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The basic framework

We have an observed time series y1, . . . , yn, collected in y, and

an unobserved path of equal length f1, . . . , fn, collected in f .

Assume that

DGP is y ∼ p(y;f) where f represents a time-varying

feature of the "true" model density.

time series econometrician opts for a predictive model

p̃(yt|y1, . . . , yt−1;θ), with parameter vector θ, and correctly

considers the e�ect associated with f to be time-varying.
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The basic framework

Assume that

DGP is y ∼ p(y;f)

econometric model p̃(yt|y1, . . . , yt−1;θ) correctly considers

the e�ect associated with f to be time-varying.

In an observation-driven model, the time-varying e�ect is

extracted as a direct function of past data:

f̃t = f̃t(y1, . . . , yt−1;θ). We have p̃(yt|f̃t, y1, . . . , yt−1;θ).

Consider GARCH model where f is the time-varying variance,

then we have p̃(yt|f̃t;θ) ≡ N(0, f̃t) and

f̃t+1 = ω + βf̃t + α(y2t − f̃t),

and with θ = (ω, α, β)′.
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The basic framework

In a general setting (Creal, Koopman & Lucas 2008, 2011, 2013),

p̃(yt|f̃t, y1, . . . , yt−1;θ) 6= N(0, f̃t),

we propose for f̃t to adopt the updating scheme

f̃t+1 = ω + βf̃t + αst,

where st is the scaled score function st = St∇t with

∇t =
∂ ln p(yt|y1, . . . , yt−1, f̃t; θ)

∂f̃t
,

St = I−1t−1 = −Et−1

[
∂2 ln p(yt|Yt−1, f̃t; θ)

∂ft∂f̃ ′t

]−1
.
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Score-driven models

For this updating equation

f̃t+1 = ω + βf̃t + αst,

we can view updating as a steepest ascent or Newton step

for f̃t using the log conditional density

p̃(yt|f̃t, y1, . . . , yt−1;θ) as criterion function;

choice for St may be square root matrix of the inverse

Fisher information matrix;

this St accounts for curvature of density as function of f̃t;

also, under correct model speci�cation, st has unit variance.
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Generalized Autoregressive Score (GAS)

The general GAS framework is

p̃(yt|f̃t, y1, . . . , yt−1;θ),

where for f̃t we adopt the updating scheme

f̃t+1 = ω + βf̃t + αst,

with st as the scaled score function st = St∇t and

∇t =
∂ ln p(yt|y1, . . . , yt−1, f̃t; θ)

∂f̃t
,

St = I−1/2t−1 = −Et−1

[
∂2 ln p(yt|Yt−1, f̃t; θ)

∂f̃t∂f̃ ′t

]−1/2
.
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Illustration : volatility modeling

A class of volatility models is given by

yt = µ+ σ(f̃t)ut, ut ∼ pu(ut;θ),

f̃t+1 = ω + βf̃t + αst,

where:

σ() is some continuous function;

pu(ut; θ) is a standardized disturbance density;

st is the scaled score based on ∂ log p(yt|f̃t, yt−1;θ) / ∂f̃t.

Some special cases

σ(f̃t) = ft and pu is Gaussian : GAS ⇒ GARCH;

σ(f̃t) = exp(f̃t) and pu is Gaussian : GAS ⇒ EGARCH;

σ(f̃t) = exp(f̃t) and pu is Student's t : GAS ⇒ t-GAS.
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Special cases of GAS

GAS updating for speci�c observation densities and scaling

choices reduces to well-known models.

GARCH for N(0, f̃t) : Engle (1982), Bollerslev (1986)

EGARCH for N(0, exp f̃t) : Nelson (1991)

Exponential distribution (ACD and ACI): Engle & Russell

(1998) and Russell (2001), respectively

Gamma d. (MEM): Engle (2002), Engle & Gallo (2006)

Poisson d.: Davis, Dunsmuir & Street (2003)

Multinomial d. (ACM): Russell & Engle (2005)

Binomial d.: Cox (1956), Rydberg & Shephard (2002)

New GAS applications : http://gasmodel.com
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Why GAS ?

In econometrics, score and Hessian are familiar entities;

Using contribution of score at time t of updating seems not

unreasonable (quasi-Newton connection);

Many GARCH-type time series models are e�ectively

constructed in this way.

In case of GARCH, the score driver has an interpretation :

Et−1(y2t ) = σ2.

In other cases (incl. GARCH with t-densities), choice of

driver mechanism for updating is not so clear.

But is the score then really a good idea ?
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Why GAS ?

On the outset:

1 GAS update is very intuitive...

2 Using the score seems optimal in some sense...

3 Likelihood and KL divergence are closely related...

Question: Is the GAS update optimal in some KL sense?

Challenge 1: GAS update is surely not always correct!

Challenge 2: Comparing di�erent observation-driven models is

only interesting under misspeci�cation with very general DGP!
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DGP and Observation-Driven Model

True sequence of conditional densities:{
p(yt|ft)

}
, true tv parameter {ft}

Conditional densities postulated by probabilistic model:{
p̃
(
yt|f̃t;θ

) }
, �ltered tv parameter {f̃t}

p̃
(
yt|f̃t;θ

)
is implicitly by observation equation:

yt = g
(
f̃t , ut ; θ

)
, ut ∼ pu(θ),

Observation-driven parameter update:

f̃t+1 = φ
(
yt , f̃t ; θ

)
, ∀ t ∈ N, f̃1 ∈ F ⊆ R,

11 / 35 Blasques, Koopman and Lucas Score-driven models for forecasting



Optimal Observation-Driven Update

Key objective: Characterize φ(·) that possess optimality

properties from information theoretic point of view.

Main Question: Is there an optimal form for the update

f̃t+1 = φ
(
yt , f̃t ; θ

)
, ∀ t ∈ N, f̃1 ∈ F ⊆ R,

Answer: This depends on the notion of optimality!

Result 1: Only parameter updates based on the score always

reduce the local Kullback-Leibler divergence p and p̃.

Result 2: The use of the score leads to considerably smaller

global KL divergence in empirically relevant settings.

Note: Results hold for any DGP ( any p and {ft} )
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De�nitions: Local GAS Updates

GAS-update:

f̃t+1 = φ
(
yt , f̃t ; θ

)
= ω + αs(yt, f̃t) + βf̃t, ∀ t ∈ N,

Newton-GAS update: ( ω = 0, α > 0, β = 1 )

f̃t+1 = αs(yt, f̃t) + f̃t, ∀ t ∈ N,

Local update: f̃t+1 in neighborhood of f̃t

Local optimality: Refers to local updates
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De�nition I: Realized KL Divergence

KL divergence between p(·|ft) and p̃
(
· |f̃t+1;θ

)
is given by

DKL

(
p(·|ft) , p̃

(
· |f̃t+1;θ

))
=

∫ ∞
−∞

p(yt|ft) ln
p(yt|ft)

p̃
(
yt|f̃t+1;θ

) dyt.

The realized KL variation ∆t−1
RKL of a parameter update from f̃t

to f̃t+1 is de�ned as

∆t−1
RKL = DKL

(
p(·|ft) , p̃

(
· |f̃t+1;θ

))
−DKL

(
p(·|ft) , p̃

(
· |f̃t;θ

))
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De�nition II: Conditionally Expected KL Divergence

An optimal updating scheme, while subject to randomness,

should have tendency to move in correct direction:

On average, the KL divergence should reduce in expectation.

The conditionally expected KL (CKL) variation of a parameter

update from f̃t ∈ F̃ to f̃t+1 ∈ F̃ is given by

∆t−1
CKL =

∫
F
q(f̃t+1|f̃t, ft;θ)

[∫
Y
p(y|ft) ln

p̃(y|f̃t;θ)

p̃(y|f̃t+1;θ)
dy

]
df̃t+1,

where q(f̃t+1|f̃t, ft;θ) denotes the density of f̃t+1 conditional on

both f̃t and ft. For a given pt, an update is CKL optimal if and

only if ∆t−1
CKL <= 0.
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Propositions 1 and 2

all subject to some regularity conditions

Proposition 1 :

Every Newton-GAS update (f̃t+1 = αst + f̃t) is locally RKL

optimal and CKL optimal for any true density pt.

These properties can be generalized to `score-equivalent'

updates, we require a fundamental sign condition.

Proposition 2 :

For any given true density pt, a parameter update is locally

RKL optimal and CKL optimal if and only if the parameter

update is score-equivalent, that is

sign(∆φ(f, y;θ)) = sign(∇̃(f, y;θ))
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Proposition 3

For the GAS updating

f̃t+1 = ω + βf̃t + αst,

we require speci�c and di�erent conditions for ω, β and α to

state

Proposition 3 :

The GAS update is locally RKL optimal and CKL optimal, for

every pt.
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Example RKL for GARCH

The GAS volatility model with a normal distribution reduces to

the standard GARCH model.

Then the necessary condition is α |y2t − f̃t| > |ω + (β − 1)f̃t| :

It follows that the update becomes convincingly more RKL

optimal if the observed y2t deviates considerably from the

�ltered volatility f̃t.
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Application: Volatility Model

Data Generating Process:

yt =
√
ftut, ut ∼ τ(λ),

log ft = a+ b log ft−1 + εt, εt ∼ NID(0, σ2ε ),

Parameter Values: a = 0, b = 0.98, σε = 0.065, λ ∈ [2, 8].

Compared Models: GARCH, t-GARCH and t-GAS.

yt =

√
f̃tut

(GARCH) f̃t+1 = ω + αy2t + βf̃t, ut ∼ N(0, σ2)

(t-GARCH) f̃t+1 = ω + αy2t + βf̃t, ut ∼ τ(ν)

(t-GAS) f̃t+1 = ω + αs(yt, f̃t) + βf̃t, ut ∼ τ(ν)

19 / 35 Blasques, Koopman and Lucas Score-driven models for forecasting



Application: Volatility Model

Data Generating Process:

yt =
√
ftut, ut ∼ τ(λ),

log ft = a+ b log ft−1 + εt, εt ∼ NID(0, σ2ε ),

Parameter Values: a = 0, b = 0.98, σε = 0.065, λ ∈ [2, 8].

Note: Comparison at pseudo-true parameters θ∗ = arg minKL

Sample size T: Large enough for ML estimator to converge to

pseudo-true parameter (at 3rd decimal place).

Asymptotic Theory: Convergence of ML estimator to

pseudo-true parameter in misspeci�ed GAS, see BKL (2013).
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The pseudo-true parameters
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Figure: DGP with a = 0, b = 0.98, σε = 0.065 and λ ∈ [3, 8]. Each

model estimated separately for true λ by MLE for simulated series,

T = 35, 000.
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Relative KL divergence

3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

R
e
la
t
iv
e
K
L

D
iv
e
r
g
e
n
c
e

λ
3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

R
e
la
t
iv
e
R
M
S
E

λ

Figure: Relative KL divergence of GAS-t relative to GARCH (solid)

and GARCH-t (dashed): 1-KL(GAS-t)/KL(GARCH)
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Relative KL divergence

Figure: RKL optimality regions for GAS-t and GARCH-t: λ = 3 and

true ft ≈ 1.2.
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Conditional Expected KL divergence

Figure: CKL variation for GAS-t and GARCH-t: λ = 3.
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What about actual forecasting ?

Forecasting the time-varying feature in the model is of key

importance for the forecasting of the time series yt.

This is the study of Koopman, Lucas and Scharth (2014) and

the results are presented next.
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Monte Carlo study

Distribution Density Link function

Poisson
λ
yt
t
yt!
e−λt λt = exp(αt)
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Γ(k1)Γ(yt+1)

(
k1

k1+λt

)k1 ( λt
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)yt
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1

2π
√
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z21t+z

2
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∏2
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1√
2π
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−z2
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2
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)
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Monte Carlo study

Distribution GAS ACM

∇t(θt) It(θt) st

Poisson yt
λt
− 1 1

λt
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2σ2
t

(
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t
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)
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2σ4
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1+ρ2t
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Monte Carlo study

Model Distribution State Space, GAS

Type δ, d φ, b ση, a other

Count Poisson 0.00 0.98 0.15

Count Neg. Binomial 0.00 0.98 0.15 k1 = 4

Intensity Exponential 0.00 0.98 0.15

Duration Gamma 0.00 0.98 0.15 k1 = 1.5

Duration Weibull 0.00 0.98 0.15 k1 = 1.2

Volatility Gaussian 0.00 0.98 0.15

Volatility Student's t 0.00 0.98 0.15 ν = 10

Copula Gaussian 0.02 0.98 0.10

Copula Student's t 0.02 0.98 0.10 ν = 10
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Monte Carlo study

We consider these nine observation densities.

The autoregressive state equation completes the speci�cations of

all parameter-driven models.

We draw 1, 000 time series realisations, n = 4, 000 for each DGP.

In each simulation, we use the �rst 2, 000 observations to

estimate the parameters for the following model speci�cations.

1 the correctly speci�ed state space model;

2 the GAS model based on the same conditional observation

density as the DGP

3 the ACM model for the corresponding speci�cation;

4 in the case of the exponential, gamma, Weibull, and

Gaussian models, a robust variant of the GAS and ACM

speci�cation.
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Monte Carlo study

We compute one-step ahead predictions for the next 2,000

values of f̃t given the parameter values estimated from the �rst

2,000 observations yt.

We therefore consider two million (2, 000× 1, 000) forecasts for

each speci�cation.

We measure the accuracy by means of the mean squared error

(MSE), in levels and relative to the MSE of the state space

model.

We compute the MSE across the two million forecasts of f̃t.
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Simulation results

DGP by state space model

Distribution State Space GAS ACM

True Estimated (1) (2) (1) (2)

Poisson 0.987 1.000 � 1.005 � 1.059

Neg. Binomial 0.982 1.000 � 1.008 � 1.030

Exponential 0.979 1.000 1.022 1.200 1.117 1.260

Gamma 0.985 1.000 1.004 1.050 1.033 1.032

Weibull 0.981 1.000 1.005 1.057 1.040 1.023

Gaussian 0.973 1.000 1.009 1.203 1.041 1.038

Student's t 0.968 1.000 � 1.004 � 1.145

Gaussian cop 0.957 1.000 � 1.014 � 1.312

Student's t cop 0.946 1.000 � 1.006 � 1.430
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Simulation results

DGP by GAS

Distribution Relative mean-square error Mean-square error

St Sp GAS ACM St Sp GAS ACM

Poisson 2.888 1.000 9.187 0.012 0.004 0.038

Neg. Binomial 1.192 1.000 3.838 0.008 0.006 0.024

Exponential 5.849 1.000 4.959 0.048 0.008 0.041

Gamma 6.026 1.000 3.181 0.123 0.020 0.065

Weibull 7.614 1.000 5.217 0.050 0.007 0.034

Gaussian 8.039 1.000 6.253 0.180 0.022 0.140

Student's t 1.994 1.000 3.426 0.057 0.029 0.098

Gaussian cop 1.540 1.000 3.812 0.002 0.002 0.006

Student's t cop 1.175 1.000 5.490 0.002 0.002 0.010
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Empirical Study

We have daily and high-frequency prices for twenty stocks from

the Dow Jones index (January 1993 � June 2012) and �ve major

stock indices between (January 1996 � October 2012).

Parameter estimation for all eight models is based on daily

close-to-close returns.

We compute one-step ahead forecasts starting in 2001 and 2004

for the stocks and indices.

For each model, parameters are re-estimated every three

months, expanding window, incl. all previous daily returns.

The precision of the forecasts from a model is evaluated by

comparing the volatility forecasts with the daily realised

volatilities as measured from high-frequency data.
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Models in empirical study

1 SV

2 GAS

3 GARCH

4 EGARCH

5 SV with leverage

6 GAS with leverage

7 GJR : GARCH with leverage

8 EGARCH with leverage
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Empirical result

Relative variance of the residuals of Mincer-Zarnowitz regressions of the

realised volatilities

Stock/index No leverage Leverage

SV GAS GARCH SV GAS GJR EGARCH

Am Exp 1.08 1.08 1.09 1.00 0.99 1.02 0.99

Boeing 1.07 1.06 1.13 1.00 0.99 1.04 1.00

Disney 1.13 1.19 1.18 1.00 1.05 1.09 1.10

GE 1.06 1.04 1.06 1.00 0.99 1.01 1.01

IBM 1.12 1.11 1.23 1.00 0.98 1.11 1.00

JPMorgan 1.07 1.09 1.07 1.00 1.02 1.09 1.02

Coca-Cola 1.07 1.06 1.13 1.00 0.99 1.09 1.02

DAX 30 1.27 1.26 1.27 1.00 1.01 1.14 0.99

FTSE 100 1.20 1.16 1.22 1.00 1.06 1.16 1.08

NASDAQ 1.20 1.20 1.21 1.00 0.99 1.01 1.00

S&P 500 1.28 1.30 1.35 1.00 1.04 1.22 1.05

Best model 0.00 0.00 0.00 0.48 0.36 0.00 0.16
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