Non-standard monetary policy measures, monetary financing and the price level

Alain Durré and Huw Pill

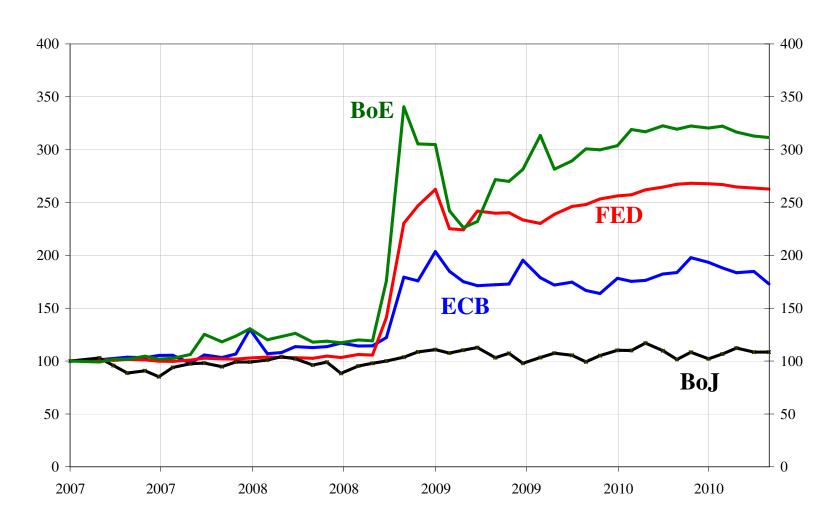
Monetary and Fiscal Policy Challenges in Times of Financial Stress Frankfurt, 2-3 December 2010

Disclaimer

The views expressed in this presentation are those of the authors and not necessarily those of the ECB or the Eurosystem.

Motivation #1

The financial crisis has led central banks to introduce a variety of non-standard measures:


- ECB 'enhanced credit support'
- FED 'credit easing', QE2
- BoE 'quantitative easing'

These appear to have 'worked' (at least in the sense of avoiding a financial cataclysm and providing some marginal stimulus to the economy) (e.g. Gagnon et al; Joyce et al; Giannone et al)

... but concerns have been expressed about their longer-term impact on central bank balance sheets and institutional independence (e.g. Hamilton)

Size of central bank balance sheets

index, January 2007 = 100

Source: ECB, Federal Reserve, Bank of England, Bank of Japan

Motivation #2

Two lines of research into the relationship between monetary and fiscal policies:

Monetarist

Money supply driven by fiscal factors

Money created in excess of money demand

Cagan model of hyperinflation

Fiscal theory of the price level

Government does not respect intertemporal budget constraint

Government cannot default

In general equilibrium, fiscal considerations can drive price developments

Motivation #3

Central bank policy instruments

Monetary policy (interest rate level, stock of 'reserves')
Interest-on-reserves policy (liquidity management)

Credit policy (composition of central bank asset holdings)

- ⇒ (quasi-) fiscal activities of central banks ...
 Goodfriend: 'credit policy is debt-financed fiscal policy'
- Institutional considerations

FED / Treasury Accord

Prohibition of monetary financing (Art. 123 of Lisbon Treaty)

Anticipation of results

- Non-standard central bank measures take two forms / embody two elements:
 - 'pure' liquidity measures;
 - credit measures (= (quasi) fiscal measures)
- Viewed from the longer-term perspective in terms of implications for price stability:
 - liquidity measures are benign (but should be standard rather than non-standard);
 - credit measures:
 - can support (indeed, may be necessary to achieve) price stability;
 - but entail risks if not limited in scope and /or duration.

Simple model

- General equilibrium
- 3 actors in the economy
 - Private sector (households that own firms);
 - Central bank
 - Government
- In this exercise, we focus on the steady state

Households #1

Maximise utility subject to intertemporal budget constraint

$$\max_{c, \ h, \ m, \ B^p, \ L^{cb}} E_0 \sum_{t = 0}^{\infty} \beta^t \ U(c_t, h_t, m_t) \ = \sum_{t = 0}^{\infty} \beta^t \ \left[u(c_t) - f(h_t) + \eta \ L\left(\frac{m_t}{\overline{m}}\right) \right]$$

$$\left(\frac{W_t}{p_t} - \tau_t\right) \ + \ R_{t-1} \ \frac{B_{t-1}^p}{p_t} \ + \ \frac{L_t^{cb}}{p_t} \ + \ i_{t-1} \ \frac{m_{t-1} \ p_{t-1}}{p_t} \ + \ \frac{D_t}{p_t} \ \geq \ (c_t + m_t) \ + \ \frac{B_t^p}{p_t} \ + \ R_{t-1} \ \frac{L_{t-1}^{cb}}{p_t}$$

Households #2

Pins down real interest rate in steady state:

$$\beta = \frac{\widetilde{\pi}}{\widetilde{R}}$$

 Separability in period utility function yields recursive demand for reserves, with satiation:

$$m_t = m (c_t, \mu_t; \overline{m}, \eta)$$
 $m_c > 0, m_{\mu} \le 0, m_{\eta} > 0;$
 $\overline{m} \le m (c_t, 0; \overline{m}, \eta)$

$$\mu_t = \frac{(R_t - i_t)}{R_t} \ge 0$$

Firms

- Standard New Keynesian set-up
- Pins down output
- Negative relationship with steady state inflation rate

Central bank #1

- Assets: Government bonds, loans to private sector
- Liabilities: Reserves

$$m_t p_t = B_t^{cb} + L_t^{cb}$$

Seigniorage function

$$\psi_t = \frac{R_{t-1} \ (B^{cb}_{t-1} - L^{cb}_{t-1})}{p_t} - (i_{t-1}) \ m_{t-1} \ \frac{p_{t-1}}{p_t}$$

Central bank #2

- Holdings of reserves are voluntary (≠ Cagan / monetarist)
- Seigniorage 'Laffer curve', with maximum revenue level

$$\psi_t = \frac{R_{t-1} \left(B_{t-1}^{cb} - L_{t-1}^{cb} \right)}{p_t} - (i_{t-1}) m_{t-1} \frac{p_{t-1}}{p_t}$$

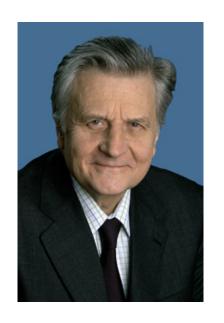
$$\psi_t^* = \psi^*(c_{t-1}; \ \overline{m}, \ \eta)$$

- Government expenditure is given exogenously, according to the mechanics ...
 - In period t-1, the private sector "buries" g_{t -1 of available final consumption good
 - The government is presented with a 'bill' for these resources at the end of the period in nominal terms, $G_{t-1} = g_{t-1} p_{t-1}$
 - The government meets this bill during the next period, implying a real cost of $g_{t-1} p_{t-1}/p_t$
 - Crucially, there is scope to erode the real value of this payment via inflation

The Economist September 11th 2010

All that's missing is a pint of Guinness

- So 'government' should be understood as encompassing the creators of (implicit) liabilities in the private sector ...
- From an empirical point of view, this dramatically increases the potential costs ...


• Government balance sheet evolves according to ...

$$\frac{B_t}{p_t} = \frac{(R_{t-1}) B_{t-1}}{p_t} - \left(\tau_t - \frac{g_{t-1} p_{t-1}}{p_t}\right) - \psi_t$$

• Where (real) 'conventional' lump-sum taxation is subject to an upper bound ('fiscal limit') ...

$$\tau_t \leq \overline{\tau} \qquad \forall t$$

owing to Laffer curve and / or political constraints ...

"many countries in the industrial world have reached the limits of fiscal expansion. ... governments cannot live beyond their means forever"

President J-C. Trichet, 9 July 2010

"Never again will the American taxpayer be held hostage by a bank that is too-big-to-fail"

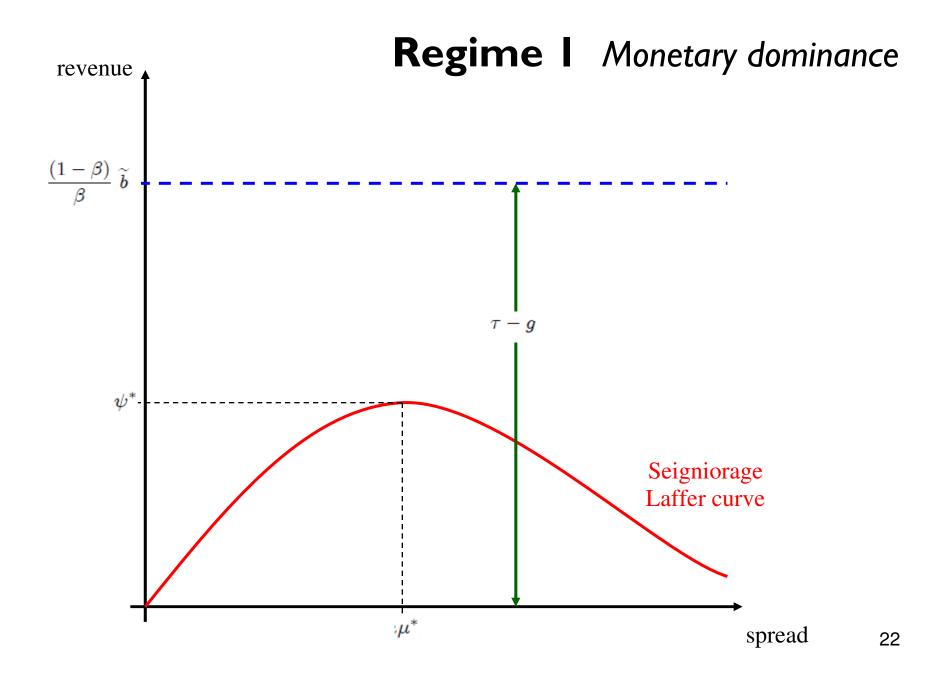
President B. Obama, 21 January 2010

Consolidated public sector balance sheet

$$\frac{B_t}{p_t} = \frac{R_{t-1} B_{t-1}}{p_t} - \left(\tau_t - g_{t-1} \frac{p_{t-1}}{p_t}\right) - R_{t-1} \frac{p_{t-1}}{p_t} m_{t-1} \mu_{t-1}$$

- Because of the various technical and political constraints facing policy makers:
 - The government itself is not optimising;
 - The public sector may behave in a non-Ricardian way.

Key components of steady state


- Must meet the (real) interest burden of outstanding stock of government debt ...
 - $\frac{(1-\beta)}{\beta}$ \tilde{b}

• out of primary balance ...

$$\left(\tau_t - \frac{g_{t-1} \ p_{t-1}}{p_t}\right)$$

• plus seigniorage ...

$$\psi_t$$

Regime I Monetary dominance

 Conventional taxation is able to meet all fiscal demands (and adjusts passively to do so) ...

$$\overline{\tau} \geq \widetilde{g} + \frac{(1-\beta)}{\beta} \widetilde{b}$$

• Steady-state inflation rate is determined by the central bank

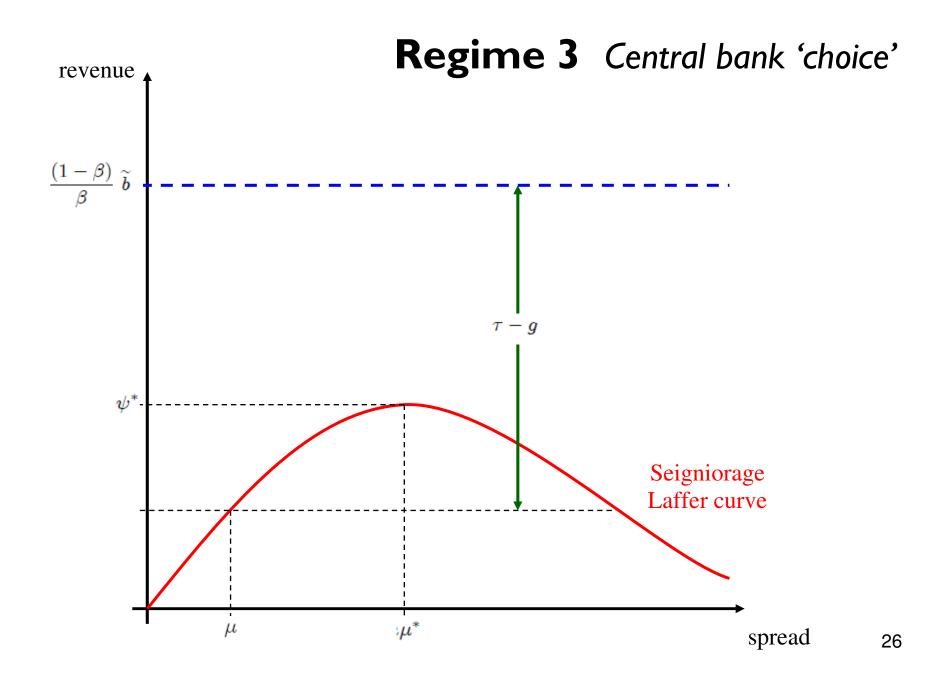
$$\pi^* = 1$$

Central bank satiates demand for reserves

$$m_t \geq \overline{m}$$
 $\mu_t = 0$

Regime 2 Fiscal dominance revenue Seigniorage Laffer curve spread

Regime 2 Fiscal dominance


• Fiscal capacity insufficient to meet needs ...

$$\widehat{g} \geq \overline{\tau} + \psi^*((\widetilde{y} - \widehat{g}), \overline{m}, \eta) + \frac{(\beta - 1)}{\beta} \widetilde{b}$$

 Steady-state inflation rate is determined by fiscal / general equilibrium considerations and is not consistent with price stability

$$\widehat{\pi} = \frac{\widehat{g}}{\left[\overline{\tau} + \psi^*((\widehat{y} - \widehat{g}), \overline{m}, \eta) + \frac{(\beta - 1)}{\beta} \widetilde{b}\right]} \ge 1$$

Central bank 'trades off' higher inflation against liquidity provision

Regime 3

• To meet needs, reliant on seigniorage ...

$$\overline{\tau} \leq \frac{\overline{g}}{\pi^*} - \frac{(\beta - 1)}{\beta} \overline{b} \leq \overline{\tau} + \psi^*((\overline{y} - \overline{g}), \overline{m}, \eta)$$

• Central bank can maintain price stability ...

$$\pi^* = 1$$

• ... but only by accommodating fiscal demands on its balance sheet

Efficacy of non-standard measures

Liquidity measures are benign

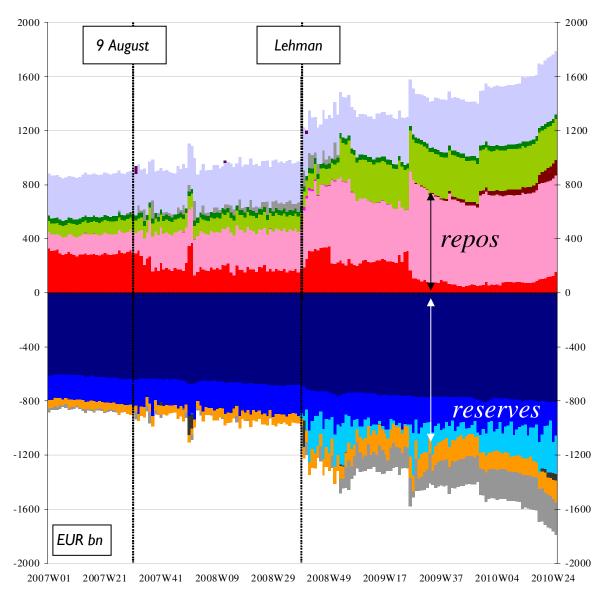
Efficacy of non-standard measures

- 'Credit policy' measures are effective because of their (quasi) fiscal nature:
 - They can support (may even be necessary to maintain)
 price stability ...
 - > provide a 'buffer' when fiscal limits are reached;
 - can subsidise 'necessary activities' for monetary policy transmission when the scope for explicit / conventional fiscal support is limited by practical and / or political constraints
 - But there are limits: when these reached, there are consequences in terms of outlook for price stability

Further work

- Dynamics and expectational effects
 - Once g is stochastic, the support for g will influence price expectations and dynamics, potentially even well away from the bounds defined above ...
- Endogenising fiscal demands
 - 'Ratcheting effect': creation of 'dependency' on nonstandard measures on the part of financial system;

Further work


Empirical issues

- How large is the (quasi) fiscal capacity of the central bank?
- How large are the (potential) costs of undertaking credit policy measures?
- How close / binding are fiscal limits?

Political economy

- Institutional design of relationship between central bank, government and financial sector;
- Risk-sharing mechanisms within a monetary union.

Background slides

Eurosystem balance sheet

Source: Lenza et al. (2010)