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Introduction

Introduction

Producing accurate forecasts of the term structure of interest rates is crucial for

bond portfolio management, derivatives pricing, and risk management.

Most contributions have focused on point forecasts of the yield curve. However,
assessing the whole predictive distribution of the yield curve is more important for

the success of portfolio and risk management strategies.

Which ingredients for a good density forecast?

The time series of interest rates typically feature comovement and

heteroskedasticity. Having a joint dynamic model featuring time variation in

volatility is key

A good model for point forecasts
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Introduction

Introduction

Gaussian A¢ ne Term Structure Models (GATSM): widely used and successful for
in-sample analysis

Vasiceck (1977), Du¢ e and Kan (1996), Dai and Singleton (2000), Du¤ee

(2002), Ang and Piazzesi (2003), Christensen, Diebold and Rudebush (2011).

How do they forecast yields out of sample? Du¤ee (2002) and Ang and Piazzesi

(2003): beating a random walk with a traditional no arbitrage GATSM is di¢ cult.

The assumption of absence of arbitrage - which is per se reasonable in well
developed markets - needs to be translated into a set of restrictions on a particular

model. These speci�cation assumptions are not necessarily holding in the data.

Using a GATSM as a prior rather than as a set of sharp restrictions allows to deal

with the potential misspeci�cation (Del Negro and Schorfheide 2004).
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Introduction

Summary of the paper

In this paper we propose a model that:

Shrinks the point (and density) forecasts towards a no arbitrage model.

Allows for time variation in the volatilities.

We impose the GATSM as a prior rather than as sharp restrictions to account for

its possible misspeci�cation.

As the volatilities of a panel of yields move closely together, we impose on them a

factor structure.

We derive the conditional posterior kernels of this model and use a MCMC sampler

for posterior simulation.

Such modelling choices result in a clear improvement in point and density
forecasting performance.
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Introduction

Relation to (some) literature

The method can be applied for a wide range of alternative models, and can be

considered as an extension of the method of Del Negro and Schorfheide (2004) to
VARs featuring drifting volatilities.

Can be applied to DSGE models

The model generalizes the approach of Giannone, Lenza and Primiceri (2012)

Both the prior variance and the prior mean of the VAR coe¢ cients are

speci�ed hierarchically, and errors are heteroskedastic.

With respect to Carriero (2011) we introduce drifting volatilities and consider the

new canonical form of Joslin, Singleton, and Zhu (2011).

This representation presents very important advantages in the computation of

the likelihood

Density forecasts (Shin and Zhong 2013, Chib and Kang 2013)
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Introduction

Joslin, Singleton and Zhu (2011) model

The yields of maturity τ = 1, ...,N are collected in the N � 1 vector yt , and are a
funcion of a set of n factors Pt :

∆Pt = KP0P +K
P
1PPt�1 + ΣP εPt (1)

yt = Ap + BpPt + Σy εyt (2)

where Pt are factors, and ΣP is the Cholesky factor of their conditional variance.

No arbitrage implies that the coe¢ cients appearing in Ap , Bp are a function of

some deep coe¢ cients. We collect these deep coe¢ cients and the variance matrices

in the vector θ:
θ = (λQ , kQ∞ ,ΣP ,Σy ). (3)

(KP0P and K
P
1P can be concentrated out of the likelihood).

For a given choice of θ it is possible to compute the moments E [ytyt�h ] under the

state space model in (1)-(2):

These moments will be used to form a prior for a VAR and are ultimately a function

of the deep coe¢ cients θ
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Introduction

VAR with common stochastic volatility (CSV)

We use the speci�cation proposed by Carriero, Clark and Marcellino (2012):

yt = Φ0 +Φ1yt�1 + ...+Φpyt�p + ut . (4)

ut = λ0.5t εt , εt � N(0,V ), (5)

log(λt ) = φ0 + φ1 log(λt�1) + νt , νt � iid N(0, φ2). (6)

The assumption of common stochastic volatility is predicated on the fact that the

volatilities of yields feature a strong factor structure

The �rst principal component explains most of the variation in the panel (e.g.

89% in our data set)

Modelling volatility as common produces a likelihood featuring a variance matrix

with Kronecker structure, which allows to use a conjugate N-IW prior (cond. on

volatilities)

The priors on Φ and V are set up based on the moments of the GATSM for a given

hyperparameter θ, with tightness γ.
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Estimation

Algorithm

Let Λ denote the history of volatility and Y collect all the data. Draws from the
joint posterior:

p(Φ,V , θ,γ,Λ, φjY ) (7)

are obtained by drawing in turn from:

p(Φ,V , θ,γjY ,Λ, φ) (8)

and:

p(Λ, φjY ,Φ,V , θ,γ) (9)

Draws from (8) are obtained as in Del Negro and Schorfheide (2004), plus an

additional step to draw the tightness hyperparameter γ.

Draws from (9) are obtained as in Carriero, Clark, Marcellino (2012) using a

modi�cation of Cogley and Sargent (2005) algorithm (to account for common
volatility)
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Estimation

Priors

The priors on the VAR coe¢ cients V and Φ are set up hierarchically, using

equations (19) and (20). We do not need a prior on the �rst observation of the
volatility process.

Therefore, we only need to specify priors for γ, θ, φ. For these parameters, we use

weakly informative priors (and also check with di¤use priors for robustness)

For θ the prior re�ects the belief that the �rst factor in the GATSM is (close

to) a random walk, the second is stationary but very persistent, and the third

is moderately persistent.

The prior mean for γ is centered in 1, which corresponds to giving a-priori the

same weight to the GATSM and the unrestricted VAR. We implement the

restriction γ > (k +N)/T , necessary for the priors on V and Φ to be proper,

by truncating the posterior draws.

The prior for φ re�ects the belief that volatility is persistent.

φ0 � N(0, 0.025), φ1 � N(0.96, 0.025), and φ2 � IG (3 � 0.05, 3).
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Empirical results

Data
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Zero-coupon Fama-Bliss yields, at monthly frequency, and ranging from January 1985 to
December 2007.
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Empirical results

In sample results: CSV factor
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Empirical results

Forecasting exercise

Out-of-sample forecasting exercise.

We estimate the model recursively and produce forecasts up to 12 steps ahead.

Initial estimation window : January 1985 to December 1994

Final estimation window : January 1985 to November 2007

Forecast evaluation period: January 1995 to December 2007.

We obtain forecast distributions by sampling as appropriate from the posterior

distribution of the considered models.
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Empirical results

Forecast evaluation

Point forecasts are evaluated using RMSE:

RMSFEMi ,h =

r
1
P ∑

�
ŷ (i )t+h(M)� y

(i )
t+h

�2
, (10)

where ŷ (i )t+h(M) denote the forecast of the i -th yield y
(i )
t+h made by model M .

Signi�cance via Diebold and Mariano (1995) t-statistic, rough guide

(conservative in small sample - Clark and McCracken 2011a,b)

Density forecasts evaluated with log predictive density scores:

SCOREMi ,h =
1
P ∑ log p(yt+h jy (t),M), (11)

where the predictive density p(�) is obtained by univariate kernel estimation based
on the MCMC output.

Signi�cance via Amisano and Giacomini (2007) t-statistic, rough guide

(asymptotic validity would require rolling windows)
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Table 3. Evaluation of Point Forecasts. Sample 1995:2007

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-ahead ↓

RW point forecasting performance

1 20.80 23.34 27.30 29.02 28.75 27.44 26.32

2 33.71 36.73 42.08 43.66 42.61 40.49 38.31

3 45.22 48.67 53.26 53.52 51.17 48.04 44.67

6 77.98 79.20 80.21 77.21 72.45 66.48 60.29

12 135.78 132.78 122.24 111.25 97.55 86.92 77.52

JSZ-VAR vs Random Walk

1 0.86 *** 0.97 1.03 1.01 1.02 1.03 1.00

2 0.80 ** 0.95 1.03 1.03 1.03 1.03 0.99

3 0.78 ** 0.92 1.01 1.01 1.02 1.02 0.98

6 0.78 * 0.90 0.96 0.96 0.96 0.96 0.93

12 0.80 0.85 0.86 0.86 0.86 * 0.88 0.86 *

JSZ-VAR-CSV vs Random Walk

1 0.85 *** 0.95 1.02 1.00 1.01 1.02 1.00

2 0.79 ** 0.93 1.03 1.02 1.02 1.03 1.00

3 0.77 ** 0.91 1.01 1.01 1.02 1.02 1.00

6 0.78 * 0.91 0.98 0.99 1.00 1.01 0.99

12 0.81 * 0.88 0.91 0.91 0.92 0.94 0.95

BVAR-CSV vs Random Walk

1 0.93 *** 0.98 1.00 1.01 1.01 1.01 1.01

2 0.92 *** 0.99 1.02 1.02 1.02 1.02 1.02

3 0.92 *** 0.99 1.03 1.03 1.03 1.02 1.02

6 0.95 * 1.02 1.06 1.06 1.06 1.04 1.03

12 0.95 1.01 1.06 1.08 1.09 1.08 1.05

The first panel contains the RMSFEs obtained by using the random walk forecasts, with units in basis points. The 

remaining panels display the relative RMSFEs of the competing models relative to the random walk. A figure below 

1 in the relative RMSFEs signals that a model is outperforming the random walk benchmark. Figures in bold 

denote that the best model (within the VAR class) for each variable and forecast horizon. Gains in accuracy that 

are statistically different from zero are denoted by *,**,***, corresponding to significance levels of 10%,  5% and 

1% respectively, evaluated using the Diebold and Mariano (1995) t-statistics computed with a serial correlation-

robust variance, using a rectangular kernel, h-1 lags, and the small-sample adjustment of Harvey, Leybourne, and 

Newbold (1997). 

 



Table 4. Evaluation of Density Forecasts. Sample 1995:2007

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-ahead ↓

RW density forecasting performance

1 -4.54 -4.66 -4.78 -4.82 -4.81 -4.77 -4.72

2 -4.96 -5.06 -5.17 -5.21 -5.19 -5.15 -5.10

3 -5.26 -5.34 -5.41 -5.41 -5.38 -5.33 -5.26

6 -5.86 -5.81 -5.81 -5.77 -5.73 -5.66 -5.58

12 -7.34 -6.42 -6.24 -6.14 -6.05 -5.97 -5.89

JSZ-VAR vs Random Walk

1 0.13 *** 0.05 ** 0.00 0.00 0.00 -0.02 -0.02

2 0.16 ** 0.03 -0.04 -0.04 -0.03 -0.03 0.00

3 0.20 * 0.06 -0.02 -0.03 -0.01 -0.02 0.01

6 0.28 0.08 0.03 0.02 0.04 0.02 0.03

12 1.19 0.23 0.10 0.09 0.10 * 0.08 * 0.07 *

JSZ-VAR-CSV vs Random Walk

1 0.30 *** 0.16 *** 0.04 0.03 0.01 0.01 0.01

2 0.29 *** 0.11 ** 0.00 -0.01 -0.02 -0.03 -0.01

3 0.31 *** 0.13 ** 0.01 0.01 0.01 -0.01 0.00

6 0.37 * 0.15 * 0.07 0.05 0.06 0.04 0.04

12 1.26 0.29 0.12 * 0.09 0.09 * 0.08 * 0.07 *

BVAR-CSV vs Random Walk

1 0.19 *** 0.12 *** 0.04 0.02 0.00 0.01 -0.01

2 0.16 *** 0.07 ** 0.00 -0.02 -0.02 -0.01 -0.01

3 0.14 *** 0.07 * -0.02 -0.03 -0.01 -0.01 -0.01

6 0.12 0.04 0.00 -0.02 0.01 0.01 0.01

12 1.02 0.14 0.00 -0.03 -0.02 0.00 0.02

The first panel contains the average SCOREs obtained by using the random walk forecasts. The remaining panels 

display the differences in SCOREs of the competing models relative to the random walk. A figure above 0 in the 

SCORE differences signals that a model is outperforming the random walk benchmark. As the SCOREs are 

measured in logs, a score difference of e.g. 0.05 signals a 5% gain in terms of density forecast accuracy. Figures in 

bold denote that the best model (within the VAR class) for each variable and forecast horizon. Gains in accuracy 

that are statistically different from zero are denoted by *,**,***, corresponding to significance levels of 10%,  5% 

and 1% respectively, evaluated using the Amisano and Giacomini (2007) t-statistics computed with a serial 

correlation-robust variance, using a rectangular kernel, h-1 lags, and the small-sample adjustment of Harvey, 

Leybourne, and Newbold (1997). 



Table 5: JSZ-VAR vs GATSM

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-

ahead ↓

Relative RMSFE (point forecasting performance)

1 0.95 0.87** 0.97 1.01 0.98 0.97 0.93**

2 0.92 0.89 0.98 1.01 0.98 0.98 0.95

3 0.88 0.86* 0.94 0.97 0.94 0.93 0.90*

6 0.85 0.84* 0.88 0.90 0.87 0.86 0.81**

12 0.83 0.81* 0.81* 0.80* 0.77* 0.77* 0.72**

Average Difference in SCORE (density forecasting performance) ***

1 0.640 0.581 0.500 0.493 0.528 0.549 0.602

2 0.588 0.499 0.387 0.385 0.440 0.485 0.553

3 0.536 0.459 0.388 0.404 0.471 0.515 0.596

6 0.408 0.395 0.385 0.422 0.485 0.530 0.603

12 0.245 0.285 0.338 0.405 0.494 0.536 0.592

*** All differences in density forecasts are significant at the 1% level

 

The first panel contains the relative RMSFE between the JSZ-VAR and the GATSM exactly imposed. The second 

panel contains the average difference in SCORE. Gains in accuracy that are statistically different from zero are 

denoted by *,**,***, corresponding to significance levels of 10%,  5% and 1% respectively, evaluated using the 

Diebold and Mariano (2005) t-statistics computed with a serial correlation-robust variance, using a rectangular 

kernel, h-1 lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). For density 

forecasts all differences are statistically significant at the 1% level according to the Amisano and Giacomini (2007) 

t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h-1 lags, and the small-

sample adjustment of Harvey, Leybourne, and Newbold (1997). 

 

 



Table 6: JSZ-VAR-CSV vs VAR-CSV with factor structure only

Maturity→ 0.25-yrs 1-yrs 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

step-

ahead ↓

Relative RMSFE (point forecasting performance)

1 1.00 0.99 1.00 1.00 0.99 1.00 1.00

2 1.00 1.00 0.99 0.99 0.99 1.00 1.00

3 0.99 0.99 0.99 0.99 0.99 1.00 1.00

6 0.99 0.99 0.99 0.99 0.99 1.00 1.00

12 0.99 1.00 0.99 0.99 0.99 1.00 1.00

Average Difference in SCORE (density forecasting performance)

1 0.0664* 0.0166** 0.007 0.005 0.005 0.003 0.009

2 0.0233* 0.007 0.011 0.012 0.005 0.002 0.001

3 0.017 0.003 0.007 0.012 0.013 0.008 0.004

6 0.024 0.007 0.004 0.003 0.001 0.000 0.004

12 0.031 0.0247* 0.022 0.013 0.012 0.009 0.010

 

The first panel contains the relative RMSFE between the JSZ-VAR-CSV and the same model where the no-arbitrage 

restrictions on the loadings have not been imposed. The second panel contains the average difference in SCORE. 

Gains in accuracy that are statistically different from zero are denoted by *,**,***, corresponding to significance 

levels of 10%,  5% and 1% respectively, evaluated using either the Diebold and Mariano (2005) or the the Amisano 

and Giacomini (2007) t-statistics computed with a serial correlation-robust variance, using a rectangular kernel, h-

1 lags, and the small-sample adjustment of Harvey, Leybourne, and Newbold (1997). 

 

 



Empirical results

Summary of Results

Both the JSZ � VAR � CSV and the JSZ � VAR models produce competitive
point and density forecasts, systematically outperforming the RW benchmark.

The gains against the random walk increase with the forecast horizon.

The JSZ � VAR � CSV speci�cation produced the best density forecasts
throughout the sample.

The gains in using a speci�cation with time varying volatility tend to die out as the

forecast horizon increases.

Although the di¤erences are statistically insigni�cant, long-term point forecasts of

the JSZ � VAR model are slightly superior to those of the JSZ � VAR � CSV .
We suggest to use the heteroschedastic version of our model for short term
forecasting, while at long horizons it is probably safer to complement it with the

homoschedastic version of the model.
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Conclusions

Conclusions

We propose a way to impose a no arbitrage a¢ ne term structure model as a prior

on a VAR, while allowing also for time variation in the error volatilities.

We provide the conditional posterior distribution kernels of the model and we
propose a MCMC algorithm to perform estimation.

The method can be applied to several models, including DSGE (work in progress),
and is an extension of the method of Del Negro and Schorfheide (2004) to VARs

featuring drifting volatilities.

Our model generalizes the one of Giannone, Lenza and Primiceri (2012), by
introducing heteroskedastic errors and specifying hierarchically both the prior

variances and the prior means of the VAR coe¢ cients.

Based on U.S. data we provide evidence that both the shrinkage towards the term
structure model and the time variation in volatilities can produce substantial gains

in forecasting the yield curve.
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Appendix

VAR with common stochastic volatility (CSV)

A theoretical sample of dimension T � obeying the GATSM has an approximate
VAR representation:

y �t = Φ0 +Φ1y
�
t�1 + ...+Φpy �t�p + u

�
t . (12)

u�t = λ�0.5t εt , εt � N(0,V ), (13)

λ�t = 1 for all t. (14)

Under the GATSM, the common stochastic volatility factor stays constant at its

initial value of 1

The yields y �t have the moment matrices implied by the GATSM, for any given

choice of the hyperparameters θ.

Conditional on λt these moment matrices can be used as a prior for the VAR

coe¢ cients Φ and V , as in Del Negro and Schorfheide (2004).

The prior is conditional on θ and has tightness γ = T �/T .
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Appendix

VAR with CSV: JSZ prior

We derive the prior as Del Negro and Schorfheide (2004), i.e. by using the moments

of the underlying state space system:

ΦjV , θ,γ,Λ � N(Φ̂�(θ),V 
 (γT ΓX̃ �0X̃ � (θ))
�1), (19)

V jθ,γ,Λ � IW (Ŝ�(θ),γT � k), (20)

where:

Φ̂�(θ) = Γ�1
X̃ �0X̃ �

(θ)ΓX̃ �0Ỹ � (θ),

Ŝ�(θ) = γT (ΓỸ �0Ỹ � (θ)� ΓỸ �0X̃ � (θ)Γ
�1
X̃ �0X̃ �

(θ)ΓX̃ �0Ỹ � (θ)),

Here ΓỸ �0Ỹ � (θ), ΓỸ �0X̃ � (θ), ΓX̃ �0X̃ � (θ) are the moments of the (rescaled) yields
under the GATSM model.

Therefore the prior is conditional on θ.

It is also conditional on the γ (the overall tightness of the prior). We will draw γ as
Giannone et al. (2012).
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Appendix

VAR with CSV: Conditional posteriors

The posterior distributions of Φ and V will be proportional to the likelihood times
the prior, and are conjugate (Zellner, 1973):

ΦjY ,V , θ,γ,Λ � N(Φ̃(θ),V 
 (γT ΓX̃ �0X̃ � (θ) + X̃
0X̃ )�1), (21)

V jY , θ,γ,Λ � IW (S̃(θ), (γ+ 1)T � k), (22)

where:

Φ̃(θ) = (γT ΓX̃ �0X̃ � (θ) + X̃
0X̃ )�1(γT ΓX̃ �0Ỹ � (θ) + X̃

0Ỹ ),

S̃(θ) = [(γT ΓỸ �0Ỹ � (θ) + Ỹ
0Ỹ )� (γT ΓỸ �0X̃ � (θ) + Ỹ

0X̃ )(γT ΓX̃ �0X̃ � (θ)

+ X̃ 0X̃ )�1(γT ΓX̃ �0Ỹ � (θ) + X̃
0Ỹ )].
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Appendix

Volatility

We use a modi�cation of Cogley and Sargent (2005) algorithm.

De�ning the orthogonalized residuals wt = (w1t , ...,wnt ) = V �1/2ut the kernel of
p(λt jY ,Φ,V , θ,γ, φ) is given by:

λ�n�1.5t

n

∏
i=1
exp(�0.5w 2it/λt ) � exp(�0.5(ln λt � µt )

2/σ2c ), (23)

where µt and σ2c are the conditional mean and variance of ln λt .

By choosing an appropriate proposal density, this kernel can be used as a basis for a

Metropolis step with acceptance probability:

a = min

 
λ��n�0.5t ∏n

i=1 exp(�0.5w
2
it/λ�t )

λ�n�0.5t ∏n
i=1 exp(�0.5w

2
it/λt )

, 1

!
. (24)

Note (23) and (24) di¤er from Cogley and Sargent (2005), as in their case each

volatility process λit is drawn separately conditional on the remaining n� 1
Draws from p(φjY ,Λ) using standard results for univariate linear regressions
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Appendix

MCMC sampler

To sum up, the algorithm will draw in turn from the distributions, as follows:

1 Draw from the conditional posterior distribution of θ, p(θjY ,γ,Λ);
2 Draw from the conditional posterior distribution of γ, p(γjY , θ,Λ);
3 Draw from the conditional posterior distribution of V , p(V jY , θ,γ,Λ);
4 Draw from the conditional posterior distribution of Φ, p(ΦjY ,V , θ,γ,Λ);
5 Draw from the conditional posterior distribution of Λ, p(ΛjY ,Φ,V , φ); and
6 Draw from the conditional posterior distribution of φ, p(φjY ,Λ).
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Appendix

Algorithm

The joint p.d.f. (8) can be factorized as follows:

p(Φ,V , θ,γjY ,Λ) _ p(ΦjY ,Λ,V , θ,γ)p(V jY ,Λ, θ,γ)p(θ,γjY ,Λ,γ). (25)

where we have omitted conditioning on φ because they are redundant under
knowledge of Λ.

Draws from θ,γjY ,Λ can be obtained using Metropolis steps using the kernel of
the p.d.f. of this distribution, which is available

Draws from V jY ,Λ, θ,γ, and ΦjY ,Λ,V , θ,γ can be obtained via MC steps.
This step is the same as DS (2004), except we also have an additional block to
draw the tightness hyperparameter γ.
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Appendix

Algorithm

The second step involves simulating from the joint posterior of the volatility
process λt and its law of motion parameters φ, conditional on the VAR coe¢ cients:

p(Λ, φjY ,Φ,V ) (26)

where we have omitted conditioning on θ and γ because they are redundant under

knowledge of Φ and V .

Draws are obtained by drawing in turn from φjY ,Λ and ΛjY ,Φ,V , φ.
Following Cogley and Sargent (2005) we specify conjugate priors on the parameters

in φ, so that φjY ,Λ can be obtained via a MC step.

To draw from Λ, φjY ,Φ,V we use the method proposed in Carriero, Clark, and

Marcellino (2012). Such method is a modi�cation of Cogley and Sargent (2005) to
allow for a single stochastic volatility factor.
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