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ECB and CEPR

Mirko Wiederholt

Northwestern University

November 21, 2007

Abstract

This paper studies a dynamic stochastic general equilibrium model with rational

inattention. Decisionmakers have limited attention. Decisionmakers choose the optimal

allocation of their attention. We study the implications of rational inattention for

business cycle dynamics. For example, we study how rational inattention affects impulse

responses of prices and quantities to monetary policy shocks, aggregate technology

shocks and micro-level shocks.
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1 Introduction

This paper studies a dynamic stochastic general equilibrium model with rational inatten-

tion. We model the idea that agents cannot attend perfectly to all available information.

Following Sims (2003), we model attention as a flow of information, and we model agents’

limited attention as a bound on information flow. We let decisionmakers choose the optimal

allocation of attention. For example, agents decide how to allocate their attention across

their different decision problems. Furthermore, agents decide how to attend to the different

factors determining an optimal decision.

The economy consists of households, firms and a government. Households consume

a variety of goods, can hold nominal government bonds and supply differentiated types

of labor. Firms hire labor and produce differentiated goods. The central bank sets the

nominal interest rate according to a Taylor rule. There are no adjustment costs. Every

period, households take consumption and wage setting decisions. Each period, firms take

input and price setting decisions. We compute the impulse responses of prices and quantities

to monetary policy shocks, aggregate technology shocks and micro-level shocks under both

perfect information and rational inattention.

The impulse responses under rational inattention have several properties of empirical

impulse response functions.

2 Model

2.1 Households

There are J households. Households supply differentiated types of labor, consume a variety

of goods and can hold nominal government bonds.

Each household seeks to maximize the expected discounted sum of period utility. The

discount factor is β ∈ (0, 1). The period utility function is

U (Cjt, Lj1t, . . . , LjNt) =
C1−γjt − 1
1− γ

− ϕ
NX
n=1

e−χjnt
L1+ψjnt

1 + ψ
, (1)

where Cjt is composite consumption by household j in period t, Ljnt is supply of household

j’s nth type of labor in period t, and χjnt is a preference shock affecting the disutility
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of supplying the nth type of labor. We introduce preference shocks in order to generate

variation in relative wage rates. We assume that each household supplies N types of labor

in order to allow for a certain degree of risk sharing within the household. The parameter

γ > 0 is the coefficient of relative risk aversion, the parameter ϕ > 0 affects the disutility

of supplying labor and the parameter ψ > 0 is the inverse of the Frisch elasticity of labor

supply. Composite consumption is given by the usual Dixit-Stiglitz aggregator

Cjt =

Ã
IX

i=1

C
θ−1
θ

ijt

! θ
θ−1

, (2)

where Cijt is consumption of good i by household j in period t. We assume that the

elasticity of substitution between different goods exceeds one, θ > 1.

Households can save by holding nominal government bonds. The flow budget constraint

of household j in period t is

IX
i=1

PitCijt +Bjt = Rt−1Bjt−1 + (1 + τw)
NX
n=1

WjntLjnt +
Dt

J
− Tt

J
, (3)

where Pit is the price of good i in period t, Bjt are bond holdings by household j between

period t and period t+1, Rt−1 is the nominal interest rate on bond holdings between period

t − 1 and period t, τw is a wage subsidy, Wjnt is the nominal wage rate for household j’s

nth type of labor, (Dt/J) is a pro-rata share of nominal aggregate profits and (Tt/J) is a

pro-rata share of nominal lump-sum taxes. We assume that all J households have the same

initial bond holdings. We assume a natural debt limit.

Every period each household chooses a consumption vector, (C1jt, . . . , CIjt), and a vector

of nominal wage rates, (Wj1t, . . . ,WjNt).1 Each household commits to supply any quantity

of labor at the chosen nominal wage rates.

We will solve the household problem under two alternative assumptions. First, we

will assume that households have perfect information. Afterwards, we will assume that

households have limited attention, that is, households take their decisions subject to a

constraint on information flow.
1Bond holdings then follow from the labor demand function derived below and the flow budget constraint

(3).
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2.2 Firms

There are I firms in the economy. Firms hire labor in order to produce differentiated goods.

The technology of firm i is given by

Yit = eateaitLα
it, (4)

where Yit is output, (eateait) is total factor productivity and Lit is composite labor input of

firm i in period t. Total factor productivity has an aggregate component, eat , and a firm-

specific component, eait . The parameter α ∈ (0, 1] is the elasticity of output with respect to
composite labor. Composite labor is given by the following constant elasticity aggregator

Lit =

⎛⎝ JX
j=1

NX
n=1

L
η−1
η

ijnt

⎞⎠
η

η−1

, (5)

where Lijnt is firm i’s input of type jn labor in period t. Recall that type jn labor is

household j’s nth type of labor. We assume that the elasticity of substitution between

different types of labor exceeds one, η > 1.

The nominal profits of firm i in period t equal

(1 + τp)PitYit −
JX

j=1

NX
n=1

WjntLijnt, (6)

where τp is a production subsidy.

Every period each firm chooses a labor mix and a price, Pit. Each firm commits to

supply any quantity of the good at the chosen price.

We will solve the firm problem under two alternative assumptions. First, we will assume

that decisionmakers in firms have perfect information. Afterwards, we will assume that

decisionmakers in firms have limited attention, that is, they take their decisions subject to

a constraint on information flow.

2.3 Government

There is a monetary authority and a fiscal authority. Let Πt = (Pt/Pt−1) denote inflation

where Pt is a price index that will be defined later. Let Yt =
XI

i=1
Yit denote aggregate
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output. The central bank sets the nominal interest rate according to the rule

Rt

R
=

µ
Rt−1
R

¶ρR
"µ
Πt
Π

¶φπ
µ
Yt
Y

¶φy
#1−ρR

eε
R
t , (7)

where R, Π and Y are the values of the nominal interest rate, inflation and output in the

non-stochastic steady state, and εRt is a monetary policy shock. The policy parameters

satisfy ρR ∈ [0, 1), φπ > 1 and φy ≥ 0.
The government budget constraint in period t reads

Tt + (Bt −Bt−1) = (Rt−1 − 1)Bt−1 + τw

⎛⎝ JX
j=1

NX
n=1

WjntLjnt

⎞⎠+ τp

Ã
IX

i=1

PitYit

!
. (8)

The government has to finance interest on nominal government bonds, the wage subsidy

and the production subsidy. The government can collect taxes or issue new government

bonds.

2.4 Shocks

There are four types of shocks in the economy: monetary policy shocks, aggregate pro-

ductivity shocks, firm-specific productivity shocks and labor-specific preference shocks. We

assume that, for all i and jn, the processes
©
εRt
ª
, {at}, {ait} and

©
χjnt

ª
are independent.

Furthermore, we assume that all the firm-specific productivity processes, {ait}, are inde-
pendent across firms and all the labor-specific preference shocks,

©
χjnt

ª
, are independent

across types of labor. Finally, we assume that all these processes are stationary Gaussian

processes with mean zero. In the following, we denote the period t innovation to at, ait and

χjnt by ε
A
t , ε

I
it and εχjnt, respectively.

3 Solution under perfect information

In this section we derive the equilibrium under perfect information, that is, we assume that

in period t all households and all firms know all variables up to and including period t. We

will show that under perfect information the classical dichotomy holds. Monetary policy

has no real effects. Quantities and relative prices depend only on aggregate productivity

(at), firm-specific productivity (ait) and labor-specific disutility of work (χjnt).
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3.1 Equations characterizing equilibrium

Cost minimization implies that the demand for type jn labor in period t is given by

Ljnt =

µ
Wjnt

Wt

¶−η
Lt, (9)

where Wt is the following wage index

Wt =

⎛⎝ JX
j=1

NX
n=1

W 1−η
jnt

⎞⎠ 1
1−η

, (10)

and Lt is the aggregate composite labor input

Lt =
IX

i=1

Lit. (11)

The problem of household j is to choose a contingent plan for the consumption vector

and for the vector of nominal wage rates so as to maximize

E0

" ∞X
t=0

βt

Ã
C1−γjt − 1
1− γ

− ϕ
NX
n=1

e−χjnt
L1+ψjnt

1 + ψ

!#
, (12)

subject to the consumption aggregator (2), the flow budget constraint (3), the natural

debt limit and the labor demand function (9). The first-order conditions for the household

problem are:

C−γjt = Et

∙
β

Rt

Πt+1
C−γjt+1

¸
, (13)

for all i
Cijt

Cjt
=

µ
Pit
Pt

¶−θ
, (14)

and for all n
Wjnt

Pt
=

1

1 + τw

η

η − 1ϕe
−χjnt

"µ
Wjnt

Wt

¶−η
Lt

#ψ
Cγ
jt, (15)

where Et is the expectation operator conditioned on information in period t and Pt is the

following price index

Pt =

Ã
IX

i=1

P 1−θit

! 1
1−θ

. (16)

Equation (13) is the consumption Euler equation. Equation (14) characterizes the opti-

mal consumption basket. Equation (15) characterizes the optimal wage setting behavior.
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Throughout the paper we will assume that the government sets the wage subsidy τw so as

to correct the distortion arising from households’ market power on the labor market. Here

this implies that

1 + τw =
η

η − 1 . (17)

Multiplying equation (14) by Cjt and summing over all households yields the demand

for good i in period t

Cit =

µ
Pit
Pt

¶−θ
Ct, (18)

where Ct is aggregate composite consumption

Ct =
JX

j=1

Cjt. (19)

The problem of firm i under perfect information is to choose a price and a labor mix so

as to maximize profits (6) subject to the technology (4)-(5), the requirement that output

has to equal demand and the demand function (18). The firm problem is a static decision

problem, because there are no adjustment costs and the demand function (18) is static.

The first-order conditions for the firm problem are:

Pit =
1

1 + τp

θ

θ − 1Wt
1

α

∙³
Pit
Pt

´−θ
Ct

¸ 1
α
−1

(eateait)
1
α

, (20)

and for all jn
Lijnt

Lit
=

µ
Wjnt

Wt

¶−η
, (21)

where Wt is the wage index (10). Equation (20) characterizes the profit-maximizing price.

Throughout the paper we will assume that the government sets the production subsidy τp

so as to correct the distortion arising from firms’ market power on the goods market. This

now implies that

1 + τp =
θ

θ − 1 . (22)

Equation (21) characterizes the profit-maximizing labor mix. Multiplying equation (21) by

Lit and summing over all firms yields the labor demand function (9).
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3.2 Non-stochastic steady state

We call the following situation a non-stochastic steady state: there are no shocks; all equa-

tions characterizing equilibrium are satisfied; and quantities, relative prices, the nominal

interest rate and inflation are constant over time. Here we report some relationships in the

non-stochastic steady state that we will use below.

Equation (20) implies that in the non-stochastic steady state all firms set the same price.

Thus households choose a consumption basket with equal weights, implying that all firms

produce the same amount and have the same composite labor input. It follows from the

price index (16), the consumption aggregator (2), the definition of aggregate output and

the definition of aggregate composite labor input (11) thatµ
Pi
P

¶1−θ
=

µ
Cij

Cj

¶ θ−1
θ

=
Yi
Y
=

Li

L
=
1

I
, (23)

where (Pi/P ) denotes the value of (Pit/Pt) in the non-stochastic steady state etc.

Since all households face the same decision problem, all households choose the same

composite consumption. It follows from the definition of aggregate composite consumption

(19) that
Cj

C
=
1

J
. (24)

Furthermore, equation (15) implies that in the non-stochastic steady state all households

set the same wage rate for all different types of labor. Thus firms choose a labor mix with

equal weights. It follows from the wage index (10) and the labor aggregator (5) thatµ
Wjn

W

¶1−η
=

µ
Lijn

Li

¶η−1
η

=
1

JN
, (25)

where (Wjn/W ) denotes the value of (Wjnt/Wt) in the non-stochastic steady state etc.

3.3 Log-linearization

In this subsection, we log-linearize the equations characterizing equilibrium. Afterwards

we report the log-linear equilibrium dynamics under perfect information. In the following,

P̃it = (Pit/Pt) denotes the relative price of good i, W̃jnt = (Wjnt/Pt) denotes the real wage

rate for type jn labor and W̃t = (Wt/Pt) denotes the real wage index. Furthermore, small

letters denote log-deviations from the non-stochastic steady state.

8



Log-linearizing the households’ first-order conditions yields

cjt = Et

∙
−1
γ
(rt − πt+1) + cjt+1

¸
, (26)

cijt − cjt = −θp̃it, (27)

and

w̃jnt = − 1

1 + ηψ
χjnt +

ηψ

1 + ηψ
w̃t +

ψ

1 + ηψ
lt +

γ

1 + ηψ
cjt. (28)

Furthermore, dividing the definition of the price index (16) by Pt, log-linearizing and using

(23) yields
IX

i=1

p̃it = 0. (29)

Log-linearizing both the demand function (18) and the definition of aggregate composite

consumption (19) and using (24) yields

cit = −θp̃it + ct, (30)

and

ct =
1

J

JX
j=1

cjt. (31)

Log-linearizing the firms’ first-order conditions yields

p̃it =
1

1 + θ 1−αα
w̃t +

1−α
α

1 + θ 1−αα
ct −

1
α

1 + θ 1−αα
(at + ait) , (32)

and

lijnt − lit = −η (w̃jnt − w̃t) . (33)

Dividing the definition of the wage index (10) by Wt, log-linearizing and using (25) yields

w̃t =
1

JN

JX
j=1

NX
n=1

w̃jnt. (34)

Log-linearizing the production function (4) as well as the labor aggregator (5) and using

(25) yields

yit = at + ait + αlit, (35)

and

lit =
1

JN

JX
j=1

NX
n=1

lijnt. (36)
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Log-linearizing the labor demand function (9) as well as the definition of aggregate

composite labor input (11) and using (23) yields

ljnt = −η (w̃jnt − w̃t) + lt, (37)

and

lt =
1

I

IX
i=1

lit. (38)

Log-linearizing the monetary policy rule (7) yields

rt = ρRrt−1 + (1− ρR)
¡
φππt + φyyt

¢
+ εRt . (39)

Finally, log-linearizing the definition of aggregate output and using (23) yields

yt =
1

I

IX
i=1

yit. (40)

3.4 Log-linearized solution

Assume that I and N are sufficiently large so that2

1

I

IX
i=1

ait = 0, (41)

and
1

N

NX
n=1

χjnt = 0. (42)

Then the log-linearized aggregate dynamics under perfect information are given by

yt = ct =
1 + ψ

1− α+ αγ + ψ
at, (43)

lt =
1− γ

1− α+ αγ + ψ
at, (44)

w̃t =
γ + ψ

1− α+ αγ + ψ
at, (45)

rt −Et [πt+1] = γ
1 + ψ

1− α+ αγ + ψ
Et [at+1 − at] . (46)

2Up to this point N = 1 is a special case of the model. Now we are making the assumption that N is

sufficiently large so that households can insure against labor-specific preference shocks within the household.

This assumption implies that all households have the same consumption level.
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The proof is in Appendix A. Under perfect information aggregate output, aggregate employ-

ment, the real wage index and the real interest rate depend only on aggregate productivity.

Monetary policy has no real effects. The nominal interest rate and inflation follow from

the monetary policy rule (39) and the real interest rate (46). Since (1− ρR)φπ > 0 and

(1− ρR)φπ + ρR > 1, the equilibrium paths of the nominal interest rate and inflation are

locally determinate.3

Substituting the solution (43) and (45) into the price setting equation (32) yields

p̃it = −
1
α

1 + θ 1−αα
ait, (47)

which from (27) implies that

cijt − cjt =
θ 1α

1 + θ 1−αα
ait. (48)

The relative price of good i and relative consumption of good i depend only on the firm-

specific component of the productivity of firm i.

Since all households face the same decision problem and labor-specific preference shocks

average out within the household, all households choose the same composite consumption.

Thus cjt = ct. Substituting cjt = ct and the solution (43)-(45) into the wage setting equation

(28) yields

w̃jnt − w̃t = − 1

1 + ηψ
χjnt, (49)

which from (33) implies that

lijnt − lit =
η

1 + ηψ
χjnt. (50)

The relative wage rate for type jn labor and the relative input of type jn labor depend only

on the labor-specific disutility of work.

In summary, in this model monetary policy has no real effects under perfect information.

Under perfect information fluctuations in quantities and in relative prices are driven by ag-

gregate productivity shocks, firm-specific productivity shocks and labor-specific preference

shocks. Next we will solve the model assuming that decisionmakers have limited attention.

3See Woodford (2003), chapter 2, Proposition 2.8.
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4 Case 1: Firms rational inattention, households perfect in-

formation

In this section, we assume that decisionmakers in firms have limited attention. For the

moment, we continue to assume that households have perfect information in order to isolate

the role of limited attention on the side of firms.

4.1 Firms’ objective

We assume that firm i chooses the allocation of attention so as to maximize the expected

discounted sum of profits. Nominal profits are given by (6). Technology is given by (4)-

(5). The demand function is given by (18), because households have perfect information.

Substituting the technology (4)-(5) and the demand function (18) into the expression for

nominal profits (6) and dividing by Pt yields the real profit function. Computing a log-

quadratic approximation of the real profit function around the non-stochastic steady state

yields the following expression for (minus) the expected discounted sum of losses in profits

due to suboptimal behavior:

E

" ∞X
t=0

βt
1

2
(xt − x∗t )

0H (xt − x∗t )

#
,

where

xt
(JN×1)

=

⎛⎜⎜⎜⎜⎜⎜⎝
p̃it

l̂i11t
...

l̂iJ(N−1)t

⎞⎟⎟⎟⎟⎟⎟⎠ ,

H
(JN×JN)

= W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ(θ−1)
α − θ2

α2 0 · · · · · · 0

0 − 2
ηJN − 1

ηJN · · · − 1
ηJN

... − 1
ηJN

. . . . . .
...

...
...

. . . . . . − 1
ηJN

0 − 1
ηJN . . . − 1

ηJN − 2
ηJN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and the optimal behavior x∗t is given by equations (32), (33) and (34). Here l̂ijnt ≡ lijnt− lit.
The derivation is in Appendix B. Note that, after the log-quadratic approximation of the
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profit function, losses in profits due to suboptimal behavior depend only on the deviation

from the optimal behavior. Furthermore, the optimal behavior is given by the usual log-

linearized first-order conditions. The H matrix contains all the information (up to second

order) about how costly different types of mistakes are. The H matrix is the matrix of

second derivatives of the real profit function with respect to xt and x0t evaluated at the

non-stochastic steady state. The diagonal elements of the H matrix contain information

about the cost of a mistake in a single variable. The off-diagonal elements of the H matrix

contain information about how a mistake in one variable affects the cost of a mistake in

another variable.

4.2 Firms’ attention problem

Next we formalize the idea that decisionmakers in firms have limited attention. Following

Sims (2003), we model decisionmakers’ limited attention as a bound on information flow.

In particular, we place a bound on the information flow between the factors driving the

optimal behavior and the actual behavior. In other words, the factors driving the optimal

behavior cannot contain too much information about the actual behavior, and vice versa.

This implies that the actual behavior will differ from the optimal behavior. Agents will

make mistakes. We assume that decisionmakers choose the allocation of attention so as

to maximize the expected discounted sum of profits, or equivalently, so as to minimize the

expected discounted sum of losses in profits due to suboptimal behavior. Formally, the

attention problem of firm i reads

min
B(L),C(L)

−E

" ∞X
t=0

βt
1

2
(xt − x∗t )

0H (xt − x∗t )

#
, (51)

subject to

p∗it = Ap1 (L) ε
A
t +Ap2 (L) ε

R
t +Ap3 (L) ε

I
it (52)

l̂∗ijnt = Al (L) ε
χ
jnt, (53)

pit = Bp1 (L) ε
A
t + Cp1 (L) ν

A
it| {z }

pAit

+Bp2 (L) ε
R
t + Cp2 (L) ν

R
it| {z }

pRit

+Bp3 (L) ε
I
it + Cp3 (L) ν

I
it| {z }

pIit

(54)

l̂ijnt = Bl (L) ε
χ
jnt + Cl (L) ν

χ
ijnt, (55)

13



I
³n

εAt , ε
R
t , ε

I
it, ε

χ
11t, . . . , ε

χ
J(N−1)t

o
;
n
pAit, p

R
it , p

I
it, l̂i11t, . . . , l̂iJ(N−1)t

o´
≤ κ. (56)

Furthermore,

p̃it − p̃∗it = pit − p∗it. (57)

Here νAit, ν
R
it , ν

I
it and νχijnt follow Gaussian white noise processes that are mutually in-

dependent and independent of all other shocks in the economy. Equations (52) and (53)

characterize the optimal behavior. Ap1 (L), Ap2 (L), Ap3 (L) and Al (L) are infinite-order

lag polynomials. Equations (54) and (55) specify the actual behavior. Choosing the process

for the actual behavior is formalized as choosing the lag polynomials Bp1 (L), Cp1 (L), etc.

If the decisionmaker had unlimited attention, the actual behavior would equal the optimal

behavior. Formally, Bp1 (L) = Ap1 (L) and Cp1 (L) = 0. The constraint on information

flow (56) implies that this is not possible. The operator I measures the information flow
between stochastic processes.4 The information flow constraint states that the information

flow between the shocks driving the optimal behavior and the actual behavior cannot exceed

the parameter κ. Finally, equation (57) gives the relationship between the mistake in the

dollar price of good i, pit − p∗it, and the mistake in the relative price of good i, p̃it − p̃∗it.

Real profits depend on the relative price of good i while the firm chooses the dollar price

of good i.

4.3 Computing the equilibrium

We use an iterative procedure to solve for the equilibrium of the model. First, we make a

guess concerning the process for the profit-maximizing price (52) and the process for the

profit-maximizing labor mix (53). Second, we solve the firms’ attention problem (51)-(57).

Third, we aggregate the individual prices to obtain the aggregate price level

pt =
1

I

IX
i=1

pit. (58)

Fourth, we compute the aggregate dynamics implied by the price level dynamics. The

following equations have to be satisfied in equilibrium:

rt = ρRrt−1 + (1− ρR)
£
φπ (pt − pt−1) + φyyt

¤
+ εRt , (59)

4For a definition of the operator I, see equations (1)-(4) in Section 2 of Maćkowiak and Wiederholt
(2007).
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ct = Et

∙
−1
γ
(rt − pt+1 + pt) + ct+1

¸
, (60)

w̃t = ψlt + γct, (61)

yt = ct, (62)

yt = at + αlt, (63)

at = ρAat−1 + εAt . (64)

The first equation is the Taylor rule. The second equation is the consumption Euler equa-

tion. The third equation follows from optimal wage setting by households. See Appendix

C. The fourth equation follows from the requirement that output equals demand. The fifth

equation follows from the production function and the sixth equation is the process for

aggregate productivity. We employ a standard solution method for linear rational expecta-

tions models to solve the system of equations containing the price level dynamics and these

six equations. We obtain the law of motion for (rt, ct, yt, lt, w̃t) implied by the price level

dynamics. Fifth, we compute the law of motion for the profit-maximizing price from

p∗it = pt +
1

1 + θ 1−αα
w̃t +

1−α
α

1 + θ 1−αα
ct −

1
α

1 + θ 1−αα
(at + ait) . (65)

If the process for the profit-maximizing price differs from our guess, we update our guess.

We iterate until we reach a fixed point. Finally, we compute the fixed point for the profit-

maximizing labor mix. This is explained in Appendix C.

4.4 Benchmark parameter values and solution

In this section we report the numerical solution of the model for the following parameter

values. We set α = 2/3, β = 0.99, γ = 1, ψ = 1, θ = 3, η = 3, φπ = 1.5, φy = 0.5, and

ρR = 0.95. To calibrate the exogenous process for aggregate productivity we make use of

Fernald’s (2007) quarterly data on total factor productivity growth rate. We construct from

Fernald’s data a quarterly time series for the level of total factor productivity. We detrend

this time series with a linear trend, and fit a first-order autoregression to the detrended

total factor productivity data. This yields ρA = 0.95 and the standard deviation of the

innovation in aggregate productivity equal to 0.0085. To calibrate the standard deviation
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of the innovation in the Taylor rule, we make use of the estimates reported in Justiniano and

Primiceri (2006). Justiniano and Primiceri allow for time variation in the size of monetary

policy shocks. Based on the average estimate of Justiniano and Primiceri we set the standard

deviation of the innovation in the Taylor rule equal to 0.002.

We assume that labor-specific preference shocks follow a white noise process. This

implies that solving for relative wages and labor inputs is straightforward. See Appendix C.

In order to calibrate the standard deviation of labor-specific preference shocks we proceed

as follows. Autor, Katz and Kearney (2005) report the variance of log hourly wages of men

in the U.S. between 1975 and 2003. The average variance of log hourly wages of men in

this period was 0.32. We choose the variance of χjnt such that the variance of w̃jnt in our

model equals 0.32 under perfect information. This yields a standard deviation of labor-

specific preference shocks equal to 2.26. See equation (49) and recall that ψ = 1 and η = 3.

Furthermore, we set J = 50 and N = 50.

We assume that firm-specific productivity shocks follow a first-order autoregressive

process. Recent papers calibrate the autocorrelation of firm-specific productivity to be

about one-half: Burstein and Hellwig (2007) use 0.5, Golosov and Lucas (2007) use 0.55,

Klenow and Willis (2007) use 0.46, Midrigan (2006) uses 0.5, and Nakamura and Steinsson

(2007) use 0.66. We set the autocorrelation of firm-specific productivity equal to 0.5. Fur-

thermore, we choose the standard deviation of the innovation to firm-specific productivity

such that the average absolute size of price changes in our model equals 13.3% under perfect

information. 13.3% is the average absolute size of price changes including sales reported

in Klenow and Kryvtsov (2005). This yields a standard deviation of the innovation to

firm-specific productivity equal to 0.22.

We compute the solution of the model by fixing the marginal value of information flow.

The total information flow is then determined within the model. It turns out that taking the

marginal value of information flow exogenously simplifies the solution. We set the marginal

value of information flow equal to 2 percent of the steady state wage bill. We think that

this is a reasonable number.

At the fixed point firms allocate 0.5 bits to tracking aggregate technology, 0.25 bits to

tracking monetary policy, 1.43 bits to tracking firm-specific technology, and 0.09 bits to
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tracking each labor-specific preference shock. The total information flow at the solution

equals 230 bits. Expected per period loss from imperfect tracking of aggregate conditions

equals about 1 percent of the steady state wage bill.5 We think that this is a reasonable

number. Expected per period loss from imperfect tracking of firm-specific technology equals

about 1.4 percent of the steady state wage bill. Expected per period loss from imperfect

tracking of each labor-specific preference shock equals about 0.05 percent of the steady state

wage bill.

Figures 1 and 2 show impulse responses of the price level, inflation, consumption (out-

put), and the nominal interest rate at the fixed point (green lines with circles). For com-

parison, the figures also show impulse responses of the same variables in equilibrium under

perfect information (blue lines with points). Figures 3 and 4 reproduce the impulse re-

sponses at the fixed point (green lines with circles) and also show impulse responses of the

same variables in the Calvo model (red lines with points). We solved the Calvo model for

the same parameter values and assuming that prices change after three quarters on aver-

age. All impulse responses are drawn such that the impulse response equal to one means

“a one percentage point deviation from the non-stochastic steady state”. Time is measured

in quarters along horizontal axes.

Consider Figure 1. The price level shows a dampened and delayed response to a mone-

tary policy shock. The impulse response of inflation to a monetary policy shock is persistent.

Output falls after a positive innovation in the Taylor rule, and the decline in output is per-

sistent. The nominal interest rate increases on impact and converges slowly to zero. The

impulse responses to a monetary policy shock when firms face an information flow con-

straint differ a great deal from the impulse responses to a monetary policy shock under

perfect information. Under perfect information the price level follows a random walk after

a monetary policy shock, there are no real effects, and the nominal interest rate fails to

change.

Consider Figure 2. The price level and inflation show a dampened and delayed response

5Expected per period loss from imperfect tracking of aggregate technology equals about 0.8 percent of

the steady state wage bill. Expected per period loss from imperfect tracking of monetary policy equals about

0.3 percent of the steady state wage bill.
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to an aggregate productivity shock. There is less delay in the impulse response of the price

level and there is less persistence in the impulse response of inflation compared with the case

of a monetary policy shock. The reason is that firms allocate more attention to tracking

aggregate productivity than to tracking monetary policy. Output and the nominal interest

rate show hump-shaped impulse responses to an aggregate productivity shock.

Figure 3 shows that the impulse responses to a monetary policy shock in the benchmark

economy are similar to the impulse responses in the Calvo model. The long-run impulse

response of the price level in the Calvo model is smaller, and the impulse response of out-

put in the Calvo model is larger in the first few quarters. Figure 4 shows that the impulse

responses to an aggregate productivity shock in the benchmark economy are similar to the

impulse responses in the Calvo model. The deviations of the price level and output from the

frictionless case (“perfect information” and “all prices change each quarter”) are somewhat

larger in the Calvo model than in the benchmark economy for our parameterization. Re-

call that we assume that prices in the Calvo model change after three quarters on average.

Consider the impulse responses of inflation to a monetary policy shock and an aggregate

productivity shock in Figures 3 and 4. The absolute response of inflation to a monetary

policy shock is smaller in the benchmark economy compared with the Calvo model, and the

absolute response of inflation to an aggregate productivity shock is larger in the benchmark

economy compared with the Calvo model. The reason is that firms in the benchmark econ-

omy allocate more attention to tracking aggregate productivity than to tracking monetary

policy.

Figure 5 shows the impulse response of an individual price to a firm-specific productivity

shock. Firms track the profit-maximizing impulse response very well.

5 Conclusion

We have introduced rational inattention on the side of firms into a dynamic stochastic

general equilibrium model. The impulse responses under rational inattention have several

features of empirical impulse response functions. The next step is to introduce rational

inattention on the side of households into this model.
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A Solution under perfect information

First, yit = cit and equations (29), (30) and (40) imply that

yt = ct.

Second, computing the average of the production function (35) over all i and using (38),

(40) and (41) yields

yt = at + αlt.

Third, computing the average of the price setting equation (32) over all i and using (29),

(41) and lt =
1
α (ct − at) yields

w̃t = ct − lt.

The real wage index equals output per labor input. Fourth, computing the average of the

wage setting equation (28) over all jn and using (31), (34) and (42) yields

w̃t = ψlt + γct.

The real wage index equals the marginal rate of substitution of consumption for leisure.

When we solve the last four equations for yt, ct, lt and w̃t, we arrive at equations (43)-(45).

Finally, computing the average of the Euler equation (26) over all j and using (31) yields

ct = Et

∙
−1
γ
(rt − πt+1) + ct+1

¸
.

Substituting the solution for ct into the last equation yields equation (46).

B The firms’ objective

The nominal profits of firm i in period t equal

(1 + τp)PitYit − Lit

⎛⎝ JX
j=1

NX
n=1

WjntL̂ijnt

⎞⎠ ,

where L̂ijnt = (Lijnt/Lit). The term in brackets is the wage bill per unit of composite labor.

The production function (4) implies that

Lit =

µ
Yit

eat+ait

¶ 1
α

.
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The labor aggregator (5) implies that

1 =
JX

j=1

NX
n=1

L̂
η−1
η

ijnt ,

or equivalently

L̂iJNt =

⎛⎝1− X
jn6=JN

L̂
η−1
η

ijnt

⎞⎠
η

η−1

.

Furthermore, since households have perfect information, the demand function equals

Cit =

µ
Pit
Pt

¶−θ
Ct.

Substituting the production function, the labor aggregator and the demand function into

the expression for nominal profits yields the profit function

(1 + τp)Pit

µ
Pit
Pt

¶−θ
Ct−

⎛⎜⎝
³
Pit
Pt

´−θ
Ct

eat+ait

⎞⎟⎠
1
α
⎡⎢⎣ X
jn6=JN

WjntL̂ijnt +WJNt

⎛⎝1− X
jn6=JN

L̂
η−1
η

ijnt

⎞⎠
η

η−1
⎤⎥⎦ .

Dividing by Pt yields the real profit function

(1 + τp) P̃
1−θ
it Ct −

Ã
P̃−θit Ct

eat+ait

! 1
α

⎡⎢⎣ X
jn6=JN

W̃jntL̂ijnt + W̃JNt

⎛⎝1− X
jn6=JN

L̂
η−1
η

ijnt

⎞⎠
η

η−1
⎤⎥⎦ , (66)

where P̃it = (Pit/Pt) and W̃jnt = (Wjnt/Pt). One can express the real profit function in

terms of log-deviations from the non-stochastic steady state

(1 + τp) P̃iCie
(1−θ)p̃it+ct

−Lie
1
α
(−θp̃it+ct−at−ait)W̃

1

JN

⎡⎢⎣ X
jn6=JN

ew̃jnt+l̂ijnt + ew̃JNt

⎛⎝JN −
X

jn6=JN
e
η−1
η

l̂ijnt

⎞⎠
η

η−1
⎤⎥⎦ .(67)

Here we have used equation (25).

We assume that firm i chooses the allocation of attention so as to maximize the expected

discounted sum of profits

E

" ∞X
t=0

βt
µ
Cjt

Cj0

¶−γ
F
³
P̃it, Ct, e

at , eait , W̃11t, . . . , W̃JNt, L̂i11t, . . . , L̂iJ(N−1)t
´#

, (68)
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where βt
³
Cjt
Cj0

´−γ
is the stochastic discount factor and F is the real profit function (66).

Two remarks concerning firm i’s objective may be helpful. First, Cjt is composite consump-

tion by household j in period t. Since in equilibrium all households have the same composite

consumption, the stochastic discount factor does not depend on j. Second, E is the un-

conditional expectation operator. Here we are using the assumption that firms choose the

allocation of attention before receiving any information. This assumption slightly simplifies

the computation of the equilibrium. The assumption can be relaxed.

One can express the objective (68) in terms of log-deviations from the non-stochastic

steady state

E

" ∞X
t=0

βte−γ(cjt−cj0)f
³
p̃it, ct, at, ait, w̃11t, . . . , w̃JNt, l̂i11t, . . . , l̂iJ(N−1)t

´#
, (69)

where f is the real profit function (67).

Next we compute a second-order Taylor approximation around the non-stochastic steady

state of the term inside the expectation operator of (69). Afterwards, we deduct from the

quadratic objective the value of the quadratic objective at the profit-maximizing behaviorn
p̃∗it, l̂

∗
i11t, . . . , l̂

∗
iJ(N−1)t

o∞
t=0
. This yields the following expression for (minus) the expected

discounted sum of losses in profits due to suboptimal behavior:

E

" ∞X
t=0

βt
1

2
(xt − x∗t )

0H (xt − x∗t )

#
,

where

xt
(JN×1)

=

⎛⎜⎜⎜⎜⎜⎜⎝
p̃it

l̂i11t
...

l̂iJ(N−1)t

⎞⎟⎟⎟⎟⎟⎟⎠ ,

H
(JN×JN)

= W̃Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ(θ−1)
α − θ2

α2 0 · · · · · · 0

0 − 2
ηJN − 1

ηJN · · · − 1
ηJN

... − 1
ηJN

. . . . . .
...

...
...

. . . . . . − 1
ηJN

0 − 1
ηJN . . . − 1

ηJN − 2
ηJN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and x∗t is given by the following two equations:

p̃∗it =
1

1 + θ 1−αα
w̃t +

1−α
α

1 + θ 1−αα
ct −

1
α

1 + θ 1−αα
(at + ait) ,

and

l̂∗ijnt = −η (w̃jnt − w̃t) .

Here w̃t =
1
JN

XJ

j=1

XN

n=1
w̃jnt. Note that deducting from the quadratic objective the

value of the quadratic objective at the profit-maximizing behavior is simply a monotone

transformation of the quadratic objective. This transformation simplifies the quadratic

objective without affecting the solution to the optimization problem.

C Firms rational inattention, households perfect informa-

tion: solving for relative wages

In this subsection, we solve for the relative wage rate for type jn labor and the relative input

of type jn labor at firm i. Solving for relative wage rates is more complicated than solving

for relative prices, because firms’ inattention lowers the wage elasticity of labor demand,

which affects households’ wage setting behavior. In order to make the derivation as clear

as possible, we assume that all the χjnt follow a common white noise process.

Let ŵjnt = w̃jnt − w̃t denote the relative wage rate for type jn labor. We guess that in

equilibrium

ŵjnt = Aχjnt, (70)

where A is an unknown coefficient. Let l̂ijnt = lijnt − lit denote the relative input of type

jn labor at firm i. The profit-maximizing relative input of type jn labor at firm i is given

by equation (33):

l̂∗ijnt = −ηŵjnt. (71)

Since χjnt follows a Gaussian white noise process, both ŵjnt and l̂∗ijnt follow Gaussian white

noise processes. Tracking an optimal decision that follows a Gaussian white noise process

with an information flow equal to κχ yields the following decision under rational inattention

when the aim is to minimize the mean squared error

l̂RIijnt =

µ
1− 1

22κχ

¶
l̂∗ijnt +

r
1

22κχ
− 1

24κχ

r
V ar

³
l̂∗ijnt

´
νχijnt, (72)
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where νχijnt follows an independent Gaussian white noise process with unit variance. See,

for example, Proposition 3 in Máckowiak and Wiederholt (2007). Using equation (71) to

substitute for l̂∗ijnt in equation (72), we arrive at

l̂RIijnt = −η
µ
1− 1

22κχ

¶Ã
ŵjnt −

r
1

22κχ − 1
q
V ar (ŵjnt)ν

χ
ijnt

!
. (73)

Now it is easy to verify that the signal

sijnt = ŵjnt −
r

1

22κχ − 1
q
V ar (ŵjnt)ν

χ
ijnt (74)

has the property

l̂RIijnt = E
h
l̂∗ijnt|sijnt, sijnt−1, . . .

i
.

Hence, one can interpret the decision under rational inattention as being due to the fact

that firms pay limited attention to the relative wage rate for type jn labor. Furthermore,

comparing (71) to (73) one can see that firms’ limited attention lowers the wage elasticity

of labor demand from η to η
³
1− 1

22κχ

´
.

Computing the average of (73) over all firms and using the fact that noise is idiosyncratic

yields

ljnt − lt = −η
µ
1− 1

22κχ

¶
ŵjnt, (75)

where ljnt = 1
I

XI

i=1
lijnt and lt =

1
I

XI

i=1
lit. Exponentiating both sides of equation (75),

multiplying by Ljn and using the fact that Ljn =
³
Wjn

W

´−η
L yields

Ljnt =

µ
Wjn

W

¶− η

22κχ
µ
Wjnt

Wt

¶−η 1− 1

22κχ

Lt. (76)

The first term on the RHS is due to the fact that in the non-stochastic steady state the

wage elasticity of labor demand equals η rather than η
³
1− 1

22κχ

´
.

When firms have limited attention, the household problem is to maximize (12) subject to

(2), (3) and the new labor demand function (76). The optimality conditions for consumption

are still equations (13) and (14). So long as η
³
1− 1

22κχ

´
> 1, the optimal wage rate for

type jn labor is given by

Wjnt

Pt
=

1

1 + τw

η
³
1− 1

22κχ

´
η
³
1− 1

22κχ

´
− 1

ϕe−χjntLψ
jntC

γ
jt.
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We continue to assume that the government sets the wage subsidy τw so as to correct the

distortion arising from households’ market power on the labor market. This now implies

that

1 + τw =
η
³
1− 1

22κχ

´
η
³
1− 1

22κχ

´
− 1

.

Therefore the wage setting equation reduces to

Wjnt

Pt
= ϕe−χjntLψ

jntC
γ
jt. (77)

Taking logs on both sides of (77) and using the fact that (77) with χjnt = 0 also holds in

the non-stochastic steady state yields

w̃jnt = −χjnt + ψljnt + γcjt.

Using the labor demand function (75) and ŵjnt = w̃jnt− w̃t to substitute for ljnt in the last

equation yields

w̃jnt = −χjnt + ψ

∙
−η
µ
1− 1

22κχ

¶
(w̃jnt − w̃t) + lt

¸
+ γcjt. (78)

Computing the average of (78) over all types of labor and using (34), (42) and cjt = ct

yields the following expression for the real wage index

w̃t = ψlt + γct. (79)

Computing the difference between (78) and (79) and using again cjt = ct yields the following

expression for the relative wage rate for type jn labor

w̃jnt − w̃t = − 1

1 + η
³
1− 1

22κχ

´
ψ
χjnt. (80)

Comparing (70) and (80) shows that the guess (70) was correct. Firm i’s profit-maximizing

labor mix then follows from equation (71) and firm i’s actual labor mix under rational

inattention follows from equation (73).

We still need to solve for the equilibrium attention allocated to the profit-maximizing

relative input of type jn labor. Equations (71), (73) and (80) imply that the mean squared

error in the relative input of type jn labor equals

E

∙³
l̂∗ijnt − l̂RIijnt

´2¸
=

1

22κχ
η2h

1 +
³
1− 1

22κχ

´
ηψ
i2σ2χ.
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The derivative of the mean squared error with respect to κχ equals

∂E

∙³
l̂∗ijnt − l̂RIijnt

´2¸
∂κχ

= −2 ln (2) 1

22κχ

1 +
³
1 + 1

22κχ

´
ηψh

1 +
³
1− 1

22κχ

´
ηψ
i3η2σ2χ.

It follows from the objective (51) that the marginal value of paying attention to the profit-

maximizing relative input of type jn labor equals

λχ =
1

1− β

1

ηJN
2 ln (2)

1

22κχ

1 +
³
1 + 1

22κχ

´
ηψh

1 +
³
1− 1

22κχ

´
ηψ
i3 η2σ2χ. (81)

By equating the marginal value of attention across different activities we obtain the equi-

librium κχ.

D Solving the Calvo model

If we assume that firms and households have perfect information but firms face a Calvo

friction, we obtain the following version of the New Keynesian Phillips curve

πt =
(1− λ) (1− λβ)

λ

ψ
α + γ + 1−α

α

1 + 1−α
α θ

³
ct − cft

´
+ βEt [πt+1] , (82)

where (1− λ) is the fraction of goods prices that change every period and cft is the flexible

price solution given by equation (43). The aggregate dynamics are obtained by solving the

system containing equations (59)-(64) and equation (82). The solution of the Calvo model

reported in Figures 3-4 assumes that λ = 2/3.
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Figure 1: Impulse responses, benchmark economy
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Figure 2: Impulse responses, benchmark economy (continued)
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Figure 3: Benchmark economy vs. the Calvo model
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Figure 4: Benchmark economy vs. the Calvo model (continued)
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Figure 5: Impulse response of an individual price to a firm-specific productivity shock, benchmark economy
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