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Introduction

Introduction

Controversy between in-sample and OOS

Considers forecasting with weak predictors

Present paper highlights important effect of bagging

Without bagging ordering is approximately:

1 In-sample + AIC
2 Out-of-sample
3 Split sample

With bagging, it’s generally reversed

With alternate form of bagging, can prove that OOS and SS
are dominated by bagging counterparts
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Setup and Procedures

Setup

Regression Model:
yt = β′xt + ut

k regressors (k fixed)

E [xtx
′
t ] = Σxx = Ik

ut IID, independent of x

Local parametrization: β = T−1/2b (Inoue & Kilian (2006))
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Setup and Procedures

Forecast Assessment

Forecast: ỹT+1 = β̃′xT+1.

Unconditional MSPE

E [(yT+1 − β̃′xT+1)2] = σ2 + E
[
(β̃ − β)′(β̃ − β)

]
+ op(T−1)

First term is O(1) and same for all methods

Second term is O(T−1)

Normalized MSPE:

NMSPE = T (MSPE − σ2) = E
[
T (β̃ − β)′(β̃ − β)

]
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Setup and Procedures

Forecasting Procedures

With k regressors, there are 2k possible subsets.

Big Model (OLS with all predictors)

Small Model: β̃ = 0.

Positive-part James-Stein (shrinkage)

Select model using AIC

Out-of-sample forecasting

Split-sample forecasting

All methods with bagging
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Setup and Procedures

Bagging

Bagging = Bootstrap Aggregation (Breiman, 1996)

Draw a bootstrap sample {x∗t (i), y∗t (i)} from the original data
{xt , yt}.
Recompute estimator β̃∗(i).

Repeat for many bootstrap samples (i = 1, . . . , L), average
and generate the forecast

Bühlmann and Yu (2002): bagging smooths hard-threshold
estimators

Inoue and Kilian (2008): application to forecasting CPI
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Representations

Theorem 2: Limiting Distributions of Estimators

OLS: T 1/2β̃ →d Y = N(b, σ2)

JS: T 1/2β̃ →d S1(Y ) = Yw1(Y )

AIC: T 1/2β̃ →d S2(Y ) = Yw2(Y )

OOS: T 1/2β̃ →d S3(Y ,UB)
where UB is a Brownian bridge independent of Y and b

SS: T 1/2β̃ →d S4(Y ,UB)
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Representations

Representation of Partial Sums

All of the procedures we consider depend crucially on the partial

sum process (r ∈ [0, 1]): T−1/2
∑[Tr ]

t=1 xtyt

Theorem 1:

T−1/2
[Tr ]∑
t=1

xtyt →d rY + σUB(r)

where Y ∼ N(b, σ2) and UB is a Brownian bridge independent of
Y and b
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Representations

Adding Bagging Step

Theorem 3: In the ith bootstrap step

T−1/2Σ
[Tr ]
t=1x

∗
t (i)y∗t (i)→d rY + σVi (r)

where Vi are independent Brownian motions
(Park, 2002).
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Representations

Limiting Distributions of Estimators with Bagging

OLS T 1/2β̃i →d Y + Vi

JS: T 1/2β̃i →d S1(Y ,Vi )

AIC: T 1/2β̃i →d S2(Y ,Vi )

OOS: T 1/2β̃i →d S3(Y ,Vi )
where Vi is a Brownian motion independent of Y and b

SS: T 1/2β̃i →d S4(Y ,Vi )

Repeating across different i and averaging means that all
estimators eliminate Vi and are generalized shrinkage
estimators.
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Representations

Bagging Comments

For OOS and SS, bagging replaces UB with Vi and then
eliminates by integration.

Intuition: for SS, bagging randomizes over partitions of the
data ⇒ uses all obs for both model selection and estimation
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Representations

Simpler Representations with k = 1

AIC without bagging: T 1/2β̃ →d Y 1(Y >
√

2σ)

SS without bagging: Z11(|Z2| >
√

2/πσ)

where Z1 ∼ N(b, σ2

1−π ) ⊥ Z2 ∼ N(b, σ
2

π )

AIC with bagging:

Y−YΦ(
√
2σ−Y
σ )+σφ(

√
2σ−Y
σ )+YΦ(−

√
2σ−Y
σ )−σφ(−

√
2σ−Y
σ )

SS with bagging: Y − YΦ(
√
2σ−
√
πY

σ ) + YΦ(−
√
2σ−
√
πY

σ )
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Risk Reduction

Risk Reduction

In the limit, OOS and SS are functionals of both Y = Y (1)
and U = UB .

But Y is sufficient.

Marginalize out the random noise term U:

S̃(Y ) = E [S(Y ,U) | Y ] .

By the Rao-Blackwell theorem,

MSPE (S̃ , b) ≤ MSPE (S , b) ∀b
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Risk Reduction

Risk Reduction

Calculations indicate strict risk reduction for at least some b.

Hence OOS and SS are asymptotically inadmissible.

Bagging is like Rao-Blackwellization wrt V instead of U.

Might want to do Rao-Blackwellization or an alternative form
of bagging that achieves this.
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Risk Reduction

Alternative Form of Bagging

All estimators are functions of xtx
′
t and xtyt alone.

Let
zt = xtyt = xtx

′
t β̂ + xtet

and define the ith bootstrap draw of zt as:

z∗t (i) = xtx
′
t β̂ + θt(i)xtet − T−1ΣT

s=1θs(i)xses

where θt(i) is the “wild” term.

Theorem 4: Limiting distributions same as Theorem 2 but
with Y (r) = rY + σUB(r) replaced by rY + σU i

B(r)
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Numerical Experiments

Asymptotic Root NMSPE (k=1)
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Numerical Experiments

Asymptotic Root NMSPE (k=3)
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Numerical Experiments

Dominance Relations (1 nonzero coefficient)
k 1 2 3 4 5 6

AIC v OOS
AIC v SS

AIC v AICB
AIC v OOSB OOSB OOSB OOSB OOSB OOSB OOSB
AIC v SSB SSB SSB SSB
OOS v SS

OOS v AICB
OOS v OOSB OOSB OOSB OOSB OOSB OOSB OOSB
OOS v SSB SSB SSB SSB SSB SSB SSB
SS v AICB
SS v OOSB
SS v SSB SSB SSB SSB SSB SSB SSB

AICB v OOSB OOSB OOSB OOSB OOSB OOSB
AICB v SSB SSB SSB SSB SSB
OOSB v SSB
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Numerical Experiments

Dominance Relations (2 nonzero coefficients)
k 1 2 3 4 5 6

AIC v OOS
AIC v SS
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Numerical Experiments

Comparison of Bayes Risk

Prior:

I Each regressor is included in the model with probability p.
I Conditional on inclusion, prior for that element of b is N(0, φ).

Can work out local asymptotic Bayes risk: limit of

E [(T 1/2β̃ − b)′(T 1/2β̃ − b)]

OOS/SS with bagging do well

But BMA always does better, and can do much better
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Extensions

h-step ahead forecasting

Setup:
yt+h = β′xt + ut

Serial correlation in ut could be exploited but isn’t.

Without bagging

T−1/2Σ
[Tr ]
t=1xt(i)yt(i)→d rN(b, ω2I ) + ωUB(r)

With bagging

T−1/2Σ
[Tr ]
t=1x

∗
t (i)y∗t (i)→d rN(b, ω2I ) + σVi (r)
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Extensions

h-step ahead forecasting

Could get bagging to “mimic” serial dependence in the data.

I Draw blocks of data of length that goes to infinity slowly.

Easy to do Rao-Blackwellization with serial correlation
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Extensions

Forecasting in a VAR

A p-variable stationary VAR with k lags and intercept:

yt = Bxt + εt

Suppose that B = CT−1/2.

Each model consists of a set of zero restrictions on B.

All estimators depend on:

I T−1Σ
[Tr ]
t=1xtx

′
t →r rΩxx where Ωxx = E (xtx

′
t)

I T−1/2Σ
[Tr ]
t=1ytx

′
t →d [rC + B(r)]Ωxx

Estimators other than OOS or SS are functions of
Y ≡ C + B(1) alone

OOS and SS are functions of Y and UB(r).
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Extensions

Extension to general likelihood framework

Parameter θ and likelihood l(θ) = ΣT
t=1lt(θ)

True value is θ0 = cT−1/2

Model selection amounts to imposing zeros on θ

Need T−1/2Σ
[Tr ]
t=1l

′
t(θ0)→ B(r)
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Monte Carlos

Monte-Carlo Simulation

Monte-Carlo simulation with Gaussian shocks and T = 100

Evaluated normalized root mean square prediction error√
T ∗ (MSPE − 1))
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Monte Carlos

Monte-Carlo Root NMSPE (k=1)
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Monte Carlos

Monte-Carlo Root NMSPE (k=3)
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Conclusions

Conclusion

Representation highlights dependence of OOS and SS “noise”

This can be eliminated by bagging

Or by Rao-Blackwellization (alternative bagging)

Standard and alternative bagging on OOS/SS compares
favorably with existing methods
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Conclusions

Recap (in haiku)

Out of sample is
Inadmissible, but the
Future’s in the bag.
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