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Abstract

We consider the case where a parameter, �; is estimated by maximizing a criterion
function, Q(X ; �). The estimate is then used to evaluate the criterion function with
the same data, X , as well as with an independent data set, Y. The in-sample �t
and out-of-sample �t relative to that of �0; the �true�parameter, are given by Tx;x =
Q(X ; �̂x) �Q(X ; �0) and Ty;x = Q(Y; �̂x) �Q(Y; �0). We derive the limit distribution
of (Tx;x; Ty;x) for a large class of criterion functions and show that Tx;x and Ty;x are
strongly negatively related. The implication is that good in-sample �t translates directly
into poor out-of-sample �t. This result forms the basis for a uni�ed framework for
discussing aspect of model selection, model averaging, and the e¤ects of data mining.
The limit distribution can also be used to motivate a particular form of shrinkage, called
qrinkage, where in-sample parameter estimates are modi�ed to o¤-set the over�t of the
criterion function, hence the name. This form of shrinkage is particularly simple in the
context of regression models, such as the factor-based forecasting models.

Keywords: Qrinkage, Out-of-Sample Likelihood, Model Selection, Model Averaging,
Data Mining, Forecasting.

�I thank Jan Magnus, Mark Watson, Kenneth West, and participants at the 2006 Stanford Institute for
Theoretical Economics workshop on Economic Forecasting under Uncertainty, for valuable comments. The
author is also a¢ liated with CREATES at the University of Aarhus, a research center funded by Danish
National Research Foundation.



1 Introduction

Much of applied econometrics is motivated by some form of out-of-sample use. An obvious

example is the forecasting problem, where a model is estimated with in-sample data, while

the objective is to construct a good out-of-sample forecast. The out-of-sample motivation is

intrinsic to many other problems. For example, when a sample is analyzed in order to make

inference about aspects of a general population, the objective is to get a good model for the

general population, not a model that necessarily explains all the variation in the sample.

In this case one may view the general population (less the sample used in the empirical

analysis) as the �out-of-sample�.

The main contribution of this paper is the result established in Theorem 1, which re-

veals a strong connection between the in-sample �t and the out-of-sample �t of a model, in

a general framework. The result has important implications for model selection by infor-

mation criteria, because these are shown to have some rather unfortunate and paradoxical

properties. The result also provides important insight about model averaging and shrinkage

methods. Furthermore, the result provides a theoretical foundation for the use of out-of-

sample analysis.

It is well known that as more complexity is added to a model the better will the model

�t the data in-sample, while the contrary tends to be true out-of-sample. See, e.g. Chat�eld

(1995). This aspect is evident from the following example, which serves to illustrated some

of the results in this paper.

Consider the regression model, yt = xtt �0 + "t; where "t � iidN(0; 1): The sam-

ple fyt;xtgnt=1 is available for inference about �0 2 Rk while our true objective concerns
fyt; xtg2nt=n+1: We shall refer to the two periods as the in-sample and out-of-sample pe-
riods, respectively, and we use the notation X = fyt;xtgnt=1 and Y = fyt; xtg2nt=n+1. To
make the in-sample and out-of-sample regressors comparable, we assume that

Pn
t=1 xtx

t
t =P2n

t=n+1 xtx
t
t :

Suppose that our objective is to minimize the out-of-sample expected mean-squared

error, or equivalently maximize

Q(�) = E fQ(Y; �)g = E
(
�

2nX
t=n+1

(yt � xtt �)2
)
:

It can be veri�ed that �0 is the solution to this problem. Since �0 is unknown to us, we

must pick a value for � based on the available information. One possibility is to choose the
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� that maximizes

Q(X ; �) = �
nX
t=1

(yt � �txt)2:

The solution is the well known least squares estimator, �̂x =
Pn
t=1 ytx

t
t /
Pn
t=1 xtx

t
t ; which

is also the maximum likelihood estimator in this setting:

In the present situation it is well known that Tx;x = Q(X ; �̂x)�Q(X ; �0) � �2(k): The fact

that Q(X ; �̂x) > Q(X ; �0) (almost surely) is called over�tting, and the expected over�t is
here E(Tx;x) = k: The converse is true out-of-sample, because Ty;x = Q(Y; �̂x)�Q(Y; �0) has
a negative expected value, speci�cally E(Ty;x) = �k: This merely con�rms the well known
result that overparameterized models tend to do poorly out-of-sample, despite good in-

sample �t. This can motivate the use of information criteria, such as AIC and BIC that

explicitly make a trade-o¤ between the complexity of a model and how well the model �ts

the data.

Our theoretical result provides additional insight and reveals a stronger connection be-

tween the in-sample �t and out-of-sample �t. One implication of our analysis is that

E
h
Q(Y; �̂x)�Q(Y; �0)jX

i
= �

h
Q(X ; �̂x)�Q(X ; �0)

i
;

which shows that more (in-sample) over�tting results in a lower expected �t out-of-sample.

This observation is important for model selection and model averaging.

In this paper we derive the (joint) limit distribution of (Tx;x; Tx;y) for a general class of

criteria functions, which includes loss functions that are commonly used for the evaluation

of forecasts. The limit distribution for the out-of-sample quantity, Ty;x has features that

are similar to those seen in quasi maximum likelihood analysis, see e.g. White (1994). The

limit distribution is particularly simple when an information-matrix style equality holds.

This inequality holds when the criterion function is a correctly speci�ed likelihood function.

In this case we have that (Tx;x; Tx;y)
d! (Zt1Z1;�Zt1Z1 + 2Zt1Z2), where Z1 and Z2 are

independent Gaussian distributed random variables, Z1; Z2 � Nk(0; Ik): Thus the out-of-

sample quantity, Ty;x; does not have a limit distribution that is simply (minus one times) a

�2(k). The additional term appears because �̂x does not maximize Q(Y; �):
Comments out theoretical results:

� An interesting special case is that where the criterion function is the log-likelihood
function. Our result provide the limit distribution of the out-of-sample likelihood

2



ratio statistic, LRy;x = 2
n
logL(Y; �̂x)� logL(Y; �0)

o
: In fact we establish the joint

distribution of (LRy;x;LRx;x); where LRx;x is the conventional (in-sample) likelihood

ratio statistic, LRx;x = 2
n
logL(X ; �̂x)� logL(X ; �0)

o
:

� An implication of our result is that one is less likely to produce spurious results out-
of-sample than in-sample. The reason is that an over-parameterized model tends to

do worse than a parsimonious (but correct) model out-of-sample. It will take a lot

of luck for an overparameterized model to o¤set its disadvantage in an out-of-sample

comparison with the simpler model. Thus when a complex model outperforms a

simpler model out-of-sample it is stronger evidence in favor of the larger model, than

had the outperformance been found in-sample (other things being equal).

� A useful decomposition for discussing model selection and model averaging.

� Model Selection: Finding the best model is obscured by sampling and estimation
error, as the noise conceals the true ranking of models. Based on our theoretical

result we will argue that standard model selection criteria are poorly suited for the

problem of selecting a model with a good out-of-sample �t, this is particularly the

case in model-rich environments. Shrinkage methods or model averaging are more

promising avenues for dealing with this issue.

� Model Averaging: We shall discuss model averaging based on our theoretical results.

� Our theoretical result provides a deep understanding of the observations made in Clark
and West (2007). They consider the situation with two regression models �one being

nested in the other �where the parameters are estimated by least squares and the

mean squared (prediction) error is used as criterion function. The observation made

in Clark and West (2007) is that MSPE is expected to be smaller for parsimonious

models. This motivates a correction of a particular test. Our results reveals that

source of the smaller expected MSPE, is the close connection between estimation

error and out-of-sample MSPE. Furthermore, we show that this aspect of estimation

and out-of-sample prediction holds in a rather general framework.

� Estimating the expected over�t by subsampling, bootstrapping, or the jackknife. The
latter has been used in this context by Hansen and Racine (2007).
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� This result motivates a particular form of shrinkage, called qrinkage. Qrinkage is par-

ticularly simple to apply in regression models, and shrinkage arguments may explain

some of the empirical success of the principal component-based forecasts. Several

forms of shrinkage have been proposed in the literature, see Hastie, Tibshirani, and

Friedman (2001) for an introduction to a large number of shrinkage methods.

While parameter instability is an important issue for forecasting, this is not the focus

of this paper. Though we shall comment on this issue where appropriate. Forecasting in an

environment with non-constant parameters is an active �eld of research, see e.g. Hendry

and Clements (2002), Pesaran and Timmermann (2005), and Rossi and Giacomini (2006).

Much caution is warranted when asserting the merits of a particular model, based on

an out-of-sample comparison. Estimation error may entirely explain the out-of-sample

outcome. This is particular relevant if one suspects that parameters are poorly estimated.

Thus critiquing a model could back�re by directing attention to the econometrician having

estimated the parameters poorly, e.g. by using a relatively short estimation period, or

an estimation method that does not maximize the appropriate criterion function. These

aspects are worth having in mind, when more sophisticated models are compared to a simple

parsimonious benchmark model, as is the case in Meese and Rogo¤ (1983) and Atkeson and

Ohanian (2001).

2 Theoretical Results

We consider a situation where the criterion function and estimation problem can be ex-

pressed within the framework of extremum estimators/M-estimators, see Huber (1981). In

our exposition we will adopt the framework of Amemiya (1985).

The objective is given in terms of a non-stochastic criterion function Q(�); which attains

a unique global maximum, �0 = argmax�2�Q(�):We will refer to �0 as the true parameter

value. The empirical version of the problem is based on a random criterion Q(X ; �); where
X = (X1; : : : ; Xn) is the sample used for the estimation.

To take an example, the criterion function may be the mean squared error, Q(�) =

�E(Xt � �)2 with the empirical criterion function given by Q(X ; �) = �
Pn
t=1(Xt � �)2:

The extremum estimator is de�ned by

�̂x = argmax
�2�

Q(X ; �):
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We adopt the following standard assumptions from the theory on extremum estimators, see

e.g. Amemiya (1985).

Assumption 1 �Q(X ; �) = n�1Q(X ; �) p! Q(�) uniformly in � on a open neighborhood of

�0; as n!1:

Q00(X ; �) = @2Q(X ; �)=@�@�t exists and is continuous in an open neighborhood of �0;
�Q00(X ; �) p! �I(�) uniformly in � in an open neighborhood of �0;

I(�) is continuous in a neighborhood of �0 and I0 = I(�0) 2 Rk�k is negative de�nite.

n�1=2Q0(X ; �0)
d! Nf0;J0g; where J0 = limn!1 E

�
n�1Q0(X ; �0)Q0(X ; �0)t

	
:

Assumption 1 guarantees that �̂x (eventually) will be given by the �rst order condition

Q0(X ; �̂x) = 0: In what follows, we assume that n is su¢ ciently large that this is indeed the
case.1 The assumptions are stronger than necessary. The di¤erentiability (both �rst and

second) can be dispensed with and replaced with weaker assumptions, e.g. by adopting the

setup in Hong and Preston (2006).

We have in mind a situation where the estimate, �̂x; is to be computed from n ob-

servations, X = (X1; : : : ; Xn); however the object of interest is tied to Q(Y; �̂x); where
Y = (Y1; : : : ; Ym) denotes m observations that are drawn from the same distribution as that

of X: In the context of forecasting, Y will represent the data from the out-of-sample period,
say the last m observations as illustrated below.

X1; : : : ; Xn| {z }
=X

; Xn+1; : : : ; Xn+m| {z }
=Y

:

We are particularly interested in the two quantities

Tx;x = Q(X ; �̂x)�Q(X ; �0); and Ty;x = Q(Y; �̂x)�Q(Y; �0):

The �rst quantity, Tx;x; is a measure of in-sample ��t�. We have Q(X ; �̂x) � Q(X ; �0);
because �̂x maximizes Q(X ; �): In this sense, Q(X ; �̂x) will re�ect a value that is too good
relative to that of the true parameter Q(X ; �0); hence the notion of over�tting. The second
quantity, Ty;x; is a measure of out-of-sample �t. Unlike the in-sample statistic, there is no

guarantee that Ty;x is non-negative. In fact, because �0 is the best ex-ante value for �; the

out-of-sample measure, Ty;x; will tend to be negative.

1When there are multiple solutions to the FOC, one can simply choose the one that yields the largest

value of the criterion function, that is �̂x = argmax�2f�:Q0(X ;�)=0gQ(X ; �):
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Note that we consider the natural situation where � is estimated by maximizing the

criterion function in-sample, Q(X ; �); and the very same criterion function is the one used
for the out-of-sample evaluation, Q(Y; �):

We have the following result concerning the limit distribution of (Tx;x; Ty;x):

Theorem 1 Given Assumption 1. � 2 Rk: Suppose m
n ! �: Then

2

0@ Tx;x

Tx;y

1A d!

0@ �1

2
p
��2 � ��1

1A ; as n!1;

where �1 = Zt1�Z1, �2 = Zt1�Z2 and Z1 and Z2 are independent Gaussian random variables

Zi � Nk(0; Ik); and � = diag (�1; : : : ; �k) ; �1; : : : ; �k being the eigenvalues of [I�10 J0]:

Remark. Too good in-sample �t (over�t), Tx;x; � 0; translates into mediocre out-of-sample

�t. This aspect is particularly important when multiple models are compared in-sample for

the purpose of selecting a model to be used out-of-sample, because

Q(X ; �̂(j)x ) = Q(X ; �(j)0 ) +Q(X ; �̂
(j)

x )�Q(X ; �
(j)
0 );

and the more models that are being compared with approximately the same Q(X ; �(j)0 );
the more likely it is that the best in-sample performance, as de�ned by maxj Q(X ; �̂

(j)

x ); is

attained by a model with a large T (j)x;x; hence a poor out-of-sample �t.

[Selecting the model with the best in-sample �t for the purpose of out-of-sample fore-

casting, is an act of hubris... the (large) value of T (j)x;x its nemesis.]

Remark. The result o¤ers insight about the merits of model averaging, as we shall discuss

in the next section.

The theoretical result formulated in Theorem 1 relates the estimated model to that

of the model using population values for the parameters. The implications for comparing

two arbitrary models, nested or non-nested, is straight forward as will be evident from our

analysis in the next Section.

Next we consider the special case where the criterion function is a correctly speci�ed

log-likelihood function.

2.1 Out-Of-Sample Likelihood Analysis

A special case is that where the criterion function is given in the form of the likelihood

function.
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When k parameters are estimated and evaluated using the same data, it is well known

that the log-likelihood function, `(X ; �̂x) is expected to be about k=2 units better than the
log-likelihood function evaluated at the true parameters, `(X ; �0): In this setting we used
�̂x = �̂(X ) to denote the maximum likelihood estimator. The k=2 follows from the fact that
the likelihood ratio statistic, LRx;x = 2f`(X ; �̂x) � `(X ; �0)g is asymptotically distributed
as a �2 with k degrees of freedom (in regular problems).

It is less known that the converse is true when the log-likelihood function is evaluate

out-of-sample. In fact, the asymptotic distribution of LRy;x = 2f`(Y; �̂x) � `(Y; �0)g has
expected value �k; if X and Y are independent and identically distributed. Again we see
how expected in-sample over�t translates into expected out-of-sample under�t. The out-of-

sample log-likelihood function, `(Y; �̂x); is related to the predictive likelihood introduced by
Lauritzen (1974). We could call `(Y; �̂x) the plug-in predictive likelihood. Due to over�tting,
the plug-in predictive likelihood need not produce an accurate estimate of the distribution

of Y; which is typically the objective in the literature on predictive likelihood, see Bjørnstad
(1990) for a review.

As we have seen in the general formulation of this problem, LRx;x and LRy;x are closely

related, and more so than having opposite expected values. Not surprisingly, will we see

that LRx;x = Zt1Z1+op(1) while LRy;x = �Zt1Z1+2Zt1Z2+op(1); where Z1 and Z2 are two
independent random variables, Zi � Nk(0; Ik); i = 1; 2: So the (random) in-sample over�t,
Zt1Z1; translates directly into an out-of-sample under�t, �Zt1Z1:

To make this result precise. Let fXig; be a sequence of iid random variables in Rp with

density g(x); and suppose that

g(x) = f�0(x); for some �0 2 � � Rk; (1)

so that the model is correctly speci�ed model. The in-sample and out-of-sample log-

likelihood functions are given by

`(X ; �) �
nX
i=1

log f(Xi; �); and `(Y; �) �
n+mX
i=n+1

log f(Xi; �):

The in-sample maximum likelihood estimator, �̂x = argmax� `(X ; �); is given by `0(X ; �̂x) =
0:

Theorem 2 Assume that `(X ; �) satis�es Assumption 1, and that `(X ; �) is correctly spec-

i�ed as formulated in (1). Then the information matrix equality holds, I0 = J0; and the
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in-sample and out-of-sample likelihood ratio statistics,

LRx;x � 2f`(X ; �̂x)� `(X ; �0)g and LRy;x � 2f`(Y; �̂x)� `(Y; �0)g;

are such that (with � = limn!1 m
n )0@ LRx;x

LRy;x

1A d!

0@ �1

2
p
��2 � ��1

1A ; as n!1;

where �1 = Zt1Z1, �2 = Zt1Z2 and Z1 and Z2 are independent Gaussian random variables

Zi � Nk(0; Ik):

When n = m we see that the limit distribution of (two times) the in-sample log-likelihood

and the out-of-sample log-likelihood, 2f`(X ; �̂x) � `(Y; �̂x)g = LRx;x � LRy;x; has the ex-
pected value,

E f�1 � (2�2 � �1)g = E f2�1g = 2k:

This expectation can be used to motivate the Akaike�s information criterion (AIC), see

Akaike (1974). AIC assumes that the likelihood function is correctly speci�ed. The proper

penalty to use for misspeci�ed models was derived by Takeuchi (1976) (QMLE results).

The additional insight provided by Theorem 2, is that whenever a model �ts the in-

sample data abnormally well, this will result in a meager value of the out-of-sample log-

likelihood, due to the term, �1; with opposite signs in the limit distribution. This o¤ers

a theoretical explanation for the AIC paradox in a very general setting. Shimizu (1978)

analyzed the problem of selecting the order of an autoregressive process, and found that

in-sample �t was strongly negatively related to out-of-sample �t (here expressed in our

terminology).

The classical result, LRx;x
d! �2(k), is a special case of Theorem 2, so the interesting

part of the Theorem is the result for the out-of-sample likelihood ratio. Given the our

results in Theorem 1, we are not surprised to �nd that LRy;x has a negative expected value

and is closely tied to the usual in-sample log-likelihood ratio, LRx;x; as �1 appears in both

expressions.

Corollary 3 When the in-sample and out-of-sample size is the same, m = n; we have

E(�1) = +k; var(�1) = k2 + 2k;

E(2�2 � �1) = �k; var(2�2 � �1) = k2 + 6k:
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Next, we look at the results of Theorem 2 in the context of a linear regression model.

Example 1 Consider the linear regression model,

Y = X� + u:

To avoid notational confusion, we will use subscripts, 1 and 2; to represent the in-sample

and out-of-sample periods, respectively. In sample we have Y1; u1 2 Rn; X1 2 Rn�k; and

u1jX1 � iidNn(0; �
2In); and the well known result for the the sum-of-squared residuals,

ût1 û1 = Y t1 Y1 � �̂
t
1X

t
1Y1 � Y t1 X1�̂1 + �̂

t
1X

t
1X1�̂1

= Y t1 (I � PX1)Y1 = ut1(I � PX1)u1;

where we have introduced the notation PX1 = X1(X
t
1X1)

�1Xt
1 ; and we �nd

2
n
`1(�̂1)� `1(�0)

o
= �ût1 û1=�2 + ut1u1=�2 = ut1PX1u1=�

2 � �2(k):

Similarly, out-of-sample we have

ût2 û2 = Y t2 Y2 � 2�̂
t
1X

t
2Y2 + �̂

t
1X

t
2X2�̂1

= Y t2 Y2 � 2Y t1 X1(Xt
1X1)

�1Xt
2Y2 + Y

t
1 X1(X

t
1X1)

�1Xt
2X2(X

t
1X1)

�1Xt
1Y1

= ut2u2 � 2ut1X1(Xt
1X1)

�1Xt
2u2 + u

t
1X1(X

t
1X1)

�1Xt
2X2(X

t
1X1)

�1Xt
1 )u1

+�t0X
t
2X2�0 � 2�t0Xt

1X1(X
t
1X1)

�1Xt
2X2�0 + �

t
0X

t
1X1(X

t
1X1)

�1Xt
2X2(X

t
1X1)

�1Xt
1X1�0

+ut1(�2X1(Xt
1X1)

�1Xt
2X2 + 2X1(X

t
1X1)

�1Xt
2X2)�0 + u

t
2(2X2 � 2X2Xt

1X1(X
t
1X1)

�1)�0;

where the last two terms are both zero. If we de�ne W = n
m(X

t
1X1)

�1Xt
2X2

p! I; we �nd

2�2
n
`2(�̂2)� `2(�0)

o
= ut2u2 � ût2 û2

= 2ut1X1(X
t
1X1)

�1=2
r
m

n
W 1=2(Xt

2X2)
�1=2Xt

2u2 + u
t
1X1

m

n
W (Xt

1X1)
�1Xt

1 )u1

= �2
nq

m
n 2Z

t
1Z2 � m

n Z
t
1Z1

o
+ op(1)

where we de�ned Z1 = ��1(Xt
1X1)

�1=2Xt
1u1 and Z2 = ��1(Xt

2X2)
�1=2Xt

2u2 so that u
t
1PX1u1�

2Zt1Z1;

since Z1 and Z2 are independent and both distributed as Nk(0; I); and the structure of The-

orems 1 and 2 emerges.
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2.2 Extensions

Out-of-sample forecast evaluation has been analyzed with di¤erent estimation schemes,

known as the �xed, rolling, and recursive schemes[REF: McCracken...]. Under the �xed

scheme the parameters are estimated once and the same point estimate is used for the

entire out-of-sample period. In the rolling and recursive schemes the parameter is reesti-

mated every time a forecast is made. The recursive scheme use all past observations for

the estimation, whereas the rolling scheme only use a limited number of the most recent

observations. The number of observations used for the estimation with the rolling scheme

is typically constant, but one can also use a random number of observations, de�ned by

some stationary data dependent process, see e.g. Giacomini and White (2006).

The results presented in Theorem 1 are based on the �xed scheme, but can be adapted to

forecast comparisons using the rolling and recursive schemes. Still, Theorem 1 speaks to the

general situation where a forecast is based on estimated parameters, and have implications

for model selection and model averaging as we discuss in the next section.

For example under the recursive schemes, the expected out-of-sample under�t for a

correctly speci�ed model is approximate

k
mX
i=1

1

n+ i
= k

1

m+ n

m+nX
s=n+1

m+ n

s

� k

Z 1

1
1+�

1

u
du! k

Z 1

1
1+�

1

u
du = k log(1 + �) < k;

where � = lim m
n ; which is consistent with McCracken (200x), who established this result

in the context of regression models.

[ADD ADDITIONAL DETAILS ON ROLLING/RECURSIVE]

3 Implications

We now turn to a situation where we estimate more that a single model.

ConsiderM di¤erent speci�cations (models) that each have their own �true�parameter

value, denoted by �(j)0 : It is useful to think of the di¤erent models as restricted version or

a larger nesting model, � 2 �: The jth model is now characterized by � 2 �(j) � �; and
its true value is �(j)0 = argmax�2�(j) Q(�): We shall assume that Assumption 1 applies to

all models, so that �̂
(j)

x
p! �

(j)
0 ; where �̂

(j)

x = argmax�2�(j) Q(X ; �): So �(j) re�ects the best
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possible ex-ante value for �: The nesting model need not be interesting as a model per se. In

many situation this model will be so heavily parameterized that it would make little sense

to estimate it directly.

When we evaluate the in-sample �t of a model, a relevant question is whether a large

value of Q(X ; �̂(j)x ) re�ects genuine superior performance or is due to sampling variation.
The following decomposition shows that the sampling variation comes in two �avors, one

of them being particularly nasty. The in-sample �t can be decomposition as follows:

Q(X ; �̂(j)x ) = Q(�
(j)
0 )| {z }

Genuine

+Q(X ; �(j)0 )�Q(�
(j)
0 )| {z }

White noise

+Q(X ; �̂(j)x )�Q(X ; �
(j)
0 )| {z }

Deceptive noise

: (2)

We have labelled the two random terms as white noise and deceptive noise, respectively.

The �rst component re�ects the best possible value for this model, that would be realized

if one knew the true value, �(j)0 : The second term is pure sampling error that is una¤ected

by our choice for �̂; so this term simply induces a layer of noise that makes it harder to

infer Q(�(j)0 ) from Q(X ; �̂(j)x ): The last term is the culprit. From Theorem 1 we have that

Q(X ; �̂(j)x )�Q(X ; �
(j)
0 ) is strongly negatively related to Q(Y; �̂

(j)

x )�Q(Y; �
(j)
0 ): So the larger

this term is in-sample, the worse a �t can we expect to see out-of-sample. So this term is

deceiving, because increases the observed criterion function, Q(X ; �̂(j)x ); which decreasing
the expected value of Q(Y; �̂(j)x ):

When comparing two arbitrary models, nested or nonnested, the identity (2) show how

the results of the previous Section carry over to this situation. We have

Q(X ; �̂(1)x )�Q(X ; �̂
(2)

x ) = Q(�
(1)
0 )�Q(�

(2)
0 )

+fQ(X ; �(1)0 )�Q(�
(1)
0 )g � fQ(X ; �

(2)
0 )�Q(�

(2)
0 )g

+fQ(X ; �̂(1)x )�Q(X ; �
(1)
0 )g � fQ(X ; �̂

(2)

x )�Q(X ; �
(2)
0 )g;

and the similar decomposition of the out-of-sample criterion, shows that over�tting can

strongly in�uence the out-of-sample ranking of models. The �rst term in the expression

above vanishes when both models nest the true model. For example if the two models are

nested, and the smaller model nests the true model.
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3.1 Data Mining

Theorem 1 provides a theoretical justi�cation for the dogma that out-of-sample analysis is

less likely to produce spurious results than is in-sample analysis.2 In other words one is less

likely to encounter a spuriously large value of Q(Y; �̂x) than is the case for Q(X ; �̂x): An
implication is that a good empirical result found out-of-sample is far more impressive than

had it been found in-sample. When a larger model outperforms a smaller nested model in

an out-of-sample comparison, this is evidence that the larger model is the better of the two.

Thus when confronted with an out-of-sample empirical result in which the conventional

model has been outperformed by a more sophisticated model, it deserves attention. In fact,

the excess performance may be impressive, even if the better performing model was found

after a search over a moderate set of alternative speci�cations (data mining).

In practice it is typically impossible to determine the �aggregate mining� that led to

the discovery of a particular empirical result. Besides the data exploration undertaken

by the researcher who found the result, the same data may have been analyzed by many

other researcher. Furthermore, the study that led to the result in question may have been

in�uenced by previous studies of the same data.3 This issue is particularly relevant for

the analysis of time-series. If one is unable to assess the extent to which the data has

been mined, then out-of-sample results would be more credible than in-sample results. In-

sample, the excess performance of a complex model has to be substantially better than that

of the simpler benchmark before the result deserves much attention (when data mining has

occurred).

Suppose that we are to compare a large number of alternatives to a benchmark model,

which is characterized by the belief that �B is the true value for �: We shall quantify how

likely a search over alternative models is to produce a �spurious�result, in-sample as well

as out-of-sample. By spurious result, we mean a situation where the best performing model

outperforms the benchmark by more than would be expected had just a single model been

2West (1996) acknowledged that a formal statistical justi�cation for the use of out-of-sample analysis

did not exit, but conjectured a source that is consistent with our �ndings. West wrote: �out-of-sample

comparisons sometimes bring surprising and important insights (e.g. Nelson (1972) and Meese and Rogo¤

(1983)), perhaps because inadvertent over-�tting that results from repeated profession wide use of a limited

body of data.�(Our italic).
3Possible impact of studies using di¤erent data can also be problematic, unless the two sets of data are

independent.
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Figure 1: Regression models with one regressor are estimated and maxk=1;:::;K LRx;x and

maxk=k;:::;K LRy;x are computed. The �gure shows the frequency by which these statistics

exceed the 5%-critical value of a �2-distribution with one degree of freedom. As K increases

we see that both frequencies increase, but the damage done by �data mining� is far more

severe in-sample than out-of-sample.
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compared to the benchmark.

Suppose that c� is the critical value associated with the test statistic, Q(X ; �̂x) �
Q(X ; �B); under the null hypothesis that � = �B: We report the frequencies by which

sup
j=1;:::;M

Q(X ; �̂x) � Q(X ; �B) + c�;

and

sup
j=1;:::;M

Q(Y; �̂x) � Q(Y; �B) + c�;

whereM is the number of models being compared to the benchmark. Naturally, using c� will

not control the size of this test because it does not account for the search over speci�cations.

Nor does it account for the estimation error in the out-of-sample comparison. Figures 1

and 2 illustrate one such situation using a simple regression design. The (true) benchmark

model is yi = "i; where "i are iid N(0; 1); whereas the pool of alternative speci�cations, all

have the same number of regressors (k = 1 or k = 3), that are selected from a set of K

orthogonal regressors. Figure 1 displays the results for the case where all models have a

single regressor (k = 1), and Figure 2 displays the results for k = 3. We have n = m = 50

in both designs.

Not surprisingly, do we see that a search over many model exacerbate the best empirical

�t. This is true in-sample as well as out-of-sample, but much less so out-of-sample. In fact,

when three regressors are used, it takes a substantial degree of data mining before the true

benchmark is substantively out-performed in the out-of-sample comparison.

This �nding contradicts the conclusion made in Inoue and Kilian (2004). They argue

that in-sample comparisons are superior to out-of-sample tests. Speci�cally they write:

�we question the notion that in-sample tests of predictability are more susceptible to size

distortions than out-of-sample tests�; and �We conclude that results of in-sample tests of

predictability will typically be more credible than results of out-of-sample tests�.

The over�tting problem can be more severe in an environment with parameter instability.

In this setting, the in-sample pseudo-true parameter value likely di¤ers from the out-of-

sample pseudo-true parameter value, creating an even larger gab between in-sample �t and

out-of-sample �t.
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Figure 2: Regression models with exactly three regressors are estimated where the regressors

are selected from a pool consisting of K regressors. The largest in-sample and out-of-sample

statistics, LRx;x and LRy;x are computed. The �gure shows the frequency by which these

statistics exceed the 5%-critical value of a �2-distribution with three degrees of freedom.

Naturally, as K increases we see that the rejection rates increase. However, the damage

done by �data mining�is far more severe in-sample.
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3.2 Model Selection: An Act of Hubris?

An important implication of (2) arises in this situation where multiple models are being

compared. We have seen that sampling variation comes in two forms, the relative innocuous

type, Q(X ; �(j)0 )�Q(�
(j)
0 ); and the vicious type Q(X ; �̂

(j)

x )�Q(X ; �
(j)
0 ): The latter the over�t

that translate into an under�t, out-of-sample, and the implication of this term is that we

do not want to select the model with the largest value of Q(�(j)0 ): Instead, the best choice

is the solution to:

argmax
j

h
Q(�

(j)
0 )� fQ(X ; �̂

(j)

x )�Q(X ; �
(j)
0 )g

i
:

It may seem paradoxical that we would prefer a model that does not (necessarily) explain the

in-sample data well, but it is the logical consequence of the fact that in-sample over�tting

translates into out-of-sample under�t.

In a model-rich environment, this is a knockout blow to standard model selection criteria

such as AIC. The larger the pool of candidate models, the more likely is it that one of these

models has a larger value of Q(�(j)0 ): But the downside of expanding a search to include

additional models is that it adds (potentially much) noise to the problem. If the models

being added to the comparison is no better than the best model, then standard model

selection criteria, such as AIC or BIC will tend to select a model with an increasingly worse

expected out-of-sample performance, i.e. a small Q(Y; �̂(j)x ): Even if slightly better models
are added to the set of candidate models, the improved performance, may not o¤set the

additional noise that is added to the selection problem. If the model with the best in-sample

performance, j� = argmaxj Q(X ; �̂
(j)

x ); is indeed the best model in the sense of have the

largest value of Q(�(j)); then this does not guarantee a good out-of-sample performance.

The reason is that the model with the best in-sample performance (possibly adjusted for

degrees of freedom) is rather likely to have a large in-sample over�t, Q(X ; �̂(j)x )�Q(X ; �(j)):
Since this reduces the expected out-of-sample performance, Q(Y; �̂(j)x ); it is not obvious that
selecting the model with the best (adjusted) in-sample �t is the right thing to do.

This phenomenon is often seen in practice. For example, �exible non-linear speci�cations

tend to do better than a parsimonious model in terms of �tting the data in-sample, but

substantially worse out-of-sample. This does not re�ect that the true underlying model is

necessarily linear, only that the gain from the nonlinearity is not large enough to o¤set

the burden of estimating the additional parameters. See e.g. Diebold and Nason (1990).
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The terminology �predictable� and �forecastable� is used in the literature to distinguish

between these two sides of the forecasting problems, see Hendry and Hubrich (2006) for a

recent example and discussion.

Suppose that a large number of models are being compared and suppose for simplicity

that all models have the same number of parameters, so that no adjustment for the degrees

of freedom is needed. We imagine a situation where all models are equally good in terms

of Q(�(j)0 ): When the observed in-sample criterion function, Q(X ; �̂
(j)

x ), is larger for model

A than model B, this would suggest that model A may be better than B. However, if we

were to select the model with the best in-sample performance,

j� = argmax
j
Q(X ; �̂(j)x );

we could very well be selecting the model with the largest sampling error Q(X ; �̂(j)x ) �
Q(X ; �(j)0 ). When all models are equally good, one may be selecting the model with the worst
expected out-of-sample performance by choosing the one with the best in-sample performance.

[ADD EXAMPLE]

It is rather paradoxical that AIC will tend to favor the model with the worst expected

out-of-sample performance in this environment, and that the worst possible con�guration

for AIC is the one where all models in the comparison are as good as the best model. This

is a direct consequence of the AIC paradox, mentioned earlier. This is not a criticism of

AIC per se, rather it is a drawback of choosing a single model from a large pool of equally

good models. Note that one would be better of by selecting a model at random in this

situation.

Rather than selecting a single model, a more promising avenue to good out-of-sample

performance is to aggregate the information across models, in some parsimonious way, such

as model averaging.

There may be situations where the selection of a single model potentially can be use-

ful. For example, in on unstable environment one model may be more robust to parameter

changes than others. See Rossi and Giacomini (2006) for model selection in this environ-

ment. Forecasting the level or increment of a variable is e¤ectively the same problem. But

the distinction could be important for the robustness of the estimated model, as pointed out

by David Hendry. Hendry argues that a model for di¤erences is less sensitive to structural

changes in the mean that a model for the level, so the former may be the best choice for
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forecasting if the underlying process has time-varying parameters.

3.3 Model Averaging

The idea of combining forecast goes back to Bates and Granger (1969), see also Granger and

Newbold (1977), Diebold (1988), Granger (1989), and Diebold and Lopez (1996). Forecast

averaging has been used extensively in applied econometrics, and is often found to produce

one of the best forecasts, see e.g. Hansen (2005). Choosing the optimal linear combination

of forecasts empirically has proven di¢ cult (this is also related to Theorem 1). Successful

methods include the Akaike weights, see Burnham and Anderson (2002), and Bayesian

model averaging, see e.g. Wright (2003). Weights that are deduced from a generalized

Mallow�s criterion (MMA) has recently been developed by Hansen (2006, 2007), and these

are shown to be optimal in and asymptotic mean square error sense. Clark and McCracken

(2006) use a very appealing framework with weakly nested models. In their local-asymptotic

framework, the larger model is strictly speaking the correct model, however it is only slightly

di¤erent from the nested model, and Clark and McCracken (2006) shows the advantages of

model averaging in this context.

To gain some intuition, consider the average criterion function,

M�1
MX
j=1

Q(X ; �̂(j)x ) =M�1
MX
j=1

Q(X ; �(j)0 ) +M�1
MX
j=1

fQ(X ; �̂(j)x )�Q(X ; �
(j)
0 )g: (3)

Suppose that model averaging simply amounts to take the average criterion function (it does

not). The last term in (3) is trivially smaller than the largest deceptive term,maxjfQ(X ; �̂
(j)

x )�
Q(X ; �(j)0 )g. Therefore, if the models are similar in terms of Q(X ; �

(j)
0 ); then averaging can

eliminate much of the bias caused by the deceptive noise, without being too costly in terms

of reducing the genuine value. Naturally, averaging over models does not in general lead to

a performance that is simply the average performance. Thus for a deeper understanding we

need to look at this aspect in a more detailed manner. The decomposition (2) is useful for

this problem.

De�ne

�(�) = Q(�);

and

�j(�) = Q(X ; �)�Q(X ; �0)
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Write (2) as �i(~�) = �i + "i + �i(
~�): Then our problem is to

[to be added]

4 Estimation

[This is a preliminary draft: Methods discussed in this section are mostly based on unproven

conjectures.]

For the purpose of estimation we will assume that the empirical criterion function is

additive, Q(X ; �) =
Pn
t=1 qt(xt; �), and is such that fqt(xt; �)gnt=1 is stationary and

st(xt; �) =
@
@�qt(xt; �);

evaluated at the true parameter value; st(xt; �0); is a martingale di¤erence sequence. In

addition to Xt; the variable, xt, may also include lagged values of Xt: For example, if

the criterion function is the log-likelihood for an autoregressive model of order one, then

xt = (Xt; Xt�1)t and qt(xt; �) = �1
2flog �

2 + (Xt � 'Xt�1)2=�2g
Recall the decomposition (2),

Q(X ; �̂x) = Q(�0) +Q(X ; �0)�Q(�0) +Q(X ; �̂x)�Q(X ; �0):

The properties of the last term, may be estimated by splitting the sample into two halves,

X1 and X2; say. We estimate � using X1 and leaving X2 for the �out-of-sample�evaluation.
Hence we compute �̂x1 = �̂(X1) and the relative �t,

� = Q(X1; �̂x1)�Q(X2; �̂x1):

We may split the sample in S di¤erent ways, and index the quantities for each split by

s = 1; : : : ; S: Taking the average
1

S

X
s

�s;

will produce an estimate of 2E
n
Q(X ; �̂x)�Q(X ; �0)

o
; thereby give us an estimate of the

expected di¤erence between the in-sample �t and the out-of-sample �t. (This would also

produce and estimate of the proper penalty term to be used in AIC).

More generally we could consider a di¤erent sample split n = n1 + n2; and study � =

Q(X1; �̂x1)� n1
n2
Q(X2; �̂x1):
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Bootstrap resampling, will also enable us to compute

"b = Q(X �b ; �̂x)�Q(X ; �̂x);

which may used to estimate aspects of the quantity, Q(X ; �0)�Q(�(j)0 ):
Related references... Shibata (1997), Kitamura (1999), Hansen and Racine (2007)

[Aspects of multiperiod ahead forecasts to be discussed...]

5 Qrinkage

Shrinkage is another way to mitigate the problems induced by in-sample estimation error.

Hastie, Tibshirani, and Friedman (2001) is a recent book that describes many of these

methods. The factor model approach by SW is a popular way do deal with the over�tting

problem in macroeconomic forecasting. Stock and Watson (2005a) consider several shrink-

age methods and compare their risk functions, including the bagging method by Breiman

(1996), see Kitamura (1999) and Inoue and Kilian (2007) for the use of bagging in an

econometric setting. Risk function have previously been used to compare shrinkage meth-

ods by Magnus and Durbin (1999) and Magnus (2002). Pre-testing, where in-signi�cant

parameters are dropped from the model before a forecast is produced, is commonly used in

this context. There are several aspects of pretesting that are problematic for inference, see

e.g. Judge and Bock (1978), Leeb and Pötscher (2003), and Danilov and Magnus (2004).

Nevertheless, its simplicity is appealing, and for the purpose of forecasting it is certainly

better than estimating a large model that accumulates much of estimation error. We can

in this sense view pretesting as a particular form of shrinkage.

Some shrinkage methods tend to select sparse models, i.e. models with relatively few

non-zero parameters. Miller (2002) emphasize the virtues of selecting a simple and inter-

pretable model. This aspect is also an integral part of some shrinkage methods such as

nonnegative garrote by Breiman (1995) and the lasso by Tibshirani (1996).

One possible way to adjust the estimated model, prior to using it out-of-sample, is to

change the parameter estimate away from �̂x; until the criterion function is reduced by a

desired amount,  say. A natural choice for  is  0 = EfQ(X ; �̂x) �Q(X ; �0)g; since this
would o¤sets the expected bias of the criterion function. An obstacle to this approach is

that the solution to

� : Q(X ; �) = Q(X ; �̂x)�  0;
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will not be unique in most situations. So which of the many solutions should we choose?

This issues can be resolved by introducing a gravity model.

A gravity model is characterized by a parameter value, ��: Qrinkage amounts to shrink-

ing the unrestricted estimate, �̂x; towards the gravity point, ��; until the criterion function

is reduced by a prespeci�ed amount. A natural choice is  0; because it o¤set the in-sample

bias in the value of the criterion function. However, in some cases, one may want to shrink

by more or less than  0. If a selection over di¤erent shrunken models is the way that the

�nal model is chosen, then more shrinkage is typically needed to o¤set the bias induced by

the selection.

Manganelli (2006) has independently proposed a very similar form of shrinkage. The

starting point in Manganelli (2006) is a judgemental forecast. The judgemental forecast is

adopted unless there is statistical evidence to suggest this forecast is inferior. When the

judgemental forecasts is at odds with the empirical evidence, Manganelli suggests to adjust

the judgemental forecast until it no longer is signi�cantly at odds with the data, using some

prespeci�ed signi�cance level. The judgemental forecast is similar to the gravity model in

our framework, and the signi�cance level is used to control the extend of shrinkage.

The shrinkage towards the gravity model, can be done in various ways. In the regression

context we can adopt a nonnegative garrote style shrinkage. For example, if �̂1; : : : ; �̂k

are the (unrestricted) point estimates, then we consider the solution to the constrained

optimization problem,

min
c1;:::;ck

nX
i=1

(Yi � c1�̂1X1;i � � � � � ck�̂kXk;i)2; s.t. cj � 0 and
kX
j=1

cj � s:

The extent of shrinkage is controlled by s: So we can �tighten�the estimates by shrinking

s towards zero, until the criterion function is reduced by the desired amount,  say. Let

c1( ); : : : ; ck( ) be the resulting shrinkage factors, then the �nal shrinkage estimates are

given by

~�j = cj( )�̂j ; for j = 1; : : : ; k:

5.1 Qrinkage in Regression Models

Consider the simple linear regression model,

Y = X� + ";
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where "jX � N(0; �2"I).

It is well known that minus two times the log-likelihood is given by

�2`(�2"; �) =
n

�2"
(Syy � �tSxy � Syx� + �tSxx�);

where we have used the de�nitions Syy = Y tY=n; Sxy = XtY=n; Syx = Stxy; and Sxx =

XtX=n:

We shall estimate the parameters by least squares and shrink the estimator of � towards

the gravity point. Here we can take �� = 0 without loss of generality. (If �� = b 6= 0 we

can reparameterize the model ~Y = Y �Xb = X~� + "; where ~� = (� � b):)
Let Sxx = V t�V be the diagonalization of Sxx; and de�ne 
 = V �:

Y = XV tV � + ";

= W
 + "

= (W1
1 + � � �+Wk
k) + ";

where W tW = V XtXV t = V V t�V V t = �; such that the regressors are orthogonal.

If we de�ne � � V Syx we have that


̂i =
Syxqi
qti Sxxqi

=
�i
�i
:

If we hold �2" �xed we have that

�2`(
) =
n

�2"
(Syy � 2�t
 + 
t�
)

=
n

�2"
(Syy � 2

kX
i=1

�i
i + �i

2
i );

and the idea is to shrink 
i towards zero such that �2`(�) is reduced by one unit, as this
would be the bias of two times the log-likelihood when the model is correctly speci�ed.

Thus, for each i we seek the solution to

n

�2"

�
�i(�i
i)

2 � 2�i(�i
i)
	
=

n

�2"
(�i


2
i � 2�i
i) + 1;

where �i 2 [0; 1] (if equality cannot be achieved, we set �i = 0):

0 = �i

2
i�
2
i + (�2�i
i)�i + (2�i
i � �i
2i �

�2"
n
)

= �i
�2i
�2i
�2i + (�2�i

�i
�i
)�i + (2�i

�i
�i
� �i

�2i
�2i
� �2"

n
)

22



=
�2i
�i
�2i +

�2�2i
�i

�i + (
�2i
�i
� �2"

n
);

or equivalently

�2i � 2�i + (1�
�i

�2i

�2"
n
) = 0;

which has the two roots given by

2�
r
4� 4(1� �i

�2i

�2"
n )

2
= 1�

s
�i

�2i

�2"
n
:

Since the gravity point is the origin, the relevant root is the smaller of the two, so that

��i = max(0; 1�

s
�i

�2i

�2"
n
) = max(0; 1� 1p

n

�"
�y

1

j�y;wi j
): (4)

There are several interesting observations to be made from the shrinkage formula (4).

1. The more observations we have the less shrinkage.

2. The more noise-to-signal (�"=�y) the more shrinkage

3. The larger is the (absolute) correlation between Y and Wi; the less shrinkage.

The qrinkage estimator, ~
i = 
̂i�
�
i ; can be rewritten as

~
i =

8<:

̂i +�i;n if 
̂i < ��i;n
0 if ��i � 
̂i � �i

̂i ��i;n if 
̂i > �i

�i;n =
1p
n

p
�2"=�i:

So in the regression context, the qrinkage estimator is known as the Burr estimator, see

Magnus (2002).4 Put di¤erently, the likelihood-based shrinkage can motivate the Burr

estimator.

Shrinking a parameter all the way to zero, may not reduce the criterion function by the

desired amount. In such case, one may want to shrink other parameters further, such that

the aggregate reduction of the criterion function is the desired amount.

Figure 3 illustrates Qrinkage in a 6-month ahead forecasting exercise for personal In-

come, using a simple autoregressive model.

4 I thank Jan Magnus for pointing this out to me.
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Figure 3: MSE of six-month ahead forecast of Personal Income using the OLS estimates

from an autoregressive model and the corresponding Qrinkage estimates. The forecast of

the unrestricted OLS estimator initially gets better as more lags are included in the model,

but then deteriorates rapidly. The Qrinkage estimate is much less sensitive to including a

large number of lags (because qrinkage sets them to zero).
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5.1.1 Ordered Qrinkage in Regression Models

Rewrite

yt = �1x1;t + � � �+ �kxk;t + "t;

as

yt = �1~x1;t + � � �+ �k~xk;t + "t;

where ~x1;t = x1;t; ~x2 = (I � P1)x2; ~x3 = (I � P1:2)x3; ; ~xk = (I � P1:k�1)xk: Note that

~xti ~xj = xti (I � P1:i�1)(I � P1:j�1)xj = 0

because

(I � P1:i�1)(I � P1:j�1) = I � P1:i�1 � P1:j�1 + P1:i�1P1:j�1 = I � P1:j�1;

and

xti (I � P1:j�1) = xti � xti = 0:

The resulting model can be viewed as a �soft�alternative to conventional model selection

methods that are based on information criteria. The qrinkage �selection�does not have the

discontinuity of standard information criteria, such as AIC and BIC, where a sharp threshold

determines whether a parameter is set to zero, or kept in the model at its unrestricted point

estimate.

[Show how to recover estimates of � from those of �]

5.1.2 Unit Roots

Shrink towards a unit root.. extra useful because the maximum likelihood estimator tends

to be biased away from the unit root. Part of the explanation for the empirical success of

the Minnesota prior, introduced by Doan, Litterman, and Sims (1984).

5.1.3 Partial Qrinkage in Regression Models

Consider now

Y = X� + Z'+ ";

and suppose that we are only interested in shrinking the parameters associated with X;

while leaving the coe¢ cients associated with Z unrestricted. (Naturally, our shrinking of �̂
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will cause the least squares estimate of ' to change, so these are not entirely una¤ected by

the qrinkage).

Here we de�ne R0 = fI�Z(ZtZ)�1ZtgY and R1 = fI�Z(ZtZ)�1ZtgX; and consider
the concentrated regression equation

R0 = R1� + ~"

and de�ne S00 = Rt0R0=n; S10 = Rt1R0; S01 = St10; and S11 = Rt1R1=n; and decompose

S11 = V t�V and de�ne � = V tS10: The estimator of � is given by

�̂ = S�111 S10

and 
̂ = V �̂; and shrink according to (4).

5.1.4 Qrinkage Interpretation of Di¤usion Indexes

The expression (4) is also interesting, as it shows that the �rst principal component (those

with a large �i) should be shrunk less than the last PC (those with a small �i): This may

explain the empirical success of forecasting using di¤usion indices by Stock and Watson,

who keeps the regression coe¢ cients associated with the �rst few principal components

in the �nal models, whereas all other coe¢ cient are set to zero. In principle there is no

reason to expect that the t-statistics associated with the �rst principal components should

be larger that those associated with the last principal components. Since this is often found

empirically, this suggest that the �rst principal components are capturing real economic

features that are useful of forecasting a great variety of variables.

Here revisiting the data analyzed in Stock and Watson (2005b)/Stock and Watson

(2005a). [hof.xls �thank Mark Watson for data].

Qrinkage o¤ers an alternative to selecting a �xed number of factors. The standard

approach has been: regression coe¢ cients associated with the principal components are

either kept at their unrestricted point estimate, or forced to be zero. An approach that

is similar to model selection methods and pre-testing. See e.g. Stock and Watson (2002a,

2002b) and Bai and Ng (2002). Qrinkage provides a smooth transition between these binary

choices.

The choice of factors is often made without consideration to the variable being fore-

casted. This is an odd aspect of this approach, but it does have the advantage of reducing
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Figure 4: The absolute value of several t-statistics are reported. Left columns refer to the

statistics obtained using data up until 1974 and right columns give the t-statistics using

the larger sample up until 2003. The dependent variable is personal income, the regression

model includes four lags, and a set of possible principal component. di refers to the ith

principal component.
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Figure 5: The absolute value of several t-statistics are reported. Left columns refer to the

statistics obtained using data up until 1974 and right columns give the t-statistics using the

larger sample up until 2003. The dependent variable is industrial production, the regression

model includes four lags, and a set of possible principal component. di refers to the ith

principal component
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the over�tting problem. Qrinkage lets the data speak as to which factors are relevant, while

keeping the over�tting in check. Another way to let the �data speak for themselves� is to

use other forms of shrinkage, such as that proposed by Bai and Ng (2007), who use the

terminology of �target predictors�.

The method of sliced inverse regression is an approach that shares some of the features

of the principle components, without disregarding the relation between predictors and the

variable to be forecasted when making the data reduction. The sliced inverse regression

was introduced by Li (1991), and has not been used much in econometrics, see Chen and

Smith (2007) for a recent exception. For a good description of the relation between SIR

and related methods, see Naik, Haferty, and Tsai (2000).

In practice one often �nds the most �signi�cant�regressors to be those associated with

the �rst principal components. A good example of this situation is illustrated in Figure

4, where Personal Income is the dependent variable. At times the data seems to ask for

a other factors than the �rst few, as seen in Figure 5. This �gure displays the results for

the case where Industrial Production is the dependent variable, and we see that the 7th

principal component is rather signi�cant according to its t-statistic.

5.2 Combining Forecasts

In the context of point forecasting, there is an natural alternative to taking a (weighted)

average of the parameters in the competing models. Instead we can take a linear combi-

nation of the individual point forecasts. Let Yt+1 be the variable to be forecasted, and let

Ŷ
(j)
t ; j = 1; : : : ;M be the competing forecasts. We can stack the forecast into the vector

Ŷt = (Ŷ
(1)
t ; : : : ; Ŷ

(M)
t )t: Given the empirical success of principal components in the context

of Stock and Watson, it would be natural to consider the principal components of the vector

of forecasts, Ŷt: We may decompose the individual forecast into

Ŷ
(j)
t = E(Yt+1jFt) + [bias](j) + [error](j)t :

If the target variable is a persistent variables, such as in�ation, an interest rates, or the

GDP growth-rate, then E(Yt+1jFt) may de�ne (or be closely related to) the �rst principal
component of Ŷt: Thus the �rst principal component (suitably scaled) will in this situation

be quite similar to the equal-weighted combination of the individual forecasts. It would

be very interesting to study this aspect empirically, because this could link the empirical
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Figure 6: Least squares point estimates and the corresponding qrinkage estimates. Here we

see that all but the �rst two regression parameters are shrunken all the way to zero by the

qrinkage procedure.

30



Figure 7: Least squares point estimates and the corresponding qrinkage estimates.
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success of the equal-weighted forecasts, to that found in the context of SW. Furthermore,

it would suggest ways to improve upon the equal-weighted forecasts, as the �rst principal

component may not be exactly proportional to � (the vector of ones), and it may also useful

to incorporated more than the �rst principal component in the construction of a combined

forecast.

5.3 Qrinkage of Weak/Many Instruments

Instrumental variables

Yi = Xt
i � + ui

Xi = Zti � + vi:

The TSLS estimator is given by �̂IV = (X̂
tX̂)�1X̂tY where X̂ = PZX and PZ = Z(ZtZ)�1Zt:

A key problem with the TSLS is that (X̂tX̂) is too large, particularly when the instruments,

Z; are and/or used in large numbers. The problem is that the �rst-stage regression will

explain more variation in X; than had the true value of � been used. It would be straight

forward to �qrink� �̂ = (ZtZ)�1ZtX, such that the second-stage regression would involve

less variable regressors. It would be interesting to compare the resulting estimator to k-class

estimators: �̂k = [X
tfI � k(I � PZ)gX]�1XtfI � k(I � PZ)gY:

6 Concluding Remarks

[To be added]

We have seen that model selection by information criteria, such as AIC, is an act of

hubris in a model-rich environment.

Qrinkage has been applied in Chun (2007) and his results are rather promising for the

use of qrinkage in practise.
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A Appendix of Proofs

[some details to be added].

Proof of Theorem 1. To simplify notation we write Qx(�) as short for Q(X ; �): Since �̂x
is given by Q0x(�̂x) = 0; we have

0 = Q0x(�̂x) = Q0x(�0) +Q
00
x(
~�)(�̂x � �); where ~� 2 [�0; �̂1]

so that

(�̂x � �0) =
h
�Q00x(~�)

i�1
Q0x(�0);

and we have

Qx(�̂x)�Qx(�0) =
1

2
(�̂x � �0)t

h
�Q00x(~�)

i
(�̂x � �0)

= Q0x(�0)
t ��Q00x(�0)��1Q0x(�0) + op(1)

For the out-of-sample period we have

Qy(�̂x)�Qy(�0) = Q0y(�0)
t(�̂x � �) +

1

2
(�̂x � �0)tQ00y(~�)(�̂x � �0) + op(1)

= Q0y(�0)
t ��Q00x(�0)��1Q0x(�0)

+
1

2
Q0x(�0)

t ��Q00x(�0)��1Q00y(~�) ��Q00x(�0)��1Q0x(�0) + op(1):
Since m�1Q00y(~�n)

p! I0 and n�1Q00x(~�n)
p! I0; whenever ~�n

p! �0; we have

Qy(�̂x)�Qy(�0) =

r
m

n
Q0y(�0)

t fI0g�1Q0x(�0)

+
1

2

m

n
Q0x(�0)

t fI0g�1Q0x(�0) + op(1):

The in-sample and out-of-sample log-likelihood functions are given by

`x(�) �
nX
i=1

log f(Xi; �); and `y(�) �
n+mX
i=n+1

log f(Xi; �):

We assume that the likelihood functions satisfy Assumption 1. The in-sample and out-of-

sample maximum-likelihood estimators are given by

�̂x = argmax
�
`x(�) and �̂y = argmax

�
`y(�):
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Assumption 1 ensures that Sx(�̂x) = Sy(�̂y) = 0; where the scores are de�ned by

Sx(�) �
@

@�
`x(�) and Sy(�) �

@

@�
`y(�):

The Hessians,

Hx(�) �
@2

@�@�t
`x(�) and Hy(�) �

@2

@�@�t
`y(�);

are such that �̂
p! �0 ) Hz(�̂)[Hz(�0)]

�1 p! Ik for both z = x and z = y:

We can factorize the log-likelihood function and express the scores and the Hessians as

Sx(�) =

nX
i=1

si(�) and Sy(�) =

n+mX
i=n+1

si(�);

and

Hx(�) =
nX
i=1

hi(�) and Hy(�) =
n+mX
i=n+1

hi(�);

where si(�) � @
@� log f(Xi; �) and hi(�) =

@2

@�@�t
log f(Xi; �):

Proof of Theorem 2. In this standard likelihood framework we have that

0 = S1;�̂1 = S1;�0 +H1;~�(�̂1 � �0);

where ~� lies between �̂1 and �0; such that

(�̂1 � �0) = [�H1;~�]
�1S1;�0 :

Correct speci�cation ensures that

�s � E[si;�0s
t
i;�0 ] = �E[hi;�0 ];

also known as the information matrix equality, and regularity conditions ensure that

�H1;~� = �
1

n

nX
i=1

hi;~�
p! E[hi;�0 ] = �s:

Thus if we de�ne

Z1;n = �
�1=2
s

1p
n

nX
i=1

si;�0 and Z2;m = �
�1=2
s

1p
m

n+mX
i=n+1

si;�0 ;

it follows that Z1;n
d! Z1; as n!1; and Z2;m

d! Z2 where (Zt1 ; Z
t
2 )
t � N2k(0; I2k):

A Taylor expansion of the in-sample log likelihood function yields
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`1(�0) = `1(�̂1) + S
t
1;�̂1
(�̂1 � �0) +

1

2
(�̂1 � �0)tH1;��(�̂1 � �0); (5)

for some ��1; that lies between �0 and �̂1; such that

`1(�̂1)� `1(�0) =
1

2
St1;�0 [�H1;�0 ]

�1S1;�0 + op(1)
d! 1

2
Zt1Z1:

The out-of-sample score is given by

S2;�̂1 = S2;�0 +H2;��(�̂1 � �0) = S2;�0 +H2;��[�H1;~�]
�1S1;�0

where �� lies between �̂1 and �0; and we note that S2;�̂1 6= 0 almost surely, (unlike the

in-sample score S1;�̂1) = 0).

Consider now a Taylor expansion of the out-of-sample likelihood

`2(�̂1) = `2(�0) + S
t
2;�0(�0 � �̂1) +

1

2
(�̂1 � �0)tH2;~�(�̂1 � �0);

such that

`2(�̂1)� `2(�0) = St2;�0 [�H1;~�]
�1S1;�0 +

1
2S

t
1;�0 [H1;~�]

�1[H2;~�][H1;~�]
�1S1;�0

=
q

m
n Z

t
2;mZ1;m � 1

2
m
n Z

t
1;mZ1;m + op(1):

=
q

m
n Z

t
2Z1 � 1

2
m
n Z

t
1Z1 + op(1):
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