11 data we have �̂14;14; and from the long horizon forecast of next year�s variable we

have �̂
[2]

15;15 � E
h
x15j ~F14

i
: Thus there is only one unknown on the right-hand side above, namely

�̂
[1]

15;15 � E
h
y15j ~F14

i
; which we can obtain using ẑ25;15: The estimates of E

h
ytj ~Ft

i
obtained from

the forecasts for h = 9 down to h = 1 can be obtained similarly, recursively using the estimates

from the longer horizons. The general expression for 0 < h < 12 is:

ẑ25;25�h =
�
F (h) + JJ (10�h)

�
�̂25�h;25�h

+
�
I � JF + JJ (10�h) (I � F )

�
�̂24�h;24�h

+
�
I � JF + JJ (9�h) (I � F )

�
�̂23�h;23�h

+:::

+(I � JF + J (I � F )) �̂15;15

+(I � JF ) �̂14;14

=
�
F (h) + JJ (10�h)

�
�̂25�h;25�h

+

0@10�hX
j=1

�
I � JF + JJ (j�1) (I � F )

�1A �̂14+j;14+j

+(I � JF ) �̂14;14:

By working from the longer horizons down to the shorter horizons, each of these expressions will

have just a single unknown variable that can be obtained by solving the expression for that variable.

Our estimate of the unpredictable component relies on the matrix J = P0F
0P1 in steady-state.

The matrices P0 and P1 depend on the variances of the innovations to the state equation and on the
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parameters describing the measurement equation, and so our estimates of the unpredictable com-

ponent rely on the full speci�cation of the model, unlike our estimate of the predictable component

which only depended upon �:

Note that we can also provide standard errors on our estimates of the predictable and unpre-

dictable components of the target variable. The matrix P0 measures the MSE of the �nowcast�of

the state equation:

P0 � E

��
�t � �̂t;t

��
�t � �̂t;t

�0�
and so V [xt � x̂t;t] = P

[2;2]
0

V [yt � ŷt;t] = P
[1;1]
0

and ut = yt � xt;

so V [ut � ût;t] = P
[1;1]
0 + P

[2;2]
0 � 2P [1;2]0 :

It should be noted that our model for the MSE term structure assumed, without loss of generality

in that application (as the inputs to the model were simply the forecast errors), that all variables

have zero mean. This of course is not true in reality, and does have implications for our estimates

of xt and ut: If we modify our speci�cation of the state equation to allow for a non-zero mean we

obtain:

�t =

24 yt � �

xt � �

35 =
24 0 �

0 �

3524 yt�1 � �

xt�1 � �

35+
24 ut + "t

"t

35 ;
and the expressions derived above can be re-interpreted a expressions for E

h
xt � �j ~Ft

i
and E

h
yt � �j ~Ft

i
:

The forecasts would become

w25 �
11X
j=0

�25�j =

26664
11P
j=0

(y25�j � �)
11P
j=0

(x25�j � �)

37775 =
26664

11P
j=0

y25�j

11P
j=0

x25�j

37775� 12�:
Thus we can simply de-mean the forecasts (using, for example, one-twelfth the sample mean of

the zt series), compute E
h
xtj ~Ft

i
and E

h
ytj ~Ft

i
as before, and then add back the means to the

estimates. This corresponds to estimating the parameter � by GMM, using simply the sample

mean of the zt series.
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Table 1: GMM parameter estimates of the consensus forecast model

�u �" � �� J p-val

GDP growth 0:063
(0:012)

0:054
(0:013)

0:936
(0:034)

0:126
(� � )

0:403

In�ation 0:000
(� � )

0:023
(0:007)

0:953
(0:047)

0:000
(� � )

0:935

Notes: The table reports the GMM estimates of the parameters of the Kalman �lter model
�tted to the consensus forecasts with standard errors in parentheses. p-values from the test of
over-identifying restrictions are given in the row titled �J p-val�. The model is estimated using six
moments from the MSE term structure for the consensus forecast for each variable. The parameter
�� was �xed at 2�u and is reported here for reference only.

Table 2: GMM parameter estimates of the joint consensus forecast and dispersion
model

Panel A: constant forecast dispersion
�u �" � �� �� � �� J p-val

GDP growth 0:063
(0:012)

0:054
(0:013)

0:936
(0:034)

0:126
(� � )

0:692
(1:00)

1:414
(0:941)

0:672
(0:394)

0:857

In�ation 0:000
(� � )

0:023
(0:007)

0:953
(0:046)

0:000
(� � )

0:045
(0:168)

0:493
(0:167)

0:509
(0:127)

0:000

Panel B: time-varying forecast dispersion
�u �" � �� �� � ��0 ��1 J p-val

GDP growth 0:063
(0:012)

0:054
(0:013)

0:936
(0:034)

0:126
(� � )

0:692
(0:869)

1:413
(0:738)

�0:560
(1:10)

3:075
(1:832)

0:906

In�ation 0:000
(� � )

0:023
(0:007)

0:953
(0:046)

0:000
(� � )

0:044
(0:151)

0:493
(0:156)

�1:318
(0:546)

0:178
(2:371)

0:000

Notes: This table reports GMM parameter estimates of the Kalman �lter model of the consensus
forecasts and forecast dispersions, with standard errors in parentheses: p-values from the test of
over-identifying restrictions are given in the row titled �J p-val�. The model is estimated using six
moments each from the MSE term structure for the consensus forecast and from the cross-sectional
term structure of dispersion for each variable. The parameter �� was �xed at 2�u and is reported
here for reference only.
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Figure 1: Evolution in consensus forecasts and forecast dispersions for US GDP growth in 2002,
for horizons ranging from 24 months (January 2001) to 24 months (December 2002). The vertical
lines plotted here are the consensus forecasts plus/minus the dispersion (measured in standard
deviations).
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Figure 2: Term structure of root-mean squared forecast errors for various degrees of persistence (�)
in the predictable component
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Figure 3: Term structure of root-mean squared forecast errors for various degrees of measurement
error in the predicted variable. In this example, the degree of measurement error is described as
�� = k�u; where �u is the standard deviation of the unpredictable component of yt:
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Figure 4: Term structure of forecast dispersion for various levels of disagreement in beliefs about
the long-run value of the target variable, measured by ��.
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Figure 5: Root mean squared forecast errors for GDP growth and In�ation in the U.S.
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Figure 6: Empicial and model-implied R2 for forecasts of U.S. GDP growth and In�ation of various
horizons.
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Figure 7: Estimates of the persistent component (xhat) of GDP growth and in�ation for each
month in the sample period, as implied by the observed forecasts and the estimated model for the
term structure of forecast errors.
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Figure 8: Cross-sectional dispersion (standard deviation) of forecasts of GDP growth and In�ation
in the U.S.
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Figure 9: Cross-sectional dispersion (standard deviation) of forecasts of GDP growth and In�ation
in the U.S, when the default spread is equal to its sample average, its 95 th percentile or its 5 th

percentile.
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