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1 Introduction

Understanding the uncertainty associated with a forecast is as important as the forecast

itself. When predictions are made over several periods, such uncertainty is encapsulated

by the joint density of the forecast path. There are many questions of interest that can

be answered based on the marginal distribution of the forecasts at each individual horizon.

These are the questions that have received the bulk of attention in the literature and are

coded into most commercial econometric packages. For example, mean-squared forecast

errors (MSFE) are reported for each forecast horizon individually; two standard-error band

plots that are based on the marginal distribution of each individual forecast error; and fan

charts that are constructed from the percentiles of marginal predictive densities.

The basic message of this paper is that many questions of interest require knowledge of

the joint density, not the collection of marginal densities alone. The joint distribution and

the covariance matrix for the forecast path thus play a prominent role in our discussion, and

we begin by deriving appropriate asymptotic results for data generating processes (DGP)

of infinite order in Section 2. Vector autoregressions are a natural multivariate method of

producing forecasts and we will provide results that complement those available in, e.g.,

Lütkepohl (2005). Alternatively, direct forecast methods (see, e.g., Bhansali, 2002 and ref-

erences therein, and more recently Marcellino, Stock and Watson, 2003, 2006) are a natural

choice when there is hesitation about the true model characterizing the DGP or when non-

linearities make multiple-step ahead forecasts cumbersome to obtain. We derive asymptotic

results for direct forecasts based on linear vector autoregressions for infinite order DGPs.

We will call forecasts based on this method local projections, following the nomenclature in
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Jordà (2005). Some of the derivations that we provide will look familiar to those readers

acquainted with Lewis and Reinsel (1985), and Kuersteiner (2001, 2002), to cite a few.

A 95% confidence, multi-dimensional ellipse based on the joint distribution of the forecast

path is an accurate representation of its uncertainty, but it is impossible to display in two-

dimensional space. Another contribution of the paper is to introduce several methods to

present such joint uncertainty in a useful manner to the end-user of the forecasting exercise

based on Scheffé’s (1953) method of simultaneous inference. In particular, in Section 3, we

show how to construct simultaneous confidence bands, conditional confidence bands for the

uncertainty associated to individual forecast horizons, and fan charts based on the quantiles

of the joint predictive density.

The availability of the joint predictive density allows us to construct the distribution

of forecasts conditional on future values of one or more of the endogenous variables in the

system under consideration. In Section 4 we show that the Wald metric provides a natural

statistic to evaluate the likelihood of observing the conditioning paths. These large-sample

results are related toWaggoner and Zha’s (1999) Bayesian derivations and provide asymptotic

justification for bootstrap-based, finite-sample inference (Horowitz, 2001).

A natural consequence of the correlation across forecast horizons is the desire to cast

forecasting performance comparisons in terms of forecast paths. Therefore, in Section 5, we

introduce the mean squared forecast path (MSFP) as the natural extension of the MSFE

by using the Wald metric and the forecast path’s correlation matrix. Furthermore, we show

how to appropriately use this Wald metric to extend formal testing of predictive ability along

the lines of the Diebold-Mariano-West (Diebold and Mariano, 1995; West, 1996) test or the
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more recent approach in Giacomini and White (2006). These extensions also complement

deterministic measures such as the determinant of the covariance matrix of the vector of

forecast errors at different horizons proposed by Clements and Hendry (1993).

In Section 6, we provide two empirical examples to illustrate all of the results introduced

in the paper. In particular, the first application examines path forecasts for a system of U.S.

macroeconomic variables, and provides an example of counterfactual simulation. The second

application serves to illustrate the newly introduced measures of forecast path comparison,

and examines the role of monetary aggregates in forecasting US and euro area inflation, a

topic of much recent debate in central bank circles.

Several final comments are worth making. We hope our paper will pave the way for

many natural extensions, the most immediate of which are to: (1) generalize our basic

assumptions on the DGP as well as the mixing and heteroskedasticity assumptions of the

error process; and (2) to extend our large-sample results to finite-sample inference based on

bootstrap or subsampling refinements. We felt space considerations and transparency had

to rein in our ambitions. Finally, ours is not a criticism of the status-quo, rather we view

our contribution as an addition to existing methods: different hypotheses require different

statistics and appropriately tailoring statistics results in more precise answers.

2 Asymptotic Distribution of the Forecast Path

This section characterizes the asymptotic distribution of the forecast path under the as-

sumption that the data generating process (DGP) is of infinite order while the forecasts are

generated by finite-order VARs or finite-order local projections. We feel the DGP is suffi-

3



ciently general to represent a large class of problems of interest and that VARs and local

projections are the two most commonly used modeling strategies. We begin by stating our

assumptions on the DGP.

Assumption 1: Suppose the k-dimensional vector of weakly stationary variables, yt has

a Wold representation given by

yt = μ+
∞X
j=0

Φ0jut−j , (1)

where the moving-average coefficient matrices Φj are of dimension k×k, and we assume

that:

(i) E (ut) = 0; and ut are i.i.d.

(ii) E (utu0t) = Σu <∞.

(iii)
P∞
j=0 ||Φj || <∞ where ||Φj ||2 = tr

³
Φ0jΦj

´
is the equivalent of the Euclidean L2 norm

for matrices and Φ0 = Ik.

(iv) det {Φ (z)} 6= 0 for |z| ≤ 1 where Φ (z) =P∞
j=0Φjz

j .

Then the process in (1) can also be written as an infinite VAR process (see, e.g. Anderson,

1994),

yt =m+
∞X
j=1

Ajyt−j + ut (2)

such that,

(v)
P∞
j=1 ||Aj || <∞.
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(vi) A (z) = Ik −
P∞
j=1Ajz

j = Φ (z)−1 .

(vii) det {A (z)} 6= 0 for |z| ≤ 1.

Assumption 1 includes the class of stationary vector autoregressive moving average,

VARMA(p, q) processes as a special case. Lewis and Reinsel (1985) derive conditions under

which a finite order VAR will provide consistent and asymptotically normal estimates of the

p original autoregressive coefficient matrices Aj in expression (2). We will use this result

momentarily and extend it for local projections when deriving the asymptotic distribution

of the forecast path. The i.i.d. assumption could be relaxed to allow for heteroskedasticity

so that the consistency and asymptotic normality results in Lewis and Reinsel (1985) are

derived with appropriate laws of large numbers and central limit theorems for martingale

difference sequences (m.d.s.) under more general mixing conditions. We refer the reader to

Gonçalves and Kilian (2006) and references therein for a discussion of these issues. The most

significant implication of allowing for these alternative, more flexible assumptions is that a

robust covariance estimator along the lines of White (1980) is advised. For now, we prefer

to trade-off some sophistication for clarity to illustrate the more important points we discuss

below.

Given the DGP in expression (2) suppose we estimate a VAR(p) instead. This VAR(p)

will be of the form

yt = m+

pX
j=1

Ajyt−j +wt (3)

wt =
∞X

j=p+1

Ajyt−j + ut
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Given estimates from this VAR(p) then one could construct forecasts with standard available

formulas (see, e.g. Hamilton, 1994). Alternatively, forecasts could be constructed with a

sequence of local projections given by

yt+h = mh +

p−1X
j=0

Ahjyt−j + vt+h (4)

vt+h =
∞X
j=p

Ahjyt−j + ut+h +
h−1X
j=1

Φjut+h−j for h = 1, ...,H

where:

(i) Ah1 = Φh for h ≥ 1

(ii) Ahj = Φh−1Aj +A
h−1
j+1 for h ≥ 1;A0j+1 = 0;Φ0 = Ik; and j ≥ 1

Let Γ (j) ≡ E
³
yty

0
t+j

´
with Γ (−j) = Γ (j)0 and define:

(iii) Xt,p =
¡
1,y0t−1, ...,y0t−p

¢0
.

(iv) bΓ1−p,h
kp+1×k

= (T − p− h)−1PT
t=pXt,py

0
t+h.

(v) bΓp
k(p+1)×k(p+1)

= (T − p− h)−1PT
t=pXt,pX

0
t,p.

Then, the least-squares estimate of the VAR(p) in expression (3) is given by the formula

bA (p)
k×kp+1

=
³ bm, bA1, ..., bAp´ = bΓ01−p,0bΓ−1p ,

whereas the coefficients of the mean-squared error linear predictor of yt+h based on yt, ...,yt−p+1

is given by the least-squares formula
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bA (p, h)
k×kp+1

=
³ bmh, bAh1 , ..., bAhp´ = bΓ01−p,hbΓ−1p ; h = 1, ...,H.

Assumption 2: If {yt} satisfies conditions (i)-(vii) in assumption 1 and:

(i) E |uitujturtult| <∞ for 1≤ i, j, r, l ≤ k.

(ii) p is chosen as a function of T such that

p3

T
→ 0 as T, p→∞.

(iii) p is chosen as a function of T such that

p1/2
∞X

j=p+1

||Aj ||→ 0 as T, p→∞.

Then, a summary of results shown by Lewis and Reinsel (1985), Lütkepohl and Poskitt

(1991) and Jordà and Kozicki (2007) are contained in the following corollary.

Corollary 1 Given assumptions 1 and 2, the VAR(p) and pth order local projections are

consistent and asymptotically normal, specifically:

(a) bAj p→ Aj ; bAhj p→ Ahj and bAh1 p→ Φh.

(b)
q

T−p−h
p vec

³ bA (p)−A (p)´ d→ N (0,Σa) where Σa = Γ−1p ⊗ Σu

(c)
q
T−p−h

p vec
³ bA (p, h)−A (p, h)´ d→ N (0,Σα) where Σα = Γ

−1
p ⊗Ωh and Ωh = Φ (Ih ⊗ Σu)Φ0

where

Φ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ik 0 ... 0

Φ1 Ik ... 0

...
... ...

...

Φh−1 Φh−2 ... Ik

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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(d) Let bu (p)t ≡ yt − bm−Pp
j=1

bAjyt−j so that bΣu (p) = (T − p)−1PT
t=1 bu (p)t bu (p)0t then

√
T
³bΣu (p)− Σu´ → N (0,ΩΣ) where ΩΣ is the covariance matrix of the residual

covariance matrix.

Several results deserve comment. Technically speaking, condition (ii) in assumption 2

is required for asymptotic normality but not for consistency, where the weaker condition

p2/T → 0, T, p→∞ is sufficient. Results (a)-(c) show that estimators of truncated models

are consistent and asymptotically normal. Result (d) is useful if one prefers to rotate the

vector of endogenous variables yt when providing structural interpretations for the forecast

exercise. Here though, we abstain of such interpretation and provide the result only for

completeness.

Next, denote with yT (h) the forecast of the vector yT+h assuming the coefficients of the

infinite order process (2) were known, that is

yT (h) =m+
∞X
j=1

AjyT (h− j)

where yT (h− j) = yT+h−j for h−j ≤ 0. Denote byT (h) the forecast that relies on coefficients
estimated from a sample of size T and based on a finite order VAR or local projections,

respectively

byT (h) = bm+

pX
j=1

bAjbyT (h− j)
byT (h) = bmh +

p−1X
j=0

bAhjyT−j
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were byT (h− j) = yT+h−j for h − j ≤ 0. To economize in notation, we do not introduce a

subscript that identifies how the forecast path was constructed as it should be obvious in

the context of the derivations we provide. Then, define the forecast path for h = 1, ...,H by

stacking each of the quantities byT (h) , yT (h) , and yT+h as follows

bYT (H)
kH×1

=

⎡⎢⎢⎢⎢⎢⎢⎣
byT (1)
...

byT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ;YT (H)kH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT (1)

...

yT (H)

⎤⎥⎥⎥⎥⎥⎥⎦ ; YT,HkH×1
=

⎡⎢⎢⎢⎢⎢⎢⎣
yT+1

...

yT+H

⎤⎥⎥⎥⎥⎥⎥⎦ .

Our interest is in finding the asymptotic distribution for bYT (H)−YT,H = hbYT (H)− YT (H)i
+ [YT (H)− YT,H ] .

It should be clear that [YT (H)− YT,H ] does not depend on the estimation method and

hence its mean-squared error can be easily verified to be

ΩH
kH×kH

≡ E £(YT (H)− YT,H) (YT (H)− YT,H)0¤ = Φ (IH ⊗ Σu)Φ0. (5)

Furthermore, since parameter estimates are based on a sample of size T and hence ut for

t = p+h, ..., T while the term YT (H)−YT,H only involves ut for T+1, ..., T+H, then it should

be clear that to derive the asymptotic distribution of
hbYT (H)− YT (H)i , the asymptotic

covariance of the forecast path will simply be the sum of the asymptotic covariance for this

term and the mean-squared error in expression (5) but the covariance between these terms

will be zero.

Corollary 1(a) and 1(b) and the observation that bYT (H) is simply a function of estimated
parameters and predetermined variables is all we need to conclude that
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s
T − p−H

p
vec

³bYT (H)− YT (H)´ d→ N (0,ΨH) (6)

ΨH ≡
∂vec

³bYT (H)´
∂vec

³bA´ ΣA
∂vec

³bYT (H)´
∂vec

³bA´0
where ΣA is the covariance matrix for vec

³bA´ ; with bA = bA (p) for estimates from a VAR(p) ;
and for estimates from local projections

bA =

⎡⎢⎢⎢⎢⎢⎢⎣
bA (p, 1)
...

bA (p,H)

⎤⎥⎥⎥⎥⎥⎥⎦ . (7)

We find it convenient to momentarily alter the order of our derivations and begin by ex-

amining forecasts from local projections first, since these are linear functions of parameter

estimates and hence can be obtained in a straightforward manner.

First notice that bYT (H) = bAXT,p and hence
∂vec

³bYT (H)´
∂vec

³bA´ =
∂vec

³bAXt,p´
∂vec

³bA´ =
¡
X 0
T,p ⊗ IkH

¢
kH×k2Hp+kH

, (8)

which combined with corollary 1(c) results in

s
T − p−H

p

³
vec

³bA−A´´ d→ N (0,ΣA) (9)

ΣA
k2Hp+kH×k2Hp+kH

= Γ−1p ⊗ ΩH ; ΩH
kH×kH

= Φ (IH ⊗ Σu)Φ0

Putting together expressions (6), (5), (8) and (9), we arrive at the following corollary.
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Corollary 2 Under assumptions 1 and 2 and expressions (6), (5), (8) and (9), the asymp-

totic distribution of the forecast path generated with the local projections approach described

in assumption 1 is s
T − p−H

p
vec

³bYT (H)− YT,H´ d→ N (0;ΞH) (10)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗Σu)Φ0

ΨH = (X 0
T,p ⊗ IkH)

£
Γ−1p ⊗ ΩH

¤
(XT,p ⊗ IkH)

In practice, all population moments can be substituted by their conventional sample

counterparts.

We now return to the more involved derivation of the asymptotic distribution of the

forecast path when the forecasts are generated by the VAR(p) in expression (3). For this

purpose, we find it easier to work with each element of the vector bYT (H) individually, so
that we begin by examining the derivation of

s
T − p−H

p
vec (byT (h)− yT (h)) d→ N (0;Ψh,h)

Ψh,h =
∂vec (byT (h))
∂vec

³ bA (p)´Σa∂vec (byT (h))∂vec
³ bA (p)´

where we remind the reader that from corollary 1(b), Σa = Γ−1p ⊗Σu. In general, notice that

Ψi,j =
∂vec (byT (i))
∂vec

³ bA (p)´Σa∂vec (byT (j))∂vec
³ bA (p)´

which is all we need to construct all the elements in the asymptotic covariance matrix of

bYT (H) , namely ΨH . An expression for byT (h) generated from the VAR(p) in expression (3)
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can be obtained as

byT (h) = JBhXT,p
where B simply stacks the VAR(p) coefficients in companion form and J is a selector matrix,

both of which are

B
kp+1×kp+1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ... 0 0

m A1 A2 ... Ap−1 Ap

0 Ik 0 ... 0 0

0 0 Ik ... 0 0

...
...

... ...
...

...

0 0 0 ... Ik 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

J
k×kp+1

= ( 0
k×1
, Ik
k×k
, 0k
k×k
, ..., 0k

k×k
).

Therefore, notice that

∂vec (byT (h))
∂vec

³ bA (p)´ = ∂vec
¡
JBhXt,p

¢
∂vec

³ bA (p)´ =
h−1X
i=0

X 0
T,p(B

0)h−1−i ⊗Πi, Πi = JB
iJ 0.

The following corollary characterizes the asymptotic distribution of VAR(p) generated fore-

casts paths.

Corollary 3 Under assumptions 1 and 2, the asymptotic distribution of the forecast path
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bYT (H) generated from the VAR(p) in expression (3) is given bys
T − p−H

p
vec

³bYT (H)− YT,H´ d→ N (0;ΞH) (11)

ΞH =

½
p

T − p−HΩH +ΨH
¾

ΩH = Φ(IH ⊗ Σu)Φ0

Ψi,j =
p

T − p−H
i−1X
k=0

j−1X
s=0

E(X 0
T,p(B

0)i−1−kΓ−1p B
j−1−sXT,p)⊗ΠkΣuΠ0s

=
p

T − p−H
i−1X
k=0

j−1X
s=0

tr((B0)i−1−kΓ−1p B
j−1−sΓp)ΠkΣuΠ0s

In practice all moment matrices can be substituted by their sample counterparts as usual.

Notice also that corollaries 2 and 3 can be combined with the delta method to provide the

joint predictive density of linear or nonlinear functions of the path forecasts.

In summary, corollaries 2 and 3 provide the necessary results on the joint predictive

density of the path forecasts. The next sections exploit these results to compute simultaneous

confidence regions for path forecasts, to study the properties of conditional path forecasts,

and to propose new methods of path forecast comparison and predictive ability testing.

3 Simultaneous Confidence Regions for Forecast Paths

This section considers the problem of constructing a simultaneous confidence region for the

forecast path of the jth variable in the k-dimensional system we have so far examined. Under

assumptions 1 and 2, corollaries 2 and 3 show that the asymptotic distribution of bYT (H) is
(with the obvious simplifications relative to (10) or (11)):

√
T
³bYT (H)− YT,H´ d→ N (0;ΞH) . (12)
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Let Sj ≡ (IH ⊗ ej) where ej is a 1× k vector of zeros with a 1 in the jth column. Then the

asymptotic distribution for the forecast path of the jth variable in (12) is readily seen to be

√
T
³bYj,T (H)− Yj,T,H´ d→ N

¡
0;Ξj,H

¢
, (13)

where bYj,T (H) = Sj bYT (H); Yj,T,H = SjYT,H ; and Ξj,H = SjΞHS
0
j . The derivations we

are about to present do not depend on how one arrives at expression (13). Therefore, to

make the results more general, we take expression (13) as our primitive assumption so as to

accommodate forecasting environments other than those implied by assumptions 1 and 2.

The conventional approach to reporting forecasting uncertainty consists of displaying

two standard-error bands constructed from the square roots of the diagonal entries of Ξj,H .

The confidence region described by these bands is therefore equivalent to testing a joint

null hypothesis with the collection of t-statistics associated to the individual elements of

the joint null. It is easy to see that such an approach ignores the simultaneous nature of

the problem and any correlation that may exist among the forecasts across horizons, thus

providing incorrect probability coverage.

Consider now the first order differentiable function g(.) : RH → Rs forH ≥ s with anH×s

invertible Jacobian denoted G(.). The decision problem associated with this transformation

of the forecast path can be summarized by the null hypothesis H0 : g(Yj,T,H) = g0 for

any j = 1, ..., k; sample T ; and forecast horizon H and where g0 is an s × 1 vector. The

Gaussian expression (13), the Wald principle; and the delta method (or more generally,

classical minimum distance, see, e.g. Ferguson, 1958); suggest that tests of this generic joint

null hypothesis can be tested with the statistic
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WH = T
³
g(bYj,T (H))− g0´0 ³ bG0j,T,HΞj,H bGj,T,H´−1 ³g(bYj,T (H))− g0´ d→ χ2H (14)

where bGj,T,H denotes the Jacobian evaluated at bYj,T (H). For example, a simple null of joint
significance means that g(bYj,T (H)) = bYj,T (H); and g0 = 0H×1 so that a confidence region at
an α significance level is represented by the values of Yj,T,H that satisfy

Pr
£
WH ≤ c2α

¤
= 1− α

where c2α is the critical value of a random variable distributed χ2H at a 1−α confidence level.

This confidence region is a multi-dimensional ellipsoid that in general, is too complicated to

display graphically and makes communication of forecast uncertainty difficult. However, for

H = 2, this region can be displayed in two-dimensional space as is done in Figure 1.

Figure 1 displays the 95% confidence region associated to a one- and two-period ahead

forecasts from an AR(1) model with known autoregressive coefficient ρ = 0.75 and σ = 1.

Overlaid on this ellipse is the traditional two standard-error box. The figure makes clear why

this box provides inappropriate probability coverage: it contains/excludes forecast paths with

less/more than 5% chance of being observed. Meanwhile, the top panel of Figure 2 illus-

trates that the problem worsens with the forecast horizon, in the sense that the correlation

between the two- and three-period ahead forecast errors is larger than that between the one-

and two-period errors. The larger the correlation in forecast errors, the larger the size dis-

tortion of the two-standard-error-box. Moreover, from the bottom panel of Figure 2, adding

an MA component with a positive coefficient to the AR(1) model further worsens the situ-

ation. These two cases are quite relevant empirically, since medium-horizon forecasts are of
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interest for policy making and a positive MA component is statistically significant for several

macroeconomic time series, e.g., for US inflation.

In order to reconcile the inherent difficulty of displaying multi-dimensional ellipsoids

with the inadequate probability coverage provided by the more easily displayed marginal

error bands, we construct a simultaneous rectangular region with Scheffé’s (1953) S-method

of simultaneous inference (see also Lehmann and Romano, 2005). Briefly, the intuition of

the method is to exploit the Cauchy-Schwarz inequality to transform the Wald statistic from

L2-metric into L1-metric to facilitate construction of a rectangular confidence interval.

Notice that the covariance matrix of bYj,T (H) is positive-definite and symmetric and hence
admits a Cholesky decomposition T−1Ξj,H = PP 0, where P is a lower triangular matrix.

The passage of time provides a natural and unique ordering principle so that P is obtained

unambiguously. Notice then that

Pr

·
T
³bYj,T (H)− Yj,T,H´0 Ξj,H ³bYj,T (H)− Yj,T,H´ ≤ c2α¸ = 1− α

Pr

·³bYj,T (H)− Yj,T,H´0 (PP 0)−1 ³bYj,T (H)− Yj,T,H´ ≤ c2α¸ = 1− α

Pr
hbVj,T (H)0bVj,T (H) ≤ c2αi = 1− α

Pr

"
HX
h=1

bvj,T (h)2 ≤ c2α
#
= 1− α (15)

where bVj,T (H) = P−1 bYj,T (H) and bvj,T (h)→ N (0, 1) are independent across h.

Consider now the problem of constructing the rectangular confidence region for the av-

erage path-average forecast
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Pr

"¯̄̄̄
¯
HX
h=1

bvj,T (h)
h

¯̄̄̄
¯ ≤ δα

#
= 1− α.

A direct consequence of Bowden’s (1970) lemma is that

max

⎧⎨⎩
¯̄̄PH

h=1
bvj,T (h)
h

¯̄̄
qPH

h=1
1
h2

: |h| <∞
⎫⎬⎭ =

vuut HX
h=1

bvj,T (h)2
which can be applied directly to the bottom line of expression (15) to obtain

Pr

"¯̄̄̄
¯
HX
h=1

bvj,T (h)
h

¯̄̄̄
¯ ≤

r
c2α
H

#
= 1− α, (16)

which in turn implies that δα =
q

c2α
H . Expression (16) and

bVj,T (H) = P−1 bYj,T (H) imply
that a simultaneous confidence region for the forecast path bYj,T (H) can then be constructed
as

bYj,T (H)± δαP iH (17)

where iH is an H × 1 vector of ones. We call these bands Scheffé confidence bands to

distinguish then from the usual two (marginal) standard error bands commonly reported.

One way to gain intuition about the Scheffé bands is to establish their relation to tra-

ditional marginal error bands. In a traditional error band, the boundaries of the band

represent a shift from the mean of the distribution (the parameter estimate) in proportion

to its variance. Thus, the boundary is the appropriately scaled critical values of the stan-

dard normal density of a region with symmetric 100(1− α)% coverage, that is for example,

byj,T (h)± zα/2bΞ1/2j,(h,h). Similarly, consider now a simultaneous shift in all the elements of the
forecast path in proportion to their variances. What would the appropriate critical value
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be? It is easier to answer this question with the orthogonal coordinate system bVj,T (H). From
expression (15) and denoting this critical value δα, then δα must meet the condition

Pr
£
δ2α +

H...+ δ2α = c
2
α

¤
= 1− α

which implies that δα =
q

c2α
H . In two dimensions, both panels of Figure 3 display diagonals

intersecting the origin of both ellipses. The slopes of these diagonals reflect the relative

variance of each forecast (in the bottom panel the normalization ensures the variances are

the same so the diagonal is the 45 degree line) and represent the ±δα for all values of α. The

Cholesky factor P therefore provides the appropriate scaling for δα since it not only scales

the orthogonal system by the individual variances of its elements but also accounts for their

correlation.

Several results deserve comment. First, when H = 1 so that we are considering a one-

period ahead forecast, then c20.05 = 3.84 for a χ21 random variable and hence δα =
√
3.84 =

1.96. In this case, P = σ1 so that the rectangular confidence interval obtained by Scheffé’s

S-method corresponds to the traditional two standard-error band. However, when H = 2,

then δα = 1.73, not the usual 1.96. Second, because the relation between the L2-norm implied

by the Wald statistic and the rectangular region implied by the associated L1-norm holds

by Hölder’s inequality (rather than with equality), the probability coverage is more conser-

vative. Third, an alternative approach is to construct confidence intervals with Bonferroni’s

inequality. This inequality suggests to construct a
¡
1− α

H

¢
confidence interval for yj,T (h),

h = 1, ...,H; then, the union of these confidence intervals generates a region that includes

Yj,T,H with at least (1−α) probability. Specifically, the Bonferroni confidence region (BCR)
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is

bYj,T (H)± zα/2H × diag(Ξj,H),
where zα/2H denotes the critical value of a standard normal random variable at a α/2H sig-

nificance level. Thus, the BCR can be significantly more conservative than our simultaneous

confidence region, specially when the correlation between forecasts across horizons is low.

In addition, we offer two complementary ways to report uncertainty about the forecast

path. The first is to notice that it is easy to construct a fan chart with the quantiles of the

joint predictive density simply by calculating the simultaneous rectangular regions associated

with the values that c2α and δα take for different values of α. An example of such a chart is

provided below in the empirical section.

The second measure is based on the following observation. Notice that T−1Ξj,H = PP 0 =

QDQ0 where Q is lower triangular with ones in the main diagonal and D is a diagonal matrix.

Hence, the Wald statistic in expression (14) can be rewritten as

WH = T
³bYj,T (H)− Yj,T,H´0Ξ−1j,H ³bYj,T (H)− Yj,T,H´

=
³bYj,T (H)− Yj,T,H´0 ¡QDQ0¢−1 ³bYj,T (H)− Yj,T,H´

= eVj,T (H)0D−1 eVj,T (H)
=

HX
h=1

evj,T (h)2
dhh

=
HX
h=1

t2h|h−1,...,1 → χ2H

where eVj,T (H) = Q−1 ³bYj,T (H)− Yj,T,H´ is the unstandarized version of bVj,T (H); and dhh is
the hth diagonal entry ofD, which is the variance of evj,T (h). In other words, the Wald statistic
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WH of the joint null on Yj,T,H is equivalent to the sum of the squares of the conditional t-

statistics of the individual nulls of significance of the forecast path at time h given the path

from 1 to h−1 for h = 1, ...,H. An implication of this result is that an 100(1−α)% confidence

region that sterilizes the uncertainty about the forecast path up to time h−1 and summarizes

the uncertainty about the h horizon forecast alone, can be easily constructed with the bands

bYj,T (H)± zα/2 × diag(D)
where zα/2 refers to the critical value of a standard normal random variable at an α/2

significance level.

A simple example provides further intuition about the relation between the different

confidence regions discussed in this section. Suppose the data were generated by the simple

AR(1) model

yt = ρyt−1 + εt εt ∼ N
¡
0,σ2

¢
and for simplicity assume that ρ is known rather than estimated. Then, the 95% confidence

ellipse results from the associated Wald statistic in expression (14), that is

W2 =
1

σ2

³bYT (2)− YT,2´0
⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
−1 ³bYT (2)− YT,2´ ≤ 6,

since c20.05 ' 6 for a χ22 random variable. This is the ellipse displayed in the top panel of

Figure 3 for σ = 1 and ρ = 0.75. For this example, the traditional two standard-error box is

given by [−1.96, 1.96] and [−2.45, 2.45] .
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The Cholesky decomposition of this forecast path’s covariance matrix is

σ2

⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦ =
⎡⎢⎢⎣ 1 0

ρ 1

⎤⎥⎥⎦
⎡⎢⎢⎣ σ2 0

0 σ2

⎤⎥⎥⎦
⎡⎢⎢⎣ 1 ρ

0 1

⎤⎥⎥⎦ (18)

and it is clear that the orthogonal path’s covariance matrix is

⎡⎢⎢⎣ σ2 0

0 σ2

⎤⎥⎥⎦
that is, this covariance simply summarizes the fact that the only source of forecast uncer-

tainty in this simple example comes from the i.i.d. shock, εt (to see it more clearly suppose

that ρ = 0). The 95% confidence circle associated to the orthogonalized forecast path is

displayed in the bottom panel of Figure 3. The associated rectangular region can be easily

constructed by noticing that δα =
p
c2α/2 = 1.73 and hence the box is given by [−1.73, 1.73]

and [−1.73, 1.73] . Parenthetically, these also correspond to the conditional two standard

error bands.

In order to obtain the simultaneous, rectangular 95% confidence region we need to trans-

late the rectangular box in the orthogonal coordinate system back to the original coordinate

system of the forecast path. The Cholesky factor when ρ = 0.75 can be easily obtained from

expression (18), which multiplied by the orthogonal rectangular values

±

⎡⎢⎢⎣ 1 0

0.75 1

⎤⎥⎥⎦
⎡⎢⎢⎣ 1.73
1.73

⎤⎥⎥⎦ = ±
⎡⎢⎢⎣ 1.73
3.03

⎤⎥⎥⎦
delivers the simultaneous 95% rectangular region [−1.73, 1.73] and [−3.03, 3.03], which is

reported in the top panel of Figure 3. Notice that compared to the traditional two standard-
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error box [−1.96, 1.96] and [−2.45, 2.45] , Scheffé’s (1953) method produces a confidence re-

gion in which the first period’s forecast uncertainty is narrower but the second period’s is

wider. Figure 4 translates all of the bands discussed so far into a more traditional format to

make the interpretation more transparent, assuming for simplicity that byT+1 = 1.

4 Conditional Path Forecasts

This section discusses a method of path forecast evaluation that exploits the asymptotic

Gaussian approximation of the joint predictive density in corollaries 2 and 3; and properties

of the multivariate normal distribution and linear projections. The problem that we have

in mind is that of constructing forecast paths conditional on alternative hypothetical paths

for a subset of variables in the k-dimensional system being considered. An example perhaps

provides better intuition about what we mean.

Suppose a policy maker is confronted with a set of path forecasts bYT (H) about the future
behavior of output growth, inflation, oil prices, exchange rates, interest rates, and so on.

Given these forecasts, suppose the policy maker wants to stress the model and examine how

would these macroeconomic forecasts vary if, for example, a path of oil prices different than

that predicted were to take place. It turns out that when the joint predictive density is

Gaussian, not only is it simple to obtain what the conditional forecast paths would be, it is

straightforward to calculate the associated conditional predictive density. Waggoner and Zha

(1999) develop Bayesian methods to compute this distribution in finite samples for VARs

whereas Leeper and Zha (2003) further investigate projections based on hypothetical paths

of monetary policy.
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It is important to remark that this section does not specifically address parameter stability

in the face of variability in the hypothetical paths in the sense discussed by Lucas (1976).

Such questions are reserved for future research. Rather, we examine hypothetical paths drawn

from the joint predictive density and, therefore, a natural starting point is to examine the

likelihood of the hypothetical paths proposed. For this reason, we introduce some additional

notation.

Specifically, let k = k0+k1 where k0 is the dimension of the subvector of variables whose

conditional path forecasts we want to calculate, and k1 is the subvector of variables whose

hypothetical paths are the conditioning set. Define the selector matrices S0 = (IH ⊗E0) and

S1 = (IH ⊗E1) where E0 is a k0 × k matrix formed with the k0 rows of Ik associated with

the variables whose conditional paths we wish to calculate, and E1 is a k1 × k matrix whose

rows are the k1 rows of Ik associated with the variables whose hypothetical paths provide

the conditioning set. Therefore, if bY cT (H) denotes the kH × 1 vector of conditional forecasts,
bY 0T (H) = S0bY cT (H) is the k0H × 1 vector of forecasts conditional on the hypothetical paths

Y 1T (H) = S1
bY cT (H), which are of dimension k1H × 1 and where the “hat” is omitted because

the hypothetical paths are not estimated but rather are assumed.

Recall that under assumptions 1 and 2, corollaries 2 and 3 suggest that the asymptotic

predictive density of bYT (H) is
√
T
³bYT (H)− YT,H´ d→ N (0;ΞH)

although we remark that different assumptions and forecast environments could produce a

similar asymptotic result. The likelihood of the hypothetical paths Y 1T (H) can be evaluated
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by testing the null hypothesis H0 : S1YT,H = Y 1T (H) with the Wald statistic

W c
1 = T

³
S1bYT (H)− Y 1T (H)´0 ¡S1ΞHS01¢−1 ³S1 bYT (H)− Y 1T (H)´ d→ χ2k1H .

Hence, one minus the p-value associated with W c
1 is a measure of the distance, in probabil-

ity units, between the predicted paths and the hypothetical paths of the k1 variables. Low

p-values (i.e. toward the direction of rejecting the null) stress the conditional forecasting

exercise toward paths for the k1 variables that have been rarely observed in the historical

sample. In such situations, the resulting conditional forecasts are likely to be more problem-

atic because we are asking about regions of the event space where the model has not been

trained by the sample.

Once the likelihood of the hypothetical values has been assessed, we want to calculate

the conditional forecast paths bY 0T (H) and their predictive distribution. Standard properties
of linear projections and the multivariate Gaussian distribution are all is needed to conclude

that

bY 0T (H) = bYT (H) + S0ΞHS01 ¡S1ΞHS01¢−1 (Y 1T (H)− S1bYT (H))
with a Gaussian predictive density whose covariance matrix is

Ξ0H = S0ΞHS
0
0 − S0ΞHS01

¡
S1ΞHS

0
1

¢−1
S1ΞHS0.

It is worth remarking that the Gaussian approximation and Ξ0H is all that is needed

to construct simultaneous rectangular confidence regions, conditional error bands and Wald
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tests of joint hypotheses with the techniques described in previous sections. Section 6 illus-

trates all of these techniques with an empirical illustration.

5 Model Comparison

5.1 Mean Squared Forecast Path Error

The most commonly used metric of forecast model comparison is the mean squared forecast

error (MSFE ). Assuming for the sake of simplicity that y is univariate, and given an esti-

mation sample of 1, ..., T observations and a forecast evaluation sample of T + 1, ..., T +N

observations, this metric is constructed as

MSFEh =

Ã
1

N

NX
i=1

(byT+i(h)− yT+i+h)2! .
Therefore, an absolute comparison of the overall predictive merits between two competing

models for a particular forecast horizon h can be directly obtained by comparing their re-

spective MSFEh.

However, often times a model that predicts well at short horizons will predict badly a

longer horizons (and vice versa), thus making an assessment of overall predictive performance

difficult. A natural way to overcome this difficulty is to construct a metric that evaluates

entire forecast paths jointly. Clements and Hendry (1993) suggest to base comparison on

the determinant of the forecast error second moment matrix pooled across horizons of inter-

est, which they call generalized forecast error second moment (GFESM ). Compared to the

standard MSFE, the GFESM has the advantage of being invariant to non-singular, scale-

preserving linear transformations. However, GFESM does not provide a natural basis on
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which to build tests of relative predictive ability.

Instead, suppose that the 1, ...,H forecast path bYT (H) has an asymptotic distribution
given by

√
T
³bYT (H)− YT,H´ d→ N (0;ΞH) .

Examples of such a result are corollaries 2 and 3 in Section 2. We know then that the

associated Wald statistic

WH = T
³bYT (H)− YT,H´0 Ξ−1H ³bYT (H)− YT,H´ d→ χ2kH (19)

provides a natural metric of distance between bYT (H) and YT,H . This metric operates at two
levels: (1) the relative efficiency with which each forecast is generated; and (2) the degree

of correlation between forecasts. Based on this distance metric, the measure in equivalent

units to the MSFEh is

MSFP1,H =

Ã
1

HN

NX
i=1

³bYT+i(H)− YT+i,H´0 bΛ−1H ³bYT+i(H)− YT+i,H´!

where ΛH is the correlation matrix associated to ΞH and bΛH p→ ΛH if bΞH p→ ΞH and ΞH is

invertible, such as in corollaries 2 and 3. The term MSFP1,H stands for the mean squared

forecast path error over horizons 1, ...,H.

For H = 1, then MSFP1,1 = MSFE1. Similarly, if forecasts at horizons 1, ...,H are

uncorrelated (ΞH is diagonal) thenMSFP1,H = 1
H

PH
h=1MSFEh, that is, an average of the

MSFE over 1, ...,H.

As an analytical illustration, suppose the data were generated by the simple AR(1) model
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with known parameters previously discussed in Section 3, so that the forecast path for h = 1, 2

is

bYT (2) =
⎡⎢⎢⎣ ρyT

ρ2yT

⎤⎥⎥⎦ ;YT,2 =
⎡⎢⎢⎣ ρyT + εT+1

ρ2yT + εT+2 + ρεT+1

⎤⎥⎥⎦ .
with

bYT (2)− YT,2 =
⎡⎢⎢⎣ εT+1

εT+2 + ρεT+1

⎤⎥⎥⎦ ∼ N
⎛⎜⎜⎝0;σ2

⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
⎞⎟⎟⎠

Then, the MSFP1,H for a predictive sample of N observations is

MSFPAR1,2 =
1

2N

NX
i=1

³bYT+i (2)− YT+i,2´0
⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
−1 ³bYT+i (2)− YT+i,2´

=
1

2N

NX
i=1

µ
εT+i+1 εT+i+2 + ρεT+i+1

¶⎡⎢⎢⎣ 1 ρ

ρ 1 + ρ2

⎤⎥⎥⎦
−1⎛⎜⎜⎝ εT+i+1

εT+i+2 + ρεT+i+1

⎞⎟⎟⎠
=

1

2N

NX
i=1

¡
ε2T+i+1 + ε2T+i+2

¢ p→ σ2 as N →∞

That is, absent parameter estimation uncertainty and given that εt are i.i.d. normal, the

MSFPAR1,2 is simply the predictive sample variance of the shocks hitting the model at each

forecast horizon. In other words, this is a pure measure of how well the model fits at each

horizon, distilled from the correlation between how the forecasts are constructed over time.1

The next subsection exploits the Wald metric on which MSFP is based to extend available

tests of relative predictive ability between models.

1 Parenthetically, notice that when one omits parameter estimation uncertainty, there is no difference
between forecasts made by iterating the AR(1) specification or by local projections so that this result is not
method-dependent.
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5.2 Tests of Path Predictive Ability

The MSFP1,H metric allows one to easily determine which of two competing forecasting

models performs best, in the available sample of data. If we want to determine whether

differences in forecasting performance are statistically significant, we need to recast common

tests of predictive ability in terms of paths. The literature on comparing the predictive ability

of competing forecasts given general loss functions was initiated by Diebold and Mariano

(1995) and further formalized in West (1996); McCracken (2000); Clark and McCracken

(2001); Corradi, Swanson and Olivetti (2001); and Chao, Corradi and Swanson (2001),

among others. Giacomini and White (2006) extend this literature even further by considering

conditional predictive ability tests based on examining null hypotheses that are expressed

in terms of conditional expected forecast loss functions rather than unconditionally, as had

previously been done. The literature is obviously very extensive so we cannot presume

to explore the details of every possible contingency when testing path predictive ability.

However, we think the underlying principle can be succinctly presented for the most common

testing scenario, and we leave for further research appropriate generalizations.

Giacomini and White (2006) provide convenient and general conditions for multistep

unconditional predictive ability testing à là Diebold-Mariano-West (DMW) that are sum-

marized in theorem 4 of their paper. The forecasting environment is characterized by non-

vanishing estimation uncertainty — the sample size remains fixed either because forecasts are

obtained from a fixed initial sample, or because a bounded rolling window scheme is used in-

stead. Meanwhile, the evaluation sample is allowed to grow to infinity to provide appropriate

asymptotic results. Among other advantages, this setup allows one to consider comparison
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of nested models, a feature that is not available when using set-ups based on West (1996)

assumptions.

Suppose the estimation sample is of size T (although Giacomini and White (2006) allow

for bounded but varying-size, rolling samples as in Pesaran and Timmermann, 2006). Thus,

estimation with a fixed initial sample is based on observations t = 1, ..., T whereas estimation

with rolling windows is based on observations t = τ(T )−T+1, ..., τ(T ) for τ(T ) = T, ..., N−H

where N is the forecast evaluation sample size. Omitting the index T in τ(T ) and using the

same notation as before, then bY jτ (H) denotes the forecast path corresponding to observations
Yτ ,H = (yτ+1, ...,yτ+H)

0 obtained by method j = 1, 2 with an estimation sample of size T

(either by a fixed initial sample or with rolling windows).

Let Ljτ ,H denote a generic loss function Ljτ ,H
³
Yτ ,H − bY jτ (H)´ , where for reasons that

will become clear momentarily, we will focus on a mean squared forecast path metric. A test

of unconditional equal path predictive ability consists in a test of the null

H0 : E
£
L1τ ,H − L2τ ,H

¤
= 0; τ = T, ..., N −H

against the alternative

HA :
¯̄
E
£
∆Lτ ,H

¤¯̄ ≥ δ > 0

for all N sufficiently large and where

∆Lτ ,H =
1

N

N−HX
τ=T

L1τ ,H − L2τ ,H .
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Let bσ2N denote a suitable heteroskedasticity and autocorrelation consistent (HAC) esti-

mator of the asymptotic variance σ2N = var
h√
N∆Lτ ,H

i
, then Giacomini and White (2006)

show that the statistic

tN,H =
∆Lτ ,HbσN/√N d→ N (0, 1)

under the null and, for any constant c ∈ R, and Pr [|tN,H | > c] → 1 as N → ∞ under the

alternative.

These results deserve several comments. First, an essential element of the proof in Gia-

comini and White (2006) is to provide enough primitive conditions on {yt} so that ∆Lτ ,H

is a martingale difference sequence for which a suitable central limit theorem can be ap-

plied. These primitive conditions allow for substantial heterogeneity and persistence, more

in fact, than we have allowed in Section 2. Second, a natural choice of loss function given the

discussion in the previous subsection is Lτ ,H = MSFP1,H . Third, typically, in a multistep

testing situation, the moving-average structure of the forecast errors justifies the need for

HAC covariance estimators. However, forecast comparisons based on paths are simultaneous

comparisons of forecasts at all horizons within the path. The Wald metric given in expression

(19) represents a natural method of simultaneous comparison that has the virtue of orthog-

onalizing the sequence of forecast errors at all horizons — hence the convergence to a χ2

distribution. Therefore, a predictive ability test with loss functions based on MSFP1,H sug-

gests that, in most practical situations, heterogeneity rather than autocorrelation will be the

primary concern in ensuring consistency of the asymptotic covariance matrix. Consequently,

a low truncation lag for theHAC estimator will often suffice, thus providing additional power

30



to the test, as Giacomini and White (2006) suggest. Finally, note thatMSFP1,H requires an

estimate of the correlation matrix ΛH . Given forecasts based on our VAR or local projection

set-up, one could estimate this matrix from the estimation sample with the given formulas.

However, since the asymptotics are based on a fixed estimation sample, the natural choice is

to obtain ΛH from a sample estimator based on the evaluation sample to ensure consistency.

We feel confident the reader will immediately see how the previous discussion can be adapted

to Giacomini and White’s (2006) multistep conditional predictive ability tests described in

theorem 3 of their paper, and for this reason we do not further discuss the details of this or

other procedures described therein.

6 Empirical Illustration

This section contains two applications of the techniques presented above. The first appli-

cation examines path forecasts for a system of U.S. macroeconomic variables and provides

an example of a conditional forecast simulation. The second application serves to illustrate

the newly introduced measures of forecast path comparison and tests of predictive ability;

and examines the role of monetary aggregates in forecasting inflation, a topic of much recent

debate in central bank circles.

6.1 A Macroeconomic Forecasting Exercise

On June 30, 2004, the Federal Open Market Committee (FOMC) raised the federal funds

rate (the U.S. key monetary policy rate) from 1% to 1.25% — a level it had not reached since

interest rates were last changed from 1.5% to 1.25% on November 6, 2002. For more than

a year before the June 30, 2004 change, the Federal Reserve had kept the federal funds rate
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fixed at 1%. This section examines forecasts of the U.S. economy on the eve of the first in a

series of interest rate increases that would culminate two years later, on June 29, 2006, with

the federal funds rate at 5.25%.

Our forecast exercise examines U.S. real GDP growth (on a yearly basis, in percentage

terms, and seasonally adjusted); inflation (measured by the personal consumption expendi-

tures deflator on a yearly basis, in percentage terms, and seasonally adjusted); the federal

funds rate; and the 10 year Treasury Bond rate. All data are measured quarterly (with the

federal funds rate and the 10 year T-Bond rate averaged over the quarter) from 1953:II to

2004:II. With these data, we then construct two-year (eight-quarters) ahead forecasts for this

system of variables by local projections. The lag length of the projections was automatically

selected to be six by AICC — a correction to AIC designed for autoregressions and with better

properties in small samples than either AIC or SIC (see Hurvich and Tsai, 1989).

Figure 5 displays these forecasts along with the actual realizations of these economic

variables, conditional and marginal 95% bands, and 95% Scheffé bands. Several results

deserve comment. First, the 95% Scheffé bands are more conservative and tend to fan out

as the forecast horizon increases but, over the two-year period examined, they tend to be

relatively close to the traditional 95% marginal bands (specially for U.S. GDP). Second, the

95% conditional bands are considerably narrower in all cases but they are meant to capture

the uncertainty generated by that period’s shock, not the overall uncertainty of the path.

Third, our simple experiment results in projections for output and inflation that are more

optimistic than the actual data later displayed. As a consequence, our forecast for the federal

funds rate is more aggressive (after two years we would have predicted the rate to be at 5.5%
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instead of 5.25%) although the general pattern of interest rate increases is very similar. Not

surprisingly, the 10 year T-Bond rate is also predicted to be higher than it actually was

although consistent with a higher inflation premium. For completeness, the same forecasts

are displayed in Figure 6 with 95th, 50th and 5th simultaneous percentiles to form appropriate

fan charts.

In order to make sense of where the differences between our forecasts and the historical

record may come from, we experimented with the following hypothetical. Suppose that

the Federal Reserve at the time believed that inflation would not run as high as predicted

(perhaps because of the end of major military operations in Iraq suggested more stability in

oil markets would be forthcoming or other factors that may be difficult to quantify within

the model). Along these lines, we experimented with a path of inflation that tracks the lower

95% conditional confidence band so that inflation is predicted to be at 3.4% (rather than at

3.8%) after two years.

The results of this conditional experiment are reported in Figure 7. We begin by re-

marking that this hypothetical path is very conservative: the Wald test of the null that the

hypothetical is statistically equivalent to the unconditional forecast has a p-value of 0.71,

that is, the distance between the hypothetical and the forecasted path is only 29% in prob-

ability units. Therefore, we feel reasonably certain that such an experiment is still well

approximated by our model.

Interestingly, the forecasts obtained by conditioning on this hypothetical path for inflation

are remarkably close to the historical record. In particular, the path of increases in the federal

funds rate is virtually identical to the actual path whereas the path of the 10 year T-Bond
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rate is mostly within the 95% conditional bands. The most significant difference was a slight

drop in output after one year to a 3% growth rate that in the conditional was predicted

to be closer to 3.5%, but otherwise both paths seem to reconnect at the end of the two

year predictive horizon. Whereas we cannot be certain that this hypothetical reflected the

Federal Reserve view’s on inflation at the time, it serves to illustrate that formal statistical

experimentation with alternative scenarios can be easily provided to policy makers with the

techniques presented here.

6.2 Do Monetary Aggregates Help Forecast Inflation?

In order to achieve monetary policy goals, central banks constantly monitor risks to price

stability. Since its inception, the European Central Bank (ECB) has used a so-called “two

pillar” approach that gives a specific role to monetary aggregates over other economic indica-

tors when forecasting inflation. Consequently, the question we ask in this section is whether

monetary aggregates help forecast inflation in the U.S. and in the euro area, specially since

the U.S. Federal Reserve (Fed) does not reserve a special role for monetary aggregates over

other predictors.

Our objective is to evaluate whether there are differences in the ability to predict inflation

(measured by the consumer price index minus food and energy) when money growth measures

(M2, M3, and in the euro area, M3C growth, a corrected version of M3) are included alongside

measures of economic activity (industrial production index growth in the U.S., real GDP

growth in the euro area); and interest rates (the federal funds rate in the U.S., and the

4-month Euribor in the euro area). All variables are available monthly except for euro area

real GDP, which is available quarterly. The U.S. sample begins in January 1985 and runs
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until January 2007 (February 2006 when M3 is used since it was discontinued at this date).

We have chosen a later starting date to avoid possible structural breaks in the behavior

of inflation following the turbulent 1970s. The euro area sample begins January 1997 and

runs until September 2006. We note that M3C is only available beginning January 1999.

Four years worth of data are reserved for out-of-sample comparisons in the U.S., and two

in the euro area due to the shorter available sample. The size of the estimation sample is

kept constant by obtaining estimates through a series of rolling windows as prescribed by

Giacomini and White (2006).

Figure 8 plots for the U.S., the MSFE and the MSFP in terms of the percentage forecast

improvement of the model that includes money aggregates (M2 in the top panels, M3 in the

bottom panels) relative to the model that excludes them. Alongside is a plot of the value

of the corresponding Giacomini and White (2006) statistic for loss functions based on the

differences in MSFE and MSFP respectively resulting from including money aggregates as

predictors. The forecasting model is based on local projections whose lag length is determined

automatically by information criteria (Hurvich and Tsai’s (1989) AIC corrected) so that the

with and without money aggregates models do not necessarily always have the same number

of lags. Similar results are reported for the euro area in Figure 8.

Figures 8 and 9 suggest that both in the U.S. and in the euro area, forecasting performance

deteriorates when M2 is included but performance improves when M3 is included instead

(notice that in the euro area this is true for M3C but less clear for M3). However, while

these differences are not statistically significant in the U.S. (Giacomini and White (2006)

statistics are well below critical values irrespective on whether the loss function is based on
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differences in MSFE or MSFP), the differences are statistically significant in the euro area,

perhaps explaining the motivation behind the ECB’s “two-pillar” policy.

More generally, the two metrics of forecasting performance,MSFE andMSFP can behave

quite differently. Typically, MSFP is smoother and less volatile than MSFE and its behavior

is more consistent with the Giacomini and White (2006) tests, even when the difference in

loss functions is measured in terms of MSFE. Although both metrics tend to coincide in the

direction in which the forecasts improve, we noticed that in the case of the euro area with

M3, the metrics provided different suggestions with the MSFE preferring the model that

included M3 and MSFP marginally preferring the model without M3.

7 Conclusions

Suppose you are comparing two defective computer monitors. One where the color of each

pixel is randomly chosen from a relatively tight distribution centered at the true color for

each pixel; the other shifts the color of each pixel by a random shock of higher variance than

in the first monitor, but the shock is the same for all pixels (i.e. the shocks across pixels are

perfectly correlated). Although the individual pixel, color-error-rate in the first monitor is

smaller than in the second, images in the first will be quite blurry while images in the second

will be perfectly crisp — albeit with the wrong tint.

By the same token, we believe it is often more sensible to compare the patterns implied

by the forecast paths of competing models jointly when assessing predictive ability. To that

end, our paper provides a long list of results. We begin by deriving the asymptotic distrib-

ution of forecast paths generated by finite order VARs or local projections from potentially

infinite order DGPs. Hence our results cover a wide class of situations practitioners are
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likely to encounter in practice, leaving for further research elaborate extensions from these

foundational results.

Summarizing the wealth of information contained in the joint distribution of the forecast

path presents a host of new difficulties. We provide several new graphical solutions to

this problem based on the observation that the Cholesky decomposition of the covariance

matrix of the forecast path orthogonalizes the path into the constituent shocks hitting the

forecasting model at each horizon. Hence we introduce simultaneous confidence bands based

on Scheffé’s (1953) method, conditional bands, and fan charts based on the quantiles of

the joint predictive density. In the end, the underlying intuition of our derivations is the

same as the intuition in classical linear regression with correlated regressors: while individual

coefficients may be imprecisely estimated (low t-statistics), the joint effect could still be quite

precisely estimated (high F-statistics).

Knowledge of the joint distribution is also advantageous for counterfactual simulation.

However, experimentation with alternative scenarios is complicated in most economic appli-

cations since the Lucas Critique warns of the possibility that the forecasting model may be

parametrically unstable with respect to the hypothetical path. Furthermore, insofar as the

hypothetical paths are far away from the history observed, we are asking an approximate

model to make predictions in regions were the model has no training from the sample. To

get a grip on these issues, we provide formal statistics on the distance of the hypothetical

from the average historical distribution of the paths based on the Wald principle. Once the

validity of the hypothetical is formally assessed, we provide simple formulas to derive the

paths and their distribution, conditional on the hypothetical.
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Returning to the intuition of our computer monitor example, we ask what is the best way

to compare the predictive ability of models. We accomplish this in two ways: by extending

the traditional mean squared forecast error measures to paths (and hence we create the mean

squared forecast path) and by extending Diebold-Mariano-West statistics of equal predictive

ability in terms on the joint null over the path rather than on its constituent elements.
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Figure 1 – 95% Confidence Ellipse for AR(1) Forecast Path over Two Horizons 
 
 
 
 

 
 
Notes: Standard confidence bands and confidence ellipse (AR Coefficient = 0.75, Error 
Variance = 1) 
 

 



 42

Figure 2 – Correlation of 1,2,3,4-step ahead forecast errors, AR(1) and ARMA(1,1) 
 
Panel 1 – AR model 
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Panel 2 – ARMA(1,1) model, AR parameter = 0.75 
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Figure 3 – 95% Scheffe bounds for AR(1) Forecast Path over Two Horizons 
 
Panel 1 – Standard confidence bands, confidence ellipse, and Scheffé Bounds 
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Panel 2 – 95% Confidence Circle for Orthogonalized Forecast Path 
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Notes: AR Coefficient = 0.75, Error Variance = 1 
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Figure 4 – 95% Confidence Scheffé, Marginal and Conditional Bands 
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Notes: AR(1) two period ahead forecasts with ρ = 0.75 and σ = 1. This representation 
corresponds to the two dimensional representation in Figure 3. 
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Figure 5 – 95% Scheffé, Conditional and Marginal Error Bands for Macroeconomic Forecasts 
 

 
Notes: Sample runs from 1953:II to 2004:II. The forecast horizon runs from 2004:III to 2006:III.
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Figure 6 – Fan Charts: 95th, 50th, and 5th percentiles 
 

 
Notes: These are the same forecasts as in figure 4 but with Scheffé percentiles displayed. 
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Figure 7 – Counterfactual: Inflation set at the lower 95% conditional band value. Sample: 1953:II – 2004:II 
 

 
Notes: Distance of the counterfactual from the forecast in probability units is 0.29 (or p-value of the joint test of equality is 0.71).  
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Figure 8 – Predicting U.S. Inflation with and without Monetary Aggregates 
Sample: January 1985 – January 2007 
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Notes: Error bands in Giacomini-White graphs indicate the critical values of the test. 



 49

Figure 9 – Predicting Euro Area Inflation with and without Monetary Aggregates 
Sample: January 1997 – September 2006 
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Notes: Error bands in Giacomini-White graphs indicate the critical values of the test. 
 




