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What we do

(At least) Two lessons learned from the "Great Recession":
1 Multiple causes of shocks exist
2 Transmission of shocks is nonlinear

For that reason, we focus on both issues of monitoring large datasets
(using factor models) + structural instabilities

We develop fast Bayesian estimation algorithms for dynamic factor
models (DFM)...

with time-varying coefficients and stochastic volatilities
that can be applied to large (macroeconomic) datasets
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How we want to do it

We are going to work with a nonlinear state-space model.
→ Nothing exciting about this, given all the computational advances
in the last 25 years or so.

However, our implementation has to satisfy certain conditions:
1 Flexibility: We want a flexible specification of nonlinearities
2 Numerical stability: Simplify model identification, and provide

an algorithm that works well always
3 Replicability: No “hidden” tunning parameters/priors that affect

our results massively
4 Computational tractability: Provide a simple code, which has

minimal possibility for programming errors, and can be used by
non-econometricians
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Online (EKF/UKF, UPF) and offline/batch (MCMC) estimation can
become computationally demanding, and numerically unstable
→ Identification of time-varying parameters + factors is hard

Other methods such as variational Bayes and basis function
expansions, rely on calculating approximations to the exact posterior,
which might not always work for all datasets/specifications

Many methods require vicious programming, thus, increasing the
possibility of things going wrong even in simple models (e.g. Del
Negro and Primiceri, 2013).

Academics can fine-tune complex models, but can economists
replicate results?
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Methodology

Large variable (n× 1) vector xt follows the factor model with k factors

xt = λtft + εt, εt ∼ N (0, Vt) , Vt is diagonal (1)
ft = Btft−1 + ηt, ηt ∼ N (0, Qt) (2)

Following standard practice (Cooley, 1971) we define:

λt = λt−1 + ut, ut ∼ N (0, Rt) (3)
βt = βt−1 + vt, βt = vec

(
B′t
)

, vt ∼ N (0, Wt) (4)

We have a time-invariant FM, when Rt = Wt = 0 and Vt = V and
Qt = Q.

Other possibilities for structural instabilities exist (e.g. few breaks);
however, we use TVP following Granger (2008)

6



1st step: forgetting factors

λt = λt−1 + ut, ut ∼ N (0, Rt) (5)
βt = βt−1 + vt, βt = vec

(
B′t
)

, vt ∼ N (0, Wt) (6)

Rt and Wt large, e.g. 130 variables & 10 factors, Rt is 1, 300× 1, 300
→ Do we ever have enough information in data (or prior) to estimate
such a covariance matrix?
→ Likelihood-based estimation requires to evaluate some function of
(λt − λt−1)

′(λt − λt−1), but λt is latent!

Regardless of the filtering methods used (linear/nonlinear), we can
easily estimate instead:

Rt =
(

µ−1
1 − 1

)
Pλ

t−1|t−1, (7)

Wt =
(

µ−1
2 − 1

)
Pβ

t−1|t−1, (8)
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In the formulation above, 0 < µ1, µ2 ≤ 1 are forgetting factors
They allow estimation in an exponentially weighted window of
data
Observations j period in the past have weight µ

j
i

µi = 1 gives recursive OLS
µi < 1 means that we are using an effective window of 1

1−µi

Very straightforward interpretation as a “prior on time-variation”:
lower values imply more time-variation
Massively lower sensitivity to its values than the respective
tuning constant of the IW prior (kQ in Primiceri, 2005)
We can easily search for optimal µi in a grid (Koop and Korobilis,
2013), or use MCMC to estimate it (Windle and Carvalho, 2013)
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2nd step: Decay factors

For Vt and Qt we want to use a simple recursive estimator to avoid
simulation methods.
Following Koop and Korobilis (2014) we define EWMA filters

V̂t = δ1V̂t−1 + (1− δ1) diag
(
ε̂t ε̂
′
t
)

, (9)

Q̂t = δ2Q̂t−1 + (1− δ2) η̂tη̂
′
t, (10)

given initial values V0 = diag (V) and Q0 = Q

This procedure provides fast point estimates of the covariances, for
inference using the mean (e.g. MSFE forecasts, or point estimate of the
factors).

→ EWMA has similar properties to IGARCH(1,1)
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Equivalent Bayesian procedure (Wishart Matrix Discounting, WMD):

Vt ∼ iW (St, nt) , (11)
Qt ∼ iW (Ψt, vt) , (12)

given priors V0 ∼ iG (S, v) and Q0 ∼ iW (Ψ, n), where

• nt = δ1nt−1 + 1
• St =

(
1− n−1

t
)

St−1 + n−1
t

[
S1/2

t−1Ṽ−1/2
t−1 (ε̂t ε̂

′
t) Ṽ−1/2

t−1 S1/2
t−1

]
,

• vt = δ2vt−1 + 1
• Ψt =

(
1− v−1

t
)

Ψt−1 + v−1
t

[
Ψ1/2

t−1Q̃−1/2
t−1 (η̂tη̂

′
t) Q̃−1/2

t−1 Ψ1/2
t−1

]
.

In both cases, δ1, δ2 are decay factors with similar properties as the
forgetting factors defined previously.

Quintana and West (1987); West and Harrison (1997)
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Our feasible approximations

We build on ideas of Koop and Korobilis (2013) that once covariance
matrices are known, does not need repeated sampling (Monte Carlo)
for estimation; just one run of the KF or KFS is enough.

In order to achieve this we define:
1 Don’t estimate (λt, ft, βt) jointly as one state using nonlinear SS

methods; rather break the problem into three separate,
conditionally linear SS models

2 When we require the time t sq. errors (e.g. (ε̂t ε̂
′
t)), then use instead

ε̂t = xt − λ̂t|t−1ft (13)

(similarly for η̂t)
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Approximation 1: Estimate (conditionally) linear
models

We follow the main idea of Doz et al. (2011):
1 Obtain the Principal component (assuming that any other factor

estimate of the TVP-DFM is expensive to obtain)
2 Estimate λt and βt using Kalman filter/smoother conditional on

PC
3 Estimate factors ft conditional on all coefficients and volatilities

using Kalman filter/smoother
• Single iteration provides reasonable estimates of vols, tvp & ft
• “Exact methods” would be subject to large estimation error, anyway
• As in Doz et al. (2011) we may iterate for increased precision
→ In simulations the log-lik will always converge (but might not always be
monotonically increasing)
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Approximation 2: Feasible estimation of residuals

Our second approximation implies to use:

ε̂t = xt − λ̂t|t−1f PC
t (14)

(similarly for η̂t).
•We use an estimate λ̂t|t−1 instead of λt = λ̂t|t
• That way, we can run the Kalman filter using one iteration:
→ Vt can be updated based on ε̂t, then update λt|t given Vt
• This allows easy identification of vols and tvps:
→We estimate Vt using information which is available at t; similarly
for λt
→MCMC would provide sample from p(Vt|−) given a “guess” of λt
and vice-versa (convergence not guaranteed)
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Empirical evidence

We implement three exercises:
1 Monte Carlo simulations
2 Forecasting German GDP using a large panel of variables
3 Forecasting Eurozone sovereign bond-yields

I won’t go through details with 1. and 2. due to the limited time.
Only comment is:

If the true model is TVP-DFM, then our estimator gives better
SFF0 statistics than PC and Doz et al. (2011)
For German data, we obtain better MSFE than forecasting with
PC, and time-varying volatility contributes to forecast accuracy
more than time-varying loadings or VAR lag polynomial
parameters.

I WILL FOCUS ON THE EURO-AREA BOND-YIELDS.
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Eurozone sovereign bond yields

We have 10y bond rates for 10 countries:
Austria, Belgium, Finland, France, Greece, Ireland, Italy,
Netherlands, Portugal, Spain
Data are expressed in spreads from the 10y German bund
Sample is 1999m1 - 2012m12
Data have an obvious factor structure (comovements during
Global, and Euro-Area crises)
Data have obvious structural breaks, and changing volatility
Most importantly: Data are explosive→ 1st PC collapses to
sample mean (loadings degenerate to 1)→ Application of
TVP-DFM is nonsense!
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The data
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Figure: Returns on 10-year bond for 10 Eurozone countries, 1999m1-2012m12.
The data are expressed as spreads from the 10-year yield of the German
bund, and then standardized (mean zero, variance one) in order to be of
comparable scale. 16



Idiosyncratic volatilities, EWMA
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Idiosyncratic volatilities, WMD
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Idiosyncratic volatilities, MCMC + SV
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Factor estimates, and factor vols

Common Factor, 2S estimator
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Forecasting bond yields

We implement forecasting, using 1 factor model to remove uncertainty
regarding number of factors
Many studies use one (EA) or two (core/periphery) factors, or three
(level, slope, curvature) if a DNS model applies to the whole yield
curve
For the Bayesian, such uncertainty can be dealt with using MLs, PLs,
BMA, shrinkage priors, EB priors, hierarchical priors etc.

We forecast using the whole TVP-DFM system, i.e.

xt+1 = λt+1ft+1 + εt+1 (15)
ft+1 = Bt+1ft + ηt+1 (16)

but we don’t simulate λt+h = λt and Bt+h = Bt ∀ h (i.e. we only
forward ft+h, but not tvps and vols)
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Table 1. Initial conditions and priors used in different models
TVP-DFM

Parameter 2S-EWMA 2S-WMD MCMC
λt λ0 ∼ N (0, 4× I)a

βt β0 ∼ N (0, 1× I)a

ft f0 ∼ N (0, 4× I)a

Rt FF with µ1 = 0.99a

Wt FF with µ2 = 0.99a

Vt V0,i ≡ 0.1b V0,i ∼ IW (I, 1 + 2)c,b log (V0,i) ∼ N (log (0.5) , 0)b

Qt Q0 ≡ 0.1 Q0 ∼ IW (I, k + 2)c log (Q0) ∼ N (log (0.5) , 0)
DFM

Parameter MCMC
λ λ ∼ N (0, 4× I)
β β ∼ N (0, 1× I)
ft f0 ∼ N (0, 4× I)
V Vi ∼ IG (0.01, 0.01)b

Q Q ∼ IG (0.01, 0.01)
aThese coefficients are common in all three specifications of the TVP-DFM
bV0,i (similarly, Vi) denotes the i-th diagonal element of Vt (similarly, V), i = 1, ..., 10.
cThe IW for a univariate variable is equivalent to the Inverse Gamma (IG) distribution.
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The previous Table shows initial conditions for all models estimated
We try to use similar priors and initial conditions whenever possible

In the next Table we present posterior predictive likelihoods, PLs, (not
to be confused with prior predictive, i.e. marginal, likelihoods)

In order to achieve this, we use Monte Carlo Integration to obtain
samples from all the posteriors
→We do that whenever this possible, e.g. in the EWMA we have
point estimate.

The PLs in the Table below are relative to the PL of the constant
parameter DFM estimated with MCMC.
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Table 2. Relative PL’s for the bond yield data
h = 1 h = 3 h = 6 h = 9 h = 12

2S-EWMA
Austria 1.05 1.00 0.89 0.77 0.74
Belgium 0.90 0.86 0.89 0.82 0.80
Finland 1.03 0.95 0.93 0.86 0.80
France 1.17 1.15 1.05 1.09 1.01
Greece 1.85 1.79 1.73 1.86 1.88
Ireland 1.45 1.09 0.95 0.85 0.77
Italy 2.90 2.81 3.03 4.62 4.20
Netherlands 0.95 0.89 0.92 0.81 0.76
Portugal 1.04 1.05 1.22 1.13 1.16
Spain 1.17 1.01 0.90 0.81 0.78

2S-WMD
Austria 1.17 1.08 0.98 0.88 0.82
Belgium 0.95 0.91 0.96 0.89 0.86
Finland 1.19 1.05 1.01 0.89 0.85
France 1.17 1.17 1.10 1.19 1.08
Greece 1.91 1.98 1.93 1.82 1.52
Ireland 1.53 1.15 0.98 0.91 0.83
Italy 3.41 3.08 3.18 5.07 4.64
Netherlands 1.06 0.98 1.03 0.87 0.81
Portugal 1.05 1.00 1.16 1.14 1.15
Spain 1.29 1.10 0.99 0.89 0.87

MCMC
Austria 1.32 1.15 0.99 0.91 0.84
Belgium 1.04 0.95 0.96 0.92 0.87
Finland 1.20 1.02 0.91 0.77 0.79
France 1.13 1.16 1.06 1.14 1.05
Greece 2.79 2.67 2.55 2.43 1.86
Ireland 1.82 1.28 1.09 0.95 0.84
Italy 2.11 1.99 2.11 3.03 2.87
Netherlands 0.90 0.88 0.95 0.86 0.82
Portugal 0.97 0.97 1.12 1.06 1.12
Spain 1.22 1.02 0.95 0.84 0.83
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Discussion

We can make the following observations:
1 There is a strong case for using a DFM with structural instabilities

for the Eurozone data, compared to a constant parameter DFM.
2 Our proposed estimation methods compare as well in achieving

similar predictive likelihoods to MCMC.
3 We should also consider in this evaluation that the Monte Carlo

versions of our two-step algorithms are several times faster than
MCMC.

4 Additionally, we haven’t imposed any identification restrictions to
obtain our results. This is not the case for the MCMC algorithm,
where identification is far more challenging.
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1 Our algorithms can also be extended in several directions. For
example, the results above suggest that for some countries (e.g.
Belgium) a TVP-DFM might not be appropriate, and one might be
better-off with a constant parameter DFM. Similar results have
been found in the macro-finance literature, e.g. Sims and Zha
(2006). If we allow each DFM equation to have a different
forgetting factor for λi,t, that is, if we make µ1 a diagonal matrix
instead of a scalar, we can allow some countries to have constant
loadings while others to have time-varying.

2 In a similar spirit, one can optimize the model in terms of all the
forgetting and decay factors used.

3 As in Koop and Korobilis (2014), we can make the argument that
estimation error can be balanced by the fact that we can estimate
millions of TVP-DFMs and reduce model uncertainty instead of
worrying about estimation accuracy in a heavily parametrized
model!
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Thank you!
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