

Money and monetary policy: The ECB experience 1999 - 2006

Lucrezia Reichlin
(co-authors H. Pill, M. Lenza, B. Fischer)

Frankfurt am Main, 9.11.2006

Key Questions

- 1) How was monetary analysis conducted in practice?
(Tools and evolution)**

- 2) What has been the performance of monetary analysis in quantifying risks to price stability?**

- 3) How has monetary analysis been used in monetary policy decisions?**

Methodology of the paper

- **Narrative approach and quantitative real time assessment (real time forecasting evaluation):**
 - **Short sample problem**
(about 8 years, 18 forecasting exercises, 18 interest rate changes)
 - **Models, quality of the signal and data change over time**
→ **Rich real time database with different vintages of data and models**

Structure of the briefing for the Governing Council

- **Monetary analysis**
- **Quarterly Monetary Assessment (QMA)**
- **Economic analysis**
- **Macroeconomic projection exercise**
 - Biannual conducted by Eurosystem staff, intermediate by ECB staff.
 - Based on structural macroeconometric models and expert judgement, up to a horizon of 9 quarters.

Key Questions

- 1) How was monetary analysis done in practice?
(Tools and evolution)**
- 2) What has been the performance of monetary analysis in quantifying risks to price stability?**
- 3) How has monetary analysis been used in monetary policy?**

Monetary analysis: Overview of inputs and outputs in the QMA

- **Input**
 - Tools related to money demand framework
 - Broad monetary analysis including analysis of components and counterparts of M3 leading to a judgemental view
 - Bivariate forecasting models
- **Output**
 - M3 corrected for portfolio shifts and other factors
 - Excess liquidity measures
 - Quantitative assessment of risks to price stability based on inflation forecasts
 - Qualitative overall assessment of risks to price stability stemming from money

Monetary analysis: Money Demand

Reference value for annual M3 growth 4½%

(potential output 2-2½%, inflation below 2%, decline in velocity trend ½% to 1%)

Estimated money demand equations

Excess liquidity measures

Structural (money demand based) forecasts

Monetary analysis: Evolution

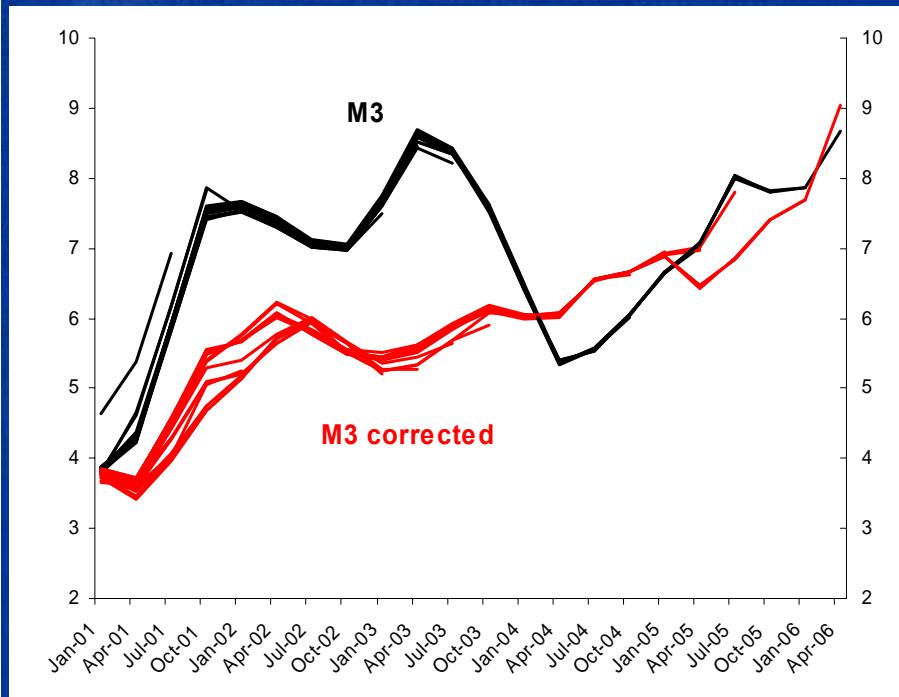
Challenges

- **Technical factors (e.g. introduction of remuneration of required reserves)**
- **Statistical problems (e.g. non-resident holdings of marketable instruments)**
- **Economic behaviour not captured by conventional determinants of money demand (e.g. portfolio shifts)**

Practical responses in real time

- 1) **Broadening of the monetary analysis and derivation of M3 corrected for judgmental factors**
- 2) **Stronger weight on reduced form equations for forecast**
- 3) **Freeze estimates of parameters of money demand equations, de-emphasise outcomes based on money demand models (excess liquidity measures derived from headline M3 and the reference value only used to provide risk scenarios, not central view)**

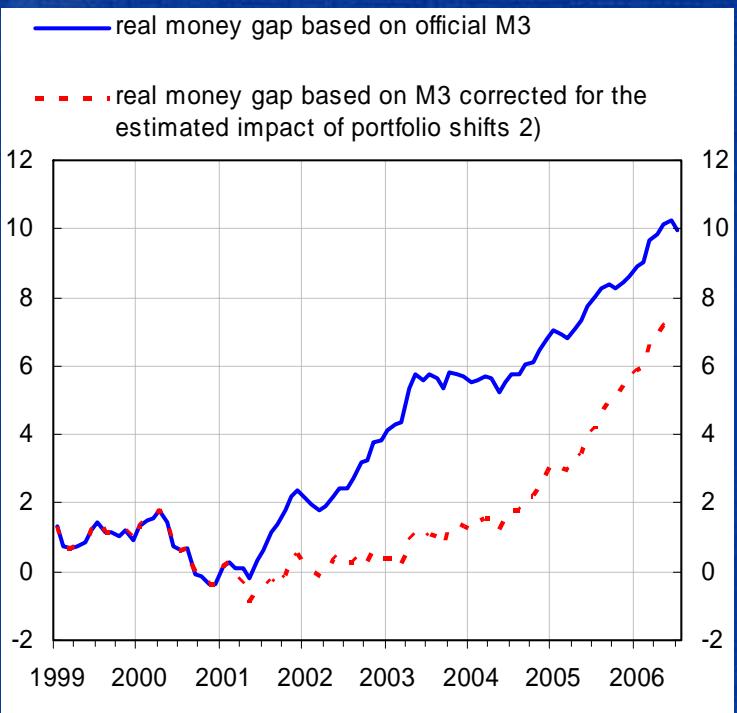
Real Time Response I: Analysis of determinants of portfolio shifts


Analysis of broad set of indicators of portfolio shifts into money not captured by standard money demand models:

- Measures of uncertainty
- Measures of financial market volatility and risk aversion (capturing potential asymmetric effects)
- Quantitative indicators of portfolio decisions concerning domestic and foreign assets

→ Derive levels of M3 free from money holdings stemming from temporary extraordinary portfolio decisions of economic agents and hence unlikely to be used for spending activities.

Real Time Response Ia: Real time versus ex post assessment of effects of portfolio shifts


- Different vintages of growth of M3 and M3 corrected

- Ex post assessment does not differ significantly from assessment in real time

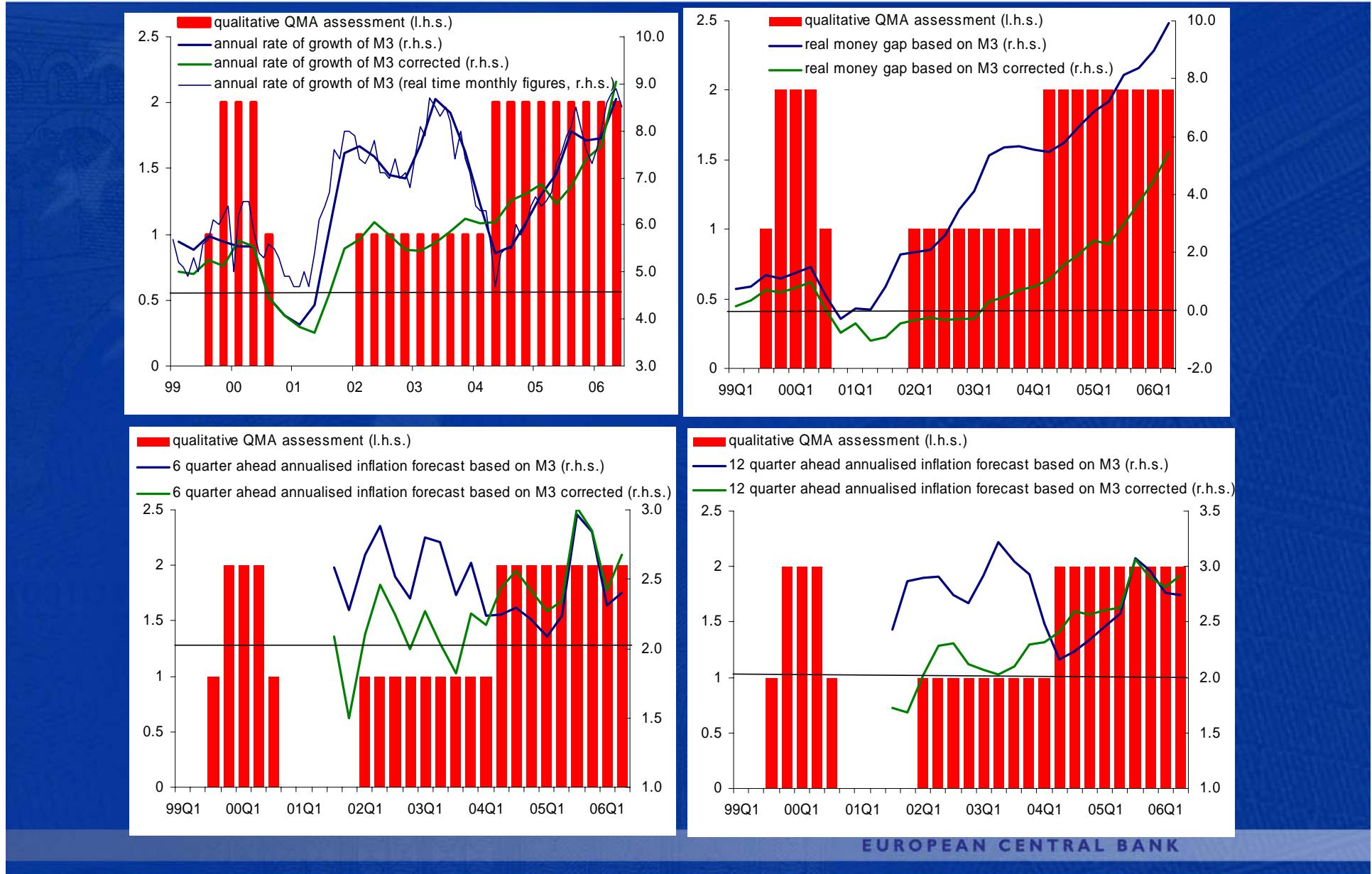
Real Time Response Ib: Real time versus ex post assessment of effects of portfolio shifts

- Real money gap of M3 and M3 corrected

- Judgmental analysis captured in real time shocks to money demand between 2001 and 2003 not captured by standard money demand models
- Between mid 2004 and today, the increase in the real money gap is not “corrected”: analysis of the counterparts show liquidity pressures stemming from money creation via credit
- Open question: is the assessment since 2004 accurate?

Real Time Response 2: Bivariate Inflation Forecast (Nicoletti-Altimari, 2001)

$$\pi_{t+h} = a + b_0 \tilde{\pi}_t + b_1 \tilde{\pi}_{t-1} + \dots + b_k \tilde{\pi}_{t-k} + c_0 x_t + c_1 x_{t-1} + \dots + c_s x_{t-s} + \varepsilon_{t+h}$$


π_{t+h} : annualised h-period change in the HICP

$\tilde{\pi}_t$: two quarter moving average of the q-o-q change in HICP

x_t : four quarter moving average of the q-o-q change in M3 or M3 corrected

Monetary analysis: Summary indicators: 4 phases

coding from -2 (clear downward risks) to +2 (clear upward risks)

Key Questions

- 1) How was monetary analysis conducted in practice?
(Tools and evolution)**

- 2) What has been the performance of monetary analysis in quantifying risks to price stability?**

- 3) How has monetary analysis been used in monetary policy decisions?**

Inflation forecasting evaluation

Target: annualised inflation over the next six quarters

- Money based forecasts against two benchmarks:
Economic Analysis projections and naïve forecasts

	MSE relative to Naive	BIAS	Variance of forecast error
M3	1.86	0.28	0.11
M3 corrected	1.04	0.01	0.14
BMPE	2.40	-0.45	0.04
BMPE/M3	0.48	-0.08	0.04

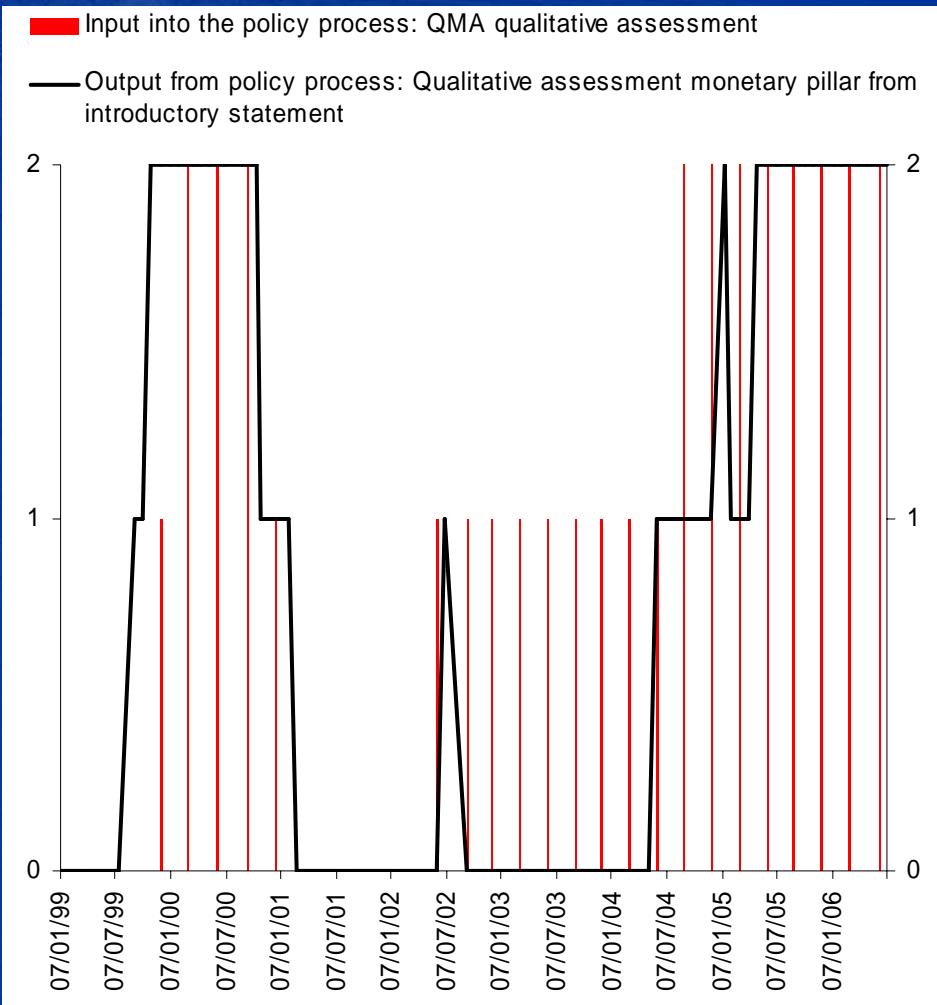
Inflation forecast evaluation

- **BMPE projections biased downward**
- **M3 forecasts biased upward with similar size as BMPE**
- **The judgmental correction of M3 corrected the bias of the inflation forecast but it introduced volatility**
- **BMPE projections, M3 and M3 corr. based forecasts outperformed by naïve forecast**
- **The forecast combination BMPE/M3 is smooth and unbiased and then dominates in a MSE sense the M3 corrected inflation forecast and a naïve forecast**

Inflation forecast evaluation: further results

- **Formal test shows that inflation forecasts from M3 are not encompassed by the BMPE forecast (they add information)**
- **Several variables other than money produce (bivariate) upward biased forecasts and are not encompassed by the BMPE projections.**
- **However, the BMPE/M3 combination outperforms all the combinations of BMPE with alternative forecasts.**

Key Questions


- 1) How was monetary analysis conducted in practice?
(Tools and evolution)**
- 2) What has been the performance of monetary analysis in quantifying risks to price stability?**
- 3) How has monetary analysis been used in monetary policy decisions?**

QMA and Introductory Statement: indicators

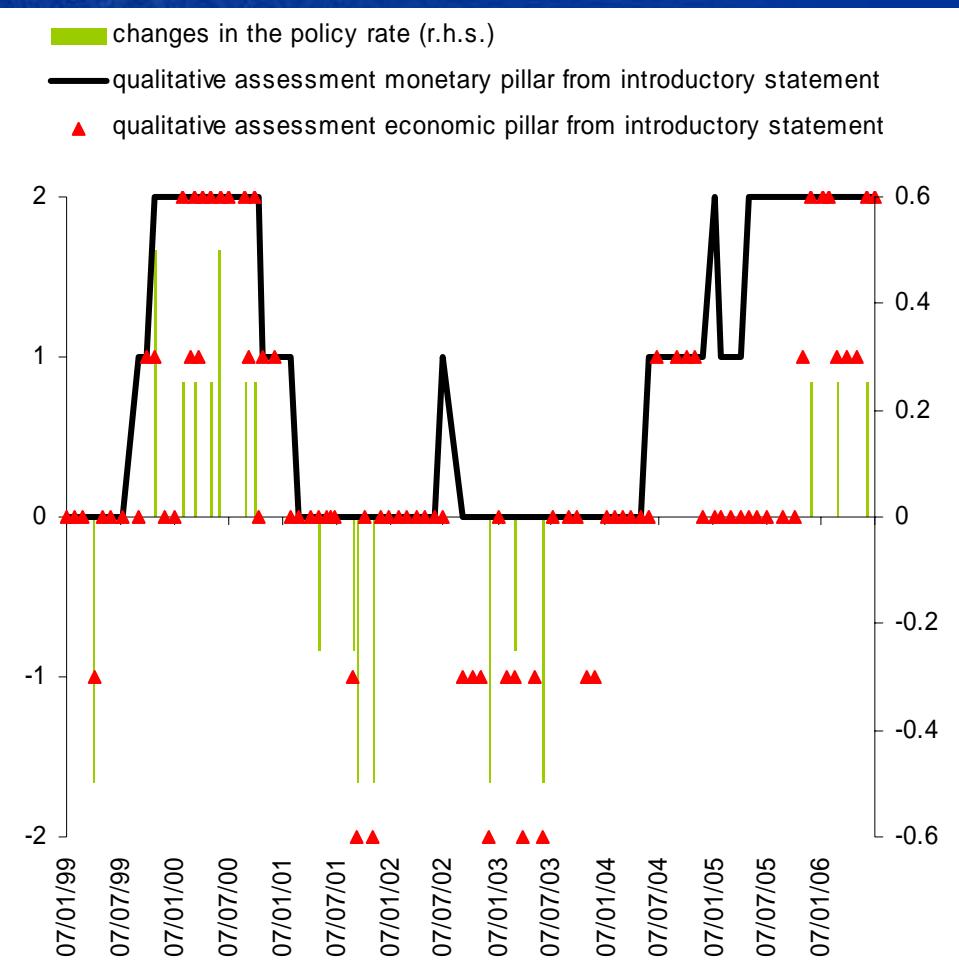
- **One measure of input from monetary analysis (QMA):**
qualitative assessment of risks to price stability (seen before)
- **Two measures of output from the assessment of risks to price stability by the Governing Council (introductory statement):**
assessment from monetary analysis and from economic analysis

Money and monetary policy: narrative approach

Qualitative input and output into/from the policy process

(coding of -2 hints at downward risks to price stability, coding of 2 indicates upward risks to price stability)

- Overall, coincidence of QMA assessment and Introductory Statement assessment of risks to price stability stemming from monetary pillar.


- Exception: 2002-2004.

- Portfolio shifts. Monetary analysis presented a benign scenario but upside risks.

- Introductory statement did not take the upside risks assessment from the QMA into account.

Money and monetary policy: narrative approach

Qualitative input and output into/from the policy process

(coding of -2 hints at downward risks to price stability, coding of 2 indicates upward risks to price stability)

- **High degree of correlation: difficult to identify role of two pillars in shaping interest rate decisions**
- **Indications from monetary pillar understated in 2002-2004 (portfolio shifts)**
- **Indications from monetary pillar for policy move in December 2005 very important.**

Summary and Conclusions

- Monetary analysis has evolved over time to cope with several challenges: data, institutions and portfolio shifts → tools have been developed to identify shifts in supply and demand of money in real time
- Money has provided a valuable input for the assessment of price stability, complementing the economic analysis assessment
Challenges: signals not always easy to identify (signal from qualitative assessment sometime blurred, forecast excessively volatile)
- When signals from monetary analysis has differed from that of economic analysis, the economic analysis has played a larger role (2002-2004), but indication from monetary analysis motivated move in December 2005
Challenge: communication

Background slides

Background slide Forecast errors

- Internal forecasts

Model	MSFE	MSFE/RW	MSFE/AR	Bias	SD of fore.	Var. of f.e.	Bias ²
AR	0.18	1.76	1.00	0.16	0.48	0.15	0.03
RW	0.10	1.00	0.57	0.12	0.25	0.09	0.01
1.9%	0.09	0.92	0.52	-0.27	0.00	0.02	0.07
BMPE	0.24	2.40	1.37	-0.45	0.20	0.04	0.20
M3	0.19	1.86	1.06	0.28	0.23	0.11	0.08
M3c BMPE/M	0.11	1.04	0.59	0.01	0.27	0.14	0.00
3	0.05	0.48	0.28	-0.08	0.10	0.04	0.01

$$\pi_{v,t+h} = a_v + b_v(L)\tilde{\pi}_{v,t} + c_v(L)x_{v,t} + \varepsilon_{v,t+h}$$

with $\pi_{v,t+h}$ equals the annualised h - period change in the HICP

$\tilde{\pi}_{v,t}$ equals the two quarter moving average of the q - o - q change in HICP

$x_{v,t}$ equals the four quarter moving average of the q - o - q change in money

Background slides: Forecast encompassing

- Is it possible to find a convex linear combination of the BMPE ($\pi^B_{v,t+h}$) and money ($\pi^M_{v,t+h}$) forecasts that significantly outperform the BMPE forecast (allowing for a bias term k)?

$$\pi_{t+h} - \pi^B_{v,t+h} = k + \lambda(\pi^M_{v,t+h} - \pi^B_{v,t+h}) + \eta_{t+h}$$

- Encompassing tests: results

Parameter	k	λ
M3	0.27*** (0.06)	0.24** (0.09)
M3 corrected	0.35*** (0.04)	0.22** (0.08)

Newey-West corrected standard errors in parenthesis. Three stars indicate that the coefficients are significant at 1% level, two stars at 5% level, one at 10% level

Background slide: Portfolio shifts I

- **Indicators to monitor and quantify portfolio shifts**

Group 1: Measures of uncertainty

- Consumer confidence
- Changes in unemployment

Group 2: Financial market indicators

- Exchange rate USD-euro
- DJ Eurostoxx index
- Implied stock market volatility
- Conditional correlation between stock and bond return
- Earnings yield premium
- Equity funds flows

Group 3: Monetary indicators

- Money market fund shares/units
- Loans to the private sector
- Net external assets
- Comparison US M2/ euro area M3
- Divisia M3 index

Group 4: Financial account/BOP indicators

- Monetary Presentation of BoP
- net external assets
- Net purchase of non-monetary securities

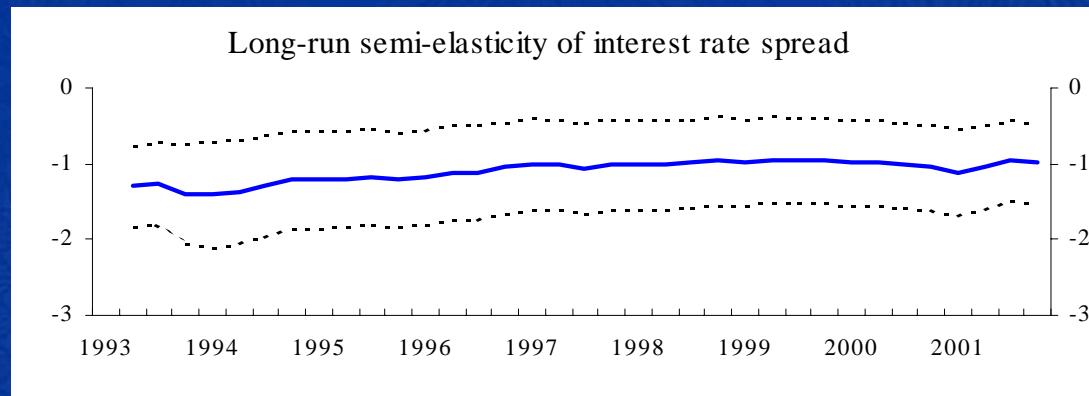
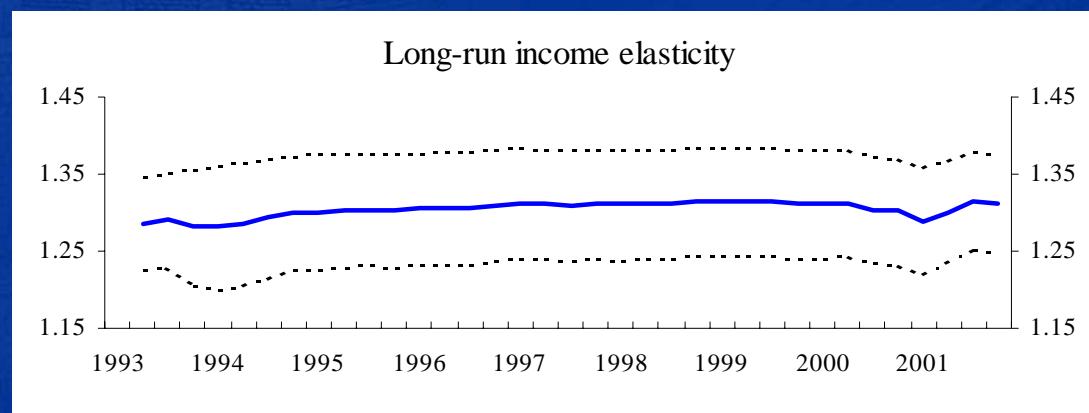
Monitoring tools:

- One-step-ahead forecast error for M3 from reg-ARIMA model
- Standard money demand model
- Liquidity preference shock derived from a small SVAR model

Background slide: Portfolio shifts II

- **reg-ARIMA time series model for the notional levels of M3**

$$\Delta\Delta^{12}(y_t - \sum_i \beta_i x_{it}) = (1 - \theta_1 L)(1 - \Theta L^{12}) a_t$$



- **Estimates of the intervention variables**

Parameter	Estimate	t-value
Constant	-0.16	-1.7
Calendar Effect(Monday up to 1991)	1.4	4.4
Calendar Effect(Friday up to 1991)	-2.6	-9.2
Calendar Effect(Saturday up to 1991)	-1.1	-3.6
Calendar Effect(Friday from 1992)	-9.1	-3.8
Temporary change with decay factor 0.7 09/92 (ERM 2 crisis)	8.4	3.6
Temporary change with decay factor 0.7 03/93 (ERM 2 crisis)	9.0	3.8
Seasonal level shift 12/97	-8.0	-4.7
Seasonal level shift 04/98	3.4	2.1
Combination level shift and temp. change decay factor 0.2 01/99	4.8	4.0
Portfolio shift regressor phases 1 and 2	2.3	2.6
Portfolio shift regressor phases 3 and 4	2.6	3.3
Residual statistics	Value	S.E.
Skewness	0.25	0.15
Kurtosis	2.96	0.3

No signs of autocorrelation and non-linearities in residuals using the Ljung Box test statistics for residuals and squared residuals. Parameters in the Table are multiplied by 1000.

Background slide: Money demand stability

- Recursive parameter estimates for long-run parameters of workhorse money demand equation as reported in the QMA 2001 Q4

