
Intro Model Equilibria Fiscal Policy Appendices

Fiscal Policy in An Expectations
Driven Liquidity Trap

Karel Mertens1 and Morten O. Ravn2,3

Cornell University1, University College London2 and the CEPR3

ECB, December 2010



Intro Model Equilibria Fiscal Policy Appendices

Intro

Global recession, short-term interest rates at historical lows.

Fiscal policy as a stabilization tool is back.

Questions:

1. How effective are fiscal policy interventions in general?

2. How effective are fiscal policy interventions in low or zero interest
rate environment?

3. Demand or supply oriented stimulus?
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Recent answers in the New Keynesian framework:

1. How effective are fiscal policy interventions in general?

Usually crowding out. See Hall (2009) and Woodford (2010)

2. How effective are fiscal policy interventions in low or zero interest
rate environment?

Crowding in. Government spending increases have (much) larger
output effects.

Christiano, Eichenbaum and Rebelo (2009), Eggertson (2009), Hall
(2009), Woodford (2010), ...

3. Demand or supply oriented stimulus?

Demand stimulus becomes more effective. Supply stimulus is
counterproductive at zero interest rates.

Eggertson (2009)
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This paper

Fiscal policy in New Keynesian model under a liquidity trap (depressed
output levels, deflation and zero nominal interest rates)

As in previous papers, liquidity trap after a shock that induces high
private savings.

Identical model environment, but a different shock: loss in “confidence”

1. Large drops in output and welfare can occur in an expectations
driven liquidity trap

2. Demand stimulating fiscal policies (spending and sales tax cuts)
become less effective than usual.

3. Supply stimulating fiscal policies (cuts in marginal labor income tax)
become more effective.

4. Higher inflation targets are a bad idea.
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Model Environment

Standard New Keynesian model

1. Agents: households, final goods producers, intermediate
goods producers, government

2. Monopolistic competition in intermediate goods sector,
staggered price setting

3. Monetary policy operating an interest rate rule responsive to
inflation, subject to the zero bound.

4. Fiscal instruments: government spending, sales taxes, labor
income tax
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Households

Preferences

V0 = E0

∞∑
t=0

(ωtβ)t u (ct , lt ,mt)

Budget constraints

(1 + τc,t)Ptct + Mt +
Bt

1 + it
≤ (1− τn,t)Wt (1− lt) + Bt−1 + Mt−1 + Tt + Πt

M−1 ≥ 0 , B−1 ≥ 0 given

No-Ponzi constraints

lim
s→∞

Et
Bt+s

(1 + it) · · · (1 + it+s)
≥ 0

mt = Mt/Pt ≥ 0, ct > 0, 0 ≤ lt ≤ 1

Restrictions on preferences.
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Optimality requires:

Ul (ct , lt)

Uc (ct , lt)
=

(1− τn,t)Wt

(1 + τc,t)Pt

Uc (ct , lt) = β(1 + it)Et

[
ωt+1

ωt

(1 + τc,t)Pt

(1 + τc,t+1)Pt+1
Uc (ct+1, lt+1)

]
Ūm (mt)

Uc (ct , lt)
=

it
1 + it

1

(1 + τc,t)

lim
s→∞

Et

[
Bt+s + Mt+s

(1 + it) · · · (1 + it+s)

]
= 0
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Final Goods Sector

Final goods technology

yt =

(∫ 1

0

y
1−1/η
it di

)1/(1−1/η)

implying demand functions

yit =

(
Pit

Pt

)−η
yt

where Pit is the date t price of intermediate good of variety i .
Pt is the price of the final good defined as

Pt =

(∫ 1

0

P1−η
it di

)1/(1−η)



Intro Model Equilibria Fiscal Policy Appendices

Intermediate Goods Sector

Intermediate goods producer i
yit = nit

Each period, reset prices with probability (1− ξ) ∈ (0, 1].

Profit maximization

Et

∞∑
s=t

ξs−tQt,sΠis (P∗it )

where

Πis (P∗it ) = (P∗it − (1− τr )Ws)

(
P∗it
Ps

)−η
ys

Qt,s = βs−t (Uc(cs , ls)/Uc(ct , lt)) (Pt/Ps)

Assuming τr = 1/η, optimality requires

Et

∞∑
s=t

ξs−tQt,s [(P∗it −Ws) yis ] = 0
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Government

Monetary policy

1 + it = φ
(πt

π̃

)
where π̃ ≥ 1 is the inflation target
φ (1) = β−1π̃, φ (·) ≥ 1 for all πt , and φ′ (·) is sufficiently large when it > 0.

Fiscal policy

Bt

1 + it
= Bt−1 −Mt + Mt−1 + Dt

Dt = Ptgt + Tt +
1

η
Wtnt − (τc,tPtct + τn,tWt (1− lt))

Fiscal policies are Ricardian.
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Equilibrium

A competitive rational expectations equilibrium is a sequence of allocations (ct ,
nt , lt , yt)

∞
t=0, a price system (πt , wt , p

∗
t , vt)

∞
t=0, monetary policies (it , mt)

∞
t=0,

and fiscal policies (bt , dt , gt , τc,t , τn,t , tt)
∞
t=0 such that

(i) Households maximize utility subject to all constraints,

(ii) Producers maximize profits

(iii) Monetary policy is guided by the interest rate rule, fiscal policies are
consistent with the government budget constraint, and

(iv) Goods, asset and labor markets clear

for given initial conditions b−1, m−1 ≥ 0 and v−1 ≥ 1, a law of motion for ωt

and specifications of fiscal policies.

vt is price dispersion.
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Multiplicity of Equilibria

In monetary models, possible multiplicity of equilibria under interest rate rules
is well known

Sargent and Wallace (JPE 1975), . . . , Atkeson, Chari and Kehoe (QJE
2010)

Even if local determinacy under Taylor Principle, global multiplicity due to zero
lower bound.

Benhabib, Schmitt-Grohé and Uribe (AER 2001, JET 2001, JPE 2002):
perfect foresight, endowment monetary economy

We analyze sunspot equilibria in production economy with nominal rigidities.

Shell (1977), Cass and Shell (JPE 1983)
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For given (Ricardian) fiscal policies and law of motion for the preference shock
ωt , equilibrium sequences (yt , πt , vt) are solutions to

1 = βφ

(
πt

π̃

)
Et

[
ωt+1

ωt

(
1 + τc,t

)(
1 + τc,t+1

)
πt+1

Uc (yt+1 − gt+1, 1− vt+1yt+1)

Uc (yt − gt , 1− vtyt )

]

p∗t πt =
Et
∑∞

s=t (βξ)s−t ωs
Ul (ys−gs ,1−vs ys )

1−τn,s

(∏s−t
j=0 πt+j

)η
ys

Et
∑∞

s=t (βξ)s−t ωs
Uc (ys−gs ,1−vs ys )

1+τc,s

(∏s−t
j=0 πt+j

)η−1
ys

vt = ξπ
η
t vt−1 + (1− ξ) p∗−ηt

for a given initial condition v−1.

We focus on Markov equilibria that can be generated from

ut = f (st )

st = h
(
st−1

)
+ µεt , s0 given

st vector of state variables, ut inflation/output vector, random innovation εt
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Steady States

Assume no preference shocks (ωt = 1, for all t). A steady state is a fixed point
s = h(s), u = f (s).

Intended Steady State (πI , y I , v I ) where πI = π̃, the nominal interest rate is
positive and

Ul (y
I , 1− v I y I )

Uc (y I , 1− v I y I )
=

1− ξβπ̃η

1− ξβπ̃η−1

(
1− ξ

1− ξπ̃η−1

) 1
η−1

, v I =
1− ξ

1− ξπ̃η

(
1− ξπ̃η−1

1− ξ

) η
η−1

Special case of zero inflation target π̃ = 1, no price dispersion and output level
is efficient.

Unintended Steady State (πU , yU , vU) where πU = β < 1, the nominal
interest rate is zero and

Ul (y
U , 1− vU yU )

Uc (yU , 1− vU yU )
=

1− ξβ1+η

1− ξβη

(
1− ξ

1− ξβη−1

) 1
η−1

, vU =
1− ξ

1− ξβη

(
1− ξβη−1

1− ξ

) η
η−1

Output level is inefficient because of price dispersion.
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Sunspot Equilibria

Sunspot variable, ψt follows discrete Markov chain ψt ∈ [ψ1, ..., ψn] with
transition matrix R.

A Markov sunspot equilibrium is an equilibrium defined by a pair of functions
f (st) and h(st) for which f ([vt−1, ωt , ψt = ψi ]) 6= f ([vt−1, ωt , ψt = ψj ]) and
h([vt−1, ωt , ψt = ψi ]) 6= h([vt−1, ωt , ψt = ψj ]) for i 6= j , where i , j = 1, ..., n.
Therefore, output and inflation are stochastic processes whose values depend
on the realization of the state of confidence ψt .

Temporary liquidity traps:

Low confidence triggers negative spiral of increased desire to save and
soaring real interest rates.

Monetary authority can locally defeat low confidence, but not globally
because of the zero bound.

Temporary nature is crucial: intertemporal substitution, forward looking
price setting.



Intro Model Equilibria Fiscal Policy Appendices

A Two State Example

Suppose the sunspot variable ψt follows a two-state Markov chain with
transition matrix R,

ψt ∈ [ψO , ψP ] , R =

[
1 0

1− q q

]
, 0 < q < 1

No fiscal policy gt = τn,t = τc,t = 0 for all t. No preference shock ωt = 1.

Let πP , yP and vP denote the fixed points of the system defined by
f ([vt−1, ψt = ψP ]) and h([vt−1, ψt = ψP ]), determined by

Uc (yP , 1− vP yP ) = βφ

(
πP

π̃

)[
q

πP

Uc (yP , 1− vP yP ) +
1− q

π′
O

Uc (y′O , 1− v′Oy′O )

]
(EE)

p∗P =
(1− βξqπη−1

P
)(

1− βξqπη
P

) (
ΛP

Ul (yP , 1− vP yP )

Uc (yP , 1− vP yP )
+ (1− ΛP )p∗′O π

′
O

)
(AS)

where 0 < ΛP < 1 and π′O , y ′O and v ′O are obtained from f ([vP , ψO ]) and

h([vP , ψO ])
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Existence of Preference Shock induced Liquidity Trap
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Lessons

Expectational liquidity trap exists for q > qcrit

Liquidity trap induced by preference shock (cfr. Eggertson (2009),
Christiano et al. (2009), Woodford (2010)) exists for q < qcrit

Largest output and welfare losses are obtained when EE and AS have
similar slopes.

The difference in slopes of the EE and AS schedules is the reason why
policy interventions will lead to different outcomes depending on the type
of shock
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Numerical Example

Consider the functional forms

U (ct , lt) =
c1−σ
t − 1

1− σ + θ
l1−κ
t − 1

1− κ , σ, θ, κ > 0 (1)

φ
(πt

π̃

)
= max

(
πφπt
β
, 1

)
, φπ > 1 (2)
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The Role of Policy

Ex Ante: How to prevent nonfundamental fluctuations/liquidity traps

Benhabib, Schmitt-Grohé and Uribe (JPE 2002): threat of unsustainable
fiscal/monetary policy

Atkeson, Chari and Kehoe (QJE 2010): sophisticated monetary policies

Ex Post: How to respond in liquidity trap

Christiano et al. (2009), Eggertson and Woodford (2004), ...
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Fiscal Multipliers

Fiscal instruments: spending gt , sales tax τc,t , labor income tax τn,t

Let (yt)
∞
t=0 be an equilibrium path for output in the model where fiscal

instruments are constant.

Let (yt(δ))∞t=0 be an equilibrium path where fiscal instrument changes by
δ in a liquidity trap.

Marginal spending multiplier:

mg
t = lim

δ→0

yt(δ)− yt
δ

Marginal tax multiplier:

mτ
t = − lim

δ→0

yt(δ)− yt
ytδ
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Conclusion

1. Large drops in output and welfare can occur in an
expectations driven liquidity trap

2. Demand stimulating fiscal policies (spending and sales tax
cuts) become less effective than usual.

3. Supply stimulating fiscal policies (cuts in marginal labor
income tax) become more effective.

4. Higher inflation targets are a bad idea.

Effects of policy in a liquidity trap depend on the type of shock.
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Restrictions on preferences:

u (ct , lt ,mt) = U (ct , lt) + Ū (mt)

Ucl ≥ 0

lim
c→0+

Uc(c, l) =∞ , lim
c→∞

Uc(c, l) = 0 , ∀l ≥ 0

lim
l→0+

Ul(c, l) =∞ , lim
l→1

Ul(c, l) = 0 , ∀c ≥ 0

lim
m→∞

Ūm (m)

Uc (c, l)
< 0 , ∀c, l ≥ 0

Back
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Price Dispersion

Aggregation

yt = ct + gt

nt =

∫ 1

0

nitdi =

∫ 1

0

(
Pit

Pt

)−η
ytdi = vtyt

where vt =
∫ 1

0
(Pit/Pt)

−η di is a price dispersion term that is determined
recursively as

vt = ξπηt vt−1 + (1− ξ) p∗−ηt

Price index:
1 = ξπη−1

t + (1− ξ) p∗1−η
t

Back
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