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Abstract

The New Keynesian Phillips Curve is at the center of two raging empirical debates. First, how can
purely forward looking pricing account for the observed persistence in aggregate inflation. Second,
price-setting responds to movements in marginal costs, which should therefore be the driving force to
observed inflation dynamics. This is not always the case in typical estimations. In this paper, we show
how heterogeneity in pricing behavior is relevant to both questions. We detail the conditions under
which imposing homogeneity results in overestimating a backward-looking component in (aggregate)
inflation, and, potentially underestimating the importance of (aggregate) marginal costs for (aggregate)
inflation. We provide intuition for the direction of these biases, and verify them in sectoral French
data. Our analytics identify the sources of heterogeneity most likely to result in aggregation bias
under the two standard (homogeneous) estimators used to test the New Keynesian Phillips curve, the
Generalized Method of Moments and the Maximum Likelihood approach. Our econometrics results
provide a simple blueprint which, if disaggregated data are available, makes it possible to identify and
correct for heterogeneity biases, and to predict their magnitudes depending on the source and extent
of industry-level specificities.
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1 Introduction

Since it burst onto the scene of mainstream monetary economics, the New Keynesian Phillips Curve has
been the focus of two important empirical debates. First, to what extent purely forward-looking pricing
behavior can be reconciled with observed inflation persistence. Second, to what extent properly measured
marginal costs affect inflation dynamics. Both issues are crucial. If inflation is purely forward looking,
its persistence arises only from that of shocks to marginal costs (provided they matter), and perfectly
anticipated changes in inflation are costless. Second, that shocks to marginal costs affect inflation is the
basis of the forward-looking pricing rule profit that maximizing firms are assumed to follow. And the
magnitude of the estimated relation relates directly to the extent of nominal rigidities. Both issues have
recently been hotly debated, and for good reason.1

In this paper, we show that heterogeneity in the pricing behavior of firms matters for both empirical
questions. If pricing is heterogeneous, any estimation that ignores the issue is flawed. We show that
the direction and magnitude of the bias are not the same for marginal costs or for expected inflation,
and that both may also vary with the estimator used. We derive analytical expressions for both biases,
which are helpful to garner intuition on their direction and magnitude. We use simulations to assess
the sensitivity of our conclusions, which we then confirm in sectoral quarterly French data on prices and
marginal costs, in two ways. First, we use them to calibrate our analytical expressions for the biases.
Second, we compare Phillips Curve estimates arising from standard homogeneous approaches to what is
obtained when heterogeneity is allowed.

Inasmuch as it stresses a source of mis-specification, the paper informs the empirical debate surrounding
the New Keynesian Phillips Curve in a general sense. Our contribution has three further implications.
First, we discuss how the bias created by heterogeneity changes in magnitude depending on whether
Generalized Method of Moments (GMM) or Maximum Likelihood (ML) techniques are implemented.
Thus, we provide a (partial) explanation for the discrepancy in results the literature has uncovered.
Second, we model heterogeneity as arising from two potential sources: the extent (and duration) of nominal
rigidities and the extent of backward indexation. If only the former source of heterogeneity were present
in our data, heterogeneity would only plague the aggregate Phillips Curve via marginal costs, not via lead
or lagged inflation. This can be tested.

Third, our approach underlines the importance of disaggregated information to improve the structural
modeling of aggregate inflation. This is related to the flurry of recent empirical evidence on disaggregate
price dynamics, pioneered by Bils and Klenow (2005) and the series of country specific studies implemented
by the European Central Bank summarized in Altissimo et al (2006). A conclusion drawn from this vast
body of evidence seems to be that price dynamics are heterogenous and inflation persistence could be an
artefact of aggregation. More specifically, macroeconomic estimates have been widely criticized on the
ground that the average duration of sticky prices is too large to make economic sense and, in particular,

1A non exhaustive list of issues includes the model’s ability to capture inflation persistence (Fuhrer (1997), Fuhrer and
Moore (1995)), the plausibility of its implied dynamics (Mankiw and Reis (2002)), and the validity of the empirical approach.
For instance, Guay and Pelgrin (2005), Rudd and Whelan (2003, 2005), Nason and Smith (2004) or Lindé (2005) cast doubt
on the validity of GMM estimates. Dufour, Khalaf, and Kichian (2006) and Mavroeidis (2004) stress sensitivity to the choice
of an instrument set. Jondeau and Le Bihan (2003) and Kurmann (2006) argue Maximum Likelihood estimators ought to be
preferred. See the special issue of the Journal of Monetary Economics (2005).
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is inconsistent with the results observed in microeconomic data.2

Our paper is closely related to Zaffaroni (2004) and Altissimo, Mojon, and Zaffaroni (2004). Both
papers are also concerned with inflation dynamics, and apply insights on the effects of cross-sectional
aggregation of heterogeneous processes that were first introduced by Robinson (1978) and Granger (1980).3

Unlike them however, here we ask from a structural model what heterogeneity will do empirically. This
makes it possible for us to evaluate the effect heterogeneous pricing may have on the validity of a structural
model of inflation, and correct it accordingly.

Carvalho (2006) derives a generalized New Keynesian Phillips Curve in the presence of heterogeneity in
the frequency of price adjustments across industries. In his calibrated model, monetary shocks have larger
and more persistent effects than under homogeneity, and mimicking the data requires only shorter, more
plausible, nominal rigidities. Our approach is complementary. Rather than introducing heterogeneity in
a calibrated general equilibrium model, we implement the adequate econometrics to account for hetero-
geneity in the data. We bring the data closer to the theoretically standard homogeneous case, rather than
sophisticating the theory away from the representative firm case.4

Since our data contain information on marginal costs at the industry level, we are able to aggregate
theory-implied Phillips curves involving marginal cost rather than output gap, which simplifies consid-
erably the derivations. We are able to identify alternative sources of sectoral heterogeneity, and test for
their relevance. Our contribution details how, armed with sector-level data on prices and marginal costs,
it is possible to back out unbiased aggregate estimates of the New Keynesian Phillips Curve, that account
for possible heterogeneity in pricing behavior.

Our results suggest industry differences in the extent of nominal rigidities engender large upward
biases in the aggregate, particularly on the extent of measured backward looking behavior. On the other
hand, the dispersion in the extent of backward indexation has substantially less impact on aggregates. At
least in French data, these is little heterogeneity bias in the estimated importance of marginal costs in
driving aggregate inflation. On the other hand, heterogeneity more than doubles the importance of lagged
inflation. This does not predicate what would happen in a dataset where the sources of heterogeneity were
different, or with less granular information: French data display relatively little dispersion in industry-
specific nominal rigidities. But our analytics will help pinpoint and address heterogeneity biases in any
data.

The rest of the paper is organized as follows. In Section 2, we briefly review how to derive an
expression for a sectoral Phillips Curve allowing for nominal rigidities and backward looking indexation
that are both sector specific. We aggregate sectors up and obtain the now standard New Keynesian
inflation dynamics, amended for heterogeneity. We then analyze a simple two sector model and explain

2See Chari, Kehoe, and McGrattan (2000) or Dhyne et al.(2005) for an analysis of the issue as it pertains to the Euro
zone.

3For more recent discussions of the effects of aggregation under heterogeneity, see Pesaran, Pierse, and Kumar (1989),
Pesaran, Pierse, and Lee (1994) or Pesaran and Smith (1995). Imbs et al. (2005) applied the insights to the real exchange
rate.

4Using scanner data, Midrigan (2006) shows the cross-sectional distribution of (non zero) price changes has fat tails. He
argues the high moments properties of the heterogeneity in price adjustments are crucial when aggregating microeconomic
rigidities in menu-costs models of macroeconomic fluctuations.
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how heterogeneity matters qualitatively. In Section 3, we present the expressions that render homogeneous
estimators problematic when pricing is sector specific. We provide an intuition for biases, whose magnitude
and direction depend on parameter values, but also on the estimator implemented. Simulations results are
discussed, which illustrate how heterogeneity matters. In Section 4, we describe the econometric methods
used in the paper to deal with heterogeneity. In Section 5, we introduce our data. and discuss discrepancies
between estimates implied by homogeneous and heterogeneous estimators. Section 6 concludes.

2 Aggregating Sectoral Phillips Curves

We first derive an expression for a sectoral Phillips Curve, where a sector is characterized by the extent of
nominal rigidities and indexation to past inflation.5 We then aggregate up to the country level, assuming
away any cross-sectoral influences as for instance ones implied by input-output relations - just as most
aggregate Phillips curves assume away international linkages. Price dynamics in each sector are assumed
to respond only to the dynamics of marginal costs there.6 The derivation follows directly from Woodford
(2003) and Christiano, Eichenbaum, and Evans (2005).7

2.1 The Model

We briefly derive the New Keynesian Phillips curve for a sector j, where technology shocks, price rigidity
and the extent of backward indexation are all specific to j.8 Each firm i in sector j uses labor Hij,t to
produce a differentiated good according to the production

Yij,t = Aj,t f (Hij,t)

where Aj,t denotes (sector specific) labor productivity and f (.) is an increasing and concave function.
Assuming perfect labor mobility within sectors, cost minimization implies

Sij,t =
Wj,t

Pij,t Aj,t
Φ (Yij,t/Aj,t)

where Sij,t denotes the real marginal cost for firm i in sector j, Φ (.) = 1/f 0
£
f−1 (.)

¤
, and Wj,t is the

sectoral nominal wage.
5Backward-looking pricing could equally be introduced using the formulation of Galí and Gertler (1999) or Galí, Gertler

and Lopez-Salido (2001), without loss of generality.
6We later allow for industry shocks to be correlated across sectors. That is not quite the same as constructing an explicit

model of technological linkages between sectors. Going that route while preserving the level of generality we endeavor would
simply be intractable, both in theory and in empirical applications. Justiniano, Kumhof and Ravenna (2006) propose a model
of specifically vertical input-output relations between industries. They calibrate their model to show appropriate linkages can
account for the discrepancy between price sluggishness in the aggregate and rapid adjustment at the microeconomic level.
Dupor (1999) focuses on the persistence in real quantities, and shows that, in general, input-output linkages are incapable of
driving a wedge between sectoral and aggregate real output dynamics.

7We are far from the first ones to take interest in heterogeneous pricing in monetary models. Erceg and Levin (2002)
characterize a sector on the demand side, focusing on differences between durable and non-durables goods. Aoki (2001),
Benigno (2004) and Huang and Liu (2004) analyze the implications of sectoral heterogeneity for the design of monetary
policy. Dixon and Kara (2005) study the impact of heterogeneity in the context of Taylor staggered wage setting. Bouakez,
Cardia, and Ruge-Murcia (2005) construct and estimate a model with heterogenous production sectors, and show substantial
heterogeneity across sectors in the degree of sectoral sensitivity to monetary policy shocks. Álvarez, Burriel, and Hernando
(2005) analyze the impact of heterogeneity under a variety of different assumptions on price-setting behavior.

8We also assume sector specific price elasticity of demand, which turns out to be innocuous for price dynamics.
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Monopolistic competition in each sector implies that demand faced by firm i writes

Yij,t =

µ
Pij,t
Pj,t

¶−ηj
Yj,t

where ηj > 1 denotes the (sector specific) elasticity of substitution across varieties. We assume price
setting decisions follow a modified version of the Calvo’s (1983) staggering mechanism. In addition to
the baseline mechanism, we allow for the possibility that firms that do not optimally set their prices may
nonetheless adjust them to keep up with the previous period increase in the general price level.9 In each
period, a firm faces a constant probability 1 − αj of being able to re-optimize its price and chooses the
price Pij,t that maximizes the expected discounted sum of profits

Et

∞X
k=0

αkj ∆t,t+k Pj,t+k

"µ
Pij,t Ψt,t+k

Pj,t+k

¶1−ηj
−
µ
Pij,t Ψt,t+k

Pj,t+k

¶−ηj
Sij,t+k

#
Yj,t+k

where

Ψt,t+k =

( Qk−1
ν=0 (πij,t+v)

ξj
¡
Π̄j
¢1−ξj k > 0

1 k = 0

and Π̄j denotes the (sector specific) exogenous trend inflation, which we later account for through detrend-
ing. The coefficient ξj ∈ [0, 1] indicates the degree of indexation to past prices in sector j, during the peri-
ods in which firms are not allowed to re-optimize. Ψt,t+k is a correcting term accounting for the fact that,

if firm i does not re-optimize its price, it updates it according to the rule Pij,t =
¡
Π̄j
¢1−ξj (πij,t−1)ξj Pij,t−1.

When ξj = 0, firms mechanically impute trend inflation when setting future prices; when ξj = 1, realized
inflation rates between t+v−1 and t+v are used to choose prices in t+v+1. ∆t,t+k = βkUC (Ct+k) /UC (Ct)

is the discount factor between dates t and t+k of the representative household, where UC (Ct) is the mar-
ginal utility of consumption at date t. ∆t,t+k is constant across sectors.

The optimal price is given by

P ∗ij,t =
ηj

ηj − 1
Et
P∞

k=0 α
k
j ∆t,t+k

³
P ∗ij,t Ψt,t+k

Pj,t+k

´−1−ηj
Ψt,t+k Yj,t+k Sij,t+k

Et
P∞

k=0 α
k
j ∆t,t+k

³
P∗ij,t Ψt,t+k

Pj,t+k

´−1−ηj Ψ2t,t+k
Pj,t+k

Yj,t+k

(1)

Under fully flexible prices, αj = 0 and optimal pricing implies P ∗ij,t / Pj,t = μj Sij,t where μj ≡ ηj/
¡
ηj − 1

¢
is the optimal markup. As there is no firm-specific shock in this economy, all firms that are allowed to
re-optimize their price at date t select the same optimal price P ∗ij,t = P ∗j,t. The equilibrium is symmetric
across firms in each sector. Staggered price setting under partial indexation implies the price index in
sector j follows

Pj,t =

∙
αj

h
(Πj,t−1)

ξj
¡
Π̄j
¢1−ξj Pj,t−1i1−ηj + (1− αj)

¡
P ∗j,t
¢1−ηj¸ 1

1−ηj
(2)

Log-linearizing the expressions for optimal pricing in equation (1), for aggregate prices in equation (2)
and the definition of marginal costs yields

πj,t =
ξj

1 + βξj
πj,t−1 +

β

1 + βξj
Etπj,t+1 +

(1− βαj) (1− αj)¡
1 + βξj

¢
αj

sj,t

9See Sbordone (2003) or Christiano, Eichenbaum, and Evans (2005) for discussions.
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where lower case variables denote log-deviations from the steady state.

To economize on notation, define λbj = ξj/(1+βξj), λ
f
j = β/(1+βξj) and θj =

(1−βαj)(1−αj)
(1+βξj)αj

to rewrite

the Phillips Curve in its well-known hybrid form

πj,t = λbj πj,t−1 + λfj Etπj,t+1 + θj sj,t + εj,t (3)

where we introduced an error term εj,t, which may include sectoral or aggregate shocks. In the case where
the only source of sectoral heterogeneity stems from the extent of nominal rigidities αj , we have ξj = ξ,

λbj = λb, and λfj = λf for all j. Only the coefficient on marginal costs θj will then be heterogeneous.
This will also be true in the absence of any backward-looking indexing when ξ = 0. The Phillips Curve
becomes then purely forward looking, and only the coefficient on marginal costs is sector-specific.

The industry level Phillips curve in equation (3) does not include any reference to an aggregate variable,
nor indeed any relative prices. At face value, this may seem a contradiction relative to the findings in
Aoki (2001), Benigno (2004) or Ghironi, Carlstrom and Fuerst (2006). But all these authors use versions
of the New Keynesian Phillips curve that refer to the output gap as a measure of economic activity. In
contrast, here we can refer directly to marginal costs, which, under relatively benign assumptions on the
labor market, we actually observe in our data. Woodford (2003) shows that a sector-level New Keynesian
Phillips curve ceases to refer to any aggregate variables, or to relative sectoral prices, when it is written
in terms of marginal costs.10 The intuition is clarified on page 669 of Woodford (2003), where sectoral
marginal costs are shown to embed directly relative prices in general equilibrium. Ghironi et al (2006) show
this to be a key ingredient of determinacy when aggregating hetereogeneous Phillips curves. This result
considerably simplifies the theoretical impact of aggregation, and our econometric approach in addressing
heterogeneity.

2.2 Aggregation

We model heterogeneity as sector-specific deviations from a common mean. In particular, we assume

ξj = ξ + ξ̃j

αj = α+ α̃j

where ξ̃j and α̃j have zero means and constant variances and covariances.11 Let wj denote the weight of
sector j in the aggregate economy. Straightforward aggregation of equation (3) gives

πt =
JX

j=1

wj λ
b
j πj,t−1 +

JX
j=1

wj λ
f
j Etπj,t+1 +

JX
j=1

wj θj sj,t +
JX
j=1

wj εj,t (4)

Our purpose in this paper is to evaluate the validity of the standard Phillips curve at the country level
in the presence of heterogeneity at a lower level of aggregation. We seek to characterize the econometric
properties of the residuals in a version of equation (4) that simplifies into

πt = λb πt−1 + λf Et πt+1 + θ st + ε̄t (5)

10This is developed in the Appendix B.7 to Chapter 3, and in particular in equation B.33 on page 668.
11Whether heterogeneity is random or deterministic will matter for the estimation procedure. Since this is an empirical

question, we leave the discussion for later.
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with λb = ξ
1+βξ , λ

f = β
1+βξ = β

¡
1− βλb

¢
and θ = (1−βα)(1−α)

(1+βξ) α .

This simplification implies a specific structure of heterogeneity: we assume that linear heterogeneity
at the level of the structural parameters ξj and αj translates into linear heterogeneity in the reduced form

Phillips curve. In other words, we impose λbj = λb+ λ̃
b
j , λ

f
j = λf + λ̃

f
j and θj = θ+ θ̃j .12 This is obviously

not the case in general, but ours is not a paper proposing an alternative structural form to account for
aggregate inflation dynamics under sector-level heterogeneity. Rather it is one that seeks to evaluate the
effects of (a specific form of) heterogeneity on the empirical validity of the standard model. Exploration
of the alternative, theoretical, route has just begun with papers by Carvalho (2006) or Justiniano et al
(2006).13

Estimates of λb, λf and θ in equation (5) are the object of an enormous literature. Our key assumption
is all three estimates differ linearly from their average (aggregate) values at the sectoral level because of
different realizations of ξ̃j and α̃j . Under this assumption, the residuals in equation (5) are given by

ε̄t =
JX

j=1

wj εj,t +
JX

j=1

wj λ̃
b
j πj,t−1 +

JX
j=1

wj λ̃
f
j Etπj,t+1 +

JX
j=1

wj θ̃j sj,t (6)

where

λ̃
b
j =

ξj
1 + βξj

− ξ

1 + βξ
=

ξ̃j

(1 + βξ)
¡
1 + βξj

¢
λ̃
f
j =

β

1 + βξj
− β

1 + βξ
=

−β2ξ̃j
(1 + βξ)

¡
1 + βξj

¢ = −β2λ̃bj
θ̃j =

(1− βαj) (1− αj)¡
1 + βξj

¢
αj

− (1− βα) (1− α)

(1 + βξ) α
= −

(1− βααj) (1 + βξ) α̃j + β (1− α)αj ξ̃j¡
1 + βξj

¢
(1 + βξ)ααj

As in Pesaran and Smith (1995) ignoring heterogeneity in equation (5) results in a residual that is
inevitably correlated with the dependent variables. Instrumenting will not alleviate the pathology since
good instruments are correlated with the dependent variables, and therefore will mechanically be so as well
with the residuals. The result is well known in theory, and a few applications have by now been developed
in macroeconomics.14 The issue is particularly pressing in the present case, and not only because modeling
inflation dynamics is important in and of itself. First, in a multivariate setting, heterogeneity biases may
have different signs and different magnitudes on different co-variates. In the next section, we show the
biases may indeed have different signs on λb, λf and θ. We then implement simulations exercises strongly
suggestive that they also have different magnitudes. Second, equation (5) involves an expected term, which
complicates substantially the approach, especially when it comes to instrumenting these expectations. In
12We also assume information is perfectly common across sectors, so that pricing decisions are taken across the whole

economy on the basis of exactly the same data.
13Equation (5) is hideously non linear when heterogeneity is introduced in the most general way. Econometric methods

that can account for heterogeneity under such non linearities simply do not exist, not least because heterogeneity (αj and
ξj) now enters the very coefficients to be estimated. The model in Carvalho (2006) is solved in the aggregate under general
heterogeneity at the industry level. But it is a model - not an econometric correction of the data.
14 Imbs, Mumtaz, Ravn and Rey (2005) show heterogeneity biases the estimated persistence of the real exchange rate.

Canova (2006) reviews the relevance of the issue across a wide range of empirical applications in macroeconomics.
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section 3, we discuss the usual ways in which the expectational term is accounted for, and relate them
with the issue of parameter heterogeneity.

2.3 A Two-Sector Example

We illustrate the potential magnitude of heterogeneity biases in estimates of the New Keynesian Phillips
Curve in the context of simulations based on a simple two-sector economy. For simplicity, we impose
additional structure on the model and in particular assume marginal costs are driven by an autoregressive
process of order one.15 In particular, in each sector j we assume

πj,t = λbj πj,t−1 + λfj Etπj,t+1 + θj sj,t + εj,t

sj,t = ρ sj,t−1 + uj,t

We have allowed for heterogeneity in λbj , λ
f
j and θj , which the previous section showed is akin to assuming

heterogeneous values for ξj and αj . Straightforward algebra yields a reduced form expression for sectoral
inflation

πj,t = ξj πj,t−1 + ψj sj,t + ηj,t

with

ψj =
1− βαj
1− βρ

1− αj
αj

and ηj,t =
¡
1 + βξj

¢
εj,t

We use simulations to evaluate the relative impact of dispersion in the sectoral values of ξj and αj on the
aggregate structural parameters ξ and α, and the implied dynamics of aggregate inflation.

We first impose homogeneity with parameters in both sectors taking the same initial values. We
choose ξj = 0.5, αj = 0.7, ρ = 0.9 and V = σ2ηj/σ

2
uj = 1, where σ2ηj (σ

2
uj ) denotes the variance in

ηj,t =
¡
1 + βξj

¢
εj,t (uj,t). We only need to parametrize the ratio of volatilities, as we only seek to simulate

the second moments of aggregate inflation, and in particular its persistence.16 The subjective discount
factor is set at β = 0.99. We introduce sector-level heterogeneity by assuming a Normal distribution from
which values of ξj and αj are drawn, centered around their initial values, but with non zero variance.
The extent of simulated heterogeneity increases with this variance, i.e. with the range from which ξj
and αj are drawn.17 Armed with sector-specific (and heterogeneous) structural parameters, we simulate
inflation series according to reduced form Phillips curve (and the assumed process for marginal costs) in
each sector. We then aggregate them up, using equal weights, obtain a series for aggregate inflation and
aggregate marginal costs, and use them to estimate the values of α and ξ with either ML or GMM. We
iterate the procedure 100,000 times and report results pertaining to both aggregate estimators.18

Figures 1 and 2 report the simulated values of ξ and α for values of ξj drawn from [0.25, 0.75], and
values of αj drawn from [0.45, 0.95], respectively. Several results are worth mentioning. First, both Figures

15This is discussed and motivated in more details in section 3.2, where we introduce the Maximum Likelihood estimator.
Appendix 1 presents a detailed derivation of the Phillips curve in reduced form under the present assumptions.
16These parameter values correspond to the unbiased estimates obtained from the French data used in this paper. The

results are robust to alternative initial values. We discuss how we tackle the heterogeneity bias in Sections 4 and 5.
17We also considered heterogeneity on the autoregressive parameter ρj and the ratio σ

2
ηj
/σ2uj . These played little role in

the aggregate and the corresponding results are not reported for the sake of brevity. They are available upon request.
18We also experimented with asymmetric sectors, with no sizable differences.
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confirm the existence of a positive bias in the aggregate estimates of α and ξ. On both plots, the highest
values of the aggregate structural parameters are obtained when the cross-sectoral dispersion of ξj and
αj is maximal. Second, both Figures suggest that the aggregate parameter that is most affected by an
heterogeneity bias is ξ, rather than α. Figure 1 shows that dispersion in ξj affects substantially more the
estimates of ξ; Figure 2 shows that dispersion in αj creates barely any bias on α, but continues to imply
a substantial one on ξ. Third, the dispersion in αj creates a larger bias on ξ than the dispersion in ξj .

In words, our simulations are suggestive of an asymmetry in the manner heterogeneity biases affect
estimates of the New Keynesian Phillips curve. First, it is the extent of indexation ξ that reacts most
to modeled heterogeneity in price-setting behavior. Second, a given dispersion in industry specificities in
the extent of nominal rigidities, measured by αj has a substantially larger effect on the bias on ξ than a
comparable dispersion in ξj . Put differently, heterogeneity is most likely to bias estimates of ξ upwards, i.e.
underestimate the extent of forward-looking behavior (λf ) and underestimate the importance of nominal
rigidities (θ). This will happen for little dispersion in αj , but requires substantial dispersion in ξj . We
now turn to an intuition for these asymmetries.

3 The Biases

In this section, we describe the biases that plague aggregate estimates of the New Keynesian Phillips
Curve in the presence of unaccounted heterogeneity. We discuss the biases affecting both the coefficient
on marginal costs and the coefficients on inflation. The expressions and intuitions depend on what (ho-
mogeneous) estimator is implemented on aggregate data. At this juncture, we separate our discussion in
two distinct sections. We first discuss biases implied by GMM, when future expected inflation is instru-
mented in a standard way. The nature of the inconsistencies will depend on the correlation between the
chosen instruments and the residuals. Second, we analyze heterogeneity biases when the Phillips Curve
is estimated using ML estimators, and marginal costs are assumed to follow an autoregressive process.19

There, no instrumentation is necessary, but the possibility of a bias subsists. Throughout, we seek to
characterize the size and magnitude of the heterogeneity biases on the three dependent variables. Since
our analytical results are obtained at the cost of several simplifying assumptions, we close the section with
simulation exercises that confirm our conjectures.

3.1 Generalized Method of Moments

The Generalized Method of Moments (GMM) estimator builds on orthogonality conditions imposed on
an amended version of equation (5) where expected inflation is replaced by its effectively observed value.
In particular, identification requires that the instrument set Zt be uncorrelated with the residuals υt+1 =
ε̄t − λf (πt+1 −Et πt+1) in

πt = λb πt−1 + λf πt+1 + θ st + υt+1

The moment conditions write

E
h
(πt − λb πt−1 − λf πt+1 − θ st) Zt

i
= 0

19Recent work has suggested this approach might be more accurate. See Kurmann (2006).
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Zt is a vector of instruments dated t or earlier.

The choice of Zt is an important point of debate. Galí and Gertler (1999) use four lags each of
inflation, the labor income share (which measures marginal costs), the output gap, the long-short interest
rate spread, wage inflation and commodity price inflation. Galí, Gertler, and Lopez-Salido (2001) choose a
smaller number of lags for instruments other than inflation, in order to minimize the potential estimation
bias that arises in small samples. Their instrument set reduces to four lags of inflation, and two lags
each of the output gap, wage inflation and the labor income share. Heterogeneity is an issue for GMM
estimators because the residual in equation (5) correlates with the dependent variables, and in particular
with st and πt−1 as shown in equation (6).20 In other words, st and πt−1 are always prominent in the
instrument sets proposed in the literature, and they are indeed the ones at the core of an heterogeneity
bias under GMM. Including further lags of inflation, of marginal costs or alternative instruments will
not alter the intuition. In addition, since there are two structural parameters to estimate, two moment
conditions are sufficient for identification. In what follows, we focus on the special case Zt = {st, πt−1}.21

The GMM estimator of
¡
λb, θ

¢0
is given by the two moment conditions

E
h
πt−1

³
πt − λbπt−1 − λfπt+1 − θ st

´i
= 0

E
h
st

³
πt − λbπt−1 − λfπt+1 − θ st

´i
= 0

From equation (5), we know λf = β
¡
1− βλb

¢
, which confirms two moment conditions are enough to

achieve identification. Substituting,

E
h
πt−1

³
πt − βπt+1 − λb

¡
πt−1 − β2πt+1

¢
− θ st

´i
= 0

E
h
st

³
πt − βπt+1 − λb

¡
πt−1 − β2πt+1

¢
− θ st

´i
= 0

Under heterogeneity however, the residual ε̄t is not orthogonal to the instruments and the estimates
are inconsistent. Simple algebric manipulation implies expressions for the probability limits of the hetero-
geneity biases on all the structural estimates. In particular, in probability limits, the asymptotic bias on
each estimator is given by

Λ plim(λbGMM − λb) = E
¡
s2t
¢
E (πt−1ε̄t)−E (stπt−1)E (stε̄t) (7)

Λ plim (θGMM − θ) = E
¡
πt−1

¡
πt−1 − β2πt+1

¢¢
E (stε̄t)−E

¡
st
¡
πt−1 − β2πt+1

¢¢
E (πt−1ε̄t)

where we made use of the fact that λ̃
f
j = −β2λ̃

b
j in computing

ε̄t =
JX

j=1

wjεj,t +
JX

j=1

wjλ̃
b
j

¡
πj,t−1 − β2πj,t+1

¢
+

JX
j=1

wj θ̃jsj,t

and
Λ = E

¡
s2t
¢
E
¡
πt−1

¡
πt−1 − β2πt+1

¢¢
−E (stπt−1)E

¡
st
¡
πt−1 − β2πt+1

¢¢
20The aggregate error term ε̄t actually involves sectoral values of lagged inflation and marginal costs, and so the bias also

depends on the correlation between aggregate instruments and their sectoral components.
21 In fact, this is actually the optimal set of instruments. See Nason and Smith (2004).
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The bias on the degree of indexation ξ is given by

Λ (ξGMM − ξ) = (1 + βξ̂) (1 + βξ) (λbGMM − λb)

so that the biases on ξGMM and λbGMM have the same sign. We observe that Λ is positive for large enough
values of β and as soon as E (stπt−1) and E (stπt+1) are non negative. Both conditions are typically
satisfied in macroeconomic data, and in particular in the French case we observe.22 The signs of the
asymptotic biases on the structural parameters are therefore given by the right-hand side of equations (7).
We now turn to their characterization.

In order that we can sign the biases, we maintain four simplifying assumptions. (H1) Hetereogeneity
is deterministic. (H2) The weights of all sectors in the economy are exogenous and uncorrelated with the
magnitude of sector-specific estimates of the Phillips curve. (H3) Sector-specific shocks are independent.
(H4) Marginal costs follow a (potentially sector-specific) autoregressive process of order one. Our estima-
tions later relax all four hypotheses; our purpose now is to obtain tractable expressions for all biases, at
the cost of relatively benign assumptions. Under these assumptions, the sign of the bias affecting estimates
for λb and θ are given in Proposition 1.

Proposition 1 Assume that H1, H2, H3 and H4 all hold. Then

• The asymptotic bias of (λbGMM − λb) can be decomposed into the sum of three terms:

A1 =
1

Λ
E
¡
s2t
¢ JX
j=1

wj λ̃
b
j E

¡
πt−1(πj,t−1 − β2πj,t+1)

¢
A2 = − 1

Λ
E (stπt−1)

JX
j=1

wj λ̃
b
j E

¡
st(πj,t−1 − β2πj,t+1)

¢
A3 =

1

Λ
E
¡
s2t
¢ JX
j=1

wj θ̃j E (πt−1sj,t)−
1

Λ
E (stπt−1)

JX
j=1

wj θ̃j E (stsj,t)

where, as β → 1 and J →∞,
A1 > 0, A2 > 0, A3 > 0

so that λbGMM and ξGMM tend to over-estimate their true values.

22On average, E (stπt−1) equals 1.18 and E (stπt+1) equals 21.10 in our data.
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• The asymptotic bias of (θGMM − θ) can be decomposed into the sum of three terms

B1 =
1

Λ
E
¡
π2t−1 − β2πt−1πt+1

¢ JX
j=1

wj λ̃
b
jE
¡
st
¡
πj,t−1 − β2πj,t+1

¢¢
B2 = − 1

Λ
E
¡
stπt−1 − β2stπt+1

¢ JX
j=1

wjλ̃
b
jE
¡
πt−1

¡
πj,t−1 − β2πj,t+1

¢¢
B3 =

1

Λ
E
¡
π2t−1 − β2πt−1πt+1

¢ JX
j=1

wj θ̃jE (stsj,t)

− 1
Λ
E
¡
stπt−1 − β2stπt+1

¢ JX
j=1

wj θ̃jE (πt−1sj,t)

where, as β → 1and J →∞,
B1 < 0, B2 > 0, B3 > 0.

¤

Proof: See Appendix 2.

From our simple simulations, we know that a quantitatively important source of bias is the dispersion
in αj , and the end effect falls mostly on aggregate estimates of ξ. Translated into analytical terms, this
suggests ξGMM − ξ should be larger than θGMM − θ, which is likely given that the former is always
positive whereas the latter has ambiguous sign. What is more, the importance of heterogeneity in αj in
our simulations suggests A3 and B3 should be the main sources of the biases. Indeed, in both cases, the
biases decompose into correlation terms involving λ̃

b
j on the one hand (A1, A2, B1 and B2), and terms

involving θ̃j on the other (A3 and B3). By definition, the heterogeneity in αj only affects θ̃j .

Our simulations therefore suggest A3 (and to a lesser extent B3) should be the main source of the
heterogeneity bias. In order to garner an intuition in economic terms, it is useful to think of heterogeneity
across sectors in the terminology introduced by Angeloni et al (2005). High values of A1 require that

industries with high intrinsic inflation persistence (high realizations of λ̃
b
j) also have large inflation variance,

but low inflation persistence. Given an industry-level Phillips curve, this requires either that extrinsic
inflation be particularly high (realizations of θ̃j be high), or Esj,tπj,t be large, or both. It is otherwise

impossible to achieve simultaneously high inflation variance, low inflation persistence and high λ̃
b
j .

High values of A2 in turn require that industries with high intrinsic inflation also be ones with high
values of Esj,tπj,t+1 but low values of Esj,tπj,t−1. As such, this requires rather convoluted inflation
dynamics. In addition, we note a potential contradiction in that large values for A1 require for the
cross-correlogram between marginal costs and inflation to reach a peak for contemporaneous observations.
But large values of A2 require low values for leads and lags of inflation. This complicates further the
requirement on the cross-dynamics of sj,t and πj,t.

Large values for A1 and A2 may therefore only occur under relatively constrained sets of requirements,
with restrictions on both the extents of intrinsic and extrinsic inflation at the industry level. In contrast,
A3 will tend to take high values naturally. Consider the first term in A3. Industries with high extrinsic
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inflation will be ones with large realizations of θ̃j ; but this means by definition that inflation and marginal
cost tend to be highly correlated, i.e. E (πj,t−1sj,t) tends to take high values. For a given set of weights
wj , this acts to increase the weighted average

PJ
j=1wj θ̃j E (πt−1sj,t). On the other hand, the last term

of A3 is likely to be negligible as the variance of the marginal cost is not under our assumptions at all
related to θ̃j .

The exact same reasoning applies to θGMM − θ. In particular, B3 will also tend to be the dominant
(and positive) component of the bias.23 But since B1 is negative, the overall heterogeneity bias on θ is
likely to be smaller than ξGMM − ξ. Finally, note that if (θGMM − θ) and (ξGMM − ξ) happen to have
the same sign, the GMM bias on α must be of the opposite sign since θ = (1− βα) (1− α) / [(1 + βξ)α]

decreases in α. If they have opposite signs, on the other hand, the bias on the GMM estimate of α may
be of either sign.

3.2 Maximum Likelihood

The GMM estimator requires an instrument set for expected inflation. An alternative, introduced for
instance by Fuhrer and Moore (1995), Kurmann (2005), and Sbordone (2001, 2003) assumes a data
generating process for marginal costs and implements a Maximum Likelihood estimator (ML) to back out
the model’s estimated coefficients. Under the additional hypothesis, it becomes possible to solve future
expected inflation out of the Phillips curve, and obtain a model that can be brought to the data directly.
We now consider the role of heterogeneity under this alternative estimation approach.24

For simplicity, we will assume marginal costs are generated by an autoregressive process of order
one. The derivations that follow become substantially more complicated under more sophisticated autore-
gressive models, but there is no fundamental reason why the intuition we develop shoud be altered. In
addition, the assumption does not differ from the existing literature.25 The full model of inflation then
rests on the following system

πj,t = λbj πj,t−1 + λfj Etπj,t+1 + θj sj,t + εj,t (9)

sj,t = ρj sj,t−1 + uj,t

where uj,t denotes an independent and identically distributed shock to real marginal costs in sector j,¯̄
ρj
¯̄
< 1, σ2εj = E

³
ε2j,t

´
and σ2uj = E

³
u2j,t

´
. We have assumed marginal costs have similar autoregressive

properties across sectors, but the persistence coefficient may differ. Appendix 1 shows the dynamics of
inflation rewrite

πj,t = ξj πj,t−1 + ψj sj,t + ηj,t (10)

with

ψj =
1− βαj
1− βρj

1− αj
αj

=
1 + βξj
1− βρj

θj and ηj,t =
¡
1 + βξj

¢
εj,t.

23To see this, note that E stπt−1 − β2stπt+1 < 0. See Appendix 2 for proofs.
24Our signing of the heterogeneity bias under GMM actually required that we assume a functional form for the dynamics

of marginal costs. But the expressions for the heterogeneity bias themselves did not require the assumption.
25See for instance Kurmann (2005), Sbordone (2001, 2003) or Mavroeidis (2005).
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As before, imposing homogeneity on an aggregated Phillips curve will force heterogeneity into the
residual, and thus result in inconsistency in parameter estimates. We continue to assume that aggregation
preserves the linearity property in heterogeneity; in particular, we assume the aggregate Phillips curve is
true on average whenever ξj = ξ + ξ̃j , αj = α+ α̃j and ρj = ρ+ ρ̃j . Then we have

πt = ξ πt−1 + ψ st + η̄t (11)

st = ρ st−1 + ūt

where ψ = 1−βα
1−βρ

1−α
α is the average value of the coefficient because of our maintained assumption on the

nature of heterogeneity. In particular, we have ψj = ψ + ψ̃j and

ψ̃j =
− (1− βααj) (1− βρ) α̃j + β (1− α)αj ρ̃j¡

1− βρj
¢
(1− βρ)ααj

As before, the residuals embed the dependent variables, since

η̄t =
JX

j=1

wj ηj,t +
JX

j=1

wj ξ̃j πj,t−1 +
JX

j=1

wj ψ̃j sj,t

ūt =
JX

j=1

wj uj,t +
JX

j=1

wj ρ̃j sj,t−1

Orthogonality conditions impose that the residuals should verify

E [(πt − ξML πt−1 − ψML st) πt−1] = 0

E [(πt − ξML πt−1 − ψML st) st] = 0

where ξM and ψM denote ML estimates. The nature of η̄t under heterogeneity will induce biases in
potentially all the coefficients in the Phillips curve. In probability limits, these biases writeeΛ plim (ξML − ξ) = E

¡
s2t
¢
E (πt−1η̄t)−E (stπt−1) E (stη̄t)eΛ plim (ψML − ψ) = E

¡
π2t−1

¢
E (stη̄t)−E (stπt−1) E (πt−1η̄t)

plim (ρML − ρ) = E (st−1ūt) /E
¡
s2t−1

¢
where eΛ = E

¡
s2t
¢
E
¡
π2t−1

¢
− (E (stπt−1))2

Since eΛ > 0, the signs of the asymptotic biases are given by the right-hand side expression. Under
assumptions H1-H4, the sign of the bias affecting each parameter is given in Proposition 2.

Proposition 2 Under H1-H4,

• The asymptotic bias of (ξML − ξ) can be decomposed into the sum of two terms:

C1 = C11 + C12 =
E
¡
s2t
¢

eΛ
JX

j=1

wj ξ̃j E (πt−1πj,t−1)−
E (stπt−1)eΛ

JX
j=1

wj ξ̃j E (stπj,t−1)

C2 = C21 + C22 =
E
¡
s2t
¢

eΛ
JX

j=1

wj ψ̃j E (πt−1sj,t)−
E (stπt−1)eΛ

JX
j=1

wj ψ̃j E (stsj,t)
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where

C11 > 0 C12 < 0,

C21 > 0 C22 < 0.

• The asymptotic bias of (ψML − ψ) can be decomposed into the sum of two terms:

D1 = D11 +D12 =
E
¡
π2t−1

¢
eΛ

JX
j=1

wj ξ̃j E (stπj,t−1)−
E (stπt−1)eΛ

JX
j=1

wj ξ̃j E (πt−1πj,t−1)

D2 = D21 +D22 =
E
¡
π2t−1

¢
eΛ

JX
j=1

wj ψ̃j E (stsj,t)−
E (stπt−1)eΛ

JX
j=1

wj ψ̃j E (πt−1sj,t)

where

D11 > 0 D12 < 0,

D21 > 0 D22 < 0.

• The asymptotic bias of (ρML − ρ), given by

ρML − ρ =
JX

j=1

wj ρ̃j E (stsj,t) /E
¡
s2t−1

¢
,

is positive.¤

• Proof: See Appendix 2.

The biases on both reduced form coefficients have ambiguous signs. However, it is possible to conjecture
the importance of their respective components. Once again, our simulation results suggest ξML−ξ should
be largest, and in addition should arise mostly from heterogeneity in αj . In terms of the analytical biases,
this means relatively large values for C2, since the heterogeneity in nominal rigidities only affects ψ̃j . Why
is C1 relatively small compared with C2?

Using again the terminology introduced by Angeloni et al (2005), industries with high extrinsic inflation
(high realizations of ψ̃j) will naturally tend to display high correlations between marginal costs and
inflation. This acts to increase the value of C21. In contrast, under the Maximum Likelihood assumptions
on marginal costs, there is not reason to expect extrinsic inflation to correlate in any systematic manner
with the variance in marginal costs, which only depends on its autoregressive properties. C22 should
ceteris paribus take low values. This accounts for the fact that C2 will tend to take positive, and large,
values.

Similarly, industries with high intrinsic inflation (high realizations of ξ̃j) will ceteris paribus also display
high inflation volatility, by virtue of the reduced form Phillips curve given in equation (10). This results
in high values for C11. Unless the cross correlation between inflation and marginal costs is low. In that
case, it is possible to have simultaneously high ξ̃j , low inflation volatility, and therefore low values for C11.
But then, it is also true that C12 takes low values, and so, possibly, C1 continues to be positive.
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By virtue of exactly identical reasoning, it is likely that D22 will take large and negative values, and
since, for similar reasons, D21 is unlikely to be highly positive, D2 may well take negative values. Similarly,
D1 is affected by the extent of intrinsic inflation, which is only indirectly related with E (sj,tπj,t−1); it is
on the other hand directly affecting E (πj,t−1πj,t−1), and thus, ceteris paribus, D12.

Put simply, the sub-components of the Maximum Likelihood bias on ψ can be expected to offset each
other, with small end effects. On the other hand, the components of the bias on ξ act to reinforce each
other’s influence. This confirms analytically our simulation results that the ML bias on ξ is largest. The
fact that a large part of this bias seems to originate from the dispersion in αj finds confirmation in the
likely large (positive) magnitude taken by C2.

The bias on ρML is unambiguously positive, and unsurprisingly increases with dispersion in the sectoral
values of ρj . This dispersion can have dramatic effects in aggregate Maximum Likelihood estimates.
Consider for instance the simple case where ξ and α are homogeneous across industries, but ρj is industry
specific. A heterogeneity bias continues to potentially plague all estimates of the aggregate Phillips curve.
The expressions for the asymptotic biases in this section do not involve the realizations of ρ̃j , because
they are dedicated to signing the biases. But Appendix 2 shows that the magnitude of both (ξML − ξ)

and (ψML − ψ) is potentially affected by heterogeneity in the persistence of marginal costs. GMM does
not suffer from such mis-specification of an auxiliary model.

3.3 Simulations

We now perform some simulations whose purpose is to confirm the nature of the various relevant hetero-
geneity biases, under alternative assumptions on the nature of heterogeneity. To facilitate comparison, we
express all estimates in terms of the structural parameters (ξ and α), and infer the corresponding values
for the reduced-form parameters. We use our analytical results to decompose all biases into their various
components, and examine their relative signs and magnitudes.

We reproduce the experiment described in section 2, with the additional refinement that we now
decompose all biases into their theoretical components. As before, the structural parameters (ξ, α, and ρ)
are initially set at the values implied by hetereogeneous estimations performed on our French data. Cross-
industry heterogeneity in the structural parameters is drawn from a normal distribution with variances
σ2α = σ2ξ = 0.1. We deduce sector-specific reduced-form estimates and simulate samples of sectoral
inflation and marginal cost. We use these artificial data to compute the corresponding aggregate inflation
and marginal cost, as well as the unbiased, sector-specific estimates of ξj and αj . We then estimate the
aggregate Phillips Curve, using the GMM and ML estimators on simulated aggregate series. GMM implies
estimates of λb and θ, and ML implies estimates of ξ, ψ, and ρ. These are then used to back out the
corresponding structural estimates ξ and α. We iterate the procedure, saving for each sample both the
theoretical values of the structural parameters, and their empirical counterparts. We report the median
value of the obtained estimates. We now have sixteen sectors, as in the French data, and 111 observations
per sector.

Table 1a presents our baseline results. As expected the GMM estimator generates positive heterogene-
ity biases in both ξ and θ, and the former is larger in absolute magnitude. What is more, both biases
originate almost fully from large and positive values of A3 and B3, which we argue stem from dispersion
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in θ̃j , and ultimately in αj . (θGMM − θ) takes lower values than (ξGMM − ξ) because B1 is negative, as
predicted by the previous section. It is also true that the bias on α is negative, as it should given that
both (θGMM − θ) and (ξGMM − ξ) are positive; it is however small in our simulations. The right panel of
the table presents the biases implied by the ML estimator. The results are once again consistent with our
analytical expressions. The ML heterogeneity bias on ξ is largest, and this happens mostly because C2 is
large and positive. The ML bias on ψ is negligible, as D1 and D2 have opposite signs. As a result, ML
barely biases aggregate estimates of α.

These results underline the importance of heterogeneity in αj , as the largest component of all biases
invariably involves either θ̃j or ψ̃j , rather than ξ̃j . We further illustrate this asymmetry in Table 1b, where
we alternatively shut down heterogeneity in αj and in ξj , and calibrate larger values of the dispersion
that subsists in the simulations. Table 1b confirms all heterogeneity biases are larger when heterogeneity
arises from σ2α. This is particularly true of GMM, for which the difference between the two calibrations is
sizable, and originates almost exclusively from different values for A3. By the same token, both C2 and
D2 are larger when heterogeneity is modeled to arise from αj rather than ξj .

In summary, our simulations suggest that heterogeneity results in a large positive bias on the degree of
indexation, especially under the ML approach. It is the cross-sectional dispersion in the Calvo parameter
α that has largest effects on the magnitude of heterogeneity biases, rather than heterogeneity in the extent
of indexation.

4 Econometric Methods

We now introduce the estimators we use to account for sectoral heterogeneity. We discuss two estimators:
the Mean Group (MG) and Random Coefficient (RC) models, introduced by Pesaran and Smith (1995).
The main difference between the two estimators comes from their assumptions on the nature of heterogene-
ity. MG assumes sector-specific deviations from mean parameters are deterministic, whereas RC assumes
they are random. As a result, MG implements a simple averaging of sector specific estimates, whereas
RC requires a generalized least squares procedure that optimally accounts for the stochastic nature of
heterogeneity.26

In other words, the RC estimator relaxes assumption H1. In this section, we also relax the other
assumptions that afforded the analytical expressions of the biases. In particular, some of our estimates
use the industry weights directly implied by French data (H2), and we allow for cross-industry inter-
dependences (H3). We do this in two ways. First, we implement the Seemingly Unrelated Regression
Estimation (SURE) correction to both heterogeneous estimators.27 Second, we introduce the common
correlated effects Mean Group estimator (CCE-MG) and its random coefficient version (CCE-RC) intro-
duced by Pesaran (2006). Assumption H4 is eschewed naturally when we implement the GMM estimator,
which exonerates from any assumption on the process driving marginal costs.

26The difference is akin to that between fixed effect and random effect estimators, and can be tested accordingly. Hsiao
(1986) shows that MG and RC estimators are equivalent in the limit. In other words, our analytical results, which were
calculated on the basis of deterministic heterogeneity, become valid in the limit, even if heterogeneity is actually stochastic.
27This is directly applicable since we have sixteen sectors but 111 observations.
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4.1 Mean Group

The MG estimator introduced in Pesaran and Smith (1995) simply consists in an arithmetic average of
sector-specific parameter estimates. In particular, let Υj denote the vector of sector-specific parameters.
The MG estimator Υ̂MG is given by

Υ̂MG =
1

J

JX
j=1

Υ̂j .

A consistent estimator of the covariance matrix of Υ̂MG can be computed as

V (Υ̂MG) =
1

T (T − 1)

JX
j=1

³
Υ̂j − Υ̂MG

´³
Υ̂j − Υ̂MG

´0
.

Two complications arise in our case. First, the theory on MG was developed and applied to estimators
of the ML type. Little is known about the applicability or the properties of a MG estimator combined with
sectoral parameters estimated with GMM. In what follows, we therefore implement the MG estimator
using sector-specific ML estimates (and report the latter). Second, the arithmetic average of sector-
specific inflation is not the object whose dynamics we are interested in. Aggregate inflation is given by a
weighted average of sector-specific price changes, with weights wj corresponding to industry shares in the
GDP deflator. We therefore amend the MG estimator and introduce weights wj in computing aggregate
estimates, which then indeed evaluate the dynamics of aggregate inflation as befits. Introducing these
empirical weights does not affect the consistency of the MG estimator.

Third, the parameters estimated by ML are not all structural. To preserve coherence, we obtain
industry-level estimates of the reduced form coefficients ξj and ψj , and perform the aggregation on the
basis of these estimates. Then MG (or indeed RC) yields consistent estimates for the aggregate coefficients
ξ and ψ, which we use to back out the aggregate structural parameters. Thus we avoid aggregating non-
linear estimates of αj . When evaluating the existence of a heterogeneity bias, we therefore compare
homogeneous estimates of ξ and ψ to the corresponding weighted average of their industry level values.
The alternative would be to estimate structural parameters ξ and α at both levels of aggregation, infer the
true aggregate estimates from a weighted average of disaggregated results, and compare homogeneous and
heterogeneous estimates. But this might conflate the heteregeneity bias with one induced by aggregating
non-linearities. We only present results that pertain to the former approach, which in addition is more in
line with the initial insight in Pesaran and Smith (1995). This is true of all our heterogeneous estimations.

4.2 Random Coefficients

Following Pesaran and Smith (1995), and Hsiao and Pesaran 2004), we define the RC estimator as a
weighted average of least squares estimates, with weights inversely proportional to their covariance ma-
trices. In particular, the best linear unbiased estimator of the mean coefficient vector is given by

Υ̂RC =
JX

j=1

WjΥ̂j
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The weighting scheme is given by

Wj =

⎡⎣ JX
j=1

(∆+ΣΥ̂j
)−1

⎤⎦−1 (∆+ΣΥ̂j
)−1

where

∆̂ =
1

T − 1

JX
j=1

³
Υ̂j − Υ̂MG

´³
Υ̂j − Υ̂MG

´0
− 1

J

JX
j=1

σ̂2j (X
0
jXj)

−1

and ΣΥ̂j
= σ2j (X

0
jXj)

−1. Xj,t = (πj,t−1, sj,t)
0 is the vector of regressors, and σ̂2j =

1
T−K π0j (IT −

Xj (X
0
jXj) X

0
j) πj . In words, ∆+ΣΥ̂j

captures the dispersion of the industry-specific estimates, so that
Wj will optimally act to associate a large weight to sectors where the estimates are precise. The MG
estimator is efficient when the optimal weights are not different from the arithmetic ones.

A weighting issue arises when implementing RC for our purposes. The optimal weights Wj are not
necessarily aligned with the empirical sector shares, wj . Although the exact pattern of weights does not
matter in the limit, as exemplified by the asymptotic equivalence between RC and MG, we ascertain how
much our results are affected by a particular patterns of industry weights. In what follows, we report
RC estimates as implied by both optimal and observed weights. In particular, we constrain the weighing
scheme used to compute Υ̂MG to be either uniform (which boils down to standard RC) or to entail observed
weights (which boils down to our augmented version of MG, as discussed in the previous section).

4.3 Cross-Industry Linkages

It is eminently likely that shocks to sectoral inflation or marginal costs be correlated across sectors. This
would happen for instance in the presence of macroeconomic aggregate shocks, or input-output linkages
between industries. We now discuss how to deal econometrically with this possibility, while preserving
some level of generality in the nature of cross-industry linkages.

We first apply a SURE correction to both our heterogeneous estimators. In particular, assume now
E[εi,tεj,t] = σεiεj , E[ui,tuj,t] = σuiuj , and E[εi,tuj,t] = σεiuj , for i 6= j. Stacking all sectors,

⎛⎜⎜⎜⎜⎝
Y1
Y2
...
YJ

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
X1 0 · · · 0

0 X2 · · · 0
...

. . . . . .
...

0 · · · 0 XJ

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
φ1
φ2
...
φJ

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝

v1
v2
...
vJ

⎞⎟⎟⎟⎟⎠

where Yj =
³
πj sj

´0
, Xj =

Ã
πj,−1 sj 0

0 0 sj,−1

!
, πj = (πj,t), πj,−1 = (πj,t−1), sj = (sj,t), and

sj,−1 = (sj,t−1). The stacked disturbances have a covariance matrix, Ω, which can be accounted for using
standard Maximum Likelihood techniques. We correct both RC and MG accordingly.

The SURE correction requires the estimation of a large-dimensional covariance matrix, which may
affect the finite-sample properties of the estimators. An alternative is proposed in Pesaran (2006), who

19



introduced a correction technique to account for unobserved common factors potentially correlated with
sectoral-specific regressors. The sector-specific estimations are filtered by means of cross-section aggregate
regressors, which purges the differential effects of unobserved common factors. The approach is particularly
appealing because of its simplicity. It merely requires the addition of an auxiliary regressor, given by the
cross-sectional average of the regressors, which suffices to filter the common correlated effect (CCE) out.
In particular, the model rewrites

πj,t = ξ πj,t−1 + ψ sj,t + f 0j,t γπ,j + η̄j,t

sj,t = ρ sj,t−1 + f 0j,t γs,j + ūj,t

where ft = (π̄t, π̄t−1, s̄t, s̄t−1)0 and x̄t is the cross-sectional average of xj,t. We implement the CCE
correction onto both our heterogeneous estimators.28

5 Results

We first introduce our sectoral data, which include production, prices, wages and employment in sixteen
French sectors. We describe some summary statistics. Next we present the industry specific estimates
of the Phillips curve, and identify the main sources of heterogeneity in our data. Finally, we discuss the
heterogeneity bias.

5.1 Data

Our data is constructed by INSEE, the French statistical institute. We have observations on output, prices,
wages and employment for sixteen sectors of the French economy, comprising all activities listed in the
Appendix. Coverage includes agriculture, manufacturing (six sectors) and services (nine sectors). For each
industry, the inflation rate is computed as the quarter-on-quarter growth rate of the value-added deflator.
We follow Galí and Gertler (1999) and compute the marginal costs sj,t as the (logarithm) deviation of
the share of labor income in value added from its sample mean. Our data are quarterly from 1978:1 to
2005:2, for a total of 111 observations.

Table 2 presents some summary statistics. We report average inflation and average growth in marginal
costs, their serial correlations, and the contemporaneous cross-correlation, at both industry and aggregate
levels. There is extensive heterogeneity across sectors in both average measures. Annual inflation ranges
between 0.2% and 5.5%, and the average annual growth in real marginal costs ranges between −3.6% and
0.1%. The same is true of serial correlation in inflation, and the cross-correlation between sj,t and πj,t. In
contrast marginal costs are consistently highly serially correlated. Figures 3 and 4 plot sectoral inflation
rates and real marginal costs, using unfiltered data.29 There is again considerable heterogeneity across
sectors in the patterns of both variables, although they tend to track each other within each industry as
testified in the industry-level Phillips curves we later estimate.

28A consistent estimator of ΣΥ̂ is obtained using the Newey and West (1987) type procedure. The CCE estimator of the
sectoral-specific parameters are consistent as J, T → ∞. As a result, the CCE correction of the MG (or RC) estimator is
asymptotically unbiased as J →∞, for T either fixed or T →∞. A rank condition is necessary regarding the factor loadings
ft. The asymptotic distribution can only be derived if

√
T/J → 0 as J, T →∞.

29Detrending has minimal effect.
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Table 2 also reveals that aggregate inflation and real marginal costs are highly serially correlated, and
covary to an extent that is much larger than most industry-level series. Figure 5 plots both aggregate
series, and illustrates that both series experienced a similar downward trend over the sample. Aggregate
inflation and marginal costs track each other quite closely, quite reassuringly given the existing empirical
support for aggregate Phillips curves.

5.2 Individual Estimates

Table 3 presents the industry-level estimates of the New Keynesian Phillips curve, on the basis of the
Maximum Likelihood approach. In other words, we maintain the assumption that industry-level marginal
costs are well characterized by an AR(1), and estimate the resulting reduced form equation. There are
several reasons why we focus on ML estimates of the Phillips curve at the industry level. First, how to
aggregate heterogeneous coefficients obtained from GMM estimations is uncharted territory. Our MG
and RC heterogeneous estimators (and their corrections) are only equipped to aggregate industry-level
estimates that arise from a ML estimator. Second, GMM is well known to suffer from small sample biases,
which may be particularly relevant to our present purposes when estimating an industry-level Phillips
curve.30

Several results stand out from Table 3. First, our data are supportive of inflation dynamics at the
industry level that are consistent with the New Keynesian framework. Both α and ξ are adequately
bounded, and marginal costs are unanimously persistent. There is however considerable heterogeneity,
especially as pertains to the extent of backward indexation ξj . For instance, Energy or Business services
seem to display purely forward-looking price setting behavior, with values of ξj not different from zero.
Real estate and Government are at the other end of the spectrum, with ξj virtually equal to one. The
dispersion in the estimated values for αj is substantially less marked, if still sizable. We find values for
α close to one for most of the service sectors, but smaller for food manufacturing, energy or transports
- though still significantly different from zero. The fact that the heterogeneity in αj be small in our
data does not preclude large heterogeneity biases. Our simulations and analytics have shown that large
inconsistencies are still possible even when ξj are virtually homogeneous, provided some differences in
nominal rigidities still prevail.31

Table 3 is broadly consistent with the estimates based on French data reported in Fougère et al (2005) or
Beaudry et al. (2005). Neither paper is directly comparable because of different data sources, aggregation
levels and modeling strategies, but both of them find substantial heterogeneity, in particular between
services and manufacturing industries.32 Table 3 is consistent with relatively homogeneous estimates

30 In fact, Fuhrer, Moore, and Schuh (1995) have forcefully developed this argument in the context of the New Keynesian
Phillips curve. Admittedly, ML does not go without problems either, since it requires the imposition of an auxiliary regression
on marginal costs. In practice, we have little leeway given the heterogeneous estimators we propose to implement. We note
that the two estimators are asymptotically equivalent.
31We have implemented Fisher tests with null hypothesis coefficient equality across sectors. We used the industry-level

estimates in Table 3, and found overwhelming rejection of the homogeneity assumption across all three parameters α, ξ and
ρ. When using instead (unreported) industry-level estimates that implement SURE to correct for cross-industry correlations,
rejection becomes even stronger.
32For instance, they use CPI data, and focus on consumption goods only, whereas we have information on producers goods

as well.
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within services, for instance.33 Interestingly, Fougère et al (2005) also estimate long-lived nominal rigidities
in services on average, but especially short ones in Food Manufacturing or Energy.34

5.3 Heterogeneity Bias

We now quantify the heterogeneity bias in our data, and compare estimates of the structural parameters
implied by standard GMM or ML estimators performed on aggregated data, with the corresponding esti-
mates implied by heterogeneous estimators that make use of sectoral information. To facilitate comparison
and interpretation, in what follows, we discuss implied estimates for λb, θ and ψ.35 For completeness, we
also report estimates of ρ.

Table 4 reports our results. The first two rows report estimates for the aggregate New Keynesian
Phillips curve, as implied by both GMM and ML. The lower four rows present the results that pertain
to variants of our heterogeneous estimators, depending on what weighting pattern is used in aggregating.
In particular, MG∗ and RC∗ correspond to effectively observed GDP weights, whereas MG∗∗ and RC∗∗

assume uniform weights.36

We find a large and positive heterogeneity bias on ξ. The estimated coefficient is up to twice larger
when based on homogeneous estimators implemented on aggregate data. ML implies ξ close to 0.89, GMM
estimates it to be around 0.74, while heterogeneous estimators imply values between 0.4 and 0.47. This is
far from negligible, for it implies a large positive bias on the extent of backward looking behavior in the
data. λb is effectively substantially lower than what aggregate estimators suggest, from 0.43 down to 0.29
in the MG∗∗ case.

We also uncover some evidence that the reduced form coefficient on marginal costs suffer from a
negative heterogeneity bias under both estimators. θGMM is not different from zero, and MG∗∗, RC∗

and RC∗∗ all imply larger estimates than ψML. These discrepancies are not always significant, but they
correspond to upward biases on α, and indeed on the duration of price rigidities. For instance, ML yields
estimates of α slightly above what is implied by RC or MG. Aggregate duration as implied by ML is
around eight quarters, but closer to seven according to the RC estimator, and six with MG∗∗. We note
the relative magnitudes of GMM and ML biases on the structural parameters are perfectly in line with our
simulations, even though these results were obtained under more restrictive assumptions. In particular,
the bias on ξ is the largest under both estimators, while the bias on α is smaller and barely significant.
This arises in a dataset where there is less dispersion in αj than in ξj .

37

33 In fact, we ran our heterogeneous estimators within both manufacturing industries and services, and in each case found
barely any evidence of a heterogeneity bias. In contrast as will become clearer, the bias is large when considering the complete
sample. In other words, the extent of heterogeneity in our data is largest between manufacturing industries and services.
34Fougère et al (2005) report an average duration of price stickiness about twice larger in services than in manufactures.

Our heterogeneous estimators impy a duration around four quarters in manufactures, and up to nine in services.
35The standard errors are obtained using a simple delta method.
36To be precise, the use of different weights only matters for computing Υ̂MG. The Random Coefficient model continues

to use the optimal weights Wj when aggregating.
37We implemented simple Hausman tests to investigate the significance of the heterogeneity bias, comparing results implied

by aggregate ML with the RC model. The bias on ξ was significant at any level of confidence, with a P value equal to zero.
But the differences in α and ρ were insignificant when comparing these two estimators.
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5.4 Correcting for Cross-Industry Linkages

We now implement two corrections to our heterogeneous estimators, that allow for the possibility that
shocks be correlated across industries. Our corrections are general enough to account for common macro-
economic shocks, input-output production linkages or indeed anything that would engender influences on
sectoral prices or marginal costs that are contemporaneously correlated across industries.

In Appendix 3, we report various estimates that help quantifying cross-industry linkages in our data.
Table A1 reports the cross-correlations between the residuals ηj,t of each industry-specific Phillips curve
estimate, as implied by equation (10). Table A2 focuses instead on the cross-industry correlations in uj,t,
the cost-push shock in equation (9). On average, the values in Table A1 are positive, though relatively
few are significant. This is consistent with price pressures affecting simultaneously several industries. We
note significantly positive correlations tend to occur within manufacures, and within services. The same
can be said of shocks to marginal costs in Table A2, providing support that cost-push shocks tend to affect
more than one sector. This would characterize aggregate macroeconomic shocks, or perhaps production
linkages across industries.

In short, shocks are correlated across sectors. Table 5 presents the two corrections we implement,
SURE and CCE in the two lower panels; the top two panels reproduce the aggregate estimates from Table
4 for comparison purposes. The corrections only act to reinforce our conclusions. The corrected biases on
ξ become substantially larger for both corrections and both estimators, and heterogeneous estimates are
as low as 0.27 under SURE-RC, as compared with 0.89 under homogeneous ML. This is a large bias, with
considerable impact on the estimated role for backward looking pricing. Unbiased estimates of λb are as
low as 0.21, as compared with 0.47 when imposing homogeneity.

The bias on α also increases slightly in magnitude, especially as implied by the CCE correction.
The implied duration of rigidities falls to between six and seven quarters, down from eight under the
homogeneous ML estimator. To this correspond significant estimates for ψ, that is for the role of marginal
cost in driving inflation. These differences continue to be small in magnitude, and indeed still barely
significant. Even though our simulations (and analytical expressions for heterogeneity biases) suggested
the biases on ξ ought to be larger than on α, we stress that this may well be accentuated in the specific
dataset we are using here, where, in particular, the dispersion in αj is relatively low.

6 Conclusion

We show estimates of the aggregate Phillips Curve are biased in the presence of heterogeneity in firms
pricing behavior. We let the extent of nominal rigidities and indexation vary from sector to sector, and
derive analytical expressions for the biases induced by standard GMM and ML estimators. We show
that the degree of price indexation is systematically biased upward, which translates into higher estimates
of backward-looking behavior than is effectively present in the data. Under the same assumptions, the
duration of nominal rigidities is weakly biased upwards in standard estimations. Our analytics further
suggest that it is dispersion in the extent of nominal rigidities at the industry level that is most likely to
engender a heterogeneity bias.
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We verify these analytics in French sectoral data. We document a large positive bias in the backward
looking component of the Phillips curve that measures intrinsic persistence, which more than halves
when heterogeneity is accounted for. Our corrected estimates point to more than eighty percent forward
looking behavior, as compared with less than half when homogeneity is imposed. The result stems from
a large positive bias in the extent of backward looking indexation. We do also find a (slight) negative
bias on the coefficient measuring the importance of marginal costs in driving inflation, that measures
extrinsic persistence. This corresponds to a (slight) positive bias on the extent of nominal rigidities,
and their duration. In our data, correcting for the heterogeneity bias reduces the estimated duration of
rigidities from about eight quarters down to about six. It decreases to four quarters when the focus is on
manufacturing industries only. This arises in a dataset where price stickiness varies less across industries
than the estimated extent of backward indexation, and where sixteen sectors are observed separately.

Our results withstand the possibility that inflation and marginal costs be driven by common causes
across industries, because of common shocks or inter-industry production linkages. In fact, they become
even stronger once the adequate corrections for correlated residuals are implemented. But we can not
predict what would happen in a finer dataset. Our analytics suggest however the heterogeneity will
always be largest on the measure of intrinsic inflation, and would arise mostly because of industry-specific
price stickiness.
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Appendix 1: Derivation of the reduced form (10)

The full model of (sectoral) inflation rests on the following system

πj,t = λbj πj,t−1 + λfj Etπj,t+1 + θj sj,t + εj,t

sj,t = ρj sj,t−1 + uj,t.

The characteristic equation of the Phillips Curve writes³
1− λbj L− λfj L−1

´
πj,t = θj sj,t + εj,t

where L denotes the lag operator. The two roots are ξj < 1 and 1
β > 1. The dynamics of inflation

therefore rewrites
1

β

¡
1− ξjL

¢ ¡
1− βL−1

¢
πj,t =

θj
λj,f

sj,t +
εj,t
λj,f

.

After some manipulations, this implies

πj,t = ξj πj,t−1 + ψj sj,t + ηj,t

with

ψj =
1− βαj
1− βρj

1− αj
αj

and ηj,t =
¡
1 + βξj

¢
εj,t.

The aggregate dynamics is then obtained by imposing that the aggregate Phillips Curve is true on average
whenever ξj = ξ + ξ̃j , αj = α+ α̃j and ρj = ρ+ ρ̃j . Then we have

πt = ξ πt−1 + ψ st + η̄t

st = ρ st−1 + ūt

where ψ = (1− βα) (1− α) / [(1− βρ)α].
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Appendix 2: Proofs of Propositions 1 and 2

Before showing propositions 1 and 2, we need the two following lemmas

Lemma 1 Let X be a random variable and, f and g be two increasing functions, then

cov(f(X), g(X)) ≥ 0.

¤

Proof: Assume two independent draws, Xi and Xj (i 6= j), from the distribution of X. Since f and g are
increasing, we have

[f(Xi)− f(Xj)] [g(Xi)− g(Xj)] ≥ 0.

Using the expectation operator, we obtain

E([f(Xi)− f(Xj)] [g(Xi)− g(Xj)]) ≥ 0

which, since Xi and Xj are independent, is equivalent to

E [f(Xi)h(Xi)]−Ef(Xj)Eh(Xi)−Ef(Xi)Eg(Xj) +E [f(Xj)h(Xj)] ≥ 0

or equivalently, sincesince Xi and Xj have the same distribution,

2 (E [f(X)g(X)]−Ef(X)Eg(X)) ≥ 0

Thus
cov(f(X), g(X)) ≥ 0.

¤

Lemma 2 Assume a reduced form given by

πt = ξ πt−1 + ψ st + η̄t

st = ρ st−1 + ūt

where ψ = 1−βα
1−βρ

1−α
α . Then,

E
¡
s2j,t
¢
=

σ2uj
1− ρ2j

= σ2Sj

E(πj,tsj,t) =
ψj

1− ξjρj
σ2Sj

E(πj,t−1sj,t) =
ψjρj

1− ξjρj
σ2Sj

E(πj,t+1sj,t) =

µ
ξjψj

1− ξjρj
+ ψjρj

¶
σ2Sj

E(π2j,t) =
σ2ηj

1− ξ2j
+

1 + ξjρj¡
1− ξ2j

¢ ¡
1− ξjρj

¢ψ2jσ2Sj
E(πj,t+1πj,t−1) = ξ2j

σ2ηj

1− ξ2j
+

"
ξ2j
¡
1 + ξjρj

¢¡
1− ξ2j

¢ ¡
1− ξjρj

¢ + ρj
¡
ξj + ρj

¢¡
1− ξjρj

¢ #ψ2jσ2Sj
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and

E
¡
πj,t−1

¡
πj,t−1 − β2πj,t+1

¢¢
=

σ2ηj

1− ξ2j

¡
1− β2ξ2j

¢
+

Ã¡
1 + ξjρj

¢ ¡
1− β2ξ2j

¢¡
1− ξ2j

¢ ¡
1− ξjρj

¢ − β2
ρj
¡
ξj + ρj

¢¡
1− ξjρj

¢ !ψ2jσ
2
Sj

E
¡
sj,t
¡
πj,t−1 − β2πj,t+1

¢¢
=

¡
ψjρj

¡
1− β2

¢
− β2ξjψj

¡
1− ρ2j

¢¢ σ2Sj
1− ξjρj

.

¤

Proof: Assuming that all stochastic processes are weakly stationary, we have

E(πj,tsj,t) = E
¡
ξjπj,t−1 + ψjsj,t + ηj,t, sj,t

¢
=

ψj

1− ξjρj
σ2Sj

E(πj,t−1sj,t) = E
¡
πj,t−1

¡
ρjsj,t−1 + uj,t

¢¢
=

ψjρj
1− ξjρj

σ2Sj

E(πj,t+1sj,t) = E
¡¡
ξjπj,t + ψjsj,t+1 + ηj,t+1

¢
sj,t
¢
=

µ
ξjψj

1− ξjρj
+ ψjρj

¶
σ2Sj

E(π2j,t) = ξ2jE
¡
π2j,t−1

¢
+ ψ2jE

¡
s2j,t
¢
+ 2ξjψjE (πj,t−1sj,t) + σ2ηj

=
1

1− ξ2j

h
ψ2jE

¡
s2j,t
¢
+ 2ξjψjE (πj,t−1sj,t) + σ2ηj

i
=

σ2ηj

1− ξ2j
+

1 + ξjρj¡
1− ξ2j

¢ ¡
1− ξjρj

¢ψ2jσ2Sj
E(πj,t+1πj,t−1) = E

¡¡
ξjπj,t + ψjsj,t+1 + ηj,t+1

¢
πj,t−1

¢
= ξjE

¡¡
ξjπj,t−1 + ψjsj,t + ηj,t

¢
πj,t−1

¢
+ ψjE

¡¡
ρjSj,t + uj,t+1

¢
πj,t−1

¢
= ξ2jE

¡
π2j,t
¢
+ ξjψjE (sj,tπj,t−1) + ψjρjE (sj,tπj,t−1)

= ξ2j

"
σ2ηj

1− ξ2j
+

1 + ξjρj¡
1− ξ2j

¢ ¡
1− ξjρj

¢ψ2jσ2Sj
#
+

ρjψ
2
j

¡
ξj + ρj

¢
1− ξjρj

σ2Sj

= ξ2j
σ2ηj

1− ξ2j
+

"
ξ2j
¡
1 + ξjρj

¢¡
1− ξ2j

¢ ¡
1− ξjρj

¢ + ρj
¡
ξj + ρj

¢¡
1− ξjρj

¢ #ψ2jσ2Sj .
¤
Proof of Proposition 1

The GMM estimator of
¡
λb, θ

¢
is given by the two moment conditions

E
h
πt−1

³
πt − βπt+1 − λb

¡
πt−1 − β2πt+1

¢
− θ st

´i
= 0

E
h
st

³
πt − βπt+1 − λb

¡
πt−1 − β2πt+1

¢
− θ st

´i
= 0.
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The probability limits of the estimators given by these moments conditions are

plim(λbGMM) =
1

Λ

£
E
¡
s2t
¢
E (πt−1 (πt − βπt+1))−E (stπt−1)E (st (πt − βπt+1))

¤
plim(θGMM) =

1

Λ

£
E
¡
πt−1

¡
πt−1 − β2πt+1

¢¢
E (st (πt − βπt+1))

−E
¡
st
¡
πt−1 − β2πt+1

¢¢
E (πt−1 (πt − βπt+1))

¤
plim(ξGMM) = plim(λbGMM)/(1− β plim(λbGMM))

where
Λ = E

¡
s2t
¢
E
¡
πt−1

¡
πt−1 − β2πt+1

¢¢
−E (stπt−1)E

¡
st
¡
πt−1 − β2πt+1

¢¢
As a consequence, the asymptotic bias on the three estimators is given by

Λ plim(λbGMM − λb) = E
¡
s2t
¢
E (πt−1ε̄t)−E (stπt−1)E (stε̄t)

Λ plim(ξGMM − ξ) = (1 + βξ̂) (1 + βξ)
£
Es2t Eπt−1ε̄t −Eπt−1st Estε̄t

¤
Λ plim(θGMM − θ) = E

¡
πt−1

¡
πt−1 − β2πt+1

¢¢
E (stε̄t)

−E
¡
st
¡
πt−1 − β2πt+1

¢¢
E (πt−1ε̄t)

where

ε̄t =
JX

j=1

wjεj,t +
JX

j=1

wjλ̃
b
j

¡
πj,t−1 − β2πj,t+1

¢
+

JX
j=1

wj θ̃jsj,t

and
Λ = E

¡
s2t
¢
E
¡
πt−1

¡
πt−1 − β2πt+1

¢¢
−E (stπt−1)E

¡
st
¡
πt−1 − β2πt+1

¢¢
.

Note that

λbGMM − λb =
ξGMM

1 + βξGMM

− ξ

1 + βξ
=

ξGMM − ξ

(1 + βξGMM) (1 + βξ)

Under H1, we have

Λ plim(λbGMM − λb) = E
¡
s2t
¢ JX
j=1

wj

h
λ̃
b
jE
¡
πt−1

¡
πj,t−1 − β2πj,t+1

¢¢
+ θ̃jE (πt−1sj,t)

i

−E (stπt−1)
JX
j=1

wj

h
λ̃
b
jE
¡
st
¡
πj,t−1 − β2πj,t+1

¢¢
+ θ̃jE (stsj,t)

i

Λ plim (θGMM − θ) = E
¡
πt−1

¡
πt−1 − β2πt+1

¢¢ JX
j=1

wj

h
λ̃
b
jE
¡
st
¡
πj,t−1 − β2πj,t+1

¢¢
+ θ̃jE (stsj,t)

i

−E
¡
st
¡
πt−1 − β2πt+1

¢¢ JX
j=1

wj

h
λ̃
b
jE
¡
πt−1

¡
πj,t−1 − β2πj,t+1

¢¢
+ θ̃jE (πt−1sj,t)

i
.
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The expression for plim
¡
λbGMM − λb

¢
can be rewritten as the sum of three terms

A1 =
1

Λ
E
¡
s2t
¢ JX
j=1

wjλ̃
b
jE
¡
πt−1(πj,t−1 − β2πj,t+1)

¢
A2 = − 1

Λ
E (stπt−1)

JX
j=1

wjλ̃
b
jE
¡
st(πj,t−1 − β2πj,t+1)

¢
A3 =

1

Λ
E
¡
s2t
¢ JX
j=1

wj θ̃jE (πt−1sj,t)−
1

Λ
E (stπt−1)

JX
j=1

wj θ̃jE (stsj,t) .

And, similarly, plim(θGMM − θ) decomposes into

B1 =
1

Λ
E
¡
π2t−1 − β2πt−1πt+1

¢ JX
j=1

wjλ̃
b
jE
¡
st
¡
πj,t−1 − β2πj,t+1

¢¢
B2 = − 1

Λ
E
¡
stπt−1 − β2stπt+1

¢ JX
j=1

wjλ̃
b
jE
¡
πt−1

¡
πj,t−1 − β2πj,t+1

¢¢
B3 =

1

Λ
E
¡
π2t−1 − β2πt−1πt+1

¢ JX
j=1

wj θ̃jE (stsj,t)

− 1
Λ
E
¡
stπt−1 − β2stπt+1

¢ JX
j=1

wj θ̃jE (πt−1sj,t) .

We can characterize the sign of Aj under H1, H2 and H3 and when β is close to one. In particular, we
use H2 to simplify away the production weights wj by assuming they are equal across all sectors. Using
Lemma 2 and H4, A1 becomes

A1 =
E(s2t )

ΛJ2

JX
j=1

λ̃
b
j

Ã
σ2ηj +

1− ρ2j
1− ξjρj

ψ2jσ
2
Sj

!
.

Under the weak stationary assumption,

lim
J→∞

1

J2

JX
j=1

λ̃
b
j

Ã
σ2ηj +

1− ρ2j
1− ξjρj

ψ2jσ
2
Sj

!
= cov(λ̃

b
j , Ã1j)

where Ã1j = σ2ηj +
1−ρ2j
1−ξjρjψ

2
jσ
2
Sj
, and

lim
J→∞

A1 =
1

Λ
V (st)cov(λ̃

b
j , Ã1j).

Since λbj only depends on ξj and the variance of the aggregate marginal cost is positive, the previous
expression simplifies to cov(f(ξj), h(ξj)), where f(ξj) = ξj/

¡
1 + βξj

¢
and h(ξj) = Ã1j). It is straightfor-

ward to show that f is increasing in ξj , the first term of h is independent from ξj while the second term
(1− ρ2j )ψ

2
jσ
2
Sj
/
¡
1− ξjρj

¢
is increasing in ξj . Using Lemma 1, it follows that A1 is positive, as J →∞.
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The same reasoning can show that

lim
J→∞

A2 =
1

Λ
E(stπt−1) cov

Ã
λ̃
b
j ,
ξjψj(1− ρ2j)

1− ξjρj
σ2Sj

!
> 0

lim
J→∞

A3 =
1

Λ
V (st) cov

µ
θ̃j ,

ψjρj
1− ξjρj

σ2Sj

¶
− 1

Λ
E(stπt−1) cov(θ̃j , σ

2
Sj )

=
1

Λ
V (st) cov

µ
θ̃j ,

ψjρj
1− ξjρj

σ2Sj

¶
> 0.

Invoking (H2) to assume equal sectoral weights and imposing (H1) we have

B1 =
E
¡
π2t−1 − πt−1πt+1

¢
ΛJ2

JX
j=1

λ̃
b
jE (st (πj,t−1 − πj,t+1)) .

Using (H4) and Lemma 2, it follows that

lim
J→∞

B1 = −
1

Λ
E (πt−1 (πt−1 − πt+1)) cov(λ̃

b
j , B̃1j)

where B̃1j = ξjψj(1−ρ2j)σ2Sj/
¡
1− ξjρj

¢
. Given that E (πt−1 (πt−1 − πt+1)) is positive and the covariance

term is positive from Lemma 1, it follows that the asymptotic bias of B1 is negative.

A similar argument shows that

lim
J→∞

B2 = −
1

Λ
E (st (πt−1 − πt+1)) cov(λ̃

b
j , B̃2j)

where B̃2j = σ2ηj+ψ2j(1−ρ2j)σ2Sj/(1−ξjρj). Since the first covariance term E (st (πt−1 − πt+1)) is negative

and the second term, cov(λ̃
b
j , B̃2j), is positive, it follows that the asymptotic bias of B2 is positive

Finally, we have

lim
J→∞

B3 =
1

Λ
E (πt−1 (πt−1 − πt+1)) cov(θ̃j , B̃31j)−

1

Λ
E (st (πt−1 − πt+1)) cov ˜(θj , B̃32j)

= − 1
Λ
E (st (πt−1 − πt+1)) cov(θ̃j , B̃32j)

where B̃31j = σ2Sj and B̃32j = ψjρjσ
2
Sj
/(1 − ξjρj). Since the first term is asymptotically equal to 0 and

cov(θ̃j , B̃32j) is positive, the asymptotic bias of B3 is positive.
¤

Proof of Proposition 2

The proof is the same. The overall sign of C1, C2, D1, and D2 cannot be determined without further
assumptions, but their respective sub-components can be signed. We first have

lim
J→∞

C11 =
1eΛE(s2t ) cov(eξj , C̃11)
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where C̃11 = σ2ηj/(1 − ξ2j ). Using Lemma 1, one obtains that the covariance is positive and thus the
asymptotic bias of C11 is positive. The same reasoning shows that

lim
J→∞

C12 =
1eΛE(stπt−1) cov

µ
ξ̃j ,

ψjρj
1− ξjρj

σ2Sj

¶
< 0

lim
J→∞

C21 =
1eΛE(s2t ) cov

µ
ψ̃j ,

ψjρj
1− ξjρj

σ2Sj

¶
> 0

lim
J→∞

C22 =
1eΛE(stπt−1) cov

Ã
ψ̃j ,

σ2uj
1− ρ2j

!
< 0.

The last two equations require that each term of the covariance be increasing in ρj , which is trivially true.
Similarly, the asymptotic biases on Dis are given by

lim
J→∞

D11 =
1eΛE(π2t−1) cov

µ
ξ̃j ,

ψjρj
1− ξjρj

σ2Sj

¶
> 0

lim
J→∞

D12 = − 1eΛE(stπt−1) cov
Ã
ξ̃j ,

σ2ηj

1− ξ2j
+

1 + ξjρj¡
1− ξ2j

¢ ¡
1− ξjρj

¢ψ2jσ2Sj
!
< 0

lim
J→∞

D21 =
1eΛE(π2t−1) cov

Ã
ψ̃j ,

σ2uj
1− ρ2j

!
> 0

lim
J→∞

D22 = − 1eΛE(stπt−1) cov
µ
ψ̃j ,

ψjρj
1− ξjρj

σ2Sj

¶
< 0.

Finally, the bias on ρML depends on the covariance between the persistence of the marginal cost
ρ̃j = (ρj − ρ) and the parameters δj = wjE (stsj,t). Under (H2) and (H3), we have δj = wjσ

2
uj/(1− ρ2j ),

which is clearly an increasing function of ρj . As a consequence, the asymptotic bias on ρML is positive.
¤
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Appendix 3: Cross-Industry Linkages

Table A1: Correlations of sectoral Phillips Curve residuals

Industry [1] [2] [3] [4] [5] [6] [7] [8]

[1] 1.000

[2] 0.098 1.000

[3] 0.222∗ −0.019 1.000

[4] −0.081 0.079 0.293∗ 1.000

[5] 0.094 0.113 0.333∗ 0.422∗ 1.000

[6] 0.035 0.075 −0.127 0.025 0.089 1.000

[7] 0.044 0.256∗ −0.042 −0.084 0.198∗ −0.059 1.000

[8] −0.017 0.202∗ 0.078 0.151 0.120 0.171 0.038 1.000

[9] −0.064 0.186 −0.103 −0.229∗ −0.206∗ 0.070 −0.007 −0.145
[10] 0.191 −0.021 0.193 0.091 0.004 0.173 −0.016 0.121

[11] 0.030 −0.068 0.122 0.114 0.120 −0.217∗ 0.031 −0.129
[12] −0.119 0.094 0.086 −0.047 0.033 −0.116 0.313∗ 0.213∗

[13] 0.112 −0.062 0.048 −0.068 0.033 −0.009 −0.673∗ 0.034

[14] 0.140 0.076 0.305∗ 0.152 0.260∗ 0.071 0.178 0.262∗

[15] −0.010 0.017 0.283∗ 0.216∗ 0.281∗ −0.031 −0.023 0.142

[16] −0.035 0.173 0.005 0.065 0.034 0.024 0.061 0.069

Industry [9] [10] [11] [12] [13] [14] [15] [16]

[9] 1.000

[10] −0.034 1.000

[11] −0.281∗ −0.034 1.000

[12] −0.104 0.040 −0.085 1.000

[13] 0.067 0.022 −0.025 −0.261∗ 1.000

[14] −0.288∗ 0.111 0.027 0.439∗ −0.080 1.000

[15] −0.116 −0.013 0.018 0.167 −0.052 0.235∗ 1.000

[16] 0.045 −0.011 −0.037 0.088 0.028 0.072 0.259∗ 1.000

Note: ∗ means that the correlation is statistically significant at 5% level.
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Table A2: Correlations of sectoral real marginal cost residuals

Industry [1] [2] [3] [4] [5] [6] [7] [8]

[1] 1.000

[2] −0.008 1.000

[3] 0.209∗ −0.003 1.000

[4] 0.233∗ 0.092 0.177 1.000

[5] 0.247∗ −0.014 0.098 0.398∗ 1.000

[6] 0.244∗ 0.109 0.289∗ 0.259∗ 0.309∗ 1.000

[7] −0.038 0.193 −0.013 −0.064 0.074 0.015 1.000

[8] 0.099 0.003 0.252∗ 0.188 0.088 0.349∗ −0.019 1.000

[9] 0.120 0.210∗ 0.311∗ 0.206∗ 0.076 0.346∗ −0.022 0.140

[10] 0.137 0.100 0.177 0.169 0.025 0.331∗ 0.070 0.095

[11] 0.006 −0.054 0.091 0.180 0.041 0.073 −0.018 0.055

[12] −0.060 0.082 0.188 −0.179 0.019 0.246∗ 0.152 0.106

[13] 0.068 −0.042 0.208∗ 0.078 0.070 0.056 −0.672∗ 0.066

[14] 0.013 0.100 0.135 0.115 −0.050 −0.005 0.056 0.275∗

[15] −0.090 −0.079 0.066 0.140 0.116 0.047 −0.062 0.084

[16] 0.085 −0.113 −0.097 0.000 0.111 −0.102 −0.046 −0.113
Industry [9] [10] [11] [12] [13] [14] [15] [16]

[9] 1.000

[10] 0.191 1.000

[11] −0.080 0.133 1.000

[12] 0.145 −0.056 −0.005 1.000

[13] 0.089 −0.070 0.085 0.055 1.000

[14] 0.031 0.115 0.169 −0.087 0.005 1.000

[15] 0.054 −0.011 −0.026 −0.047 −0.032 0.198 1.000

[16] −0.101 −0.086 0.162 −0.267∗ −0.023 0.159 0.493∗ 1.000

Note: The notation ∗ means that the correlation is statistically significant at 5% level.

33



Appendix 4: List of Industries

• Agriculture [1]

• Manufacturing

— Food manufacturing [2]

— Consumption goods [3]

— Car industry [4]

— Equipment goods [5]

— Intermediary goods [6]

— Energy [7]

• Service

— Construction [8]

— Trade [9]

— Transportation [10]

— Financial activities [11]

— Real estate [12]

— Business services [13]

— Personal services [14]

— Education and health services [15]

— Government [16]
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Table 1a: GMM and ML estimates (baseline case)

True Value GMM Decomposition ML Decomposition

A1 A2 A3 C1 C2

ξ 0.412 0.660 0.011 0.004 0.171 0.867 0.006 0.424

α 0.858 0.738 0.846

ρ 0.920 − 0.904

λb 0.291 0.399 0.467

λf 0.705 0.599 0.533

B1 B2 B3

θ 0.023 0.058 −0.002 0.000 0.032 0.016

D1 D2

ψ 0.349 0.923 0.292 −0.011 0.021

Note: The “true values” used for the simulations correspond to the random coefficient estimation of the aggregate

Phillips Curve reported in Table 4 (with uniform weights). The variances of the random parameters are 0.05 for ρ

(ruling out explosive paths), and 0.1 for ξ and α. Uniform weights are used to compute estimates.
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Table 1b: GMM and ML estimates - Alternative Sources of Heterogeneity

True value GMM Decomposition ML Decomposition

σ2ξ = 0, σ
2
α = 0.2

A1 A2 A3 C1 C2

ξ 0.412 0.877 0.023 0.001 0.343 0.909 −0.002 0.496

α 0.839 0.608 0.800

ρ 0.921 − 0.901

λb 0.293 0.470 0.478

λf 0.703 0.530 0.521

B1 B2 B3

θ 0.024 0.144 -0.001 0.001 0.090 0.028

D1 D2

ψ 0.437 2.422 0.482 −0.007 0.209

σ2ξ = 0.2, σ
2
α = 0

A1 A2 A3 C1 C2

ξ 0.412 0.532 0.007 0.014 0.053 0.826 0.073 0.300

α 0.858 0.803 0.853

ρ 0.921 − 0.901

λb 0.293 0.348 0.454

λf 0.702 0.649 0.545

B1 B2 B3

θ 0.018 0.033 −0.003 0.000 0.016 0.016

D1 D2

ψ 0.285 0.545 0.273 −0.036 0.052

Note: The “true values” used for the simulations correspond to the random coefficient estimation of the aggregate

Phillips Curve reported in Table 4 (with uniform weights). Uniform weights are used to compute estimates.
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Table 2: Summary statistics on French data

Industry Weights π̄ s̄ corr(πt−1, πt) corr(st−1, st) corr(πt, st)

Aggregate 100.00 3.996 −0.095 0.921 0.984 0.887

Agriculture 2.92 1.255 −0.276 0.782 0.977 −0.247
Food Mfg 2.33 3.477 −0.102 −0.075 0.778 −0.320
Cons. Goods 3.02 2.639 −0.087 0.620 0.939 0.367

Car 0.96 3.293 −3.616 0.291 0.981 0.198

Equip. Goods 2.96 0.237 −0.128 0.041 0.915 −0.412
Inter. Goods 5.72 2.788 −1.007 0.725 0.988 0.600

Energy 2.18 5.393 −0.934 −0.281 0.683 −0.449
Constr. 6.67 4.889 −0.327 0.511 0.977 0.389

Trade 10.57 4.241 −0.253 0.760 0.974 0.662

Transport 3.76 2.935 −0.112 0.027 0.777 0.034

Finance 5.01 3.366 −0.410 0.600 0.971 0.143

Real Estate 11.82 5.023 −0.272 0.864 0.983 −0.683
Business Serv. 14.19 3.635 −0.021 −0.290 0.946 −0.362
Personal Serv. 5.75 5.486 0.062 0.758 0.961 −0.707
Educ. & Health 13.94 5.542 −0.261 0.933 0.986 0.848

Governmt. 8.21 4.419 −0.050 0.954 0.917 0.484
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Table 3: Sectoral ML estimates

Industry ξ α ρ ψ

Agriculture 0.718 0.982 0.981 0.017

(0.069) (0.044) (0.021) (0.066)

Food Mfg. 0.157 0.695 0.795 0.642

(0.056) (0.087) (0.062) (0.266)

Cons. Goods 0.613 0.845 0.938 0.419

(0.073) (0.050) (0.033) (0.140)

Car 0.166 0.938 0.979 0.150

(0.071) (0.027) (0.019) (0.048)

Equip. Goods 0.157 0.992 0.868 0.001

(0.067) (0.708) (0.040) (0.130)

Inter. Goods 0.375 0.908 0.971 0.265

(0.056) (0.023) (0.015) (0.043)

Energy 0.001 0.502 0.673 1.501

(0.034) (0.103) (0.070) (0.619)

Constr. 0.353 0.919 0.982 0.286

(0.069) (0.036) (0.021) (0.066)

Trade 0.434 0.891 0.972 0.378

(0.058) (0.036) (0.022) (0.060)

Tranport 0.126 0.595 0.777 1.210

(0.076) (0.075) (0.061) (0.324)

Finance 0.184 0.906 0.969 0.263

(0.064) (0.038) (0.023) (0.075)

Real Estate 0.862 0.997 0.971 0.001

(0.070) (0.074) (0.018) (0.031)

Business Serv. 0.016 0.970 0.886 0.010

(0.062) (0.338) (0.039) (0.197)

Personal Serv. 0.718 0.994 0.917 0.001

(0.082) (0.627) (0.029) (0.147)

Educ. & Health 0.722 0.925 0.970 0.174

(0.061) (0.020) (0.016) (0.044)

Govrnmt. 0.925 0.935 0.921 0.058

(0.033) (0.044) (0.039) (0.074)

Note: Standard deviation in parentheses.
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Table 4: Aggregate estimates

Method ξ α λb θ Duration

GMM 0.738 0.784 0.426 0.036 4.636

(0.036) (0.112) (0.012) (0.025) (2.410)

[0.000] [0.000] [0.000] [0.160] [0.057]

Methods ξ α λb ψ Duration ρ

ML 0.889 0.880 0.473 0.235 8.339 0.935

(0.038) (0.041) (0.011) (0.092) (2.831) (0.034)

[0.000] [0.000] [0.000] [0.012] [0.004] [0.000]

MG∗ 0.475 0.880 0.323 0.224 8.336 0.931

(0.038) (0.006) (0.012) (0.017) (0.401) (0.034)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

MG∗∗ 0.408 0.838 0.290 0.336 6.166 0.911

(0.038) (0.010) (0.010) (0.027) (0.371) (0.034)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

RC∗ 0.412 0.861 0.292 0.273 7.180 0.922

(0.081) (0.045) (0.044) (0.119) (2.324) (0.025)

[0.000] [0.000] [0.000] [0.024] [0.003] [0.000]

RC∗∗ 0.412 0.862 0.292 0.271 7.220 0.922

(0.079) (0.044) (0.043) (0.116) (2.282) (0.024)

[0.000] [0.000] [0.000] [0.021] [0.002] [0.000]

Note: Standard deviation in parentheses, p-values in brackets.
∗: Estimation from the reduced form using sector weights.
∗∗: Estimation from the reduced form using uniform weights.
All industries are used in the estimation.
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Table 5: Aggregate estimates with contemporaneous correlations across sectors

Method ξ α λb θ Duration

Aggregate GMM 0.738 0.784 0.426 0.036 4.636

(0.036) (0.112) (0.012) (0.025) (2.410)

[0.000] [0.000] [0.000] [0.160] [0.057]

ξ α λb ψ Duration ρ

Aggregate ML 0.889 0.880 0.473 0.235 8.339 0.935

(0.038) (0.041) (0.011) (0.092) (2.831) (0.034)

[0.000] [0.000] [0.000] [0.012] [0.004] [0.000]

ξ α λb ψ Duration ρ

SURE MG∗ 0.357 0.878 0.264 0.190 8.166 0.913

(0.021) (0.007) (0.011) (0.016) (0.458) (0.004)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

RC∗ 0.268 0.870 0.215 0.197 7.701 0.904

(0.065) (0.036) (0.044) (0.075) (2.127) (0.023)

[0.000] [0.000] [0.000] [0.010] [0.001] [0.000]

CCE MG 0.326 0.837 0.260 0.254 6.127 0.877

(0.030) (0.016) (0.010) (0.041) (0.591) (0.008)

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

RC 0.293 0.851 0.222 0.202 6.692 0.871

(0.085) (0.046) (0.052) (0.097) (2.039) (0.037)

[0.001] [0.000] [0.000] [0.040] [0.001] [0.000]

Note: Standard deviation in parentheses, p-value in brackets.
∗: Estimation from the reduced form using sector weights.
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Figure 1: Two-Sector Model: Heterogeneity on ξj 
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Figure 2: Two-Sector Model: Heterogeneity on αj 
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Figure 3: Sectoral Inflation
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Figure 4: Sectoral Real Marginal Cost
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Figure 5: Aggregate Inflation and Real Marginal Cost
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