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Inflation Report density forecasts

• Fan charts of various types centre-stage for Bank of England -
inflation, growth, and now unemployment.

• Invariably emphasise uncertainty in policy discussions.

• BoE density forecasts - used to be, could do better, but not
too bad (see eg Wallis 2004).

• But how have they done post crisis, a period of structural
change and instability?

• Report period-by-period outcome by decile - cumulate to the
PITS.
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Inflation fan

2013 inflation fan.pdf

Market interest rate expectations and £375 billion asset purchases
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CPI forecasts
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One−quarter Inflation Report inflation PITs

Probability

One-step inflation forecasts - density too wide (not enough large
errors).
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CPI forecasts
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Five−quarter Inflation Report inflation PITs

Probability

Five-step inflation forecasts - density too thinly populated in centre
- too many large errors, especially on high inflation side.
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GDP forecasts
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Five−quarter Inflation Report GDP growth PITs

Probability

Five-step growth forecast - density too thinly populated in centre -
too many large errors at low growth outcomes (mean wrong).
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Could do better

• Important to have good benchmarks for density forecasts.
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Density forecasts

• Increasing interest in density forecasts.

• One way to get good density forecasts is model combination.

• An advantage is then you can then forecast effectively even
with simple models.

• Seems very intuitive as well (all models are wrong, etc).

• Especially useful with instabilities and uncertainty about the
preferred model; eg see Jore et al. (2010), Geweke & Amisano
(2012) and Rossi (2012).

• Geweke & Amisano (2011) contrast Bayesian model averaging
with linear opinion pools, where the weights on the
component density forecasts are optimised to maximise the
score, typically the logarithmic score, of the combination, as
suggested in Hall & Mitchell (2007).
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Our generalisation

• Existing literature on optimal density combinations tends to
treat weights as fixed, like optimal point-forecast
combinations à la Bates-Granger.

• One generalisation is to let weights follow flexible schemes.

• Specifically, let combination weights depend on the forecast
variable or region of density.

• Allow for possibility that while one model may be particularly
useful (and receive a high weight in the combination) when
(eg) the economy is in recession, another model may be more
informative when (eg) output growth is positive.

• Wide range of relevant applications - we apply to density
forecasts of S&P500 daily return used in Geweke & Amsisano
(2011).
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Flexibility

• Might be an alternative to large N combinations.

• Contrasts with two recent suggestions where weights
• follow a Markov-switching structure (Waggoner & Zha 2012)
• evolve over time according to a Bayesian learning mechanism

(Billio et al. 2013).

• Accommodating time variation in the combination weights
mimics our approach to the extent that over time one moves
into different regions of the forecast density.



Inflation Report PITS Introduction Theory Monte Carlo experiments Empirics Conclusions

Outline

Inflation Report PITS

Introduction

Theory

Monte Carlo experiments

Empirics

Conclusions



Inflation Report PITS Introduction Theory Monte Carlo experiments Empirics Conclusions

The general approach

• We wish to provide a general scheme for combining density
forecasts.

• We start by noting that we consider a stationary stochastic
process of interest yt , t = 1, ...,T and a vector of predictor
variables xt , t = 1, ...,T .

• Our aim is to forecast the density of yt+1 conditional on the
data available, formally Ft = σ

(
xt+1, (yt , x

′
t)
′ , ..., (y1, x

′
1)′
)
.
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Conditional weights

• Assume the existence of N density forecasts
qi (y |Ft) = qit (y), i = 1, ...,N, t = 1, ...T .

• We propose a generic combined density forecast, given by the
generalised linear opinion pool

pt (y) =
N∑
i=1

wi (y) qit (y)

such that ∫
pt (y) dy = 1

where wi (y) are the weights on the individual density
forecasts which themselves depend on y .

• Thus generalises existing approaches where wi (y) = wi .
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Which weights?

• Define a predictive loss function given by

LT =
T∑
t=1

l (pt (yt) ; yt) .

• We assume that there exist w0
i (y) in the space of

qi -integrable functions Ψqi where

Ψqi =

{
w (.) :

∫
w (y) qi (y) dy <∞

}
, i = 1, ..,N,

such that

E (l (pt (yt) ; yt)) ≡ E
(
l
(
pt
(
yt ;w

0
1 , ..,w

0
N

)
; yt
))
≤

E (l (pt (yt ;w1, ..,wN) ; yt))

for all (w1, ..,wN) ∈
∏
i

Ψqi .

• Ie, at least one minimising set of weights exist.
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Choosing the weights by minimising a loss function

• We determine wi by minimising LT , ie

{ŵ1T , ..., ŵNT} = arg min
wi ,i=1,...,N

LT . (1)

• Problem impossible to solve without restrictions on the space
searched over (Ψqi ).
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Statistical properties

• In general cannot derive asymptotic properties.

• But with reasonable restrictions can prove that the method
delivers the true density asymptotically, in the sense that it
has the maximum log score over all potential densities.

• With a further set of assumptions we can establish aymptotic
normality.

• This allows us to test whether it is useful to allow for the
weights to depend on y (ie test w(y) = w).
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Using boundary conditions

• Could use indicator functions, ie ηs = I (rs−1 ≤ y < rs) where
boundaries r0 < r1 < ... < rs with s = 1, ..., p; r and p either
known a priori (unlikely) or estimated.

• Easily motivated: eg, some models might forecast better in
recessions than booms, or when inflation < 1 vs > 3.

• In this case

pt (y) =
N∑
i=1

pt∑
s=1

νisqit (y) I (rs−1 ≤ y < rs)

where νis are constants to be estimated and

κis =

∫
Y
I (rs−1 ≤ y < rs) qit (y) dy =

∫ rs

rs−1

qit (y) dy .
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Determining p by cross validation

• In practice number of boundaries or regions p unknown.

• We use cross-validation (CV) to determine p.

• Choose p in range 1, ..., pmax, to min average loss associated
with the series of recursive density forecasts over
out-of-sample period t0, ...,T .

p̂ = arg min
1≤p≤pmax

T∑
t=t0

l
(
pt
(
yt+1, ϑ̂t,p

)
; yt
)

,

ϑ̂t,p recursively computed estimate of ϑp (parameters
determining density) for given value p at time t; loss function
evaluated at outcome, yt

• Likely that CV has desirable properties.
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Evaluation - the log score

• Loss function - score assigned based on predictive density at t
and value of yt that emerges at t + 1.

• Common choice LT logarithmic scoring rule.

• If user’s loss function unknown, by max log score still min
Kullback-Leibler IC relative to true but unknown density.

• When zero, know from Diebold et al. (1998) all loss functions
are minimised.

• Loss function:

LT =
T∑
j=1

− log pj (yj+1) =
T∑
j=1

− log

(
N∑
i=1

pt∑
s=1

νisqit (yj+1) I (rs−1 ≤ yj+1 < rs)

)
.

• Minimise this with respect to νis subject to∑N
i=1

∑pt
s=1 νisκis = 1 (density proper).
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Estimating thresholds

• Unlikely thresholds known a priori.

• We use grid estimation - optimising on loss for each value in
grid.

• Requires some judgement on range of y .

• Practically feasible for relevant examples.

• We are able to show subsampling allows asymptotically valid
inference.
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Weighted log score?

• Our weights hard to interpret - not simply related to that
region of density, as they are restricted across the density.

• In an evaluation context, Diks et al. (2010) discuss weighted
logarithmic scoring rule, wt (yt+1) log qit (yt+1).

• Weight function wt (yt+1) emphasises regions of the density
of interest.

• One possibility that wt (yt+1) = I (rs−1 ≤ yt+1 < rs).

• But weighted logarithmic score rule is improper and can
systematically favour misspecified densities even when the
candidate densities include the true density.
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Properties - summary

• Given reasonable assumptions, the method delivers the true
density asympotically.

• With further assumptions eg the log score and piecewise linear
weights, we can establish asymptotic normality enabling
inference.
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Performance metric

• Relative performance generalised vs linear pool assessed by
tests for equal predictive accuracy using logarithmic scoring
rule.

• Giacomini and White (2004) Wald-type test statistic.

T

(
T−1

T∑
t=1

∆Lt

)′
Σ−1

(
T−1

T∑
t=1

∆Lt

)
,

• ∆Lt difference in logarithmic scores of the generalised and
linear pools, equals KLIC

• Σ robust estimate of asymptotic covariance matrix.

• Under null equal accuracy E (∆Lt) = 0 ∼ χ2
1 as T →∞.

• Two-sided tests at nominal size of 10%.

• Report proportion of rejections in favour of both generalised
and linear pools.
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First Monte Carlo experiment

• True density 2-part-normal, which splices two separate
normals at the mean using a normalising constant.

f (Y ) =

{
A exp(−y − µ)2/2σ2

1 if y < µ
A exp(−y − µ)2/2σ2

2 if y ≥ µ

A =
(√

2π(σ1 + σ2)/2
)−1

• Assume combine with two normals common mean.

• Max log score with fixed weights (linear pool, LP) and with
our generalized method (GP):

• known boundaries, ie p = 2 regions, split at 0
• unknown boundaries, with 11 equally spaced points.

• Fix σ2
1 = 1 and set σ2

2 = 1.5, 2, 4, 8.

• In practice would use estimated densities.
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First Monte Carlo experiment

• In this case there are true thresholds and Gaussian elements,
so we examine properties more thoroughly than the other
experiments.

1. G&W tests of relative performance, comparing effect of
successively dropping the (unrealistic) assumptions that r and
p are known.

2. Absolute performance (IMSE).

3. Size and power of the linearity test

4. Choice of p.
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Setting 1 - two-part normal - relative performance

• Regardless of p and rs known or estimated, GP preferred with
high rejection probabilities.

• Proportion approaches 1 as σ2
2 and T increase.

• Even for low σ2
2 (less skew in true density) GP preferred with

probabilities > 0.9 for larger T .

• Estimation of p and rs reduces performance but GP still
preferred.
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Table 1 - two-part normal - relative performance

σ2
2 T r1 = 0, p = 2 Est r1|p = 2 Est r1, p

G/L L/G G/L L/G G/L L/G
1.5 100 0.302 0.012 0.188 0.008 0.138 0.022

200 0.514 0.000 0.380 0.000 0.254 0.008
400 0.718 0.000 0.616 0.000 0.536 0.000

1000 0.968 0.000 0.966 0.000 0.936 0.000
2 100 0.620 0.000 0.508 0.002 0.342 0.010

200 0.872 0.000 0.752 0.000 0.688 0.004
400 0.976 0.000 0.968 0.000 0.964 0.000

1000 1.000 0.000 1.000 0.000 1.000 0.000
4 100 0.966 0.000 0.920 0.004 0.748 0.012

200 1.000 0.000 0.996 0.002 0.932 0.004
400 1.000 0.000 1.000 0.000 0.996 0.000

1000 1.000 0.000 1.000 0.000 1.000 0.000
8 100 0.988 0.006 0.874 0.002 0.690 0.006

200 1.000 0.000 0.986 0.000 0.872 0.004
400 1.000 0.000 1.000 0.000 0.972 0.000

1000 1.000 0.000 1.000 0.000 1.000 0.000

Rejection probabilities in favour of the Generalised (G) and Linear
(L) pools using the Giacomini-White test for equal density forecast
performance
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Setting 1 - two-part normal - absolute performance

• Report integrated mean square errors as metric of
performance.

• LP beats either component density.

• When threshold r1 assumed known GP outperforms LP in all
cases.

• Estimation of either r or both p and r reduces performance
quite markedly.

• But for sufficiently large T and variance σ2
2 the GP remains

considerably better.
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Table 2 - two-part normal - absolute performance

σ2
2 T Generalised Linear Component Densities

r1 = 0 est r1|p = 2 Est p Comp.1 Comp. 2
1.5 100 0.343 2.293 1.910 0.773 1.654 1.103

200 0.167 0.883 0.926 0.715 1.654 1.103
400 0.084 0.389 0.456 0.691 1.654 1.103

1000 0.032 0.149 0.197 0.673 1.654 1.103
2 100 0.297 1.520 1.562 1.592 4.421 2.211

200 0.139 0.679 0.772 1.531 4.421 2.211
400 0.072 0.293 0.445 1.505 4.421 2.211

1000 0.030 0.115 0.203 1.486 4.421 2.211
4 100 0.189 0.619 0.872 2.649 12.728 3.182

200 0.090 0.310 0.414 2.595 12.728 3.182
400 0.045 0.139 0.218 2.569 12.728 3.182

1000 0.019 0.062 0.103 2.556 12.728 3.182
8 100 0.101 0.291 0.373 2.221 19.413 2.427

200 0.053 0.139 0.196 2.190 19.413 2.427
400 0.026 0.073 0.100 2.174 19.413 2.427

1000 0.011 0.033 0.048 2.164 19.413 2.427

IMSE estimates for the Generalised and Linear Combinations



Inflation Report PITS Introduction Theory Monte Carlo experiments Empirics Conclusions

Setting 1 - two-part normal - linearity tests

• Test generally slightly undersized.

• But power increases rapidly with T and σ2
2.

• In general, very powerful test.
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Table 3 - two-part normal - size of linearity test

T/σ2
2 1.1 1.25 1.5 2

100 0.021 0.021 0.014 0.014
200 0.017 0.014 0.016 0.012
400 0.042 0.019 0.014 0.023

1000 0.070 0.042 0.021 0.019

Rejection probabilities for linearity test under null of linearity
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Table 4 - two-part normal - power of linearity test

T/σ2
2 1.1 1.25 1.5 2

100 0.024 0.134 0.611 0.998
200 0.028 0.267 0.915 1.000
400 0.081 0.552 0.997 1.000

1000 0.420 0.950 1.000 1.000

Rejection probabilities for linearity test under alternative
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Choice of p in two-part normal

• Search over number of regions p restricted to between 2 and
4.

• Number of times a given p value was selected by cross
validation for each of the T and σ2

2 cases.

• p = 2 modal although larger p often selected.

• Reassuring: CV protects against over-fitting.

• Tables 1 and 2 showed that despite estimation uncertainty
leading to incorrect choice of p, GP preferred to LP.
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Choice of p by CV, cut by T and σ2
2
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Fourth Monte Carlo experiment
• Motivation: setup for a macro environment.
• UC model with SV Stock and Watson (2007) for US inflation.
• Allows variances of both the permanent and transitory

component to evolve.

πt = τt + ηt , where ηt = ση,tζη,t

τt = τt−1 + εt , where εt = σε,tζε,t

lnσ2
η,t = lnσ2

η,t−1 + υη,t

lnσ2
ε,t = lnσ2

ε,t−1 + υε,t

• ζt = (ζη,t , ζε,t) is i.i.d. N(0, I2), υt = (υη,t , υε,t) is i.i.d.
N(0, γI2), ζt and υt are independently distributed, γ is 0.01
scalar.

• Component density forecasts UC models sans SV.
• First, calibrated according to a model S&W found fitted well

for high inflation: ση = 0.66 and σε = 0.91.
• Second, good fit Great Moderation: ση = 0.61, σε = 0.26.
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Setting 4 - UC SV - results

• Again, relative performance depends on T .

• For T = 100 LP preferred more frequently than GP.

• For larger T reverse is the case - GP preferred more frequently
than LP.

• Suggests may be useful in macro applications.
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Table 7 - UC SV

T Unknown p
G/L L/G

100 0.124 0.168
200 0.270 0.130
400 0.354 0.126

1000 0.476 0.180

Rejection probabilities in favour of the Generalised (G) and Linear
(L) pools using the Giacomini-White test for equal density forecast

performance
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Data and set up

• S&P 500 daily percent log returns data 3 January 1972 to 9
September 2013 extending Geweke & Amisano (2010, 2011)
in their analysis of optimal linear pools.

• Following them we estimate GARCH(1,1), Student
t-GARCH(1,1), Gaussian exponential GARCH(1,1) models via
maximum likelihood (ML) and an SV model by Kim et al
(1998) by Bayesian sampling methods using rolling samples of
1250 trading days (about five years).

• One-day-ahead recursive density forecasts for returns 15
December 1976 through to 9 September 2013 (out-of-sample
T = 9268).

• Predictive densities formed by substituting the estimates for
the unknown parameters.

• The two component densities are then combined using either
a linear or generalised combination scheme.
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S&P 500 daily %age log returns 15 Dec 1976 - 9 Sept 2013
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Evaluation

• Fit generalised and linear combinations whole dataset,
in-sample (t = 1, .,T ), extending part of Geweke & Amisano
(2011).

• G&A found LP outperformed any component.

• Can replicate G&A to their sample end in 2005, but inference
sensitive to sample.

• Over longer sample including crisis LP at best matches best
component.

• GP estimating p in range 2-10, thresholds chosen with a grid
search width 0.5 in interval -2.5% to 2.5%.

• In all cases large and highly significant benefits to using GP
versus LP.

• Pools using T-GARCH perform best, and also much better
than T-GARCH alone.
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Table 8 - in-sample

Comps: 1: GARCH, 2: EGARCH, 3: SV, 4: TGARCH

1 2 3 4

Comp. -1.169 -1.187 -1.580 -1.183

1,2 1,3 1,4 2,3 2,4 3,4

GP -0.288 -0.313 2.762 -0.284 2.762 2.762
LP -1.169 -1.169 -1.169 -1.187 -1.183 -1.183
p̂ 9 9 9 9 9 9

p-val 0.000 0.000 0.000 0.000 0.000 0.000

1,2,3 1,2,4 2,3,4 1,2,3,4

GP -0.288 2.762 2.762 2.572
LP -1.169 -1.169 -1.183 -1.169
p̂ 9 9 9 3

p-val 0.000 0.000 0.000 0.000

In-sample (1976-2013) mean log scores for GP, LP and component
densities: p̂ CV estimator for p. H0 p-value null LP best.



Inflation Report PITS Introduction Theory Monte Carlo experiments Empirics Conclusions

Table 8 - in-sample - weights on T-GARCH

• Interesting that 5 of the 6 GPs including T-GARCH yield
identical scores.

• This is despite having different weights.

• In each case T-GARCH invariably obtains a high weight
somewhere in the density, often approaching unity in the
centre of the distribution.

• Despite the prominence of T-GARCH the generalised pools
offer substantial improvements, unlike the linear pool.

• The improvement is in the tails, despite advantage T-GARCH
should have with fat tails.

• The number of regions p = 9 in most cases, but where all
four models are combined, p = 3 (a more parsimonious
weighting system).
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Table 8 - in-sample - weights on T-GARCH

1: GARCH, 2: EGARCH, 3: SV, 4:TGARCH

1,4 2,4 3,4 1,2,4 2,3,4 1,2,3,4

Weight 1 0.397 0.500 0.524 0.333 0.339 0.704
Weight 2 1.000 0.993 1.000 1.000 1.000 1.000
Weight 3 0.993 0.839 0.998 0.987 0.945
Weight 4 0.838 0.980 0.998 0.805 0.886
Weight 5 1.000 1.000 1.000 1.000 1.000
Weight 6 0.993 0.993 1.000 0.992 0.998
Weight 7 0.999 0.981 1.000 0.997 1.000
Weight 8 0.500 0.500 0.525 0.333 0.339
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Table 9 - out-of-sample performance

• Clear risk flexible piecewise functions fit well in-sample but
forecast poorly due to parameter error (overfitting).

• Consider samples 2004-2009, 2004-2007 and 2007-2013.

• Only past data used for optimisation.

• For some sub-samples, eg 3 September 2004 - 9 September
2013, optimal linear pool eg containing T-GARCH cannot
beat T-GARCH alone.

• But for all samples and cases considered generalised pool does
beat components.

• Moreover for all combinations and samples considered GP
considerably and (highly) significantly outperforms LP.
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Table 9 - out-of-sample mean log scores and p-values

1: GARCH, 2: EGARCH, 3: SV, 4:TGARCH

2,4 3,4 1,2,3 1,2,4 2,3,4 1,2,3,4

3 Sept 2004: 9 Sept 2013

G 0.690 0.724 0.808 0.723 0.735 -0.296
L -0.810 -0.610 -0.548 -0.793 -0.558 -0.554

G&W 1.000 1.000 1.000 1.000 1.000 1.000

3 Sept 2004: 31 Aug 2007

G 0.861 0.861 0.910 0.862 0.861 0.406
L -0.146 -0.193 -0.131 -0.143 -0.137 -0.135

G&W 1.000 1.000 1.000 1.000 1.000 1.000

4 Sept 2007: 9 Sept 2013

G 0.603 0.654 0.757 0.652 0.670 -0.655
L -1.150 -0.823 -0.761 -1.126 -0.773 -0.769

G&W 1.000 1.000 1.000 1.000 1.000 1.000
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Conclusions

• Well established that density combinations useful.

• Extends existing literature by letting the combination weights
follow general schemes.

• Specifically, combination weights depend on the variable being
forecast.

• Specifically, piecewise linear weight functions varying by region
of the density.

• Examined theoretically with sieve estimation used to optimise
the score of the generalised density combination.

• Monte Carlo experiments suggest
• Powerful method, likely to deliver large improvements for

modest numbers of threshholds.
• Works best with large T but improves results in an exercise

calibrated to macro inflation data as well.

• It works. Delivers very large and significant improvements
relative to linear pool in a stock returns exercise.
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