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1 Introduction

In this paper, we formulate and empirically investigate a rich class of discrete-time, nonlinear
dynamic term structure models (DT SMs). Key to our analysis is the insight that, by
shifting to discrete time, we can both substantially extend the family of affine diffusion
models that have heretofore been studied empirically and obtain closed-form solutions for
the joint likelihoods of the bond yield data. Under the risk-neutral measure, the distribution
of the state vector resides within a family of discrete-time Markov processes that nests the
ezxact discrete-time counterparts of the entire class of continuous-time models in Duffie and
Kan (1996) and Dai and Singleton (2000). Consequently, as in these studies, we obtain
closed-form, exponential-affine expressions for zero-coupon bond prices.!

Where we gain considerable generality over the extant literature on affine DTSMs is
through our parameterizations of the state-price density and market price of risk A;. We
specify the state-price density— essentially the Radon-Nykodym derivative linking the risk-
neutral (Q) and historical (P) measures— as a known function of the A;. Then we allow
for very general dependence of A; on the state X;, requiring only that this dependence
rules out arbitrage opportunities and that the P distribution of X satisfy certain station-
arity /ergodicity conditions needed for econometric analysis. This leads to a quite flexible
family of nonlinear DTSMs for which the PP distribution of zero-coupon bond yields is not
affine, but for which we have exact analytic expressions for the conditional densities of bond
yields.2 Moreover, our state-price density is chosen so that, through restricted choices of
A¢, we nest the (discrete-time) counterparts to the extant linear models in which the state
follows an affine process under both P and Q.3

Both economic and econometric considerations motivate this analysis. Recent empirical
studies find that the goodness-of-fits of DT'SMs depend critically on the specification of
market price of risk (e.g., Duffee (2002), Dai and Singleton (2002), Duarte (2004), and Ahn,
Dittmar, and Gallant (2002)). However, the functional forms of A; in these studies are still
quite restrictive — reflecting the usual trade-off between generality and the tractability of es-
timation. By allowing the researcher almost complete freedom in specifying the dependence

1Our analysis extends immediately to the case of quadratic-Gaussian models of the type discussed in
Beaglehole and Tenney (1991), Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002). However,
we focus on the affine case.

2In particular, our framework allows for nonlinearity in the conditional means of bond yields of the type
examined by Ait-Sahalia (1996), Stanton (1997), Chan, Karolyi, Longstaff, and Sanders (1992), and Duarte
(2004), all in a multi-factor setting. There is also evidence supporting nonlinear behavior in the interest
rates from descriptive regime switching models of short-term interest rates (see, e.g., Gray (1996) and Ang
and Bekaert (2002)). Recently, Naik and Lee (1997), Evans (2000), Boudoukh, Richardson, Smith, and
Whitelaw (1999), Bansal and Zhou (2002), Ang and Bekaert (2003), and Dai, Singleton, and Yang (2005),
among others, introduce regime switching on top of standard affine term structure models and examine its
implications for the pricing of long-term bonds. Here we work exclusively within a single-regime framework,
though we comment briefly on how our framework can be extended to accommodate multiple regimes in the
presence of stochastic volatility in Section 6.

3In the continuous-time literature, this is a feature of the models examined in Dai and Singleton (2000),
Duffee (2002), and Cheridito, Filipovic, and Kimmel (2003). It is also true of the discrete-time affine term
structure models discussed in Ang and Piazzesi (2003) and Gourieroux, Monfort, and Polimenis (2002).



of A; on the state vector, we facilitate empirical investigation of much richer specifications of
risk premiums. Furthermore, the development of the exact discrete-time counterparts to the
entire family of affine models examined by Dai and Singleton (2000) (hereafter D.S) substan-
tially expands the family of models within which the macroeconomic underpinnings of the
latent risk factors in DT'SM's can be tractably studied empirically. To date, the literature on
integrating DTS M's with dynamic macroeconomic models (e.g., Rudebusch and Wu (2003),
Hordahl, Tristani, and Vestin (2003), Dai and Phillipon (2004), and Ang, Dong, and Piazzesi
(2005)) has focused exclusively on discrete-time Gaussian DT'SMs thereby ruling out a role
for either nonlinearity or time-varying second moments in modelling macroeconomic risks.

With regard to estimation of DTSMs, even when the state vector follows an affine
diffusion under the physical measure, the one-step ahead conditional density of the state
vector is not known in closed form, except for the special cases of Gaussian (Vasicek (1977))
and independent square-root diffusions (Cox, Ingersoll, and Ross (1985)). Accordingly, in
estimation, the literature has relied on approximations, with varying degrees of complexity,
to the relevant conditional P-densities.* By shifting to discrete time, we are able to nest the
(discrete-time counterparts to the) entire class of affine DT'SMs classified by DS within a
much larger class of nonlinear DT'SMs, and at the same time obtain exact representations
of the likelihood functions of bond yields. Therefore, no approximations are necessary in
estimation.

Our development of our family of nonlinear DTSMs proceeds in three steps. First, we
develop N + 1 families of discrete-time affine processes DA%(N ), in which m of the N risk
factors drive stochastic volatility (M = 0,..., N). Each member of DAY, (N) will serve as
an admissible Q representation of the risk factors, exactly analogously to the family A%(N )
of Q-affine models examined in DS. For the m volatility factors, we build upon the analysis
of scalar “autoregressive gamma” processes in Gourieroux and Jasiak (2001) and Darolles,
Gourieroux, and Jasiak (2001) to develop the discrete-time counterpart to the multivariate,
correlated CIR process, Z, in the family DA%(M ). This construction is then extended to the
family DA(]%[(N ) by introducing an N — M dimensional state process Y;,1 with the property
that, conditional on X; = (Z},Y/)’, it is normally distributed with a conditional variance
that is an affine function of Z,.

Given a Q-affine representation of the risk factors X residing in DA%(N ), for some M,
the pricing of zero-coupon bonds is straightforward under the additional assumption that
the one-period short-term rate is an affine function of X. Zero-coupon bond prices are
exact, exponential-affine functions of X, just as in the continuous-time counterparts A% (V)
examined in Duffie and Kan (1996) and DS.5

4These include the direct approximations to the conditional densities explored in Duan and Simonato
(1999), Ait-Sahalia (1999, 2002), and Duffie, Pedersen, and Singleton (2003); the Monte Carlo based ap-
proximations of Pedersen (1995) and Brandt and Santa-Clara (2001)); and the simulation-based method-of-
moments estimators proposed by Duffie and Singleton (1993) and Gallant and Tauchen (1996).

®As with DS’s construction of a canonical model for the family A% (N), our canonical model for DA%(N )
is the maximally flexible Q-representation of the first-order Markov process X;. Fixing the state space to be
RM x RN=M Duffie, Filipovic, and Schachermayer (2003) show that DS’s normalizations and constraints
are necessary and sufficient to derive the maximally Q-admissible (i.e., canonical) continuous-time affine



Second, for each family DA%[(N ), we specify an associated family of state-price densities,
each member of which is a known function of (X1, Xy, A¢). Our particular parametrization
of the state-price price density is chosen to be a natural discrete-time counterpart to the
state-price density associated with affine diffusion-based, continuous-time DTSMs. When
combined with a known Q-affine distribution of the state X, each member of this family
of state-price densities leads to a known parametric representation of the P-distribution of
X. Moreover, since bond prices are a known function of X, it follows immediately that
the likelihood functions of data on zero-coupon or coupon bond prices are known exactly in
closed form.

Finally, this construction of the likelihood function allows the modeler substantial flex-
ibility in specifying the dependence of A; on X, requiring only that the model not admit
arbitrage opportunities and be econometrically identified, and that the P distribution of X
be sufficiently regular for the maximum likelihood estimators to have well-behaved large-
sample distributions. By roaming over admissible choices of A;, we are effectively ranging
across the entire family of admissible arbitrage-free DTSMs constructed under the assump-
tion that, under Q, X follows an affine process. While, in principle, similar flexibility arises
in A%(N ) models, researchers have rarely exploited this flexibility in practice because of the
computational complexity arising from a non-affine P distribution of X. Our discrete-time
formulation circumvents these computational considerations by delivering an exact likelihood
function under general state-dependence of A;.

To illustrate our approach, we report estimates of two different nonlinear (DA%(3), A)
models. The first is Duarte (2004)’s SASR;(3) model in which the square-root of the volatil-
ity factor appears in its own drift under P. This model is of interest in part, because the
likelihood function of its continuous-time counterpart (studied by Duarte) is not known in
closed form. The second is an alternative formulation of the volatility process under which
its conditional P-mean depends on its squared and cubed values. These models are compared
along various dimensions, including their within and out of sample forecasting performances
for bond yields.

In what is perhaps the closest precursor to our analysis, Gourieroux, Monfort, and Poli-
menis (2002) developed DT'SMs based on the single-factor autoregressive gamma model (the
discrete-time counterpart to a one-factor C'I R model), and multi-factor Gaussian models (the
counterparts of ABQ(N ) models). In terms of coverage of models, our framework extends their
analysis to all of the families of multi-factor models DA%[(N ), M =0,1,..., N. Further-
more, Gourieroux, et. al. assumed that the market price of risk A is constant and, as such,
they focused on the “completely” affine versions of the DAY(1) and DAZ(N) models. A
major focus of our analysis is the specification and estimation of discrete-time affine DT'SMs
that allow general dependence of A; on X;.

The families of models DA(]%[(N ), M =0,...,N, are not the only well-defined discrete-
time affine DTSMs. Gourieroux, Monfort, and Polimenis (2002) discuss a variety of other
examples that are outside the purview of our analysis (because their continuous-time coun-

model. Collin-Dufresne, Goldstein, and Jones (2004) discuss an equivalent canonical continuous-time model
based on an invariant transformation of DS’s canonical model.



terparts do not reside in one of the families A% (N)). Moreover, Ang and Piazzesi (2003) and
Gourieroux, Monfort, and Polimenis (2002) illustrate (in the context of DAY(N) models)
the fact that discrete-time affine DTSMs can be extended to include lagged values of the
state. All of our representations of the QQ distributions of X can similarly be extended to
higher-order Markov processes, though we choose to focus on the case of first-order Markov
processes for ease of exposition.

2 Canonical Discrete-Time Affine Processes

Following Duffie, Filipovic, and Schachermayer (2003), we will refer to a Markov process
X as affine if the conditional Laplace transforms of X;,; given X; is an exponential-affine
function of X;:% under a probability measure @, for an N x 1 state vector X,

6% X;) = B2 [ Xen

Xt} — () +bw)X: (1)

Paralleling DS, we focus (by choice of the N x 1 vector a(u) and N x N matrix b(u)) on
the particular sub-families of discrete-time affine models DA(]%[(N ) that are formally the
exact discrete-time counterparts to their families A% (N). The members of DAY (N) are
well-defined affine models in their own right, and also have (by construction) the property
that, as the sampling interval of the data shrinks to zero, they converge to members of the
continuous-time family A% (N).

Throughout this paper, we assume that the state vector X; is affine under the risk-neutral
measure Q, in the sense just described. Hence equation (1) constitutes a basic distributional

assumption of our model. In the rest of this section, we make explicit the functional forms
of a(-) and b(-) that define the Q-affine families DAY (N), M =0,...,N.

2.1 DAJ(N)

The DABQ(N ) process is an N x 1 vector Y that follows a Gaussian vector autoregression:
conditional on Y;, Y;;; is normally distributed with conditional mean gy + py Y, and con-
ditional covariance matrix V. The conditional Laplace transform of Y is given by (1) with

1
a(u) = pou + §u’Vu, b(u) = u' py. (2)

To derive the continuous-time counterpart of this family, let At be the length of the
observation interval, and let py = kR0%At, py = Iyyny — k%At and V = o0’At, where
k? and o are N x N matrices and #9 is a N x 1 vector. Then in the limit At — 0,

6See Duffie, Pan, and Singleton (2000) for a proof that continuous-time affine processes typically examined
have conditional characteristic functions that are exponential-affine functions, and Gourieroux and Jasiak
(2001) and Darolles, Gourieroux, and Jasiak (2001) for discussions of discrete-time affine processes related
to those examined in this paper.



the process DAZ(N) converges to the continuous-time Ag(N) process, the N-dimensional
Gaussian process:

dY; = k%(0° — Y,)dt + 0d B2,
where B is a N x 1 vector of standard Brownian motions under the measure Q.

Virtually all of the empirical work to date on multi-factor (exact) discrete-time affine
models has focused on the family DA%P(N ). See, for example, Ang and Piazzesi (2003),
Dai, Singleton, and Yang (2005), Rudebusch and Wu (2003), Hordahl, Tristani, and Vestin
(2003), and Dai and Phillipon (2004).

2.2 DAY(N)

Perhaps the most widely studied family of continuous-time affine DTSMs is the family
A% (N), the multi-factor C'I R-style models (see Dai and Singleton (2003) for a survey). Nu-
merous authors, including Sun (1992), Gray (1996), and Bekaert, Engstrom, and Grenadier
(2004), have examined discrete-time “CIR models” in which the shock to a state variable Z,
takes the form ozv/Z; 1€, € ~ N(0,1). The resulting term structure models are not exact,
either in the pricing of bonds or in the representations of the likelihood functions, because
these models are not well defined if €;,, is literally a normal random variable.

The DAY (N) process is the exact discrete-time equivalent of the multi-variate correlated
square-root or C'I R process; Z is non-negative with probability one, no approximations are
required in the pricing bonds, and the associated likelihood functions are known exactly in
closed-form. The scalar case N = 1 was explored in depth in Gourieroux and Jasiak (2001)
and Darolles, Gourieroux, and Jasiak (2001). We extend their analysis to the multi-variate
case of a DAS(N) process Z; as follows.

As in the canonical A%(N ) model of DS we assume that, conditional on Z;, the compo-
nents of 7, are independent. To specify the conditional distribution of Z;,;, we let o be
an N x N matrix with elements satisfying

Furthermore, for each 1 <i < N, we let p; be the i*" row of the N x N non-singular matrix

p = (Inxn — 0). Then, for constants ¢; > 0, v; >0, i = 1,..., N, we define the conditional
density of Z; , given Z, as the Poisson mixture of standard gamma distributions:
Zi (P, Zy) ~ gamma(v; + P), where P|Z, ~ Poisson(p;Z/c;). (3)

Here, the random variable P € (0, 1,2, ...) is drawn from a Poisson distribution with intensity
modulated by the current realization of the state vector Z;, and it in turn determines the
coefficient of the standard gamma distribution (with scale parameter equal to 1) from which
Z}. , is drawn.

The conditional density function of Z} ; takes the form:

k i vi+k—1 Zi
o | (22 (@) ot

; 1 < ci ) _PriZt ci
Qi -3 i i
f (Zt-i-l‘Zt) - ¢ k' € X F(V,L + k) . (4)




Using conditional independence, the distribution of a DA%(N ) process Z;.1, conditional on
Zy, is given by f@(Zin|Z) = [10, f%(ZL,,1Z:). Finally, it is straight-forward to show that
for any wu, such that u; < +, the conditional Laplace transform of Z; is given by (1) with

N
U

_—g ilog (1 — wc;), b :gili-

i:11/ og (1 —u;c;), b(u) 1 1—u,~cz-p

1=

When the off-diagonal elements of the N x N matrix o are non-zero, the autoregressive
gamma processes {Z'} are (unconditionally) correlated. Thus, even in the case of correlated
Z!, the conditional density of Z;; is known in closed form. This is not the case for correlated
Z in the continuous-time family A%(N). The nature of the correlation between Z¢ and Z7
(i # j) is constrained by our requirement that g;; < 0. Analogous to the constraint imposed
by DS on the off-diagonal elements of the feedback matrix £ in their continuous-time models,
this constraint serves to assure that feedback among the Z’s through their conditional means
does not compromise the requirement that the intensity of the Poisson process be positive.
Equivalently, it assures that we have a well-defined multivariate discrete-time process taking
on strictly positive values.

The conditional mean E2[Z,,,] and conditional covariance matrix V,%[Z, ] implied by
this conditional moment-generating function are

Bl Z) = a" +Zb 0)Z;, V2 [Zia] = a®(0) + diag [0°/0u7(0)Z,] ,  (5)

where a®) (u) denotes the k' derivative of a(u) with respect to u and diag[-] denotes the
diagonal matrix generated by the elements in brackets. Specifically,

ER(Z:1](3) = vici + piZe, V[ Zi)(i,4) = vic} + 2¢ipiZs, (6)

and the off-diagonal elements of V,%[Z;,4] are all zero (correlation occurs only through the
feedback matrix). Note the similarity between the affine form of these moments and those
of the exact discrete-time process implied by a univariate square-root diffusion.

That this process converges to the multi-factor correlated A% ~(N) process” can be seen

by letting p = Iyxn — KCAL, ¢; = %?At, and v; = % where k2 is a N x N matrix and
6% is a N x 1 vector. In the limit as At — 0, the DA%( ) process converges to:

dz, = k20 — Z,)dt + o+/diag(Z,)d B,

where ¢ is a N x N diagonal matrix with ¥ diagonal element given by o;.

"Gourieroux and Jasiak (2001) attribute the insight that the DA%(1) process is a discrete-time counterpart
to the square-root diffusion to Lamberton and Lapeyre (1992).



2.2.1 DAY (N) Processes, For 0 < M < N

We refer to an N x 1 vector of stochastic processes X, = (Z/,Y/) as a DAY, (N) process if (i)
Z, is an autonomous DA%(M ) process; and (ii) conditional on Y; and Z;, Y;;4 is independent
of Z,,1® and normally distributed with conditional mean and variance

wgt = 1o + py X and Qyy = 3y Sy XY, (7)

where yg is a (N — M) x 1 vector, py = (pd py ) isa (N — M) x N matrix, pf is a
(N — M) x m matrix, ui- is a (N — M) x (N — M) matrix, Xy is an (N — M) x (N — M)
matrix, and Sy, is a (N — M) x (N — M) diagonal matrix with i** diagonal given by a;+ 3] Z;,
1 <1< N — M. By construction, then, the conditional density of X is given by

FUX X)) = oY Yes Z0) % fU 2| Z0), (8)

with the first term being a multi-variate Gaussian density and the second term being a
multi-variate autoregressive gamma density.

Let uz and uy be M x 1 and (N — M) x 1 vectors such that u = (ul,, u ), and let hg
and h;, 1 = 1,2,...,M be (N — M) x (N — M) matrices defined as the coefficients in the
expansion of Qy; = hg + Zf\il h;Z¢, then the conditional Laplace transform of X;,; given
X, is again given by (1), with

M

1
a(u) = = vlog (1 —uzc:) + pyuy + iu’yhouY, 9)
=1
bu) = | S et (udhiny) gy i ], (10)

provided that uz,; < Cl forall 1 << M.
Based on the above constructions, our first maintained assumption can be summarized
as follows:

Assumption 1 (N(Q)) : Under Q, the state vector X, follows a DAY (N) process, with
its conditional Laplace transform given by (1), (9), and (10).

If M =0, we write X; = Y;, where Y} is a DA((?(N) process. If M > 0, we write X; = (Z},Y/)',
where Z, is a DAY, (M) process.

2.3 Bond Pricing

As in the extant literature on affine term structure models, we assume that the interest rate
on one-period zero-coupon bonds is related to the state vector according to:

8Within a general A% (N) model the M factors driving stochastic volatility and the remaining (N — M)
factors may be (instantaneously) correlated. However, as discussed in Dai and Singleton (2000), within a
term structure context one is free to normalize these (instantaneous) correlations to zero. Our conditional
independence assumption is the discrete-time counterpart to this normalization.

7



Assumption 2 (N(r)) : r; is affine in Xy, i.e., 1y = 6o + dx Xy, where ox >0 isalx N
vector.”

Assumptions N(Q) and N(r) imply that zero-coupon bond yields are linear in the state
vector X;. Specifically, the time-t zero-coupon bond price with maturity of n periods is given

by

Dy = B2 [ S| = e BR D] = e (1)

where the loadings A,, and B,, are determined by the following recursion:

A, — A1 = S+ A —a(—By1),, (12)
B, = 0x —b(—B,_1), (13)

with the initial condition Ay = By = 0.1°

The linear structure to the cross-section of bond yields implied by affine DT'SMs, includ-
ing the discrete-time models examined here, is potentially restrictive. Indeed, Boudoukh,
Richardson, Stanton, and Whitelaw (1998) present evidence of departures from this linear
structure within a two-factor setting. Yet Litterman and Scheinkman (1991), and many
subsequent papers, have shown that assuming that bond yields are linear functions of a
small number of factors (e.g., principal components of yields) provides an effective means of
hedging bond portfolios. Accordingly we maintain the linear yield structure implied by (11)
and, thereby, preserve tractability of bond pricing.

3 Physical Distribution of Bond Yields

A standard means of constructing an affine DTSM in continuous time is to start with a Q
representation of X in one of the families A% (), introduce a market price of risk 7, for the
state X, and then derive the implied P distributions of X and bond yields. Equivalently, in
a diffusion setting, one posits a pricing kernel or Radon-Nykodym derivative

o5 S () ms)ds— [ n(s)'dBE (s)

EF [e—% JE  n(s)n(s)ds— [} n(s)’dBP(s)]

(dQ/dP); sy = (14)

linking P to Q, subject to the requirement that X is a Q-affine process. In principal, this
construction places minimal restrictions on the P-drifts of X. Starting with a Q-affine model
for X, one can generate essentially any functional form for the P drift of X by choice of the
market price of risk n, up to the weak requirement that n not admit arbitrage opportunities.

Tf X, is a DA%(N) process, then setting dx; > 0 for ¢ > M is a normalization, but setting dx; > 0 for
i < M is a model restriction. When M > 0, this restriction ensures that (i) the level of the short rate r
and the factors with stochastic volatility are positively correlated; and (ii) zero-coupon bond prices are well
defined for any maturity. See Footnote 10 for further elaboration on the second point.

10 When M > 0, the assumption §x > 0 ensures that the first M elements of B,, are never negative. This
in turn ensures that a(-) and b(-) are always evaluated in their admissible range in the recursion.



What has led researchers to focus on relatively restrictive specifications of n(X;) are the
computational burdens of estimation that arise when the chosen 7 leads to an unknown (in
closed form) P-likelihood function for the observed bond yields.

In this section we introduce a discrete-time P-formulation of affine DTSMs that over-
comes this limitation of continuous-time models. This is accomplished by choosing a Radon-
Nykodym derivative (dP/dQ)” (X1, As) satisfying

FH (X Xe) = (dP/dQ)P (Xep1; Ay) X f( X ] Xa), (15)

with the properties that (P1) it is known in closed form (so that f¥ can be derived in closed-
form from our knowledge of f@ developed in Section 2); (P2) A, is naturally interpreted
as the market price of risk of X;;1; and (P3) rich nonlinear dependence of A; on X; is
accommodated. In principle, any choice of (dP/dQ)? that is a known function of (X;,1, A;)
and for which P and Q are equivalent measures (as required by the absence of arbitrage)
leads to a nonlinear DTSM satisfying P1. We proceed by adopting the following particularly
tractable choice of (dP/dQ)P:

Assumption 3 (N(P)) The conditional density of X under the physical measure P is given

by (15) with
dP\ " eMiXer
(f) it =iy "

where ¢ is the conditional Laplace transform of X under Q, A; is a N x 1 vector of functions
of X; satisfying Prob{Aic; < 1} = 1, for 1 < Vi < M, and Prob{Ai < oo} = 1, for
M+1<i<N.

Under Assumption N(P), the conditional P-Laplace transform of X, is given by

Q :
P P U+ A Xe)  Awa)+Bunn X
u; Xy) = = e\ N 17
(b ( t) QbQ(Aty Xt) ( )
where A(u;v) = a(u +v) — a(v) and B(u;v) = b(u + v) — b(v). It follows that the pricing
kernel consistent with Assumptions N(Q) and N(P) can be written as

e—AQXtH

FAe X)) 1)

Mt,t—f—l =e "X

where we have invoked (17) evaluated at u = —A;, which leads to ¢¥(—Ay; X;) = [¢@(Ay; X)] -
To motivate this choice of Radon-Nykodym derivative— equivalently, pricing kernel M-

consider again the continuous-time formulation in (14). For a small time interval A, and

approximate affine state process Xy a &~ px(X;)A+Yxv/Sxi€rsn, with e, a| Xy ~ N(0, A,

1 P P
e—gflémA—ﬂfgeHA e—AQZX\/SXtEHA

EF [6—%n£ntA—n£eIf+A} EF [G—AQEX\/Sthf+A]

(dQ/dP)gt-i-A ~

A XA A Xipn

e e
Y [e-MXia] — @F(—Ay; Xy)
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where A, = (E VS Xt)/_l 7; is a transformation of the market price of risk 7,. Thus, this
(approximate) continuous-time construction suggests that, for a small discrete time interval
of length A, the kernel for pricing payoffs at date ¢ + A is

. fQ<Xt+A|Xt) ~ e*TtA efA;Xt-FA

PP (Xl o) FA X (20)

Miin =€
This kernel takes exactly the same form as (18).

Importantly, in deriving our actual pricing kernel we have dispensed with the “small time
interval” construction. Instead, we are assuming that ¢ indexes the sampling interval of the
data which, as is conventional in discrete-time asset pricing models, is also assumed to index
the appropriate interval for the chosen specification of the pricing kernel (18). Subject to
this “matching condition,” no approximations are involved in deriving either f%(X;,1|X;) in
(15) or the associated pricing kernel M, in (18).

The preceding heuristic construction of M from a continuous-time model does suggest
that, as the sampling interval of the data shrinks to zero,

(dIP)D N(d[@)c (1)
dQ/ pia \dQ/,1ia
As such, the P distributions of the bond yields implied by our families DA%(N ), and asso-
ciated market prices of risk A, capture essentially the same degree of flexibility inherent in
the families A% (V) as one ranges across all admissible (arbitrage-free) specifications of the
market prices of risk n(X;). It is in this sense that we view our framework as the discrete-
time counterpart of the entire family of arbitrage-free, continuous-time affine DT'SMs derived
under the assumption that the Q-representation of X resides in one of the families A%(N ).

The restrictions in Assumption N(P) that the products Ay, 1 < @ < M, for the
M volatility factors are bounded by unity are required to assure that f¥ is a well-defined
probability density function and that P and Q are equivalent measures. This follows from
the observation that ¢%(u; X;) is finite if and only if u;c; < 1. Unless Aye; < 1 almost
surely, for i = 1,..., M, ¢%(A; X,) is infinite with positive probability. In this case, f¥
would not integrate to unity for a set of X; that has positive measure, and P and QQ would
not be equivalent. Examining these restrictions more closely, and using our mapping to
the parameters of the related C'IR process, we see that we are effectively requiring that
2/(c2At) > Ny, i =1,..., M. Typically ¢? is small and, depending on the application, At
may also be small. Therefore, these bounds are typically weak and in the applications we
have encountered so far they are far from binding. As At approaches zero (continuous time),
the only requirement is that the A;; be finite almost surely.!!

Under these regularity conditions we have all of the information necessary to construct

the likelihood function of the state, and hence the bond yields, under P. Under Assump-
tions N(Q) and N(r), we effectively know f@(X,,1|X;) from the cross-sectional behavior of

UNote that, if A;; were to scale with (At)~!, the continuous-time limit would be different from a CIR
model.
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bond yields.'? Furthermore, the relationship between the observed yields v; and the state
vector X; are also known due to the pricing equation (11), which depends only on the risk-
neutral distribution f@(X;1]X;). Thus, the unknown function (dP/dQ)?(X;1;A;) can be
estimated from the time-series observations of bond yields, ;.

The form of the P distribution of X bears a close similarity to its form under Q. Upon
making the dependence of a(-) and b(-) on the risk-neutral parameters explicit by writing

a(u) = a(u;0%), b(u) = b(u; 8),
@Q = (Ciapiuyi;,u()a:uuhmhi:i:1727"'7M>7

A(u,v) and B(u,v) can be written as

Alu,v) = a(u;0°(v)), Blu,v) = b(u; ©7(v)),
0" (v) (ci(v), pi(v), vi; po(v), p(v), hoy hy i =1,2,..., M).

where v = (v}, v}), for M x 1 vector vz and (N — M) x 1 vector vy, and

T A o
Cz(v) - 1 . UZ,iCi7 pz(v) (1 - 'UZ,iCz‘)Q’

to(v) = po+ hovy, py () = ( p€ + {hvy ticio.m 1y ) -

It follows that the conditional density under P has exactly the same functional form as that
under Q, except that the latter is now evaluated at the (possibly time-varying) parameters
OF(A;).1? Analogously to the continuous-time case, the volatility parameters {v;}2, (for the
M stochastic volatility factors), and hg and {h;}M, (for the N — M conditional Gaussian
factors), are not affected by the measure change. Nevertheless, all of the conditional moments
of X in model (DAY (N), A), including the one-period conditional variances, are in general
affected by the measure change from Q to P (see below).

4 The Market Prices of Risk

An immediate implication of Assumption N(P) is that, if A; = 0, then f¥(X,1|X;) =
fUX41]|X:). Thus, agents” market prices of risk are zero if and only if A, = 0. In our
discrete-time setting, A; is not literally the market price of X risk (MPR), but rather the
MPR is a nonlinear (deterministic) function of A;. However, in a sense that we now make
precise, A; is the dominant term in the MPR. Accordingly, we will refer to A; as the MPR
as this will facilitate comparisons with the MPR in continuous-time (A% (N),7) models.

2Intuitively, taking the leading principal components as the state vector, we can estimate &g, dx, A,, and
B,, by regressing bond yields on this state vector. The parameters that characterize f@(X;,1|X;) can then
be estimated by treating the recursions (12) and (13) as (possibly nonlinear) cross-equation restrictions.

13This observation is extremely useful for simulating the state process under P: the next state can be
simulated exactly using the Q density, with the parameters adjusted to reflect the state dependence induced
by the measure change.
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Notice first of all that!*

Eip [(Xiy1] — Ei@ [(Xia] = {A(I)(OQAt) - a(l)(O)] + [B(l)(();f\t) - b(l)(o)} Xi
= VX)X A+ o(Ay),

where V;F[-] is the conditional covariance matrix under P. Ignoring the higher order terms,
the above relationship is exactly what arises in diffusion-based models: A; is the vector of
market prices of risk underlying the adjustment to the “drift” in the change of measure from
Q to P. Moreover, the continuously compounded, expected excess return on the security

with the payoff e=¢X+1 s
o) o—¢'Xei1 [ (—e)+ ¢ (1)(A )] [b( )+ /b(l)(A )] X,
0 -1 = —la(—=¢)+ca CpmeTe
t [108 Eg [e—ie—c'Xen] t t t t

= —dVP[Xp1] x Ay + 0(c) + o(Ay). (22)

Since ¢ determines the exposure of this security to the factor risk X and V[ X,,,] measures
the size of the risk, the random variable A; is the dominant term in the true market price of
risk underlying expected excess returns.

A notable difference between A; and the market price of risk n that appears in continuous-
time (A%(N ), ) models is that A; measures the price of risk per per unit of variance, whereas
1 measures risk in units of standard deviation. From the heuristic derivation of our choice
of (dP/dQ)P it is seen that this difference is simply a consequence of our convention that

A = (ZX \/Sixt> - Uz (23)

Our strategy for developing a fully specified model (DA%(N ), A) will be to specify the
Q distribution of X; specify A; through (23) by adopting a specification 7;; and then to
use the resulting specification of (dP/dQ)”(X,41,A;) to derive the P distribution X and
the likelihood function of the bond yields. Following this approach, the resulting model
automatically satisfies P1 - P3. In particular, the modeler has complete freedom to specify
the dependence of A; on X; (P3), while preserving P1. Moreover, by substituting (23) into
(16) to construct fF(X;41|X;) within the model (DA% (N), A), we assure that the resulting
model fully accounts for any higher-order (nonlinear) terms in the actual MPR.

To better understand the nature of the potential nonlinearity inherent in our modeling
framework it is instructive to examine in more detail the model-implied first and second
P-moments of X. Let Az and Ay, form a conformal partition of A;. The conditional mean
of the i*" member of the M-vector of volatility factors Z,,;, under PP, is given by
0 ViC; Pi

—— A AN)X = Zy. 24
Dz [A(u; Ay) + B(u; Ay) X4 Ry p + (1= Aposc)? t (24)

Ez]tp [ZZ—H} =

1 The derivatives of A and B are with respect to their first arguments.
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Similarly, the conditional variance of Z;,, is given by

V; 02 QCsz Zt

i

(1 —Agpci)? * (1 —Agici)?

Vary [Z{,] = i=1,..., M. (25)
The nonlinearity of these moments, in contrast to their affine counterparts under Q (see (6)),
is induced by the state-dependence of Az ; through the terms 1/(1 — Az ).

Suppose that A; is parameterized, by choice of 7;, in the same manner as in (A%(N ),n)
models. Within the canonical AY,(N) model Xy is block-diagonal with the M x M upper
block being I, and the lower (N — M) x (N — M) block being Yy So, in particular, (from
(23)) Azt = (aliag[Z;'])_l/2 nzt. The special case of Dai and Singleton (2000)’s “completely
affine” specification of 1z has 1z = (dz’ag[Zlf])l/2 Az1, for constant M x 1 vector Az;. There-
fore, under their MPR, Az; is constant and (24) and (25) imply that the conditional moments
of Z are affine under P as well as under Q. In other words, completely affine (A% (N),7)
and (DAY, (N), A) models both imply that Z; follows an affine process under P. A special
case of this construction is the (DA;(1),A) model examined by Gourieroux, Monfort, and
Polimenis (2002).

A more general formulation of Az, that nests the specifications (of 77) adopted in Duffee
(2002), Duarte (2004), and Cheridito, Filipovic, and Kimmel (2003) has

<)\ZO + \/ dZCLg[Zz] (/\Zl + )\ZQZt) + TZt) s (26)

where Azo and Az; are M x 1 vectors and Azy is an M x M matrix. Setting Azo = 0 and
Tz = 0 yields the model in Cherdito, et. al. The special case of Azo = 0 and YTz = 0
gives Duarte’s model. So long as either Azo # 0 or Az # 0, Az is state-dependent and the
conditional P-moments of Z;; show nonlinear dependence on Z;. The term Y z; is introduced
to show illustrate that the modeler is free to add essentially any nonlinear dependence of
Az on X. We investigate empirically a model with additional nonlinear terms in Section 5.

Turning to the conditionally Gaussian components of X, and recalling the definitions in
(7), the conditional mean of Y;,; under P is

-1

Azt = ( dmg[ZZ])

By [Yia] = wiy + Qvilye. (27)
To interpret the consequences of alternative specifications of A for the functional form of

EF [Y;41], it is instructive to express the market price of risk for the entire state vector X in
an (DAY (N), A) model as

Axi = (Bxv/Sxi) ™ (\/SXtAOJr Stz X: + /S8 v/ Sxida + S);;Z;}TXt)

— (DxSxSy) ! (EXSXt)\O + NI X, + V/Sxeha + TXt> , (28)

where I is the N x N identity matrix with the first M diagonal elements set to zero, A\ and
Ag are N x 1 vectors of constants, A\ is an N x N matrix of constants, and Y x; can be any
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N x 1 vector of non-linear functions of X. The term in with Ay captures the completely affine
term from DS, adding the term with A; gives Duffee (2002)’s essentially affine specification,
and the term with A4 incorporates Duarte (2004)’s extension of Duffee’s model.'®

Examination of the implied conditional P-mean of Y., is facilitated by imposing, as in
the continuous-time canonical A2 (N) models in DS, the normalization that Xy = Iy. With
this normalization, the subvector of market prices of risk associated with Y becomes

Ay, = Sy} (Sn)\yo + Av1 Xt + V/ Syidva + TYt) : (29)

where Ay is the (N — M) x N matrix containing the last N — M rows of \;. Substituting
(29) into (27) gives

EP[Yi|Yi] = Wl + Syidvo + AviXs + v/ Syidya + Tye. (30)

It follows that the completely and essentially affine components of Ay; contribute an affine
function of X to the conditional mean of Y;.;. Duarte’s added term in A; introduces a
nonlinear term to the drift of Y'; specifically, the square roots of affine functions of X. Finally,
to illustrate the flexibility of specifying the conditional mean within our family of nonlinear
DTSMs, we have added the term Ty, and given the modeler essentially complete freedom
in specifying its functional dependence on X. Note in particular that, by an appropriate
choice of YTy, we can replicate the nonlinear dependence of the drifts documented in the
non-parametric analysis of Ait-Sahalia (1996). For any choice of Yy, the conditional P
distribution of X, and hence the likelihood function of the data, are known in closed form.

What our formulation of the (DA% (N), A) model does not allow is complete freedom
in specifying the nonlinearity of higher order moments, once we have chosen a functional
form for the conditional first moment. This is illustrated by the first two moments of the
autoregressive gamma process. The conditional means and variances depend on 1/(1 —
Aziic;) in a nearly symmetric way (compare (24) with (25)). Indeed, the variance has a
very similar structure to the mean, except that each term is divided by one higher power of
(1 — Azisc;). Thus, the nonlinear dependence in the mean achieved by one’s choice of Ay
effectively determines the structure of the nonlinearity of the conditional second moments.
This specialized structure, which is a consequence of Assumption N(IP), is the discrete-time
counterpart to the similarly special structure on moments implied by diffusion models. An
interesting question for future research is the feasibility of working with even richer pricing
kernels, while preserving the tractability of the resulting (DA (N), A) models.

Though we have allowed for considerable flexibility in specifying the dependence of A;
on X;, it is desirable to impose sufficient structure on A; to assure that the maximum
likelihood estimator of ©F has a well-behaved large-sample distribution. One property of the
PP distribution of X that takes us a long ways toward assuring this is geometric ergodicity.'®

I5Note that, under the normalization that ¥x = I, which we impose in our subsequent empirical exam-
ples, the third term in the line above (28) simplifies to Iy, just as in Duarte’s specification of 7;.

16See Duffie and Singleton (1993) for definitions and applications of geometric ergodicity in the context of
generalized method of moments estimation. General criteria for the geometric ergodicity of a Markov chain
have been obtained by Nummelin and Tuominen (1982) and Tweedie (1982).
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That X will not be a geometrically ergodic process for all specifications of A; can be seen
immediately from (24). If Az ; approaches ¢; as Z} increases, then the second term eventually
dominates and the state variable is explosive under P. Similarly, if Qy4A; in (27) sufficiently
amplifies the effect of X; on Y, ., then Y will be explosive under P.

Such explosive behavior is ruled out by geometric ergodicity since, intuitively, the latter
assures that a Markov process converges to its ergodic distribution at a geometric rate.
The following proposition provides sufficient conditions for the geometric ergodicity of an
autoregressive gamma processes (see Appendix A for the proof).

Proposition 1 (G.E.(Z)) Suppose that the market prices of risk Az (Z;) is a continuous
function of Zy, and the eigenvalues of the matrix p, 1; (i = 1,2,..., M), satisfy max; |¢;| < 1.
If, in addition,

1. Az(2) <0 forVz >0, or
2. Az(2) = A<0and p;; =0 for0<i#j<M,
then Z; is geometrically ergodic under both Q and P.

Central to the geometric ergodicity of the P distribution of Z is the behavior of Az, for
| Z]| > K, for some positive constant K. Applying Proposition G.E.(Z) to the specification
(26) of Az, we note first of all that the restriction \; < 0 is required to replicate the upward
sloping yield curve observed historically, on average. For a one-factor model (M = 1),
Proposition G.E.(Z) implies that this sign restriction and the assumption that v/Z;Azo+7 2
is a bounded function of Z are sufficient for Z; to be geometrically ergodic. Since we are
free to set the bound at a very large number, for practical purposes, once we have imposed
the sign restriction on \; called for by the historical data we obtain geometric ergodicity. If
M > 1, then the correlations among the Z% will potentially affect the geometric ergodicity
of Z. Sufficient conditions for geometric ergodicity would involve a bound on some terms in
Az and imposition of the sign restriction Ay < 0, though these conditions may be stronger
than necessary.

The challenge of formally establishing geometric ergodicity for the entire state vector
X, is naturally even more complex, because of the range of possible specifications of Ay,
many of which lead to models that lie outside those considered in the literature on geometric
ergodicity. For this reason researchers will most likely have to treat the issue geometric
ergodicity on a case-by-case basis, as we do in the following illustrations.

5 Empirical Illustrations

In this section we illustrate the flexibility of our modeling framework by estimating nonlin-
ear (DAY(3), A) models that nest several of the linear (A%(3),1) models in the published
literature. In presenting these models, we adopt the notation of continuous time, leaving
the mappings between these parameters and the primitive parameters of our DA?(ZS) models
presented in Section 2 implicit. We stress that this is only for notational convenience and
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ease of comparison with the reported estimates in the literature on continuous-time models.
Our nonlinear DTSMs are parameterized by writing down a continuous-time model, param-
eterizing the drift, diffusion term, and the market prices of risk, and then mapping these
parameters to those of our discrete-time conditional Gaussian and autoregressive-gamma
processes. In the end, it is the likelihood functions of these nonlinear discrete-time models
that we estimate. Further, all of the subsequent calculations of moments of the processes
are based on the moments of these exact discrete-time pricing models.
With these implicit mappings in the background, the model we examine is:

dX, = k(Y — X,)dt + X x+/S(t)dB2 (31)

where S(t) = diag(a + $X;) and dB? is an N-vector of independent standard Brownian
motions under Q; and the one-period (monthly) short rate is an affine function of X, r, =
do + 0% Xy, where dx = (3%, )’, which implies similar linear dynamics for bonds of other
maturities:

yi =05 + 0%’ X, (32)

Following Dai and Singleton (2000), we impose the following normalizations for econometric
identification of the models:

77
o_ | K 0 }
Ke = : 33
|:’£%/><Zl Ko (33)

Yx = I3; and

6% 0 1 0
09 = ,a= , B= 12 34
|: 0251 :| { Laxa :| 6 { ﬁg/le Ogx2 ( )
Two different specifications of the market prices of risk, leading to two different nonlinear
discrete-time DTSMs, were examined:

Duarte’s SASR;(3) Model: The market prices of risk are given by (26) with Az2 = 0 and
Tz =0 and (29) with Ay =0 and YTy; = 0.

DA%(3) Model with Nonlinear Drift in Volatility: The market prices of risk are given
by (26) with Azo = 0 and Tz; being an affine function of Z? and Z?, and (29) with A\y4 =0
and Ty; = 0.

Relying again on the notation of continuous time, these formulations of the market price of
risk imply a P-drift of the form

’{];1 0 0 oy Zy AV Zi + Xy ZE + Nsa ) 27
’ig,l ’fﬂzmg "f]g,s QIQP — Yia + 0 . (35)
KEJ ’igg ’f]g,s 05 Yio 0

Duarte’s model is the special case with Ay(11) = A3(1,1) = 0, and our nonlinear model is the
special case with Ay = 0.

Exploration of alternative nonlinear formulations of the drift of the risk factor determining
stochastic volatility is motivated by several observations. First, one of our goals is to expand
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the extant focus in the literature on discrete-time DTSMs from DAZ(N) models to DAY (N)
models with M > 0, so focusing on a model with stochastic volatility in the risk factors
seemed natural. Second, in its continuous-time formulation, Duarte’s model does not have a
known likelihood function and, therefore, he had to resort to approximations in computing
his ML estimates. The likelihood function of our discrete-time counterpart is known in
closed-form and so his model provides an interesting example of the tractability obtained
by shifting to discrete time. Finally, and most central to the literature on term structure
modeling, the goodness-of-fit of affine DT'SMs has been constrained both by the requirements
of admissibility of AY, (M) models and the standard formulations of the market prices of risk
for Z. Of interest, then, is the relative fits of DAY(3) models with alternative extended
formulations of Az; with their induced nonlinearity the the P distributions of Z. Even more
general formulations of this model are possible by allowing A; to induce nonlinearity in the
drifts of all three state variables.

The models were estimated using “smoothed” Fama-Bliss monthly data on treasury zero-
coupon bond yields from 1970:1 to 1995:12. This is the same data used in Backus, Foresi,
and Zin (1998) and Dai and Singleton (2002). We assumed that bonds with .5, 2 and 10
years to maturity were priced without errors, while bonds with maturities of .25, 1 and 5
years were priced with serially independent Gaussian errors. Data for the period 1996-2000
was omitted from the estimation in order to examine the out-of-sample predictability of
excess returns. A primary motivation for Duffee (2002)’s essentially affine model is that his
more flexible specification of market prices of risk substantially improves the ability of affine
models to match the persistence in excess returns. A question that we address with our
nonlinear (DAY(3), A) model is whether there is a further improvement in the out-of-sample
performance of DAY(3) models due to the introduction of a more general market price of
volatility risk.

The ML estimates of the parameter of three models are displayed in Tables 1 and 2: the
linear DAY(3) with all three terms inducing nonlinearity in (35) set to zero, the nonlinear
DA(I@(?)) model in which Ay 1) and Az(1) are nonzero, and Duarte’s model in which A4
is nonzero. Focusing first on these nonlinear terms, the likelihood ratio statistic of 11.23
indicates rejection of null hypothesis that Ay1.1) and Ag11) in the nonlinear DA;(3) are zero
at conventional significance levels. The significantly negative coefficient on the cubic term
suggests that Z is strongly mean-reverting in more volatile times, while behaving similar to a
random walk under relatively stable conditions. In Duarte’s SASR;(3) model, A\, is positive
and of similar magnitude to his estimate, though it carries a relatively large standard error.

Figure 1 displays the loadings on the state variables for zero-coupon bonds with maturities
ranging from six months to ten years. The loadings on the volatility factor X in the nonlinear
D A'(3) looks similar to those of a “curvature” factor. This is consistent with link between
volatility and the convexity of the yield curve (Litterman, Scheinkman, and Weiss (1991)). In
contrast, the volatility factor in model SASR;(3) has loadings reminiscent of a slope factor.
The properties of X are also very different under Q. In our nonlinear DA, (3) model, X has
an intermediate degree of mean reversion, with factor X, having the slowest rate of mean
reversion and X3 having the fastest (see the diagonal elements of k2 in Table 2). On the
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ML Linear Nonlinear Duarte
estimates Model DA;(3) Model DA;(3) Model
/@P(l, 1) 0.627 (6.041) | 2.712 (2801 ) | 0.295 ( 1.128)
KP(2, 1) 0.219 (0.021) | -0.476 (-0.063) | 0.000
/{P(?), 1) -5.251  (-0.095) | -3.538 (-0.175) | 0.000
/{P(l,Q) 0.000 0.000 0.000
/4;]?(2,2) 0.224 (1.601) | 0.149 (1.169) | 0.416 ( 1.666 )
/@P(S, 2) 0.000 0.000 0.000
KP(L 3) 0.000 0.000 0.000
KP(Q,S) -1.517  (-0.024 ) | -1.412 (-0.081) | 6.980 ( 0.093)
KP(3,3) 1.594 (5359 ) | 1.539 (5.555) | 2.686 (6.002)
HP(l, 1) 5971 (1 3.587) | 1.460 (3.378 ) | 0.331
GP(Q, 1) 0.000 0.000 0.000
GP(?), 1) 0.000 0.000 0.000
do(1,1) 0.050 (2.099) | -0.055 (-0.709 )| 0.046 ( 3.969 )
oy (1,1) 0.003 (5.467) | 0.003 (4.512) | 0.002 (5.219)
Iy (2,1) 0.000 (0.024) | 0.001 (0.070 ) | 0.001 (0.092)
Iy (3,1) 0.002 (0.094) | 0.003 (0.172) | 0.004 ( 3.698)
A*(1,1) 0914 (1.022)
B(1,1) 1.000 1.000 1.000
B(2,1) 74.514  (0.012) | 73.727 (0.035) | 23.774 ( 0.046 )
B3(3,1) 12.196  (0.047 ) | 7.942 (0.085) | 0.145 ( 1.765)
Ao(1,1) 0.812 (3.246)
A3(1,1) -0.071  (-2.621)
Log Likelihood 30.612 30.630 30.673
Test Ratio 11.232

Table 1: ML estimates for two DA;(3) models with and without non-linear drift and
SASR;(3) model. t-statistics are included in the parenthesis. Those without a t-statistic
are implied from estimated parameters. The models are fitted to monthly observations of
zero yields with maturities equal to 3, 6 months, 1, 2, 5 and 10 years.
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ML Linear Nonlinear Duarte

estimates Model DA, (3) Model DA, (3) Model
k2(1,1) 0.552 0.553 -0.018
k2(2,1) -0.108 -2.567 -0.648
K2(3,1) -6.400 -4.992 -0.019
kQ(1,2) 0.000 0.000 0.000
K2(2,2) 0.003 0.003 0.543
K2(3,2) -0.132 0.000 0.000
k2(1,3) 0.000 0.000 0.000
kQ(2,3) 0.007 0.972 17.211
k2(3,3) 2.013 1.998 1.841
09(1,1) 6.787 7.157 -5.457
09(2,1) || 750.533 841.397 -4.542
09(3,1) 54.126 15.385 0.015
Ao(1,1) -0.075  (-0.746 ) | -2.159 (-2.250 ) | -0.313 (-1.198)
Ao(2,1) -0.202  (-0.147) | 0.000 -1.328  (-0.098 )
Ao(3,1) 2.299  (0.085) | -0.183 (-0.171) | -0.133 (-1.206 )
A (1, 1) 0.000 0.000 0.000
A(2,1) 14.704  (0.013) | -2.092 (-0.071) | 30.929 ( 0.031)
Ai(3,1) -29.188  (-0.031) | 0.000 0.000
Ai(1,2) 0.000 0.000 0.000
Ai(2,2) -0.222  (-1.676) | -0.146 (-1.144) | 0.127 (0.514)
Ai(3,2) -0.132  (-0.024) | 0.000 0.000
A (1,3) 0.000 0.000 0.000
Ai(2,3) 1.523  (0.024) | 2384  (0.081) | 10.231 ( 0.092)
Ai(3,3) 0419  (1.307) | 0.460 (1.472) |-0.845 (-1.838)

Table 2: ML estimates for two DA;(3) models with and without non-linear drift and
SASR;(3) model. t-statistics are included in the parenthesis. Those without a t-statistic
are implied from estimated parameters. The models are fitted to monthly observations of
zero yields with maturities equal to 3, 6 months, 1, 2, 5 and 10 years.
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other hand, the volatility factor X is explosive under @ in model SASR;(3). X5 has the
intermediate level of mean reversion and Xz has the slowest rate of mean reversion.
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Figure 1: Intercepts (7)) and loadings (d%) of states on bond yields of different maturities
for the nonlinear DA;(3) model (top) and Duarte’s model (bottom).

The implications of these different “rotations” of the factors induced by the different
forms of nonlinearity for the terms structures of means and variances of bond yields can be
seen from Figure 2. For each model, 100,000 months of data on X were simulated, beyond
100,000 months of burn-in to avoid sensitivity to initial conditions, and then sample means
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and volatilities (standard deviations) of the yields were computed at the ML estimates of
the parameters. All three models match the unconditional means of the yields reasonably
well. The nonlinear DA;(3) model matches somewhat better at short maturities, and the
SASR;(3) model matches better at the longer maturities, but overall the fits are comparable.
On the other hand, there are substantial differences in the models’ fits to the term structures
of volatilities. Most striking are the low volatilities implied by the SASR;(3) model, relative
to those in the historical data, particularly at the short- to intermediate-term maturities.
Both the linear and nonlinear D A;(3) models tend to overstate volatility at the longer end
of the curve, but they match up quite well with the data at shorter maturities, with the
nonlinear DA, (3) model having the closest match.
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Figure 2: Term structures of unconditional means and volatilities of zero-coupon bond yields
implied by the linear and nonlinear D A;(3) models.

Turning next to the properties of the conditional means, the nonlinearity implied by
the SASR;(3) model is quite different from that implied by the nonlinear DA;(3) model
(Figure 3). Due to the quadratic shape of the mean of Z induced by the presence of V/Z in the
drift, model SASR;(3) exhibits strong mean reversion for large values of Z, but essentially
no mean reversion when Z is near or below its mean. This inability of model SASR;(3) to
generate mean reversion at small values of Z is an inherent feature of the assumed structure
of the drift of Z. Most of the descriptive evidence on bond yields suggests that they are
mean reverting both at high and low values relative to their means (e.g., Ait-Sahalia (1996)
and Ang and Bekaert (2002)). We follow up on this point subsequently by examining how
well this model performs out-of-sample in predicting excess returns.

The drift in the nonlinear DA;(3) model resembles more closely the nonlinear shapes
documented in previous descriptive studies of nonlinearity in short-term interest rates. The
degree of mean reversion in Z at low values is mild compared to high values, but the char-
acteristic “S on its side” shape is present. The left-hand-side of this graph turns up more
sharply for values of Z even further below its mean, though the likelihood of observing a
value of Z in this region is very small.
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Figure 3: Conditional P means of Z implied by the nonlinear DA;(3) model (left) and the
SASR;(3) model (right).

One means of comparing the relative fits of DT'SMs is to compare their forecasting powers
both within and out of sample. Figure 4 displays the root-mean-squared forecast errors
(RMFE), within sample, for the three DT'SMs over forecast horizons of eight and ten months.
For comparison we have also included the RMFFEs generated by the assumption that the
zero-coupon bond yields follow random walks (RD). All three models perform comparably
based on this metric, with our nonlinear DA;(3) somewhat outperforming the other two
models. Mapping the loadings in Figure 1 to the forecasting performance in Figure 4 for
each maturity, we find that the nonlinear DA;(3) tends to forecast better than its linear
counterpart as the contribution of the linear slope factor decreases in importance. It is also
interesting that our linear D A;(3) model forecasts slightly better than the SASR;(3) model.

When the corresponding RMFFEs are computed using out-of-sample data for the period
1996 — 2000 the results are somewhat different. The nonlinear DA, (3) model is still outper-
forms its linear counter part, producing estimates that are both less biased and more precise.
However, there is little difference between the two models with nonlinear market price of
risk specifications.

6 Concluding Remarks

In this paper we have argued that, along important dimensions, researchers can gain flex-
ibility and tractability in analyzing DTSMs by switching from continuous to discrete time.
We have developed a family of nonlinear DTSMs that has several key properties: (i) under
Q, the risk factors X follow the discrete-time counterpart of an affine process residing in one
of the families A% (N), as classified by Dai and Singleton (2000), (ii) the pricing kernel is
specified so as to give the modeler nearly complete flexibility in specifying the market price
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Figure 4: Root mean squared errors in sample (1970:1-1995:12) for a linear DA;(3), a
nonlinear DA, (3) model with a quare and a cubic term in the P-drifts, a nonlinear SASR; (3)
model and a random walk model (RD).

of risk A; of the risk factors, and (iii) for any admissible specification of A;, the likelihood
function of the bond yield data is known in closed form. This modeling framework was
illustrated by estimating nonlinear (DAY(3), A) models with several specifications of A; that
give rise to nonlinear (and non-affine) representations of X under the historical measure
P. Our particular choices of A; introduced powers of the volatility factor Z. However, our
modeling framework allows, in principle, for a fully semi-parametric specification of A;, and
for possible nonlinearity in all three state variables in these (DA%(3), A) models, and not
just in the volatility factor.

There are many directions in which our modeling framework can be extended. For
instance, given the widespread interest in regime-switching models for interest rates, the
extension to pricing models that allow for volatility processes to switch regimes may well
be of interest. Ang and Bekaert (2003) and Dai, Singleton, and Yang (2005) study DTSMs
in which X follows a regime-switching DABQ(N ) process, with the latter study allowing for
priced regime-shift risk. Bansal and Zhou (2002) examine an approximate DTSM in which
the risk factors follow independent processes, each of which is interpreted as a discrete-
time approximation to an AY(1) process. Our framework allows for the introduction of
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Figure 5: Root mean squared errors out of sample (1996:1-2000:12) for a linear DA;(3), a
nonlinear DA, (3) model with a quare and a cubic term in the P-drifts, a nonlinear SASR; (3)
model and a random walk model (RD).

stochastic volatility into those studies that have focused on Gaussian models, and allows the
stochastic volatility factors to be treated consistently as DA%(M ) processes rather than as
approximations to their continuous-time counterparts.

Moreover, under certain conditions analogous to those set forth in Dai and Singleton
(2003) for continuous-time models, we preserve analytical bond pricing even in the presence
of switching regimes. To be concrete, for the case of a regime-switching (DAZ(N), A) model,
what we need for analytical bond pricing is that mg and oz do not switch across regimes.
However, v = 2/{%09 /0% can change with the regime. This is analogous to the Gaussian
case where we can allow the “constant term” to switch across regimes. These restrictions
do not preclude priced regime shift risk or that the P distributions of the risk factors and
the bond yields have a regime-switching structure. To implement a model like this, general
assumption, we can specify Z; as an autoregressive gamma process under Q. Depending
on how one parameterizes the market prices of risks, the conditional density of Z; under
P, which is needed to construct the likelihood function, may not be known in closed form.
However, at least for the case of M = 1, the relevant density can be computed through
Fourier inversion (see, e.g., Duffie, Pan, and Singleton (2000) and Singleton (2001)).
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Appendix

A Proof of Proposition G.E.(Z)

The proof follows from a lemma due to Mokkadem (1985)

Lemma 1 (Mokkadem) Suppose {Z,} is an aperiodic and irreducible Markov chain defined

by
Zip1 = H(Zy, €141, 0), (36)

where €, is an ii.d. process. Fix 6 and suppose there are constants K > 0,04 € (0,1), and
q > 0 such that H(-,€1,80) is well defined and continuous with

[H(z,e1,0)llq < dollzll, [Iz]l > K. (37)
Then {Z;} is geometrically ergodic.

In our setting, we can write, without loss of generality,

H(z,€,0) = [a(l)()\( )) 4+ M (X ))z] + vV Q(2)e,

where ¢, has a zero mean and unit variance, and Q(z) = a®(\(2)) +b® (\(z))z. Take ¢ = 2,

we have
10,0l _ JaPOEN |, B0 | VIl
S e T || || E (38)

The first term on the right-hand-side of (38) satisfies

ViCq

el _ e [ 1 e el
2] | Il
where we have used the assumption (i) to obtain the inequality.

Since all elements of p are non-negative, if 1 — \;(z)¢; > 1 for all z and 4, then the second
term in (38) is bounded by

0, [[z]] = oo, (39)

IO )= _ ezl
Iz = =l

If, in addition, p;; = 0 for ¢ # j, the above bound is valid for each element of z when it is
sufficiently large. That is, there exists a K > 0, such that

160 5:(A(2)) i) < | piizill

Il —

< max [1);].
(A

< pi <maxyp, z; > K
T
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Finally, the last term in (38) can be made arbitrarily small by choice of a sufficiently
large K, because ||e1]|2 = 1 and 1/€(z) depends on z through terms of the form /z.1"

The only term on the right-hand side of (38) that does not become arbitrarily small as
K increases towards infinity is the second term. Since we assume that max; |¢;| < 1, we are
free to choose dy to satisfy max; [1);| < d9 < 1 so that Lemma 1 is satisfied.
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