# Government Debt and Optimal Monetary and Fiscal Policy 

Klaus Adam<br>Mannheim University \& CEPR

December 2010

## Motivation

- Build-up in government debt following financial crisis
- What normative implications from debt build-up for optimal conduct of monetary and fiscal policies?
- Not a paper about 'the crisis', but about the 'heritage' from crisis...


## Motivation

- Monetary and Fiscal Policy:
nominal interest rates; tax vs debt financing; government spending
How do optimal levels depend on outstanding gov. debt? How do stabilization responses (techn. shocks) depend on debt?
- What do optimal policies imply for optimal debt evolution over time? Policy discussion vs. economic theory (Barro (1979))

Standard models provide motives for debt reduction!

## Model Sketch

- Model builds on Adam and Billi $(2008,2009)$ \& Schmitt-Grohé and Uribe (JET 2004)
- Private sector:
- households: consumption \& saving, labor supply
- firm sector: monopoly power \& nominal rigidities (à la Rotemberg) linear technology in labor, fixed capital, technology shocks
- Public sector:
- nominal interest rate
- gov. spending: public goods provision (non-standard)
- labor income taxation (distortionary, Ricardian equivalence fails)
- issues nominal non-contingent debt


## Model Sketch

Three sources of economic distortions:
(1) Monopoly power by firms
$=>$ mark-up over costs \& output inefficiently low (cannot be eliminated)
(2) Distortionary labor income taxes
$=>$ government spending \& debt service cost give rise to adverse labor supply and output effects
(3) Nominal rigidities:
$=>$ MP affects output
$=>$ MP cannot easily change $P$ to raise state-contingent taxes
(nominal debt)

## Normative Implications: Levels

## In the absence of shocks:

- Price stability optimal independently of debt level
- Tax rates increase with debt level
- Government spending lower the higher is government debt
- Government debt $=>$ large welfare implications

Baseline parameterization:
Every $100 \%$ increase in debt/GDP ratio $=>5 \%$ cons. reduction per period

## Normative Implications: Stabilization Policy

- Optimal response to negative technology shock:


## Normative Implications: Stabilization Policy

- Optimal response to negative technology shock:
- No outstanding government debt:
reduced government spending to balance budget, no response of taxes, debt and inflation interest rates increase


## Normative Implications: Stabilization Policy

- Optimal response to negative technology shock:
- No outstanding government debt:
reduced government spending to balance budget, no response of taxes, debt and inflation interest rates increase
- Positive government debt (100\% of GDP): larger revenue shortfalls: taxes rates are higher stronger spending cut, persistent increase in debt and taxes temporary (but small) increase in inflation interest rates decrease


## Normative Implications: Debt Evolution

Higher government debt $=>$ higher budget \& tax risk
1st order approx: debt is a random walk as in Barro (1979)
2nd order motives for debt reduction: can be quantitatively significant

## Ramsey Problem: Formal Description

$$
\max _{\left\{c_{t}, h_{t}, \Pi_{t}, R_{t} \geq 1, \tau_{t}, g_{t}, b_{t}\right\}_{t=0}^{\infty}} \min _{\left\{\gamma_{t}^{1}, \gamma_{t}^{2}, \gamma_{t}^{3}, \gamma_{t}^{4}\right\}_{t=0}^{\infty}}
$$

$E_{0}\left[\begin{array}{l}\sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}, h_{t}, g_{t}\right) \\ +\beta^{t} \gamma_{t}^{1}\binom{u_{c, t}\left(\Pi_{t}-1\right) \Pi_{t}-\frac{u_{c, t} z_{t}}{\theta} h_{t}\left(1+\eta+\frac{u_{h, t}}{u_{c, t}\left(1-\tau_{t}\right)} \frac{\eta}{z_{t}}\right)}{\quad-\beta u_{c, t+1}\left(\Pi_{t+1}-1\right) \Pi_{t+1}} \\ +\beta^{t} \gamma_{t}^{2}\left(\frac{u_{c, t}}{R_{t}}-\beta \frac{u_{c, t+1}}{\Pi_{t+1}}\right) \\ +\beta^{t} \gamma_{t}^{3}\left(z_{t} h_{t}-c_{t}-\frac{\theta}{2}\left(\Pi_{t}-1\right)^{2}-g_{t}\right) \\ +\beta^{t} \gamma_{t}^{4}\left(b_{t}-\frac{\tau_{t}}{1-\tau_{t}} \frac{u_{h, t}}{u_{c, t}} h_{t}-g_{t}-\frac{R_{t-1}}{\Pi_{t}} b_{t-1}\right)\end{array}\right]$

## Recursive Representation of Solution

- Vector of decision variables

$$
y_{t}=\left(c_{t}, h_{t}, \Pi_{t}, R_{t}, \tau_{t}, g_{t}, \gamma_{t}^{1}, \gamma_{t}^{2}, \gamma_{t}^{3}, \gamma_{t}^{4}\right)
$$

\& state variables

$$
x_{t}=\left(z_{t}, \mu_{t}^{1}, \mu_{t}^{2}, b_{t-1}, R_{t-1}\right)
$$

with $b_{t-1}=B_{t-1} / P_{t-1}$ given.

## Recursive Representation of Solution

- Vector of decision variables

$$
y_{t}=\left(c_{t}, h_{t}, \Pi_{t}, R_{t}, \tau_{t}, g_{t}, \gamma_{t}^{1}, \gamma_{t}^{2}, \gamma_{t}^{3}, \gamma_{t}^{4}\right)
$$

\& state variables

$$
x_{t}=\left(z_{t}, \mu_{t}^{1}, \mu_{t}^{2}, b_{t-1}, R_{t-1}\right)
$$

with $b_{t-1}=B_{t-1} / P_{t-1}$ given.

- Solution: $y_{t}=g\left(x_{t}\right)$ that satisfies the FOCS.


## Deterministic Setting: Steady States

- Continuum of deterministic steady states:

FOC for bonds:

$$
0=\gamma_{t}^{4}-\beta E_{t} \gamma_{t+1}^{4} \frac{R_{t}}{\Pi_{t+1}}
$$

From Euler equation

$$
0=u_{c, t}-\beta E_{t} u_{c, t+1} \frac{R_{t}}{\Pi_{t+1}}
$$

FOC for bonds imposes no restrictions on SS outcome
(one dimensional indeterminacy)

## Deterministic Steady State : Analytic Results

- First best steady state (preferences \& technology)

$$
u_{g}=u_{c}=-u_{h}
$$

- Ramsey steady states (with distortions)

$$
\begin{aligned}
-u_{h} & =\left(\frac{1+\eta}{\eta}-\frac{g+\left(\beta^{-1}-1\right) b}{h}\right) u_{c} \\
-u_{h} & \leq u_{g} \\
\Pi & =1
\end{aligned}
$$

Reducing gov spending below first best $=>$ reduces tax wedge

## Quantification

- Utility function

$$
\begin{equation*}
u\left(c_{t}, h_{t}, g_{t}\right)=\log \left(c_{t}\right)-\omega_{h} \frac{h_{t}^{1+\varphi}}{1+\varphi}+\omega_{g} \log \left(g_{t}\right) \tag{1}
\end{equation*}
$$

- Parameterization

| quarterly discount factor | $\beta=0.9913$ |
| :--- | :--- |
| price elasticity of demand | $\eta=-6$ |
| degree of price stickiness | $\theta=17.5$ |
| 1/elasticity of labor supply | $\varphi=1$ |
| utility weight on labor effort | $\omega_{h}=19.792$ |
| utility weight on public goods | $\omega_{g}=0.2656$ |
| technology shock process persistence | $\rho_{z}=0.95$ |
| quarterly s.d. technology shock innovation | $\sigma=0.6 \%$ |

## Quantification: Deterministic Steady State

priv. cons hours gov. cons. taxes cons. equiv.
$(c) \quad(h) \quad(g) \quad(\tau) \quad$ variation

Zero debt
0.16
0.2
0.04

24\%
$0.00 \%$
$\mathbf{1 0 0 \%}$ debt/GDP $-2.61 \% \quad-2.78 \% \quad-3.47 \% \quad+16.8 \% \quad \mathbf{- 5 . 5 8 \%}$
$\mathbf{2 0 0 \%}$ debt/GDP $\quad-5.25 \% \quad-5.62 \% \quad-7.02 \% \quad+33.3 \% \quad \mathbf{- 1 1 . 0 \%}$

## Quantification: Deterministic Steady State

priv. cons hours gov. cons. taxes cons. equiv.
(c)
(h)
(g)
$(\tau)$
variation

## Zero debt

0.16
0.2
0.04

24\%
$0.00 \%$

First best SS debt/GDP $+25 \% \quad+26.5 \% \quad+32.5 \% \quad$ n.a. $\quad+\mathbf{7 0 . 6 \%}$ -1076\% (-20\%)

## Quantification: Optimal Response to Technology Shocks

- How Does Optimal Stabilization Policy Depend on Initial Debt?
- 1st order approximation around $0 \%$ and $100 \%$ debt steady state
- Large sized negative technology shock: - 3 std deviations
- Technology initially decreases by 5.7\%


Figure:

- To 1st order: debt under optimal policy is random walk
- Innovation variance to random walk depends on debt level: zero debt: zero innovation variance positive debt: positive variance
- Debt $=>$ debt risk $=>$ tax risk
- To capture risk aspects:2nd order approx at deterministic SS Use code by Gomme and Klein (2010)
Constant/drift term emerges decision \& state transition laws


## Incentives for Debt Reduction in a Stochastic Economy




- Comparing 1st \& 2nd order accurate impulse responses:

Optimal debt dynamics differ significantly from random walk!


## Conclusions

- Level of debt has important implications for optimal public spending levels and optimal stabilization policy
- Debt $=>$ budget $\&$ tax risks
$=>$ optimal to reduce debt levels over time
- Zero debt is absorbing steady state (to second order) Aiyagari, Marcet, Sargent Seppälä (2002): negative debt level
- Local analysis here: borrowing constraints not taken into account $=>$ additional incentives for debt reduction
- Additional risk from other shocks w/o tax revenue implications discount factor shocks $=>$ real interest rate debt reduction even more desirable

