What effects is EMU having on the euro area and its member countries? 16-17 June 2005, Frankfurt am Main

Session I: Trade integration

Leading paper:

Richard E. Baldwin Graduate Institute of International Studies, Geneva

Empirical literature: "Rose effect"

• Two branches:

- G Rose (2000) inspired studies on pre-euro currency unions
- Micco, Stein and Ordenez (2003) inspired studies on Eurozone.

Pre-euro studies

- Bottom line judgement: no relevance to Eurozone
- Two reasons:
- #1: Pre-euro CUs are highly idiosyncratic.
- #2: Severe econometric problems.
 - Rose (2000) estimate of 3 times more trade should be ignored for policy purposes.
 - See my paper for details

Eurozone studies

- MSO (2003), Flam and Nordstrom (2004), many others.
- Most contain seriously flawed econometrics.
 - See paper for a details.
- Best study: Flam-Nordstrom (2004) using only EU nations.
 - 8% more imports by Eurozone nations
 - Euro seems to be acting like a unilateral liberalisation, not a preferential liberalisation as OCA theory assumes.
 - (This result needs to be checked further.)

Collection of clues

• Extract 'facts' from the empirical literature on Rose effect of euro.

Sectoral results													
Beverages & tobacco, 42%				Manufac by mater	ctures rial,		Machinery Transp. Eq		′ & ∣∙	Misc. Manuf. 7%			
			L N	1570			23%)	\leq				
Table 8.	Results for SITC 1-9 Aggregate export	sectors (or SITC 0 Food & live animals	SITC 1 Beverage tobacco	SITC 2 s & Crude materials, inedible, except fuels	95-2002 SITC 3 Mineral fuels, lubricants & related material	Sí An ve oil wa	TC 4 simal & getable s, fats & xxes	SITC 5 Chemicals 5 related products, n.e.s.	SITC 6 Manufacti goods classified chefy oy materials	SITC 7 until Machinery transport equipment	SITC 8 8 Miscellaneous manufactured articles		
EMU11 EMU12 EMU21	0.172*** (0.021) 0.069*** (0.018) 0.069*** (0.019)	0.014 (0.041) 0.047 (0.037) -0.088** (0.039)	0.352*** (0.086) 0.129* (0.072) 0.161* (0.087)	-0.033 (0.054) -0.063 (0.052) -0.115*** (0.044)	-0.196 (0.198) -0.096 (0.172) 0.075 (0.167)	0.0 (0. (0. (0. (0. (0.	044 152) 186 125) 139 133)	0.069* (0.038) 0.078** (0.033) 0.059 (0.036)	0.124*** (0.034) 0.002 (0.032) 0.088** (0.036)	0.224*** (0.037) 0.087** (0.035) 0.120*** (0.036)	0.071*** (0.027) -0.002 (0.023) 0.009 (0.025)		
	All other sectors insignificant												

Eurozone trade pricing

- Meagre evidence is that there was no structural break in the EZ trade pricing.
 - "The dog that did not bark."

Hypothesis Type #1: spurious

- A Bad data
- **B** Lagged effect of euro's sharp depreciation at birth.
- C. Lagged and differential effect of implementation of Internal Market measures in late 1990s.

Hypothesis Type #1: Real Rose effect

If it is real, what could it be?

- Trade volumes increasing by 5-15% in a few years.
- Possible sources:
 - \bigcirc The bilateral trade costs fall \rightarrow "Lower tau".
 - \bigcirc The markup on intra-EZ trade falls \rightarrow "Lower mu".
 - \bigcirc EZ marginal production costs fall \rightarrow "Lower mc".
 - \bigcirc The number of varieties traded rises \rightarrow "Higher n".

Look at import demand AND pricing equation.

$$X_{od} = n_o \tau_{od} \mu_{od} \left(\frac{RER_{od}}{\left(\sum_k n_k \tau_{kd}^{1-\sigma} (RER_{kd})^{1-\sigma} \right)^{1/(1-\sigma)}} \right)^{-\sigma} \frac{E_d}{P_d}; \qquad RER_{kd} \equiv \frac{e_{kd} mc_k}{P_d}$$

- EZ dummy significant means structural break in volume equation.
 - Culprits: must be n, τ or μ .
- •If true there's no structural break pricing, then 'n' is the perpetrator.
 - Suggests Melitz model effect (Baldwin & Taglioni 2004)

Diagnostic tests: Real

- Careful estimation of bilateral import demand equations (on EU15 data only).
 - Accounting for real ERs (bilateral & multilateral adjusted for the external exposure) allowing for lags
 - Account for lagged & differential implementation of internal market measures (need to develop proxies)
- Careful estimate of import pricing equations.
 - Control for all of above.
- Do both on aggregate and sectoral data.
- Estimate country-specific effects.
- Check for structural breaks.

τ , μ or n?

For trade costs, τ :

- Check the Flam-Nordstrom results on $EZ \rightarrow Non \& Non \rightarrow EZ$.
- Check the trade diversion story by nation using Flam-Nordstrom techniques.
 - Do they suggest particular types of trade cost changes?
- Trade diversion by EZ nation and by third country partner groups.
 - Is it some form of European integration not in regressions? For example, EEA changes, EU-Swiss Bilateral Agreements?
- Check by sector.
 - Is it something sector specific?
 - Check Flam-Nordstrom hypothesis of components trade.

τ , μ or n?

For pro-competitive effect, μ:

- Check for change in pricing equations.
- Check for changes in profitability (stock market prices? Corporate accounts? Anecdotes?)
- Check for domestic price evolution and domestic sales (all sales should rise, including domestic producers).

Euro's trade effect is important

- Eurozone covers 300 million people, 1/5th of world GDP and 1/3 of world trade.
- Eurozone problems with one-size-fits-all monetary policy.
- Tighter trade integration could help
 - Harmonise inflation rates:
 - Imported inflation channel
 - Price species flow mechanism
 - Demand-shock transmission via trade

The CU pairs are bizarre										
Hub and Spoke arrange	ements	Multilateral currency unions	Misc.							
√ <u>Australia</u>	√ <u>USA</u>	CFA	√ <u>India</u>							
Christmas Island	American Samoa	√ Benin	√ Bhutan							
Cocos (Keeling) Islands	Guam	√ Burkina Faso	√ <u>Denmark</u>							
Norfolk Island	√US Virgin Islands	√ Cameroon	Faroe Islands							
✓ Kiribati	Puerto Rico	✓ Central African Republic	✓ Greenland							
√ Nauru	Northern Mariana Islands	√ Chad	Turkey							
√ Tuvalu	✓ British Virgin Islands	Comoros	N. Cyprus							
Tonga (pre '75)	✓ Turks & Caicos	√ Congo	Singapore							
√ France	√ Bahamas	√ Cote d'Ivoire	Brunei							
√ French Guyana (OD)	Bermuda	Equatorial Guinea (post '84)	Norway							
✓ French Polynesia	√ Liberia	√Gabon	Svalbard							
√ Guadeloupe (OD)	Marshall Islands	Guinea-Bissau	South Africa							
Martinique (OD)	Micronesia	√ Mali (post '84)	Lesotho							
Mayotte	Palau	√ Niger	Namibia							
New Caledonia (OT)	√ Panama	√ Senegal	Swaziland							
✓ Reunion (OD)	✓ Barbados (? 2:1)	√ Togo	Switzerland							
Andorra	√ Belize (? 2:1)	ECCA	Liechtenstein							
√ St.Pierre & Miquelon	√ Britain	√ Anguilla	Spain							
Wallis & Futuna Islands	✓ Falkland Islands	✓ Antigua and Barbuda	Andorra							
Monaco	√ Gibraltar	√ Dominica	Singapore							
√New Zealand	Guernsey	√ Grenada	Brunei							
√ Cook Islands	Jersey	✓ Montserrat	Italy							
√ Niue	Isle of Man	✓ St. Kitts and Nevis	San Marino							
Pitcairn Islands	√ Saint Helena	✓ St. Lucia	Vatican							
Tokelau	Scotland	√ St.Vincent	Morocco							
	√ Ireland (pre '79)		Western Sahara							

Ignore pre-euro studies: Reason #2

- Many studies have severe econometric problems
- Rose (2000), e.g., widely cited but should be ignored for policy purposes.
 - The identification assumptions have been proved to be false by Andy Rose and many others

<u>Gold medal error</u>: estimate this on pooled panel data • Real GDP figures likely to be downward biased since the error contains 1/P. $\hat{\beta}_{1} = \begin{pmatrix} 1 \\ -b_{1}(\sigma-1) \\ b_{2}(\sigma-1) \end{pmatrix} + \begin{pmatrix} RT_{o,t}RT_{d,t} \rangle X_{21t} & (RY_{o,t}RY_{d,t}) \cdot Z_{t} \\ dist \cdot Z_{t} \\ CU_{t} \cdot X_{21t} & (U_{t} \cdot Z_{t}) \end{pmatrix} \begin{pmatrix} 1 \\ b_{3} \end{pmatrix}$ $X_{21} = \frac{P_{o}P_{d} / P_{USA}}{\sqrt{\Omega_{o}} \Delta_{o} \Delta_{d} \Omega_{d}}$ • The 2 kluges may help by forcing an averaging of the biases

Bit of theory (sorry)

- "Without theory, practice is but routine born of habit." ~ Louis Pasteur
- Gravity model is basically a demand equation with a twist.
- Derivation of gravity equation is a one line proof ...
- if we start sufficiently far to the left.

Two common 'kluges'

- #1: Average V_{od} and V_{do}
- #2: Force coefficient on GDP's to be same.
- If trade costs are bilaterally symmetric, the true model is:

$$\ln \sqrt{V_{od}V_{do}} = \ln(\tau_{od}^{1-\sigma}) + \ln\left(\frac{E_o E_d}{\sqrt{\Omega_o \Delta_o \Delta_d \Omega_d}}\right); \quad \tau_{od} = f(dist_{od}, other \ stuff)$$

"Cannot" estimate true model, so

O Most people estimate:

$$\ln\left(\frac{V_{od} + V_{d0}}{2P_{USA}}\right) = \ln\left(\tau_{od}^{1-\sigma}\right) + \ln\left(\frac{E_o}{P_o}\frac{E_d}{P_d}\right) + u$$

- where P's are GDP deflators Pusa is US price index.
- τ proxied by distance, CU dummy & other stuff (language etc)
- Given the true model,

$$u = \ln \left\{ \frac{P_o P_d / P_{USA}}{\sqrt{\Omega_o \Delta_o \Delta_d \Omega_d}} \right\} + \ln Z_{od} + \varepsilon$$

where Z is 'other stuff' determinants of trade costs

- What is wrong with this?
 - Gold, Silver and Bronze medal errors.

- Note that we should be using the average of the logs when averaging bilateral exports between nations o and d.
- Most authors average first and then take logs

Bronze medal mistake

- Deflation by US price index is wrong
 - Can induce spurious correlation with real GDP figures if global inflation trends.
- Most authors off-set this mistake by including time dummies in the regression.
 - NB: estimates with and without time dummies can be very different

