Forecasting with Model Uncertainty: Representations and Risk Reduction

Keisuke Hirano and Jonathan H. Wright

University of Arizona and Johns Hopkins University

ECB, June 132014

Introduction

- Controversy between in-sample and OOS
- Considers forecasting with weak predictors

O Present paper highlights important effect of bagging

- Without bagging ordering is approximately:
(1) In-sample + AIC
(2) Out-of-sample
(3) Split sample

Introduction

- Controversy between in-sample and OOS
- Considers forecasting with weak predictors

O Present paper highlights important effect of bagging

- Without bagging ordering is approximately:
(1) In-sample + AIC
(2) Out-of-sample
(3) Split sample
- With bagging, it's generally reversed
- With alternate form of bagging, can prove that OOS and SS are dominated by bagging counterparts

Setup

Regression Model:

$$
y_{t}=\beta^{\prime} x_{t}+u_{t}
$$

O k regressors (k fixed)

- $E\left[x_{t} x_{t}^{\prime}\right]=\Sigma_{x x}=I_{k}$
- u_{t} IID, independent of x
- Local parametrization: $\beta=T^{-1 / 2} b$ (Inoue \& Kilian (2006))

Forecast Assessment

Forecast: $\tilde{y}_{T+1}=\tilde{\beta}^{\prime} x_{T+1}$.

- Unconditional MSPE

$$
E\left[\left(y_{T+1}-\tilde{\beta}^{\prime} x_{T+1}\right)^{2}\right]=\sigma^{2}+E\left[(\tilde{\beta}-\beta)^{\prime}(\tilde{\beta}-\beta)\right]+o_{p}\left(T^{-1}\right)
$$

- First term is $O(1)$ and same for all methods
- Second term is $O\left(T^{-1}\right)$
- Normalized MSPE:

$$
N M S P E=T\left(M S P E-\sigma^{2}\right)=E\left[T(\tilde{\beta}-\beta)^{\prime}(\tilde{\beta}-\beta)\right]
$$

Forecasting Procedures

With k regressors, there are 2^{k} possible subsets.

O Big Model (OLS with all predictors)

- Small Model: $\tilde{\beta}=0$.
- Positive-part James-Stein (shrinkage)
- Select model using AIC

O Out-of-sample forecasting

- Split-sample forecasting

O All methods with bagging

Bagging

Bagging $=$ Bootstrap Aggregation (Breiman, 1996)

- Draw a bootstrap sample $\left\{x_{t}^{*}(i), y_{t}^{*}(i)\right\}$ from the original data $\left\{x_{t}, y_{t}\right\}$.
- Recompute estimator $\tilde{\beta}^{*}(i)$.
- Repeat for many bootstrap samples $(i=1, \ldots, L)$, average and generate the forecast
O Bühlmann and Yu (2002): bagging smooths hard-threshold estimators
- Inoue and Kilian (2008): application to forecasting CPI

Theorem 2: Limiting Distributions of Estimators

- OLS: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} Y=N\left(b, \sigma^{2}\right)$
- JS: $T^{1 / 2} \tilde{\beta} \rightarrow{ }_{d} S_{1}(Y)=Y_{w_{1}}(Y)$
- AIC: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} S_{2}(Y)=Y w_{2}(Y)$

Theorem 2: Limiting Distributions of Estimators

- OLS: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} Y=N\left(b, \sigma^{2}\right)$
- JS: $T^{1 / 2} \tilde{\beta} \rightarrow{ }_{d} S_{1}(Y)=Y_{w_{1}}(Y)$
- AIC: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} S_{2}(Y)=Y w_{2}(Y)$
- OOS: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} S_{3}\left(Y, U_{B}\right)$
where U_{B} is a Brownian bridge independent of Y and b
- SS: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} S_{4}\left(Y, U_{B}\right)$

Representation of Partial Sums

All of the procedures we consider depend crucially on the partial sum process $(r \in[0,1]): T^{-1 / 2} \sum_{t=1}^{[T r]} x_{t} y_{t}$

Theorem 1:

$$
T^{-1 / 2} \sum_{t=1}^{[T r]} x_{t} y_{t} \rightarrow_{d} r Y+\sigma U_{B}(r)
$$

where $Y \sim N\left(b, \sigma^{2}\right)$ and U_{B} is a Brownian bridge independent of Y and b

Adding Bagging Step

Theorem 3: In the ith bootstrap step

$$
T^{-1 / 2} \Sigma_{t=1}^{[T r]} x_{t}^{*}(i) y_{t}^{*}(i) \rightarrow_{d} r Y+\sigma V_{i}(r)
$$

where V_{i} are independent Brownian motions
(Park, 2002).

Limiting Distributions of Estimators with Bagging

- OLS $T^{1 / 2} \tilde{\beta}_{i} \rightarrow_{d} Y+V_{i}$
- JS: $T^{1 / 2} \tilde{\beta}_{i} \rightarrow_{d} S_{1}\left(Y, V_{i}\right)$
- AIC: $T^{1 / 2} \tilde{\beta}_{i} \rightarrow_{d} S_{2}\left(Y, V_{i}\right)$
- OOS: $T^{1 / 2} \tilde{\beta}_{i} \rightarrow_{d} S_{3}\left(Y, V_{i}\right)$
where V_{i} is a Brownian motion independent of Y and b
- SS: $T^{1 / 2} \tilde{\beta}_{i} \rightarrow_{d} S_{4}\left(Y, V_{i}\right)$
- Repeating across different i and averaging means that all estimators eliminate V_{i} and are generalized shrinkage estimators.

Bagging Comments

- For OOS and SS, bagging replaces U_{B} with V_{i} and then eliminates by integration.
- Intuition: for SS, bagging randomizes over partitions of the data \Rightarrow uses all obs for both model selection and estimation

Simpler Representations with $k=1$

- AIC without bagging: $T^{1 / 2} \tilde{\beta} \rightarrow_{d} Y \mathbf{1}(Y>\sqrt{2} \sigma)$
- SS without bagging: $Z_{1} \mathbf{1}\left(\left|Z_{2}\right|>\sqrt{2 / \pi} \sigma\right)$
where $Z_{1} \sim N\left(b, \frac{\sigma^{2}}{1-\pi}\right) \perp Z_{2} \sim N\left(b, \frac{\sigma^{2}}{\pi}\right)$
- AIC with bagging:
$Y-Y \Phi\left(\frac{\sqrt{2} \sigma-Y}{\sigma}\right)+\sigma \phi\left(\frac{\sqrt{2} \sigma-Y}{\sigma}\right)+Y \Phi\left(\frac{-\sqrt{2} \sigma-Y}{\sigma}\right)-\sigma \phi\left(\frac{-\sqrt{2} \sigma-Y}{\sigma}\right)$
- SS with bagging: $Y-Y \Phi\left(\frac{\sqrt{2} \sigma-\sqrt{\pi} Y}{\sigma}\right)+Y \Phi\left(\frac{-\sqrt{2} \sigma-\sqrt{\pi} Y}{\sigma}\right)$

Risk Reduction

- In the limit, OOS and SS are functionals of both $Y=Y(1)$ and $U=U_{B}$.
- But Y is sufficient.
- Marginalize out the random noise term U :

$$
\tilde{S}(Y)=E[S(Y, U) \mid Y] .
$$

- By the Rao-Blackwell theorem,

$$
\operatorname{MSPE}(\tilde{S}, b) \leq \operatorname{MSPE}(S, b) \quad \forall b
$$

Risk Reduction

- Calculations indicate strict risk reduction for at least some b.
- Hence OOS and SS are asymptotically inadmissible.

Risk Reduction

- Calculations indicate strict risk reduction for at least some b.
- Hence OOS and SS are asymptotically inadmissible.
- Bagging is like Rao-Blackwellization wrt V instead of U.
- Might want to do Rao-Blackwellization or an alternative form of bagging that achieves this.

Alternative Form of Bagging

- All estimators are functions of $x_{t} x_{t}^{\prime}$ and $x_{t} y_{t}$ alone.
© Let

$$
z_{t}=x_{t} y_{t}=x_{t} x_{t}^{\prime} \hat{\beta}+x_{t} e_{t}
$$

and define the i th bootstrap draw of z_{t} as:

$$
z_{t}^{*}(i)=x_{t} x_{t}^{\prime} \hat{\beta}+\theta_{t}(i) x_{t} e_{t}-T^{-1} \Sigma_{s=1}^{T} \theta_{s}(i) x_{s} e_{s}
$$

where $\theta_{t}(i)$ is the "wild" term.

Alternative Form of Bagging

- All estimators are functions of $x_{t} x_{t}^{\prime}$ and $x_{t} y_{t}$ alone.
© Let

$$
z_{t}=x_{t} y_{t}=x_{t} x_{t}^{\prime} \hat{\beta}+x_{t} e_{t}
$$

and define the i th bootstrap draw of z_{t} as:

$$
z_{t}^{*}(i)=x_{t} x_{t}^{\prime} \hat{\beta}+\theta_{t}(i) x_{t} e_{t}-T^{-1} \Sigma_{s=1}^{T} \theta_{s}(i) x_{s} e_{s}
$$

where $\theta_{t}(i)$ is the "wild" term.

- Theorem 4: Limiting distributions same as Theorem 2 but with $Y(r)=r Y+\sigma U_{B}(r)$ replaced by $r Y+\sigma U_{B}^{i}(r)$

Asymptotic Root NMSPE (k=1)

Asymptotic Root NMSPE ($k=3$)

Dominance Relations (1 nonzero coefficient)

k	1	2	3	4	5	6
AIC v OOS						
AIC v SS						
AIC v AICB						
AIC v OOSB	OOSB	OOSB	OOSB	OOSB	OOSB	OOSB
AIC v SSB				SSB	SSB	SSB
OOS v SS						
OOS v AICB						
OOS v OOSB	OOSB	OOSB	OOSB	OOSB	OOSB	OOSB
OOS v SSB	SSB	SSB	SSB	SSB	SSB	SSB
SS v AICB						
SS v OOSB						
SS v SSB	SSB	SSB	SSB	SSB	SSB	SSB
AICB v OOSB		OOSB	OOSB	OOSB	OOSB	OOSB
AICB v SSB			SSB	SSB	SSB	SSB
OOSB v SSB						

Dominance Relations (2 nonzero coefficients)

k	1	2	3	4	5	6
AIC v OOS						
AIC v SS						
AIC v AICB						
AIC v OOSB						
AIC v SSB						
OOS v SS						
OOS v AICB						
OOS v OOSB	OOSB	OOSB	OOSB	OOSB	OOSB	OOSB
OOS v SSB	SSB	SSB	SSB	SSB	SSB	SSB
SS v AICB						
SS voSB						
SS v SSB	SSB	SSB	SSB	SSB	SSB	SSB
AICB v OOSB					OOSB	OOSB
AICB v SSB					SSB	SSB
OOSB v SSB						

Comparison of Bayes Risk

- Prior:
- Each regressor is included in the model with probability p.
- Conditional on inclusion, prior for that element of b is $N(0, \phi)$.
- Can work out local asymptotic Bayes risk: limit of

$$
E\left[\left(T^{1 / 2} \tilde{\beta}-b\right)^{\prime}\left(T^{1 / 2} \tilde{\beta}-b\right)\right]
$$

Comparison of Bayes Risk

- Prior:
- Each regressor is included in the model with probability p.
- Conditional on inclusion, prior for that element of b is $N(0, \phi)$.
- Can work out local asymptotic Bayes risk: limit of

$$
E\left[\left(T^{1 / 2} \tilde{\beta}-b\right)^{\prime}\left(T^{1 / 2} \tilde{\beta}-b\right)\right]
$$

- OOS/SS with bagging do well
- But BMA always does better, and can do much better

h-step ahead forecasting

Setup:

$$
y_{t+h}=\beta^{\prime} x_{t}+u_{t}
$$

- Serial correlation in u_{t} could be exploited but isn't.

h-step ahead forecasting

- Setup:

$$
y_{t+h}=\beta^{\prime} x_{t}+u_{t}
$$

- Serial correlation in u_{t} could be exploited but isn't.
- Without bagging

$$
T^{-1 / 2} \Sigma_{t=1}^{[T r]} x_{t}(i) y_{t}(i) \rightarrow_{d} r N\left(b, \omega^{2} I\right)+\omega U_{B}(r)
$$

- With bagging

$$
T^{-1 / 2} \Sigma_{t=1}^{[T r]} x_{t}^{*}(i) y_{t}^{*}(i) \rightarrow_{d} r N\left(b, \omega^{2} I\right)+\sigma V_{i}(r)
$$

h-step ahead forecasting

- Could get bagging to "mimic" serial dependence in the data.
- Draw blocks of data of length that goes to infinity slowly.

h-step ahead forecasting

- Could get bagging to "mimic" serial dependence in the data.
- Draw blocks of data of length that goes to infinity slowly.
- Easy to do Rao-Blackwellization with serial correlation

Forecasting in a VAR

O A p-variable stationary VAR with k lags and intercept:

$$
y_{t}=B x_{t}+\varepsilon_{t}
$$

- Suppose that $B=C T^{-1 / 2}$.
- Each model consists of a set of zero restrictions on B.

Forecasting in a VAR

O A p-variable stationary VAR with k lags and intercept:

$$
y_{t}=B x_{t}+\varepsilon_{t}
$$

- Suppose that $B=C T^{-1 / 2}$.
- Each model consists of a set of zero restrictions on B.
- All estimators depend on:
- $T^{-1} \Sigma_{t=1}^{[T r]} x_{t} x_{t}^{\prime} \rightarrow_{r} r \Omega_{x x}$ where $\Omega_{x x}=E\left(x_{t} x_{t}^{\prime}\right)$
- $T^{-1 / 2} \Sigma_{t=1}^{[T r]} y_{t} x_{t}^{\prime} \rightarrow_{d}[r C+B(r)] \Omega_{x x}$
- Estimators other than OOS or SS are functions of $Y \equiv C+B(1)$ alone
- OOS and SS are functions of Y and $U_{B}(r)$.

Extension to general likelihood framework

- Parameter θ and likelihood $I(\theta)=\Sigma_{t=1}^{T} I_{t}(\theta)$
- True value is $\theta_{0}=c T^{-1 / 2}$
- Model selection amounts to imposing zeros on θ
- Need $T^{-1 / 2} \Sigma_{t=1}^{[T r]} I_{t}^{\prime}\left(\theta_{0}\right) \rightarrow B(r)$

Monte-Carlo Simulation

- Monte-Carlo simulation with Gaussian shocks and $T=100$
- Evaluated normalized root mean square prediction error $\sqrt{T *(M S P E-1)})$

Monte-Carlo Root NMSPE ($k=1$)

Monte-Carlo Root NMSPE ($k=3$)

Conclusion

© Representation highlights dependence of OOS and SS "noise"

- This can be eliminated by bagging

O Or by Rao-Blackwellization (alternative bagging)

- Standard and alternative bagging on OOS/SS compares favorably with existing methods

Recap (in haiku)

Out of sample is Inadmissible, but the
Future's in the bag.

