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Motivation

• Model uncertainty is pervasive.

• How should we combine models for forecasting, policy analysis, risk
assessment – especially when we suspect that their relative appeal
may change over time (e.g., financial crisis vs ‘normal’ times)?
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Application

• Are financial variables (spreads) useful in forecasting macro
economic outcomes?

• Many macroeconomists paid scant attention to financial
frictions models before the recent crisis. Why? Did these
models not forecast very well in ‘normal’ times?

• Which models should policymakers use now?

• We focus in particular on forecasting with DSGE models (Del Negro
Schorfheide 2013, Handbook of Economic Forecasting).
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DSGE forecasts of the Great Recession
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Methodological Contribution

• Geweke and Amisano 2011, Hall and Mitchell 2007, optimal pools:

maxλ∈[0,1]

T∏
t=1

(λp(yt |It−1,M1) + (1− λ)p(yt |It−1,M2))

static

⇓
dynamic

p(yt |It−1, λt) = λtp(yt |It−1,M1)+(1−λt)p(yt |It−1,M2), λt ∈ [0, 1]

• Related approaches: Billio et al. 2013, Raftery et al. 2013.

• Conduct inference on the time series of λt and ask: Is there time
variation? Was the weight skewed toward one model vs the other
before the Great Recession? What is λt now?
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Combining Models - A Stylized Framework

• We have a principal-agent setting in mind...

• Agents = econometric modelers = Coenen, Jarocinski, Lenza... who
provide principal with predictive densities p(yt |y1:t−1,Mi ).

• Principal = policy maker = Smets, ... who aggregates information
obtained from modelers.

• Agents are rewarded based on the realized value of
ln p(yt |y1:t−1,Mi ) (induces truth-telling).
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Bayesian Model Averaging (BMA)

• At any time T the policy maker can use the predictive densities to
form marginal likelihoods:

p(y1:T |Mi ) =
T∏
t=1

p(yt |y1:t−1,Mi )

• . . . use them to update model probabilities:

λBMA
T =

λBMA
0 p(y1:T |M1)

λBMA
0 p(y1:T |M1) + (1− λBMA

0 )p(y1:T |M2)

where λBMA
T = P[M1 is correct|y1:T ] and let λBMA

0 be prior
probability of M1.
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BMA and Model Misspecification

• This approach is based on the assumption that the model space
contains the ‘true’ model (“complete model space”)

DGP = p(y1:T )

KLIC

p(y1:T |M1) p(y1:T |M2)

• λBMA
T

a.s.−→ 1 or 0 as T −→∞ (Dawid 1984): Asymptotically, no
model averaging!

• If the policy maker mistrusts all of the models in the pool, this may
not be the best approach.
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Optimal Pools vs BMA

• A policy maker concerned about misspecification of Mi could create
convex combinations of predictive densities:

DGP = p(y1:T )

p(y1:T |M1) p(y1:T |M2)

p(y1:T |λ,Mλ) =
T∏
t=1

{
λ p (yt |y1:t−1,M1) + (1− λ) p (yt |y1:t−1,M2)

}
• λSPT = argmaxλ∈[0,1]p(y1:T |λ,Mλ) generally 6→ 1 or 0 (unless one of

the models is correct): Exploits gains from diversification.

• In a time-varying setting, policy maker needs to make inference with
respect to λ1:T .
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Dynamic Pools – Likelihood Function

• Likelihood function:

T∏
t=1

p(yt |It−1, λ1:T ) =
T∏
t=1

[
λtp(yt |It−1,M1)+(1−λt)p(yt |It−1,M2)

]
.

• Period t contribution to likelihood looks like:

p(yt |It−1,M1)

p(yt |It−1,M2)

λt

• Need (stochastic process) prior for sequence λ1:T .
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Dynamic Pools - (Hierarchical) Prior

• Prior p(λ1:T |ρ) for sequence λ1:T :

xt = ρxt−1 +
√

1− ρ2εt , εt ∼ iid N(0, 1), x0 ∼ N(0, 1),

λt = Φ(xt)

where Φ(.) is the Gaussian CDF.

• ρ controls the amount of “smoothing.”

• As ρ −→ 1: dynamic pool −→ static pool.

• Unconditionally, λt ∼ U[0, 1] for all t.
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Dynamic Pools - Nonlinear State Space System

• Measurement equation:

p(yt |It−1, λt) = λtp(yt |It−1,M1) + (1− λt)p(yt |It−1,M2)

• Transition equation:

λt = Φ(xt), xt = ρxt−1 +
√

1− ρ2εt , εt ∼ iid N(0, 1)

• Use particle filter to construct the sequence p(λt |ρ, y1:t).

• Predictive density:

p(yt |y1:t−1)

=

∫ {
λtp(yt |It−1,M1)

+(1− λt)p(yt |It−1,M2)

}
p(λt |y1:t−1, ρ)p(ρ|y1:t−1)dλtdρ

= λ̂t|t−1p(yt |It−1,M1) + (1− λ̂t|t−1)p(yt |It−1,M2),

where λ̂t|t−1 = E[λt |y1:t−1].
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Alternative Law of Motions for the Weights (λt)

• Allow for a mean µ in

xt = µ + ρxt−1 +
√

1− ρ2εt , εt ∼ iid N(0, 1), x0 ∼ N(0, 1),

λt = Φ(xt)

so that ρ < 1 6→ IE [λt ] = 1/2 for t →∞.

• µ ∼ N (0, σ2
µ) being a natural prior

• ... and/or a standard deviation σ 6= 1

xt = ρxt−1 + σ
√

1− ρ2εt ,

• σ = 1: flat

• σ < 1:∩ shaped (pull toward equal weights).

• σ > 1:∪ shaped (pull away from equal weights).
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• Markov-Switching setup

p(yt |It−1, λt) = stp(yt |It−1,M1) + (1− st)p(yt |It−1,M2),

st = 0, 1, πij = P(st = i |st−1 = j)

so that λt could be interpreted as the probability of being in regime
1 (i.e., λt = P(st |y1:t) for filtered).
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Reestimate Models for Each λ1:T?

• Full information Bayes’ answer: Yes (e.g., Waggoner and Zha, 2012)

• Joint distribution:

p(y1:T , λ1:T , θ(1), θ(2)) =

( T∏
t=1

λtp(yt |y1:t−1, θ(1),M1)

+ (1− λt)p(yt |y1:t−1, θ(2),M2)

)
× p(θ(1))p(θ(2))p(λ1:T )

→ posterior of (θ(1), θ(2)) will generally depend on λ1:T :

p(θ(1), θ(2), λ1:T |y1:T ) = p(θ(1), θ(2)|y1:T , λ1:T )p(λ1:T |y1:T ).
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Our approach: No

1 Models are in general not estimated on the same variables (e.g.,
DSGEs vs VARs vs FRBUS) → Likelihood

p(yt |y1:t−1, θ(m),Mm)

not available for the same set of variables for all models.

2 Principal may only care about a subset of these variables in drawing
inference about λ1:T

• Let It = {y1:t , z1:t}.
• For any set of beliefs p(zt |yt , It−1,P), t = 1, . . . ,T , the policy

maker can form the joint distribution:

p(y1:T , z1:T |λ1:T ) =
T∏
t=1

{(
λtp(yt |It−1,M1)

+(1− λt)p(yt |It−1,M2)
)
× p(zt |yt , It−1,P)

}
which implies

p(λ1:T |IT ) ∝ p(λ1:T )
T∏
t=1

(
λtp(yt |It−1,M1)+(1−λt)p(yt |It−1,M2)

)
.
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3 It is not always possible to re-estimate all models for any sequence
λ1:T

• Estimation of large-scale DSGE models is computationally
costly, and for some models that are not estimated using
likelihood based methods (e.g., FRBUS) it is not clear how they
would incorporate the information coming from λ1:T .

• Agents/modelers provide principal with predictive densities
p(yt |It−1,Mm). The agents are rewarded based on the realized
value of ln p(yt |It−1,Mm)

• Principal aggregates (limited) information obtained from
modelers.
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Multi-Step Forecasting

• Policy maker may be interested in multi-step forecasts (and so are
we): e.g., average growth/inflation over h periods:

ȳt,h =
1

h

h−1∑
s=0

yt−s .

• From a full information Bayesian perspective, the policy maker
should construct the posterior of λ1:T based on h = 1 (
one-step-ahead predictive densities): p(yt |It−1,Mm).

• However, if model misspecification is a serious concern, then it is
reasonable to use the loss function, i.e., the h-step-ahead predictive
densities to determine λ1:T .

• Literature on loss-function-based versus likelihood-based
estimation of forecasting model, e.g., Schorfheide (JoE, 2005).
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• As is common in the literature on predictive regressions
yt = β0 + β1xt−h + ut , we estimate the pooling weights directly,
ignoring the overlap between ȳt,h, ȳt−1,h, etc.

• (Pseudo) likelihood:

p(h)(ȳ1:T ,h|λ1:T ) =
T∏
t=1

[
λ

(h)
t p(ȳt,h|It−h,M1)+(1−λ(h)

t )p(ȳt,h|It−h,M2)

]

• Particle filter generates pseudo posteriors p(h)(λ
(h)
t |ρ, ȳ1:t,h).

• We use the following predictive density for forecasting (with h = 4):

p(h)(ȳt,h|ρ, ȳ1:t−h,h) = λ̂
(h)
t|t−hp(ȳt,h|It−h,M1)

+(1− λ̂(h)
t|t−h)p(ȳt,h|It−h,M2).
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The Data

• Forecast for each model are based on real-time data (sample starts
in 1964:Q1)

• Information sets (Imt ) for forecasts:

• SWπ: output growth, inflation, fed funds, consumption growth,
investment growth, wage growth, hours worked, 10-yrs Inflation
Expectations from Surveys.

• SWπFF: . . . + spread
• Imt includes current (t + 1) values for financial variables.

• Variables to be forecast (yt): output growth, inflation

• Forecast evaluation period (t = 1, ..,T ): 1992:Q1-2011:Q2
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Questions

1 Inference on λt : Is there significant time variation in the relative
forecasting performance of the two models, as captured by the
estimated distribution of λt?

• Does λt change rapidly enough when estimated in real time to
offer useful guidance to policy makers or forecasters?

2 Forecasting performance: Do the dynamic pools perform better in
real time than forecasting with static pools, BMA weights, equal
weights?
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Log Scores Comparison: SWFF vs SWπ
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Static Pools – Recursive Estimation of λ

Del Negro, Hasegawa, Schorfheide Dynamic Pools ECB Workshop Forecasting 23 / 43



Dynamic Pools – Recursive Estimation of λT |T
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Dynamic, BMA, and Static Pool Weights in Real Time

Whole Sample Great Recession
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Recursive Posterior of ρ
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Prior/Posterior of ρ
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Prior/Posterior of ρ – B(.8, .1) prior
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Prior/Posterior of ρ – B(.9, .2) prior
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Prior/Posterior of σ2 – IG(1, 4) prior

xt = µ + ρxt−1 + σ
√

1− ρ2εt , εt ∼ iid N(0, 1), x0 ∼ N(0, 1),

λt = Φ(xt)

Marginal likelihood difference σ2 = 4 − σ2 = .5 = ∼ 5 log points
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Prior/Posterior of µ – in Φ(µ) space
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Dynamic Pools – Recursive Estimation of λT |T
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λT |T : Plain vs Estimated µ, σ DP

Whole Sample Great Recession
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Log Scores Comparison: SWFF (red) vs SWπ (blue) vs DP
(black)

pDP(yt |λt−h|t−h) = λt|t−hp(yt |ISWFF

t−h , SWFF) + (1− λt|t−h)p(yt |ISWπ

t−h, SWπ)
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Log score comparison: Dynamic vs BMA, Static Pool, and
equal weights (black line)
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Cumulative Log Scores

Log Score(DP)
Log Score(DP)

- Log Score(Alt.)

Specification DP EW BMA SP

ρ ∼ U(0, 1), µ = 0, σ2 = 1 -256.91 1.34 4.07 4.95

ρ ∼ U(0, 1),

µ ∼ N (0,Φ−1(.75)), σ2 ∼ IG(1, 4)
-256.42 1.83 4.56 5.44

ρ ∼ B(.8, .1),

µ ∼ N (0,Φ−1(.75)), σ2 ∼ IG(1, 4)
-256.43 1.82 4.55 5.43

ρ ∼ B(.8, .1), µ = 0, σ2 ∼ IG(1, 4) -255.97 2.28 5.01 5.89
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Conclusions

• Methodology:

• There is evidence of time-variation in relative forecasting
performance of different models over time (see also Amisano
and Geweke 2013) → Dynamic Pools seem worth exploring.

• Substantive:

• Evidence of time-variation in relative forecasting performance of
DSGE models with and without financial frictions ...

• ... yet no excuse for having ignored FF prior to the Great
Recession.

• Should use financial friction model now

• Evidence in favor of non-linearities
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Log Scores Comparison: SWFF vs SWπ – No t + 1
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Dynamic, BMA, and Static Pool Weights in Real Time –
No t + 1 Information

Del Negro, Hasegawa, Schorfheide Dynamic Pools ECB Workshop Forecasting 39 / 43



Log score comparison: Dynamic vs BMA, Static Pool, and
equal weights (black line) – No t + 1 Information
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Cumulative Log Scores – No t + 1 Information

Log Score(DP)
Log Score(DP)

- Log Score(Alt.)

Specification DP EW BMA SP

ρ ∼ U(0, 1), µ = 0, σ2 = 1 -259.43 0.99 16.14 5.24

ρ ∼ B(.8, .1),

µ ∼ N (0,Φ−1(.75)), σ2 ∼ IG(1, 4)
-259.09 1.33 16.48 5.58

ρ ∼ B(.8, .1), µ = 0, σ2 ∼ IG(1, 4) -258.62 1.80 16.95 6.05

Del Negro, Hasegawa, Schorfheide Dynamic Pools ECB Workshop Forecasting 41 / 43



λT |T : µ = 0 vs Estimated µ DP

Whole Sample Great Recession
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Prior/Posterior of µ
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