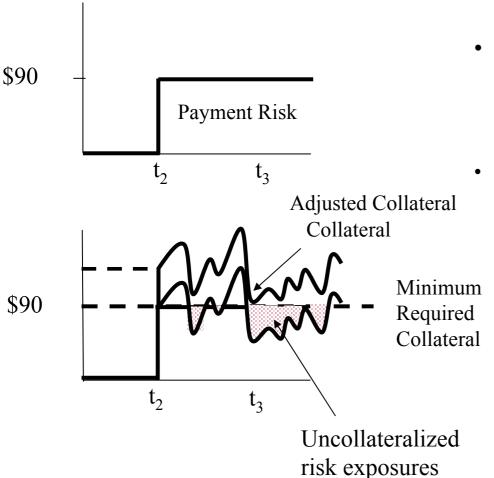
VALUATION OF COLLATERAL IN SECURITIES SETTLEMENT SYSTEMS FOR EXTREME MARKET EVENTS

Alejandro Garcia and Ramo Gençay Frankfurt, 3 April 2006

Issues Related to Central Counterparty Clearing
Invited Session II


Federal Reserve Bank of Chicago

Agenda

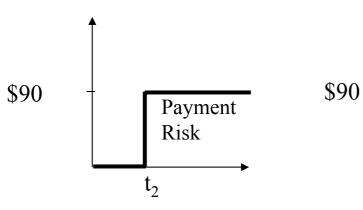
- ► Motivation and Research Questions
- Framework to Address Questions
- Case Study and Results
- Conclusions and Future Work

Risk is managed with collateral but collateral value fluctuates

Payment Risk: Is the risk that a participant in a defaults on its funds obligation

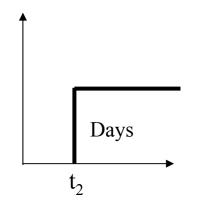
Research Questions:

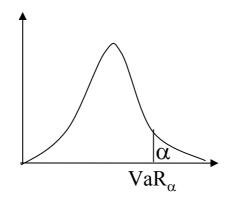
- 1. How do we value collateral (calculate haircuts) for securities that are subject to large fluctuations in their market prices?
- 2. What framework can we use to compare the different methodologies to calculate haircuts?
- 3. What are the desired properties that a methodology should have?


A preview of our answers


- 1. How do we calculate haircuts for securities that are subject to large fluctuations in their market prices?
 - Estimate risk measures (haircuts) with extreme value methods
- 2. What framework can we use to compare the different methodologies to calculate haircuts?
 - We propose to create a risk-cost frontier
- 3. What are the desired properties that a methodology to value collateral should have?
 - Coherent, accurate, and efficient

How are haircuts calculated?


1. Calculate risk exposure


2. Measure variability of risk factor

- 3. Set time horizon
- 4. Set confidence interval and calculate VaR_{α}
- 5. Increase collateral required. Report potential losses when collateral is insufficient.

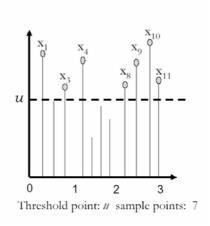
In summary, we need to choose 2 aspects

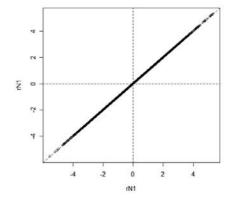
- 1. A parametric assumption
 - Normal
 - Student t
 - Generalized Pareto
 - etc ..

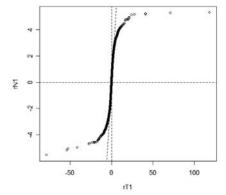
- 2. A risk measure
 - Value-at-Risk
 - Expected Shortfall

Our selection is based on a framework

Our Framework:

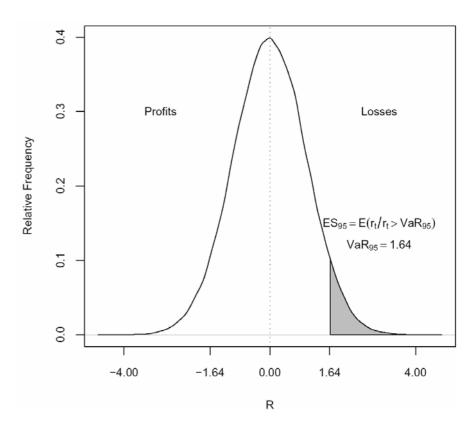

- 1. Proposes a way to select the distribution
 - Use **extreme value theory** to determine the tail behavior of collateral returns
- 2. Proposes three criteria for the selection of the risk measure
 - Coherence
 - Efficiency
 - Accuracy
- 3. Evaluates different alternatives using the **risk-cost frontier**


Agenda


- Motivation and Research Questions
- ► Framework to Address Questions
- Case Study and Results
- Conclusions and Future Work

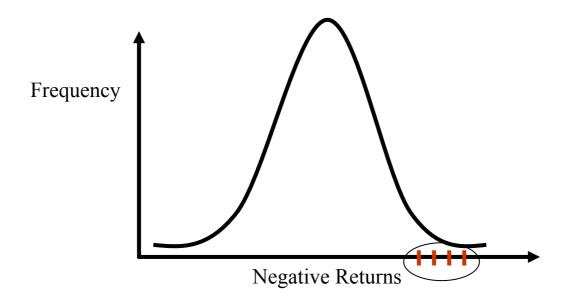
How to select the distribution?

- One approach is extreme value theory
 - Distribution of exceedances over a Threshold: GPD is the limiting distribution of the exceedances
- Diagnostics to determine the tail type
 - QQ-plots
 - Mean excess function
 - Hill estimator
 - Risk-cost frontier



How do we select the risk measure?

- 1. List potential risk measures:
 - Value at Risk $VaR_t(\alpha) = F_t^{-1}(\alpha)$
 - Expected Shortfall $ES_{t}(\alpha) = E[r_{t} | r_{t} > VaR_{t}(\alpha)]$
- 2. Determine risk preferences
 - Place a weight on decision criteria
 - Coherence
 - Accuracy
 - Efficiency
- 3. Use the risk-cost frontier to select the desired risk measure


To select the risk measure consider: Axioms of Coherent Measures

- Artzner *et al.* (1997, 1999):
 - An appropriate risk measure \approx **Coherent** risk measure
- A coherent risk measure,
 - Reflects diversification effects of a portfolio
 - Positive Homogeneity
 - Sub-additivity
 - Reflects the relation between Risk & Return
 - Monotonicity
 - Reflects the reduction of risk by introducing the risk free asset in a portfolio
 - Transitional Invariance

To select the risk measure consider: Accuracy

• Our interest is on extreme events \rightarrow high quantiles of the return distribution

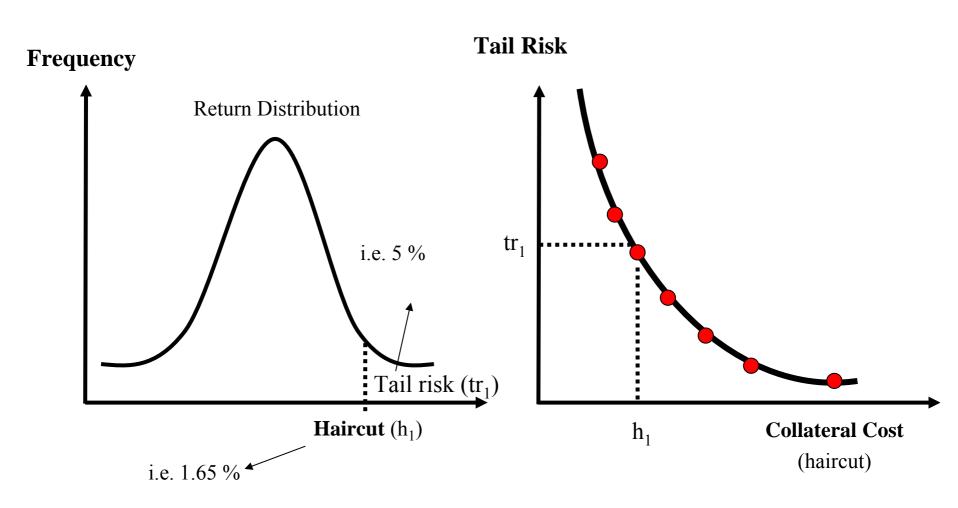
Accurate measure of the tail of the returns distribution

To select the risk measure consider: *Efficiency*

• Lower transaction costs allows participants to reallocate their investment portfolios to more efficient ones

Efficient collateral implies the minimum collateral portfolio to cover payment risk

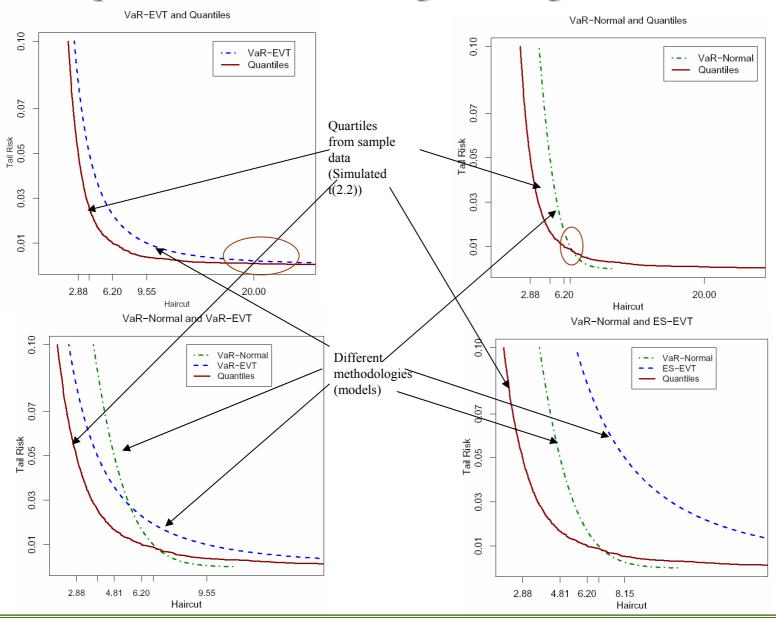
To compare methodologies consider: risk-cost trade-offs


- We focus on a particular risk and cost
 - Tail risk: The risk that fluctuations in the market price of collateral are not covered by the haircut
 - Collateral cost: The cost of pledging collateral, measured by the added collateral required by the haircut
- There is a risk-cost trade-off

Higher haircuts → higher collateral cost

BUT ALSO

Higher haircuts \rightarrow lower tail risk \rightarrow lower settlement risk


The **Risk-Cost Frontier** captures the trade-off at high quartiles

Agenda

- Motivation and Research Questions
- Framework to Address Questions
- ► Case Study and Results
- Conclusions and Future Work

Comparison of methodologies using simulated data

Considerations to select a risk measure for extreme events

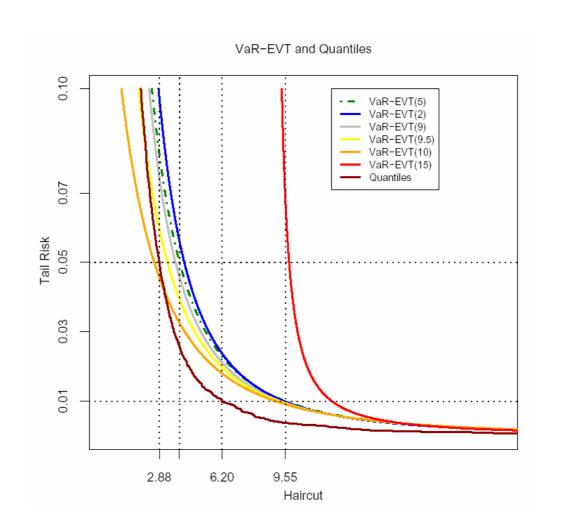
	COHERENT	ACCURATE	EFFICIENT
VaR Normal	?	X	
VaR EVT	?		
ES EVT			?

Agenda

- Motivation and Research Questions
- Framework to Address Questions
- Case Study and Results
- ► Conclusions and Future Work

Conclusions

Findings


- 1. Propose a framework to characterise and rank risk measures
- 2. Find VaR with EVT to be an adequate risk measure
- 3. Risk-cost frontier useful as diagnostic tool for selection of a risk measure.

Future Research (Using market data)

- 1. Extend framework analysis to portfolios of collateral
- 2. Study valuation of debt instruments for extreme events
- 3. Consider the effect of liquidity shortages on collateral value during extreme events

Thank you!

Annex

