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Abstract

We consider the case where a parameter, 6, is estimated by maximizing a criterion
function, Q(X,0). The estimate is then used to evaluate the criterion function with
the same data, X, as well as with an independent data set, ). The in-sample fit
and out-of-sample fit relative to that of 6y, the “true” parameter, are given by T, , =
Q(X,0,) — Q(X,00) and Ty, . = Q(I,0.) — Q(Y,6,). We derive the limit distribution
of (T2, Ty,z) for a large class of criterion functions and show that T, , and T, are
strongly negatively related. The implication is that good in-sample fit translates directly
into poor out-of-sample fit. This result forms the basis for a unified framework for
discussing aspect of model selection, model averaging, and the effects of data mining.
The limit distribution can also be used to motivate a particular form of shrinkage, called
grinkage, where in-sample parameter estimates are modified to off-set the overfit of the
criterion function, hence the name. This form of shrinkage is particularly simple in the
context of regression models, such as the factor-based forecasting models.
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1 Introduction

Much of applied econometrics is motivated by some form of out-of-sample use. An obvious
example is the forecasting problem, where a model is estimated with in-sample data, while
the objective is to construct a good out-of-sample forecast. The out-of-sample motivation is
intrinsic to many other problems. For example, when a sample is analyzed in order to make
inference about aspects of a general population, the objective is to get a good model for the
general population, not a model that necessarily explains all the variation in the sample.
In this case one may view the general population (less the sample used in the empirical
analysis) as the “out-of-sample”.

The main contribution of this paper is the result established in Theorem 1, which re-
veals a strong connection between the in-sample fit and the out-of-sample fit of a model, in
a general framework. The result has important implications for model selection by infor-
mation criteria, because these are shown to have some rather unfortunate and paradoxical
properties. The result also provides important insight about model averaging and shrinkage
methods. Furthermore, the result provides a theoretical foundation for the use of out-of-
sample analysis.

It is well known that as more complexity is added to a model the better will the model
fit the data in-sample, while the contrary tends to be true out-of-sample. See, e.g. Chatfield
(1995). This aspect is evident from the following example, which serves to illustrated some
of the results in this paper.

Consider the regression model, y; = x;8y + €, where ¢ ~ #dN(0,1). The sam-
ple {y;z:};,_, is available for inference about £, € R* while our true objective concerns
{yt,xt}fgnﬂ. We shall refer to the two periods as the in-sample and out-of-sample pe-
riods, respectively, and we use the notation X = {y;a;}; | and ¥ = {y,2:}7%,,4. To
make the in-sample and out-of-sample regressors comparable, we assume that » ;' | zpz) =
DA

Suppose that our objective is to minimize the out-of-sample expected mean-squared

error, or equivalently maximize

2n
Q(8) = E{QW.9)} = E {— S (- mw} |

t=n-+1
It can be verified that 3, is the solution to this problem. Since 3, is unknown to us, we

must pick a value for 8 based on the available information. One possibility is to choose the



[ that maximizes
n

QX,B) == (g — B"xr).

t=1
The solution is the well known least squares estimator, 3, = S0, yxy /31, 4z} , which
is also the maximum likelihood estimator in this setting.

In the present situation it is well known that T}, , = Q(X, 3,) —Q(X, Bg) ~ X%k)‘ The fact
that Q(X,8,) > Q(X, By) (almost surely) is called overfitting, and the expected overfit is
here E(T, ;) = k. The converse is true out-of-sample, because T}, , = Q(J, B.)—Q(, B,) has
a negative expected value, specifically E(T}, ;) = —k. This merely confirms the well known
result that overparameterized models tend to do poorly out-of-sample, despite good in-
sample fit. This can motivate the use of information criteria, such as AIC and BIC that
explicitly make a trade-off between the complexity of a model and how well the model fits
the data.

Our theoretical result provides additional insight and reveals a stronger connection be-

tween the in-sample fit and out-of-sample fit. One implication of our analysis is that

E[Q.5,) = Q. By)l¥] = = |Q(X. 8,) - Q. 5y)|

which shows that more (in-sample) overfitting results in a lower expected fit out-of-sample.
This observation is important for model selection and model averaging.

In this paper we derive the (joint) limit distribution of (7} ,, T} ) for a general class of
criteria functions, which includes loss functions that are commonly used for the evaluation
of forecasts. The limit distribution for the out-of-sample quantity, Tj , has features that
are similar to those seen in quasi maximum likelihood analysis, see e.g. White (1994). The
limit distribution is particularly simple when an information-matrix style equality holds.
This inequality holds when the criterion function is a correctly specified likelihood function.
In this case we have that (T} 4, T;.y) LA (Z{Z1,—Z{Z) + 2Z] Z5), where Z; and Zy are
independent Gaussian distributed random variables, Z1, Zy ~ N (0, I;). Thus the out-of-
sample quantity, T}, », does not have a limit distribution that is simply (minus one times) a
X%k)' The additional term appears because Bm does not maximize Q(J, ).

Comments out theoretical results:

e An interesting special case is that where the criterion function is the log-likelihood

function. Our result provide the limit distribution of the out-of-sample likelihood



ratio statistic, LRy, = 2 {log L(y,@x) — log L(y,eo)} . In fact we establish the joint
distribution of (LR, ;,LR; ;), where LR, ; is the conventional (in-sample) likelihood
ratio statistic, LR, ; = 2 {log L(X,0,) —log L(X, 00)} .

An implication of our result is that one is less likely to produce spurious results out-
of-sample than in-sample. The reason is that an over-parameterized model tends to
do worse than a parsimonious (but correct) model out-of-sample. It will take a lot
of luck for an overparameterized model to offset its disadvantage in an out-of-sample
comparison with the simpler model. Thus when a complex model outperforms a
simpler model out-of-sample it is stronger evidence in favor of the larger model, than

had the outperformance been found in-sample (other things being equal).
A useful decomposition for discussing model selection and model averaging.

Model Selection: Finding the best model is obscured by sampling and estimation
error, as the noise conceals the true ranking of models. Based on our theoretical
result we will argue that standard model selection criteria are poorly suited for the
problem of selecting a model with a good out-of-sample fit, this is particularly the
case in model-rich environments. Shrinkage methods or model averaging are more

promising avenues for dealing with this issue.
Model Averaging: We shall discuss model averaging based on our theoretical results.

Our theoretical result provides a deep understanding of the observations made in Clark
and West (2007). They consider the situation with two regression models — one being
nested in the other — where the parameters are estimated by least squares and the
mean squared (prediction) error is used as criterion function. The observation made
in Clark and West (2007) is that MSPE is ezpected to be smaller for parsimonious
models. This motivates a correction of a particular test. Our results reveals that
source of the smaller expected MSPE, is the close connection between estimation
error and out-of-sample MSPE. Furthermore, we show that this aspect of estimation

and out-of-sample prediction holds in a rather general framework.

Estimating the expected overfit by subsampling, bootstrapping, or the jackknife. The
latter has been used in this context by Hansen and Racine (2007).



e This result motivates a particular form of shrinkage, called qrinkage. Qrinkage is par-
ticularly simple to apply in regression models, and shrinkage arguments may explain
some of the empirical success of the principal component-based forecasts. Several
forms of shrinkage have been proposed in the literature, see Hastie, Tibshirani, and

Friedman (2001) for an introduction to a large number of shrinkage methods.

While parameter instability is an important issue for forecasting, this is not the focus
of this paper. Though we shall comment on this issue where appropriate. Forecasting in an
environment with non-constant parameters is an active field of research, see e.g. Hendry
and Clements (2002), Pesaran and Timmermann (2005), and Rossi and Giacomini (2006).

Much caution is warranted when asserting the merits of a particular model, based on
an out-of-sample comparison. Estimation error may entirely explain the out-of-sample
outcome. This is particular relevant if one suspects that parameters are poorly estimated.
Thus critiquing a model could backfire by directing attention to the econometrician having
estimated the parameters poorly, e.g. by using a relatively short estimation period, or
an estimation method that does not maximize the appropriate criterion function. These
aspects are worth having in mind, when more sophisticated models are compared to a simple
parsimonious benchmark model, as is the case in Meese and Rogoff (1983) and Atkeson and

Ohanian (2001).

2 Theoretical Results

We consider a situation where the criterion function and estimation problem can be ex-
pressed within the framework of extremum estimators/M-estimators, see Huber (1981). In
our exposition we will adopt the framework of Amemiya (1985).

The objective is given in terms of a non-stochastic criterion function Q(6), which attains
a unique global maximum, 6y = arg maxgece Q(0). We will refer to 6y as the true parameter
value. The empirical version of the problem is based on a random criterion Q(X, ), where
X = (Xy,...,X,) is the sample used for the estimation.

To take an example, the criterion function may be the mean squared error, Q(u) =
—E(X; — p)? with the empirical criterion function given by Q(X, u) = — >0 (Xt — p)%

The extremum estimator is defined by

0, = arg max Q(X,0).

4



We adopt the following standard assumptions from the theory on extremum estimators, see

e.g. Amemiya (1985).

Assumption 1 Q(X,0) = n1Q(X,0) 2 Q(0) uniformly in 6 on a open neighborhood of
0y, as n — oo.
Q"(X,0) = 0?°Q(X,0)/0000" exists and is continuous in an open neighborhood of 0y,
Q"(X,0) L —1(0) uniformly in 0 in an open neighborhood of 6y,
Z(0) is continuous in a neighborhood of 6y and Ty = Z(0y) € RF¥** is negative definite.
n=12Q/ (X, 60) 5 N{0, o}, where Jo = limy oo E {n"1Q'(X,60)Q(X,00)"} .

Assumption 1 guarantees that 0, (eventually) will be given by the first order condition
Q'(Xx, 993) = 0. In what follows, we assume that n is sufficiently large that this is indeed the
case.! The assumptions are stronger than necessary. The differentiability (both first and
second) can be dispensed with and replaced with weaker assumptions, e.g. by adopting the
setup in Hong and Preston (2006).

We have in mind a situation where the estimate, égg, is to be computed from n ob-
servations, X = (Xi,...,X,), however the object of interest is tied to Q(y,éw), where
Y = (Y1,...,Y,,) denotes m observations that are drawn from the same distribution as that
of X. In the context of forecasting, ) will represent the data from the out-of-sample period,

say the last m observations as illustrated below.

X1, X, Xt X
=X =y

We are particularly interested in the two quantities

x
8

|
S
=
>

o) = Q(X,00), and Ty, =Q,0.) — Q(V,0).

The first quantity, T, is a measure of in-sample “fit”. We have Q(X,@x) > Q(X,60)),
because 6, maximizes Q(X,0). In this sense, Q(X, 996) will reflect a value that is too good
relative to that of the true parameter Q (X, 6p), hence the notion of overfitting. The second
quantity, T}, », is a measure of out-of-sample fit. Unlike the in-sample statistic, there is no
guarantee that T}, , is non-negative. In fact, because g is the best ex-ante value for 6, the

out-of-sample measure, T}, ., will tend to be negative.

"When there are multiple solutions to the FOC, one can simply choose the one that yields the largest

value of the criterion function, that is 0, = arg maXge(9:qQ’(x,0)=0} Q(X,0).



Note that we consider the natural situation where 6 is estimated by maximizing the
criterion function in-sample, Q(X,-), and the very same criterion function is the one used
for the out-of-sample evaluation, Q(), -).

We have the following result concerning the limit distribution of (T ., Ty.).

m

Theorem 1 Given Assumption 1. § € R*. Suppose o — m. Then

Tw,x d Cl

2 — , as n — 00,

Tx,y QﬁC2 - ﬂ-Cl
where (y = Z{AZ1, (o = Z1AZy and Zy and Zy are independent Gaussian random variables

Z;i ~ Ng(0,Ii), and A = diag (\1,..., i), A1,..., \g being the eigenvalues of [Ialjo].

Remark. Too good in-sample fit (overfit), T}, , > 0, translates into mediocre out-of-sample
fit. This aspect is particularly important when multiple models are compared in-sample for

the purpose of selecting a model to be used out-of-sample, because

Q.8 = QX 0) + Q(x, V) — Q(x,09)),

and the more models that are being compared with approximately the same Q(&X ,ng )),
~(7)

the more likely it is that the best in-sample performance, as defined by max; Q(X,0, "), is

J)

attained by a model with a large ng"g;, hence a poor out-of-sample fit.

[Selecting the model with the best in-sample fit for the purpose of out-of-sample fore-
casting, is an act of hubris... the (large) value of Té@ its nemesis. |
Remark. The result offers insight about the merits of model averaging, as we shall discuss
in the next section.

The theoretical result formulated in Theorem 1 relates the estimated model to that
of the model using population values for the parameters. The implications for comparing
two arbitrary models, nested or non-nested, is straight forward as will be evident from our
analysis in the next Section.

Next we consider the special case where the criterion function is a correctly specified

log-likelihood function.

2.1 Out-Of-Sample Likelihood Analysis

A special case is that where the criterion function is given in the form of the likelihood

function.



When k parameters are estimated and evaluated using the same data, it is well known
that the log-likelihood function, £(X, ,) is expected to be about k/2 units better than the
log-likelihood function evaluated at the true parameters, ¢(X,6p). In this setting we used
0, = O(X) to denote the maximum likelihood estimator. The k/2 follows from the fact that
the likelihood ratio statistic, LR, , = 2{¢(X, 0,) — £(X,00)} is asymptotically distributed
as a x2 with k degrees of freedom (in regular problems).

It is less known that the converse is true when the log-likelihood function is evaluate
out-of-sample. In fact, the asymptotic distribution of LR, . = 2{¢(),0.) — £(V,60)} has
expected value —k, if X and ) are independent and identically distributed. Again we see
how expected in-sample overfit translates into expected out-of-sample underfit. The out-of-
sample log-likelihood function, ¢(}, 91), is related to the predictive likelihood introduced by
Lauritzen (1974). We could call £(), t%) the plug-in predictive likelihood. Due to overfitting,
the plug-in predictive likelihood need not produce an accurate estimate of the distribution
of ), which is typically the objective in the literature on predictive likelihood, see Bjgrnstad
(1990) for a review.

As we have seen in the general formulation of this problem, LR, ; and LR, , are closely
related, and more so than having opposite expected values. Not surprisingly, will we see
that LRy . = Z] Z1 +0p(1) while LRy, = —Z1 Z14+2Z] Zy +0p(1), where Z; and Z5 are two
independent random variables, Z; ~ N (0, I), i = 1,2. So the (random) in-sample overfit,
Z{ Zy, translates directly into an out-of-sample underfit, —Z7 Z;.

To make this result precise. Let {X;}, be a sequence of iid random variables in RP with

density g(x), and suppose that
g(x) = fo,(z), for some by € O C R”, (1)

so that the model is correctly specified model. The in-sample and out-of-sample log-

likelihood functions are given by

n n+m
(X,0) = log f(Xi;0), and L(V,0)= Y logf(X;0).
=1 i=n-+1

The in-sample maximum likelihood estimator, 6, = arg maxg ¢ (X,0), is given by ¢'(X, 990) =

0.

Theorem 2 Assume that (X, 0) satisfies Assumption 1, and that £(X,-) is correctly spec-
ified as formulated in (1). Then the information matriz equality holds, To = Jo, and the



in-sample and out-of-sample likelihood ratio statistics,
LR, = 2{0(X,0,) — 0(X,00)} and LRy, = 2{(,0.) — (Y, 00)},
are such that (with m = limy, o )

LR:E,J: d Cl

— , as n — 090,

LRy« 2y/mCy — (4
where (1 = Z{Z1, (3 = Z{Zy and Zy and Zy are independent Gaussian random variables

Z;i ~ Ng(0, I,).

When n = m we see that the limit distribution of (two times) the in-sample log-likelihood
and the out-of-sample log-likelihood, 2{¢(X,0,) — £(,0,)} = LR, — LRy ;, has the ex-
pected value,

E{¢ — (2¢2 — (1)} = E{2¢1} = 2k.
This expectation can be used to motivate the Akaike’s information criterion (AIC), see
Akaike (1974). AIC assumes that the likelihood function is correctly specified. The proper
penalty to use for misspecified models was derived by Takeuchi (1976) (QMLE results).

The additional insight provided by Theorem 2, is that whenever a model fits the in-
sample data abnormally well, this will result in a meager value of the out-of-sample log-
likelihood, due to the term, ¢;, with opposite signs in the limit distribution. This offers
a theoretical explanation for the AIC paradox in a very general setting. Shimizu (1978)
analyzed the problem of selecting the order of an autoregressive process, and found that
in-sample fit was strongly negatively related to out-of-sample fit (here expressed in our
terminology).

The classical result, LR, » -, x2(k), is a special case of Theorem 2, so the interesting
part of the Theorem is the result for the out-of-sample likelihood ratio. Given the our
results in Theorem 1, we are not surprised to find that LR, , has a negative expected value
and is closely tied to the usual in-sample log-likelihood ratio, LR 4, as (; appears in both

expressions.

Corollary 3 When the in-sample and out-of-sample size is the same, m = n, we have

E(()) = +k, var(¢) = k% + 2k,

E(2¢s —¢1) = —k, var(2¢s — (1) = k? + 6k.



Next, we look at the results of Theorem 2 in the context of a linear regression model.

Example 1 Consider the linear regression model,

Y =X06+u.

To avoid notational confusion, we will use subscripts, 1 and 2, to represent the in-sample

and out-of-sample periods, respectively. In sample we have Y1,u; € R*, X; € R™* and

u1| X1 ~ #4d N, (0,021,), and the well known result for the the sum-of-squared residuals,

Wiy = Y'Yy — B XTY — VX By + B XTI X1 By
= YIT(I — PXl)Yl = ’U,{(I — PXl)ul,

where we have introduced the notation Px, = X1(XTX1)"1XT, and we find

2{0(B1) - 61(80) } = i /o® + ulwr fo? = ul Pxyur [0 ~ 2y,

Similarly, out-of-sample we have

by

Y, Y — QBIXEH + BIX2TX231

Y5 Ve — 2V X (XTX1) 7 X0V, + VX (XT X)) 1XS X (X1 X)Xy,

udug — 2u] X1 (XTX1) 7 XS us 4 uf X1 (XTX1) 7 X5 Xo(XTX1) 1 X )y

+60X3 X280y — 285 X1 X1(XT X1) ™ X5 Xofo + B X1 X1 (X1 X1) ™ X5 Xa(XT X1) T X[ X1

+ud (—2X1 (XTX1) 7 XS X 4+ 2X1 (XTX1) 71 X3 Xo) B + ud(2Xa — 2Xo XT X1 (X7 X1) ™) B,

where the last two terms are both zero. If we define W = %(XlTXl)*lXQTXg L1, we find

20° {52(32) - 52(50)} = uyug — Uyly

= 2T X (XTX,) V2, /%W1/2(X2TX2)_1/2X2TUQ T u{Xl%W(XlTXl)_lXIT)ul

= {22212, - 2Z{ 21} + 0,(1)

where we defined Z1 = U‘l(XlTXl)_l/2X1Tu1 and Zy = U_I(XQTXQ)_I/ZXQTUQ so that u} Px,u10%Z} 71,
since Zy and Zs are independent and both distributed as Ny(0,1), and the structure of The-

orems 1 and 2 emerges.



2.2 Extensions

Out-of-sample forecast evaluation has been analyzed with different estimation schemes,
known as the fized, rolling, and recursive schemes[REF: McCracken...]. Under the fixed
scheme the parameters are estimated once and the same point estimate is used for the
entire out-of-sample period. In the rolling and recursive schemes the parameter is reesti-
mated every time a forecast is made. The recursive scheme use all past observations for
the estimation, whereas the rolling scheme only use a limited number of the most recent
observations. The number of observations used for the estimation with the rolling scheme
is typically constant, but one can also use a random number of observations, defined by
some stationary data dependent process, see e.g. Giacomini and White (2006).

The results presented in Theorem 1 are based on the fixed scheme, but can be adapted to
forecast comparisons using the rolling and recursive schemes. Still, Theorem 1 speaks to the
general situation where a forecast is based on estimated parameters, and have implications
for model selection and model averaging as we discuss in the next section.

For example under the recursive schemes, the expected out-of-sample underfit for a

correctly specified model is approximate

Ui 1 1 el m-+n
k = k

Zn—ki m+n _Z s
=1 s=n-+1

&

L | L |
k/ du—>k/ —du = klog(1 + ) < k,
u 1 U

1+7 14m
where 7 = lim 7, which is consistent with McCracken (200x), who established this result

in the context of regression models.

[ADD ADDITIONAL DETAILS ON ROLLING/RECURSIVE]

3 Implications

We now turn to a situation where we estimate more that a single model.

Consider M different specifications (models) that each have their own “true” parameter

)

value, denoted by Héj . It is useful to think of the different models as restricted version or

a larger nesting model, # € ©. The jth model is now characterized by # € ©U) ¢ ©, and
)

its true value is (‘)Sj = argmaxyc o) Q(0). We shall assume that Assumption 1 applies to

G) LA Qéj), where @(j) = argmax,g() Q(X,0). So 0U) reflects the best

T T

all models, so that 0

10



possible ex-ante value for §. The nesting model need not be interesting as a model per se. In
many situation this model will be so heavily parameterized that it would make little sense
to estimate it directly.

When we evaluate the in-sample fit of a model, a relevant question is whether a large
value of Q(X, 9?) reflects genuine superior performance or is due to sampling variation.
The following decomposition shows that the sampling variation comes in two flavors, one

of them being particularly nasty. The in-sample fit can be decomposition as follows:

Qx,07) = QYY) + Q. 0)) — QUF) + Q.0 — Q(x,0)). ()
Genuine Whit:noiso Deceptive noise

We have labelled the two random terms as white noise and deceptive noise, respectively.
The first component reflects the best possible value for this model, that would be realized
if one knew the true value, GE)j ). The second term is pure sampling error that is unaffected
by our choice for @, so this term simply induces a layer of noise that makes it harder to
infer Q(H(()j )) from Q(X ,ég)). The last term is the culprit. From Theorem 1 we have that
Q(X, 955)) -Q(X, 0(()‘7)) is strongly negatively related to Q (), @g(cj)) -Q, Héj)). So the larger
this term is in-sample, the worse a fit can we expect to see out-of-sample. So this term is
deceiving, because increases the observed criterion function, Q(X, 9?), which decreasing
the expected value of Q(J, 955)).

When comparing two arbitrary models, nested or nonnested, the identity (2) show how

the results of the previous Section carry over to this situation. We have

~(1 (2
Qx,0.") - .8y = Q) - ael)
1 1 2 2
O, 0) — Q05 — {Q(.057) — (6,7}
~(1 ~(2

+Hew,0,”) - Qe 05)} — {Q.07) — (o)},
and the similar decomposition of the out-of-sample criterion, shows that overfitting can
strongly influence the out-of-sample ranking of models. The first term in the expression

above vanishes when both models nest the true model. For example if the two models are

nested, and the smaller model nests the true model.

11



3.1 Data Mining

Theorem 1 provides a theoretical justification for the dogma that out-of-sample analysis is
less likely to produce spurious results than is in-sample analysis.> In other words one is less
likely to encounter a spuriously large value of Q(), @x) than is the case for Q(X, éx) An
implication is that a good empirical result found out-of-sample is far more impressive than
had it been found in-sample. When a larger model outperforms a smaller nested model in
an out-of-sample comparison, this is evidence that the larger model is the better of the two.

Thus when confronted with an out-of-sample empirical result in which the conventional
model has been outperformed by a more sophisticated model, it deserves attention. In fact,
the excess performance may be impressive, even if the better performing model was found
after a search over a moderate set of alternative specifications (data mining).

In practice it is typically impossible to determine the “aggregate mining” that led to
the discovery of a particular empirical result. Besides the data exploration undertaken
by the researcher who found the result, the same data may have been analyzed by many
other researcher. Furthermore, the study that led to the result in question may have been
influenced by previous studies of the same data.? This issue is particularly relevant for
the analysis of time-series. If one is unable to assess the extent to which the data has
been mined, then out-of-sample results would be more credible than in-sample results. In-
sample, the excess performance of a complex model has to be substantially better than that
of the simpler benchmark before the result deserves much attention (when data mining has
occurred).

Suppose that we are to compare a large number of alternatives to a benchmark model,
which is characterized by the belief that 6p is the true value for 8. We shall quantify how
likely a search over alternative models is to produce a “spurious” result, in-sample as well
as out-of-sample. By spurious result, we mean a situation where the best performing model

outperforms the benchmark by more than would be expected had just a single model been

West (1996) acknowledged that a formal statistical justification for the use of out-of-sample analysis
did not exit, but conjectured a source that is consistent with our findings. West wrote: “out-of-sample
comparisons sometimes bring surprising and important insights (e.g. Nelson (1972) and Meese and Rogoff
(1983)), perhaps because inadvertent over-fitting that results from repeated profession wide use of a limited

body of data.” (Our italic).
3Possible impact of studies using different data can also be problematic, unless the two sets of data are

independent.

12
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Figure 1: Regression models with one regressor are estimated and maxj—; . g LR;, and
maxy—f,.. k LRy, are computed. The figure shows the frequency by which these statistics
exceed the 5%-critical value of a y?-distribution with one degree of freedom. As K increases
we see that both frequencies increase, but the damage done by “data mining” is far more

severe in-sample than out-of-sample.
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compared to the benchmark.
Suppose that c, is the critical value associated with the test statistic, Q(X ,@x) -
Q(X,0p), under the null hypothesis that § = 5. We report the frequencies by which

sup Q(X, éoc) > Q(X, 03) + Ca,
G=1,...M

and

sup Q(yyém) > Q(ya GB) + Ca,

j=1,.,M

where M is the number of models being compared to the benchmark. Naturally, using ¢, will
not control the size of this test because it does not account for the search over specifications.
Nor does it account for the estimation error in the out-of-sample comparison. Figures 1
and 2 illustrate one such situation using a simple regression design. The (true) benchmark
model is y; = ¢;, where ¢; are iid N(0, 1), whereas the pool of alternative specifications, all
have the same number of regressors (k = 1 or k = 3), that are selected from a set of K
orthogonal regressors. Figure 1 displays the results for the case where all models have a
single regressor (k = 1), and Figure 2 displays the results for £k = 3. We have n = m = 50
in both designs.

Not surprisingly, do we see that a search over many model exacerbate the best empirical
fit. This is true in-sample as well as out-of-sample, but much less so out-of-sample. In fact,
when three regressors are used, it takes a substantial degree of data mining before the true
benchmark is substantively out-performed in the out-of-sample comparison.

This finding contradicts the conclusion made in Inoue and Kilian (2004). They argue
that in-sample comparisons are superior to out-of-sample tests. Specifically they write:
“we question the notion that in-sample tests of predictability are more susceptible to size
distortions than out-of-sample tests”; and “We conclude that results of in-sample tests of
predictability will typically be more credible than results of out-of-sample tests”.

The overfitting problem can be more severe in an environment with parameter instability.
In this setting, the in-sample pseudo-true parameter value likely differs from the out-of-
sample pseudo-true parameter value, creating an even larger gab between in-sample fit and

out-of-sample fit.
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Figure 2: Regression models with exactly three regressors are estimated where the regressors
are selected from a pool consisting of K regressors. The largest in-sample and out-of-sample
statistics, LRy, and LR, ; are computed. The figure shows the frequency by which these
statistics exceed the 5%-critical value of a x?-distribution with three degrees of freedom.
Naturally, as K increases we see that the rejection rates increase. However, the damage

done by “data mining” is far more severe in-sample.
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3.2 Model Selection: An Act of Hubris?

An important implication of (2) arises in this situation where multiple models are being
compared. We have seen that sampling variation comes in two forms, the relative innocuous
type, Q(X, Géj)) - Q(Q(()j)), and the vicious type Q(X, é;j)) —Q(X, ng)). The latter the overfit
that translate into an underfit, out-of-sample, and the implication of this term is that we
do not want to select the model with the largest value of Q(G(()j )). Instead, the best choice

is the solution to:
argmax [Q(6F) —{Q(.0Y) — Q. 6§")}]

It may seem paradoxical that we would prefer a model that does not (necessarily) explain the
in-sample data well, but it is the logical consequence of the fact that in-sample overfitting
translates into out-of-sample underfit.

In a model-rich environment, this is a knockout blow to standard model selection criteria
such as AIC. The larger the pool of candidate models, the more likely is it that one of these
models has a larger value of Q(Q(()j )). But the downside of expanding a search to include
additional models is that it adds (potentially much) noise to the problem. If the models
being added to the comparison is no better than the best model, then standard model
selection criteria, such as AIC or BIC will tend to select a model with an increasingly worse
expected out-of-sample performance, i.e. a small Q(), 99). Even if slightly better models
are added to the set of candidate models, the improved performance, may not offset the
additional noise that is added to the selection problem. If the model with the best in-sample
performance, j* = argmax; Q(X, @g(gj)), is indeed the best model in the sense of have the
largest value of Q(H(j)), then this does not guarantee a good out-of-sample performance.
The reason is that the model with the best in-sample performance (possibly adjusted for
degrees of freedom) is rather likely to have a large in-sample overfit, Q(X, é;(,,,j)) —-Q(X, G(j)).
Since this reduces the expected out-of-sample performance, Q (), @;j)), it is not obvious that
selecting the model with the best (adjusted) in-sample fit is the right thing to do.

This phenomenon is often seen in practice. For example, flexible non-linear specifications
tend to do better than a parsimonious model in terms of fitting the data in-sample, but
substantially worse out-of-sample. This does not reflect that the true underlying model is
necessarily linear, only that the gain from the nonlinearity is not large enough to offset

the burden of estimating the additional parameters. See e.g. Diebold and Nason (1990).
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The terminology “predictable” and “forecastable” is used in the literature to distinguish
between these two sides of the forecasting problems, see Hendry and Hubrich (2006) for a
recent example and discussion.

Suppose that a large number of models are being compared and suppose for simplicity
that all models have the same number of parameters, so that no adjustment for the degrees
of freedom is needed. We imagine a situation where all models are equally good in terms

()

xT

of Q(Héj )). When the observed in-sample criterion function, Q(X N ), is larger for model
A than model B, this would suggest that model A may be better than B. However, if we

were to select the model with the best in-sample performance,
. A7)
j* =argmax Q(X,0, "),
J

we could very well be selecting the model with the largest sampling error Q(X ,9?

) —
Q(X, 9(()‘7)). When all models are equally good, one may be selecting the model with the worst
expected out-of-sample performance by choosing the one with the best in-sample performance.

[ADD EXAMPLE]

It is rather paradoxical that AIC will tend to favor the model with the worst expected
out-of-sample performance in this environment, and that the worst possible configuration
for AIC is the one where all models in the comparison are as good as the best model. This
is a direct consequence of the AIC paradox, mentioned earlier. This is not a criticism of
AIC per se, rather it is a drawback of choosing a single model from a large pool of equally
good models. Note that one would be better of by selecting a model at random in this
situation.

Rather than selecting a single model, a more promising avenue to good out-of-sample
performance is to aggregate the information across models, in some parsimonious way, such
as model averaging.

There may be situations where the selection of a single model potentially can be use-
ful. For example, in on unstable environment one model may be more robust to parameter
changes than others. See Rossi and Giacomini (2006) for model selection in this environ-
ment. Forecasting the level or increment of a variable is effectively the same problem. But
the distinction could be important for the robustness of the estimated model, as pointed out
by David Hendry. Hendry argues that a model for differences is less sensitive to structural

changes in the mean that a model for the level, so the former may be the best choice for
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forecasting if the underlying process has time-varying parameters.

3.3 Model Averaging

The idea of combining forecast goes back to Bates and Granger (1969), see also Granger and
Newbold (1977), Diebold (1988), Granger (1989), and Diebold and Lopez (1996). Forecast
averaging has been used extensively in applied econometrics, and is often found to produce
one of the best forecasts, see e.g. Hansen (2005). Choosing the optimal linear combination
of forecasts empirically has proven difficult (this is also related to Theorem 1). Successful
methods include the Akaike weights, see Burnham and Anderson (2002), and Bayesian
model averaging, see e.g. Wright (2003). Weights that are deduced from a generalized
Mallow’s criterion (MMA) has recently been developed by Hansen (2006, 2007), and these
are shown to be optimal in and asymptotic mean square error sense. Clark and McCracken
(2006) use a very appealing framework with weakly nested models. In their local-asymptotic
framework, the larger model is strictly speaking the correct model, however it is only slightly
different from the nested model, and Clark and McCracken (2006) shows the advantages of
model averaging in this context.

To gain some intuition, consider the average criterion function,
- ) - = )
- ~(j _ j - 50 j
MY Q(.0) = M YT QM 0) + MY Q.67 — (X657 (3)
j=1 j=1 j=1

Suppose that model averaging simply amounts to take the average criterion function (it does

not). The last term in (3) is trivially smaller than the largest deceptive term, max;{Q(X, @;j))

Q(X, Héj ))} Therefore, if the models are similar in terms of Q (X, ng )), then averaging can
eliminate much of the bias caused by the deceptive noise, without being too costly in terms
of reducing the genuine value. Naturally, averaging over models does not in general lead to
a performance that is simply the average performance. Thus for a deeper understanding we
need to look at this aspect in a more detailed manner. The decomposition (2) is useful for

this problem.
Define

and



Write (2) as &;(0) = u; + ; + vi(0). Then our problem is to
[to be added]

4 Estimation

[This is a preliminary draft: Methods discussed in this section are mostly based on unproven
conjectures.]
For the purpose of estimation we will assume that the empirical criterion function is

additive, Q(X,0) = >_7" | q:(x¢,0), and is such that {g;(x,0)}}_; is stationary and

St(ﬂ?t, 9) = %qt(l‘tu 9)7

evaluated at the true parameter value, s;(z¢,0p), is a martingale difference sequence. In
addition to X, the variable, z;, may also include lagged values of X;. For example, if
the criterion function is the log-likelihood for an autoregressive model of order one, then
2y = (Xy, Xo-1)" and qy(2,0) = —5{logo® + (X; — pX;-1)*/0?}

Recall the decomposition (2),

Q(X,0,) = Q(80) + Q(X,00) — Q(60) + Q(X,0,) — Q(X, bp).

The properties of the last term, may be estimated by splitting the sample into two halves,
X1 and A, say. We estimate 6 using X; and leaving X5 for the “out-of-sample” evaluation.

Hence we compute ,, = 0(X;) and the relative fit,

n= Q(Xla éxl) - Q(XZa 9:101)
We may split the sample in S different ways, and index the quantities for each split by
s=1,...,5. Taking the average

1
L
S
will produce an estimate of 2E {Q(X, 955) - Q(X, 6’0)} , thereby give us an estimate of the
expected difference between the in-sample fit and the out-of-sample fit. (This would also

produce and estimate of the proper penalty term to be used in AIC).

More generally we could consider a different sample split n = ny + no, and study n =

Q(Xla 0:131) - %Q(‘Xé, 911)
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Bootstrap resampling, will also enable us to compute

A~

&y = Q(Xl;k: 01‘) - Q(X7 éx)v

which may used to estimate aspects of the quantity, Q(X,0p) — Q(G(()j)).
Related references... Shibata (1997), Kitamura (1999), Hansen and Racine (2007)

[Aspects of multiperiod ahead forecasts to be discussed...|

5 Qrinkage

Shrinkage is another way to mitigate the problems induced by in-sample estimation error.
Hastie, Tibshirani, and Friedman (2001) is a recent book that describes many of these
methods. The factor model approach by SW is a popular way do deal with the overfitting
problem in macroeconomic forecasting. Stock and Watson (2005a) consider several shrink-
age methods and compare their risk functions, including the bagging method by Breiman
(1996), see Kitamura (1999) and Inoue and Kilian (2007) for the use of bagging in an
econometric setting. Risk function have previously been used to compare shrinkage meth-
ods by Magnus and Durbin (1999) and Magnus (2002). Pre-testing, where in-significant
parameters are dropped from the model before a forecast is produced, is commonly used in
this context. There are several aspects of pretesting that are problematic for inference, see
e.g. Judge and Bock (1978), Leeb and Potscher (2003), and Danilov and Magnus (2004).
Nevertheless, its simplicity is appealing, and for the purpose of forecasting it is certainly
better than estimating a large model that accumulates much of estimation error. We can
in this sense view pretesting as a particular form of shrinkage.

Some shrinkage methods tend to select sparse models, i.e. models with relatively few
non-zero parameters. Miller (2002) emphasize the virtues of selecting a simple and inter-
pretable model. This aspect is also an integral part of some shrinkage methods such as
nonnegative garrote by Breiman (1995) and the lasso by Tibshirani (1996).

One possible way to adjust the estimated model, prior to using it out-of-sample, is to
change the parameter estimate away from @m, until the criterion function is reduced by a
desired amount, ¢ say. A natural choice for v is ¥, = E{Q(X,@m) — Q(X,6p)}, since this
would offsets the expected bias of the criterion function. An obstacle to this approach is

that the solution to
0:Q(X,0) = QX,0,) — vy,
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will not be unique in most situations. So which of the many solutions should we choose?
This issues can be resolved by introducing a gravity model.

A gravity model is characterized by a parameter value, 8. Qrinkage amounts to shrink-
ing the unrestricted estimate, 0, towards the gravity point, 8%, until the criterion function
is reduced by a prespecified amount. A natural choice is 1, because it offset the in-sample
bias in the value of the criterion function. However, in some cases, one may want to shrink
by more or less than 1. If a selection over different shrunken models is the way that the
final model is chosen, then more shrinkage is typically needed to offset the bias induced by
the selection.

Manganelli (2006) has independently proposed a very similar form of shrinkage. The
starting point in Manganelli (2006) is a judgemental forecast. The judgemental forecast is
adopted unless there is statistical evidence to suggest this forecast is inferior. When the
judgemental forecasts is at odds with the empirical evidence, Manganelli suggests to adjust
the judgemental forecast until it no longer is significantly at odds with the data, using some
prespecified significance level. The judgemental forecast is similar to the gravity model in
our framework, and the significance level is used to control the extend of shrinkage.

The shrinkage towards the gravity model, can be done in various ways. In the regression
context we can adopt a nonnegative garrote style shrinkage. For example, if Bl, cees Bk
are the (unrestricted) point estimates, then we consider the solution to the constrained
optimization problem,

n k

min Z(Yz — 6131X1,¢ — = ckBkaji)Q, st. ¢;>0 and ch <s.
i=1 Jj=1

The extent of shrinkage is controlled by s. So we can “tighten” the estimates by shrinking
s towards zero, until the criterion function is reduced by the desired amount, 1 say. Let

c1(®), ..., ck(¥) be the resulting shrinkage factors, then the final shrinkage estimates are

given by

A

Bj:cj(w)ﬁj, for j=1,...,k.

5.1 Qrinkage in Regression Models

Consider the simple linear regression model,

Y =X(+e¢,
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where ¢|X ~ N(0,021).
It is well known that minus two times the log-likelihood is given by

n

726(0375) = ;(Syy - IBTS:z:y - Syxﬁ + IBTS:pxﬂ)y

where we have used the definitions Sy, = Y'Y /n, S;y = X'Y/n, Sy, =
XTX/n.

and S;, =

T
Ty’

We shall estimate the parameters by least squares and shrink the estimator of 3 towards
the gravity point. Here we can take 8* = 0 without loss of generality. (If 5* = b # 0 we
can reparameterize the model Y =Y — Xb = X + ¢, where 8 = (8 —b).)

Let Sy = VTAV be the diagonalization of S,,, and define v = V3.

Y = XV'VB+e,
= Wry+e
= Wiy + -+ Wiy +e,
where W'W = VXTXVT = VVTAVVT = A, such that the regressors are orthogonal.
If we define 6 = V.S, we have that

N Syxqi _ di
;= =

q;‘r Sﬂm qi )\z

If we hold o2 fixed we have that

n
—2(7) = (S — 200y +9A)
n k
= E(Syy —2 Z 8i7; + M),
€ =1

and the idea is to shrink -y, towards zero such that —2¢(-) is reduced by one unit, as this
would be the bias of two times the log-likelihood when the model is correctly specified.

Thus, for each 7 we seek the solution to

n
= {Xi(kiv:)? = 20i(kiv;) } = —5 (Niv] — 267;) + 1,

o] 3

where k; € [0,1] (if equality cannot be achieved, we set k; = 0).

2
0 = NIR? + (=260 + (2807, = A = °2)
52 S Y 52 o2
= Nkl + (<203 ki + (200 — Nip — =
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62 —262 62 o?
= TR R (500,
or equivalently
2 A o2
which has the two roots given by
A 02
2i\/4—4(1—5?n) N o
=1+,4/5—=.
2 6% n

Since the gravity point is the origin, the relevant root is the smaller of the two, so that

>\i 0‘2 1 O¢ 1
r; =max(0,1 — 4/ 5—=) =max(0,1 - —=———). (4)
’ 522 n \/ﬁay |py,w¢|

There are several interesting observations to be made from the shrinkage formula (4).

1. The more observations we have the less shrinkage.
2. The more noise-to-signal (0./0y) the more shrinkage

3. The larger is the (absolute) correlation between Y and W;, the less shrinkage.

The qgrinkage estimator, 7, = 4,7, can be rewritten as

Vi +Aim iy < =D 1
Fi=1 0 if —A; <5 <A Ai,nzﬁm.
i — Ain if 4, > A
So in the regression context, the qrinkage estimator is known as the Burr estimator, see
Magnus (2002).* Put differently, the likelihood-based shrinkage can motivate the Burr
estimator.

Shrinking a parameter all the way to zero, may not reduce the criterion function by the
desired amount. In such case, one may want to shrink other parameters further, such that
the aggregate reduction of the criterion function is the desired amount.

Figure 3 illustrates Qrinkage in a 6-month ahead forecasting exercise for personal In-

come, using a simple autoregressive model.

*1 thank Jan Magnus for pointing this out to me.
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Figure 3: MSE of six-month ahead forecast of Personal Income using the OLS estimates
from an autoregressive model and the corresponding Qrinkage estimates. The forecast of
the unrestricted OLS estimator initially gets better as more lags are included in the model,
but then deteriorates rapidly. The Qrinkage estimate is much less sensitive to including a

large number of lags (because qrinkage sets them to zero).
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5.1.1 Ordered Qrinkage in Regression Models

Rewrite

yr = B+ -+ BrXr + €,

as

Yo = Q1T+ + QT + &gy

where .%17,5 = T1,t, .’fg = (I — Pl)xg, .’fg = (I — Pl;g).’]jg, s i‘k = (I — Pl:k—l)iﬂk- Note that

T2 =x;(I = Pri—1)(I = Prj—1)z; =0

)

because

(I = Prj—1)({ = Prj—1) =1 — Prj—1 — Prj1+ Pri—1Prj—1 = I — Prj_1,
and

:ClT([ — Pl:j—l) = xZT - a:T =0.

%

The resulting model can be viewed as a “soft” alternative to conventional model selection

methods that are based on information criteria. The qrinkage “selection” does not have the

discontinuity of standard information criteria, such as AIC and BIC, where a sharp threshold

determines whether a parameter is set to zero, or kept in the model at its unrestricted point

estimate.

[Show how to recover estimates of 5 from those of ]

5.1.2 Unit Roots

Shrink towards a unit root.. extra useful because the maximum likelihood estimator tends

to be biased away from the unit root. Part of the explanation for the empirical success of

the Minnesota prior, introduced by Doan, Litterman, and Sims (1984).

5.1.3 Partial Qrinkage in Regression Models

Consider now

Y =XB+ Zo+e,

and suppose that we are only interested in shrinking the parameters associated with X,

while leaving the coefficients associated with Z unrestricted. (Naturally, our shrinking of B
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will cause the least squares estimate of ¢ to change, so these are not entirely unaffected by
the grinkage).
Here we define Ry = {I - Z(Z"Z)"'Z"}Y and Ry = {I - Z(Z"Z)~1Z"} X, and consider

the concentrated regression equation
Ry=Ri8+¢

and define Spo = RjRo/n, S10 = R{Ro, Sonn = 5]y, and S11 = R{R;/n, and decompose
S11 = VTAV and define § = V' Syp. The estimator of 3 is given by

B =51"510
and 4 = V3, and shrink according to (4).

5.1.4 Qrinkage Interpretation of Diffusion Indexes

The expression (4) is also interesting, as it shows that the first principal component (those
with a large );) should be shrunk less than the last PC (those with a small \;). This may
explain the empirical success of forecasting using diffusion indices by Stock and Watson,
who keeps the regression coefficients associated with the first few principal components
in the final models, whereas all other coefficient are set to zero. In principle there is no
reason to expect that the t-statistics associated with the first principal components should
be larger that those associated with the last principal components. Since this is often found
empirically, this suggest that the first principal components are capturing real economic
features that are useful of forecasting a great variety of variables.

Here revisiting the data analyzed in Stock and Watson (2005b)/Stock and Watson
(2005a). [hof.xls — thank Mark Watson for datal.

Qrinkage offers an alternative to selecting a fixed number of factors. The standard
approach has been: regression coefficients associated with the principal components are
either kept at their unrestricted point estimate, or forced to be zero. An approach that
is similar to model selection methods and pre-testing. See e.g. Stock and Watson (2002a,
2002b) and Bai and Ng (2002). Qrinkage provides a smooth transition between these binary
choices.

The choice of factors is often made without consideration to the variable being fore-

casted. This is an odd aspect of this approach, but it does have the advantage of reducing
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Personal Income (t-stats)

6 01974 W2003

phi phi2 phi3 phi4 d1 d2 d3 d4 ds dé dr da d60 d129  d130  d131

Figure 4: The absolute value of several t-statistics are reported. Left columns refer to the
statistics obtained using data up until 1974 and right columns give the ¢-statistics using
the larger sample up until 2003. The dependent variable is personal income, the regression
model includes four lags, and a set of possible principal component. di refers to the ith

principal component.
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Industrial Production (t-stats)

01974 @W2003

phi1 phi2 phi3 phid d1 d2 d3 dd db db dr7 ds d60 d129 d130 d131

Figure 5: The absolute value of several t-statistics are reported. Left columns refer to the
statistics obtained using data up until 1974 and right columns give the ¢-statistics using the
larger sample up until 2003. The dependent variable is industrial production, the regression
model includes four lags, and a set of possible principal component. di refers to the ith

principal component
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the overfitting problem. Qrinkage lets the data speak as to which factors are relevant, while
keeping the overfitting in check. Another way to let the “data speak for themselves” is to
use other forms of shrinkage, such as that proposed by Bai and Ng (2007), who use the
terminology of “target predictors”.

The method of sliced inverse regression is an approach that shares some of the features
of the principle components, without disregarding the relation between predictors and the
variable to be forecasted when making the data reduction. The sliced inverse regression
was introduced by Li (1991), and has not been used much in econometrics, see Chen and
Smith (2007) for a recent exception. For a good description of the relation between SIR
and related methods, see Naik, Haferty, and Tsai (2000).

In practice one often finds the most “significant” regressors to be those associated with
the first principal components. A good example of this situation is illustrated in Figure
4, where Personal Income is the dependent variable. At times the data seems to ask for
a other factors than the first few, as seen in Figure 5. This figure displays the results for
the case where Industrial Production is the dependent variable, and we see that the 7th

principal component is rather significant according to its t-statistic.

5.2 Combining Forecasts

In the context of point forecasting, there is an natural alternative to taking a (weighted)
average of the parameters in the competing models. Instead we can take a linear combi-
nation of the individual point forecasts. Let Y341 be the variable to be forecasted, and let
Yt(j ) ,j=1,..., M be the competing forecasts. We can stack the forecast into the vector
Y, = (}A/;(l) Yt ,Yt(M))T. Given the empirical success of principal components in the context
of Stock and Watson, it would be natural to consider the principal components of the vector

of forecasts, Y;. We may decompose the individual forecast into
V9 = E(Y;41|F) + [bias]@ + [error]!?).

If the target variable is a persistent variables, such as inflation, an interest rates, or the
GDP growth-rate, then E(Y;11|F;) may define (or be closely related to) the first principal
component of Y;. Thus the first principal component (suitably scaled) will in this situation
be quite similar to the equal-weighted combination of the individual forecasts. It would

be very interesting to study this aspect empirically, because this could link the empirical
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Point Estimates for Personal Income (T=514)
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EOLS B Qrinkage
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DI phit phi2 phi3 phid phi5 phi6
Figure 6: Least squares point estimates and the corresponding qrinkage estimates. Here we

see that all but the first two regression parameters are shrunken all the way to zero by the

grinkage procedure.
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Point Estimates for Industial Production (T=514)
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Figure 7: Least squares point estimates and the corresponding qrinkage estimates.
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success of the equal-weighted forecasts, to that found in the context of SW. Furthermore,
it would suggest ways to improve upon the equal-weighted forecasts, as the first principal
component may not be exactly proportional to ¢ (the vector of ones), and it may also useful
to incorporated more than the first principal component in the construction of a combined

forecast.

5.3 Qrinkage of Weak/Many Instruments

Instrumental variables

Vi = X/B+u

X; = Z;r’iT—l-Ui.

The TSLS estimator is given by Bry = (X" X) ' X"Y where X = P;X and Py = Z(Z"Z)"' Z".
A key problem with the TSLS is that (X TX ) is too large, particularly when the instruments,
Z, are and/or used in large numbers. The problem is that the first-stage regression will
explain more variation in X, than had the true value of m been used. It would be straight
forward to “qrink” # = (Z"Z)71Z" X, such that the second-stage regression would involve

less variable regressors. It would be interesting to compare the resulting estimator to k-class

estimators: (), = [X"{I — k(I — P2)}X] ' X" {I — k(I — P2)}Y.

6 Concluding Remarks

[To be added]

We have seen that model selection by information criteria, such as AIC, is an act of
hubris in a model-rich environment.

Qrinkage has been applied in Chun (2007) and his results are rather promising for the

use of qrinkage in practise.
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A Appendix of Proofs

[some details to be added].
Proof of Theorem 1. To simplify notation we write Q,(-) as short for Q(X,-). Since 0,
is given by Q. (0,) = 0, we have

0=0Q".0,) = Q"(00) + Q") (A — 0), where 0 € [0,01]

so that

~ -1 ,
(0. = 00) = [-QUO)] ~ QL(00).
and we have

Qul) ~ QuB0) = 5(0e—00)" [~QUB)] (B~ 0)
= QL(00)" [~Q(60)] " Q(60) + (1)

For the out-of-sample period we have

Qy(0a) — Qy(B0) = Q(00) (B — 0) + (B2 — 00)" QY (0) (0 — Bo) + 0,(1)
= Q,(60)" [~Q1(60)] " Q(6o)
5@ (00)" [~Q4(00)] " QD) [~ @4(60)] ™ @4 (00) + 0 (1)

| N =

Since m_ng(én) 2, 7y and n_ng(én) 2L, 7,, whenever 6,, 2 6, we have

Q) - Q) = /" Q (00" 120} QL60)

5@ 00)" 170} @4l60) + 0p(1).

The in-sample and out-of-sample log-likelihood functions are given by

n n—+m
0,(0) = Zlog f(Xi;6), and £,(0) = Z log f(X;;0).
i=1 i=n+1

We assume that the likelihood functions satisfy Assumption 1. The in-sample and out-of-

sample maximum-likelihood estimators are given by

~

0, = arg max 05(0) and 9y = argmax 2,(0).
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Assumption 1 ensures that S, (6,) = Sy (9y) = 0, where the scores are defined by

0

0,(0) and Sy(0) = 2

2,(0).

The Hessians,

0? 0?

are such that 0 2 0y = H.(0)[H.(09)]"' 2 I, for both z = x and z = 4.

We can factorize the log-likelihood function and express the scores and the Hessians as

n n+m
Se(0) = si(0) and S,(0)= Y si(0),

=1 i=n+1

and . o
Ho(0) = hi(6) and Hy(0) = Y h(0),

=1 i=n-+1

where s;(0) = %log f(X;;0) and hi(0) = %log f(X5;6).

Proof of Theorem 2. In this standard likelihood framework we have that
0=25,5 =510+ H179(91 —bo),
where 6 lies between 67 and 0y, such that
(61— 60) = [—Hy 5] S1.0,-
Correct specification ensures that
Y= E[swoszoo] = —El[h; 9],

also known as the information matrix equality, and regularity conditions ensure that

&

—Hy;=— Zl hig = Elhigo) = Ss.
i—

Thus if we define

n n+m
—~1/2 1 —-1/2 1
Zin =52 sioy and Zowm =E7VP00 N si,,
i=1 i=n+1

it follows that Z1, > Z1, asn — oo, and Zam -5 Zy where (ZF, Z3)" ~ Nog(0, Iny,).

A Taylor expansion of the in-sample log likelihood function yields
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. . 1 . .
1(00) = 1(01) + 5] 5 (01 = 00) + 5(01 = 00)" H, (61 — 0o), (5)
for some 91, that lies between 6y and 91, such that
A 1 T -1 a 1 T
1(01) = £1(00) = 551,00 [~H,00] 51,00 + 0p(1) = 521 21
The out-of-sample score is given by
52,91 = 52790 + Hg’é(él — 90) = Sg,eo + HQ{)[_HLé]ilSL@o

where 0 lies between 67 and 6, and we note that S, o # 0 almost surely, (unlike the
in-sample score S| 5 ) = 0).

Consider now a Taylor expansion of the out-of-sample likelihood
. . 1 . .
€2<91> = 62(90> + 55790 (90 — 01) + 5(91 — 90>TH279<91 — 90),
such that

la(01) = £2(00) = S3g,[—H, 5] S0 + 5510, [Hy ]~ [Hy gl [Hy 5] S0
= /225 mZrm — 5271y Z1m + 0p(1).

= \/ZZyZy — 1271 71 + op(1).
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