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Abstract

Density forecast combinations are becoming increasingly popular as a means of improving

forecast ‘accuracy’, as measured by a scoring rule. In this paper we generalise this literature

by letting the combination weights follow more general schemes. Sieve estimation is used

to optimise the score of the generalised density combination where the combination weights

depend on the variable one is trying to forecast. Specific attention is paid to the use of

piecewise linear weight functions that let the weights vary by region of the density. We

analyse these schemes theoretically, in Monte Carlo experiments and in an empirical study.

Our results show that the generalised combinations outperform their linear counterparts.
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1 Introduction

Density forecast combinations or weighted linear combinations, or pools, of prediction models

are becoming increasingly popular in econometric applications as a means of improving forecast

‘accuracy’, as measured by a scoring rule (see Gneiting & Raftery (2007)), especially in the face

of uncertain instabilities and uncertainty about the preferred model; e.g., see Jore et al. (2010),

Geweke & Amisano (2012) and Rossi (2013). Geweke & Amisano (2011) contrast Bayesian model

averaging with linear combinations of predictive densities, so-called “opinion pools”, where the

weights on the component density forecasts are optimised to maximise the score, typically the

logarithmic score, of the density combination as suggested in Hall & Mitchell (2007).

∗Address for correspondence: James Mitchell (James.Mitchell@wbs.ac.uk). We thank Gianni Amisano, She-
heryar Malik, Neil Shephard and participants at the UCL/Bank of England workshop in honour of Mark Watson
(2013), ESEM 2013 and MMF 2013 for helpful comments and advice.

1



In this paper we generalise this literature by letting the combination weights follow more

general schemes. Specifically, we let the combination weights depend on the variable one is

trying to forecast. We let the weights in the density combination depend on, for example,

where in the forecast density you are, which is often of interest to economists. This allows for

the possibility that while one model may be particularly useful (and receive a high weight in

the combination) when the economy or market is in recession or a bear market, for example,

another model may be more informative when output growth is positive or there is a bull market.

The idea of letting the weights on the component densities vary according to the (forecast)

value of the variable of interest contrasts with two recent suggestions, to let the weights in

the combination follow a Markov-switching structure (Waggoner & Zha (2012)), or to evolve

over time according to a Bayesian learning mechanism (Billio et al. (2013)). Accommodating

time-variation in the combination weights mimics our approach to the extent that over time

one moves into different regions of the forecast density. Our approach is also distinct and not

subsumed by the combination methods considered in Gneiting & Ranjan (2013) which take

nonlinear transformations of a linear pool with fixed weights, rather than nonlinear or what we

call generalised pools where the weights themselves induce the nonlinearities.

The plan of this paper is as follows. Section 2 develops the theory behind the generalised

density combinations or pools. It proposes the use of sieve estimation (cf. Chen & Shen (1998))

as a means of optimising the score of the generalised density combination over a tractable, ap-

proximating space of weight functions on the component densities. We consider, in particular,

the use of piecewise linear weight functions that have the advantage of explicitly letting the

combination weights depend on the region, or specific quantiles, of the density. This means pre-

diction models can be weighted according to their respective abilities to forecast across different

regions of the distribution. We also discuss implementation and estimation of the generalised

pool in practice, given the extra parameters involved in a generalised pool. We consider cross-

validation as a data-dependent means of determining the degree of flexibility of the generalised

pool. Importantly to mitigate the risks of over-fitting in-sample we suggest that cross-validation

is undertaken over an out-of-sample period. Section 3 draws out the flexibility afforded by gen-

eralised density combinations by undertaking a range of Monte Carlo simulations. These show

that the generalised combinations are more flexible than their linear counterparts and in general

can better mimic a range of true but unknown densities, irrespective of their forms. But this

additional flexibility does come at the expense of the introduction of additional parameters and

the simulations indicate that the benefits of generalised combinations mostly survive the extra

parameter estimation uncertainty; and increasingly so for larger sample sizes and more distinct

component densities. Section 4 then shows how the generalised combinations can work better

in practice, finding that they deliver more accurate density forecasts of the S&P500 daily return

than optimal linear combinations of the sort used in Hall & Mitchell (2007) and Geweke &

Amisano (2011). Section 5 concludes.

2



2 Generalised density combinations: theory

We provide a general scheme for combining density forecasts. Consider a covariance station-

ary stochastic process of interest yt, t = 1, ..., T and a vector of covariance stationary pre-

dictor variables xt, t = 1, ..., T . Our aim is to forecast the density of yt+1 conditional on

Ft = σ
(
xt+1, (yt, x

′
t)
′ , ..., (y1, x

′
1)′
)
, where σ denotes a sigma field.

We assume the existence of a set of N density forecasts, denoted qi (y|Ft) ≡ qit (y), i =

1, ..., N , t = 1, ...T . We suggest a generalised combined density forecast, given by the generalised

“opinion pool”

pt (y) =

N∑
i=1

wit (y) qit (y) , (1)

such that ∫
pt (y) dy = 1, (2)

where wit (y) are the weights on the individual or component density forecasts which themselves

depend on y. This generalises existing work on optimal linear density forecast combinations,

where wit (y) = wi and wi are scalars; see Hall & Mitchell (2007) and Geweke & Amisano

(2011). Note the dependence in (1) of w on t. This arises out of the need to satisfy (2); when

wit (y) = wi only
∑N

i=1wi = 1 is required. In the next few paragraphs we abstract from this

time dependence to discuss the general problem of determining w. We will revisit this issue after

that discussion. As a result, for notational ease only, we temporarily drop the subscript t on w.

Note that, unlike Billio et al. (2013), we do not explicitly parameterise the time-variation. Our

time variation arises due to the need to normalise the combined density to integrate to one; and

this normalisation is by construction time-varying.

We need to provide a mechanism for deriving wi (y). Accordingly, we define a predictive loss

function given by

LT =

T∑
t=1

l (pt (yt) ; yt) . (3)

We assume that the true weights, w0
i (y), exist in the space of qi-integrable functions Ψqi

where

Ψqi =

{
w (.) :

∫
w (y) qi (y) dy <∞

}
, i = 1, .., N, (4)

such that

E (l (pt (yt) ; yt)) ≡ E
(
l
(
pt
(
yt;w

0
1, .., w

0
N

)
; yt
))
≤ E (l (pt (yt;w1, .., wN ) ; yt)) , (5)

for all weight functions (w1, .., wN ) ∈
∏
i

Ψqi . We suggest an extremum estimator for the weight
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function wi(y) which involves minimising LT , i.e.,

{ŵ1T , ..., ŵNT } = arg min
wi,i=1,...,N

LT . (6)

But the minimisation problem in (6) is impossible to solve unless one restricts the space over

which one searches from Ψqi to a more tractable space. A general way forward à la Chen &

Shen (1998) is to minimise over

Φqi =

{
wηi (.) : wηi (y) = ṽi0 +

∞∑
s=1

ν̃isηs (y,θs) , ν̃is ≥ 0, ηs (y,θs) ≥ 0

}
, i = 1, .., N, (7)

where {ηs (y,θs)}∞s=1 is a known basis, up to a finite dimensional parameter vector θs, such that

Φqi is dense in Ψqi , and {ṽis}∞s=0 are a sequence of constants.1 Such a basis can be made of any

of a variety of functions including trigonometric functions, indicator functions, neural networks

and splines.

Φqi , in turn, can be approximated through sieve methods by

ΦT
qi =

{
wTηi (.) : wTηi (.) = ṽi0 +

pT∑
s=1

ν̃isηs (y,θs) ν̃is ≥ 0, ηs (y,θs) ≥ 0

}
, i = 1, .., N, (8)

where pT →∞ is either a deterministic or data-dependent sequence, and
{

ΦT
qi

}
is dense in Φqi

as pT →∞.

Note that a sufficient condition for (2) is

∫
Y

N∑
i=1

(
ṽit0 +

pT∑
s=1

ν̃itsηs (y,θs) qit (y)

)
dy =

N∑
i=1

(
ṽit0 +

pT∑
s=1

ν̃its

∫
Y
ηs (y,θs) qit (y) dy

)
(9)

=
N∑
i=1

(
ṽit0 +

pT∑
s=1

ν̃itsκits

)
= 1,

where κits =
∫
Y ηs (y,θs) qit (y) dy. It is clear that ṽit0 and ν̃its depend on t given that κits

depends on qit (y) which is a function of t. A natural way to impose this normalisation, (9), is

to define

ṽit0 = ṽt(vi0;v
(−0)
i ) = ṽt(vi0) =

vi0∑N
i=1 (vi0 +

∑pT
s=1 visκits)

, (10)

ṽits = ṽt(vis;v
(−s)
i ) = ṽt(vis) =

vis∑N
i=1 (vi0 +

∑pT
s=1 visκits)

, (11)

1Informally, a space is dense in another larger space if every element of the larger space can be approximated
arbitrarily well by a sequence of elements of the smaller space.

4



where νi =
(
vi0, ..., ν

′
ipT

)′
, v

(−s)
i is νi with element vis removed and the new transformed weights

vi0 and vis are fixed over time and need only be positive. Further, it is assumed throughout

that the νi satisfy inft
∑N

i=1 (vi0 +
∑pT

s=1 visκits) > 0. The notation ṽt(.) is used to denote the

function between the time-varying weights ṽits, s = 0, ..., pT , and νi, given in (10)-(11), and it

is readily seen to be continuous and twice-differentiable for all t.

Defining ϑT =
(
ν1, ...,νN ,θ

′
1, ...,θ

′
pT

)′
,

ϑ̂T = arg min
ϑT

LT (ϑT ) , (12)

we can use Corollary 1 of Chen & Shen (1998) to show the following convergence result for the

loss function evaluated at the extremum estimator ϑ̂T and the true parameters

1

T

(
LT

(
ϑ̂T

)
− LT

(
ϑ0
))

= op (1) , (13)

where ϑ0 denotes the true parameter value defined formally in Assumption 1 below.

In fact, Theorem 1 of Chen & Shen (1998) also provides rates for the convergence of ϑ̂T

to ϑ0. However, the proofs depend crucially on the choice of the basis {ηs (y,θs)}∞s=1. Chen

& Shen (1998) discuss many possible bases. We will derive a rate for one such basis when pT

continues to depend on time, and potentially tends to infinity, in Section 2.1 below.

Alternatively, rather than focus on specific bases, we can limit our analysis to less general

spaces and then derive convergence and normality results. In particular, we can search over

Φp
qi =

{
wTη (.) : wpη (.) = ṽt(vi0) +

p∑
s=1

ṽt(vis)ηs (y,θs)

}
, i = 1, .., N, (14)

for some finite p. (Below we consider how, in practice, to choose p via cross-validation.) Let

ϑp =
(
ν1, ...,νN ,θ

′
1, ...,θ

′
p

)′
.

We make the following assumptions:

Assumption 1 For all p, there exists a unique ϑ0
p ∈ int Θp that minimises E (LT (wTη (ϑT ))),

for all p.

Assumption 2 l (pt (.,ϑp) ; .) has bounded derivatives with respect to ϑp uniformly over Θp, t

and p.

Assumption 3 yt is a Lr-bounded (r > 2), L2−NED (near epoque dependent) process of size

−a, on an α-mixing process, Vt, of size −r/(r − 2) such that a ≥ (r − 1)/(r − 2).

Assumption 4 Let l(i) (pt (yt,ϑp) ; yt) denote the i-th derivative of l with respect to yt, where
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l(0) (pt (yt,ϑp) ; yt) = l (pt (yt,ϑp) ; yt). Let∣∣∣l(i) (pt (y(1),ϑ0
p

)
; y(1)

)
− l(i)

(
pt

(
y(2),ϑ0

p

)
; y(2)

)∣∣∣ ≤ B(i)
t

(
y(1), y(2)

) ∣∣∣y(1) − y(2)
∣∣∣ , i = 0, 1, 2

(15)

where B
(i)
t (., .) are nonnegative measurable functions and y(1), y(2) denote the arguments of the

relevant functions. Then, for all lags m (m = 1, 2, ...), and some r > 2,∥∥∥B(i)
t (yt, E (yt|Vt−m, ..., Vt+m))

∥∥∥
r
<∞, i = 0, 1, 2, (16)

∥∥∥l(i) (pt (yt,ϑ0
p

)
; y(1)

)∥∥∥
r
<∞, i = 0, 1, 2, (17)

where ‖.‖r denotes Lr norm.

Assumption 5 qit (y) are bounded functions for i = 1, ..., N .

It is worth commenting on the use of NED processes in Assumption 3. NED processes can

accommodate a wider variety of dependence than mixing and as such provide a useful broad

framework of analysis. They are discussed in detail in a number of sources including Davidson

(1994, Ch. 17).

It is then straightforward to show that:

Theorem 1 Under Assumptions 1-5, and for a finite value of p,

√
T
(
ϑ̂T − ϑ0

p

)
→p N(0, V ) (18)

where

V = V −1
1 V2V

−1
1 , (19)

V1 =
1

T

T∑
t=1

∂2l (pt (yt) ; yt)

∂ϑ∂ϑ′

∣∣∣∣
ϑ̂T

, (20)

V2 =
1

T

T∑
t=1

(
∂l (pt (yt) ; yt)

∂ϑ

∣∣∣∣
ϑ̂T

)(
∂l (pt (yt) ; yt)

∂ϑ

∣∣∣∣
ϑ̂T

)′
. (21)

Using this result one can test the null hypothesis of fixed weights, vi0 = wi, versus our

proposed generalised weights:

H0 : ν0
i = (vi0, 0, ..., 0)′ , ∀i. (22)

Rejection of (22) implies that it does help to let the weights depend on y. It is clear from

Theorem 1 that the generalised pool reduces the value of the objective (loss) function relative

to the linear pool except when ν0
i , under H0, minimises the population objective function. If
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ν0
i does minimise the loss function then both pools achieve this minimum. And if one of the

component densities is, in fact, the true density, then the loss function is minimised when the

true density is given a unit weight, and all other densities are given a zero weight. However,

there is no guarantee, theoretically, that this will be the case in practice, as other sets of weights

potentially can also achieve the minimum objective function.

Note that in Theorem 1, and the test in (22), the basis function is assumed fully known

and does not depend on unknown parameters. In practice, in many applications, this basis is

not known down to the number of terms, p, and there are unknown parameters. This means

that under H0 these unknown parameters
(
vi1, ..., ν

′
ip

)′
, ∀i, and θ′1, ...,θ

′
p have no significance

and become nuisance parameters unidentified under the null (e.g., see Hansen (1996)). Below

in Section 2.1 we suggest, in the specific context of indicator basis functions, but the discussion

is general, an estimation and inferential procedure when there are these unknown parameters.

In practice, p can also be estimated to minimise the loss, l (pt (.,ϑp) ; .). Since it is clear that

increases in p lead to lower loss this cannot be undertaken over the whole in-sample estimation

period. We suggest the use of cross-validation (CV) to determine p. In our forecasting context a

natural variant of CV, which mitigates the risk of over-fitting in-sample, is to choose p, over the

range 1, ..., pmax, to minimise the average loss associated with the series of recursively computed

generalised combination density forecasts over an out-of-sample period t0, ..., T

p̂ = arg min
1≤p≤pmax

T∑
t=t0

l
(
pt

(
yt+1, ϑ̂t,p

)
; yt

)
, (23)

where ϑ̂t,p denotes the (recursively computed) estimate of ϑp for a given value of p for the

generalised density forecast, made at time t; and the loss function for this generalised density

forecast is evaluated at the value for y that subsequently materialises, here assumed without loss

of generality to be at time t+ 1. Although we are not aware of any formal theoretical results for

such an estimator p̂, it is well known that CV has desirable properties in a number of contexts

(see, e.g., Arlot & Celisse (2010) for a review).

Furthermore, in general, there may not be a unique set of parameters in the generalised

combination which minimise the loss. We may then wish to modify the loss function in a variety

of ways. We examine a couple of possibilities here. First, we can require that wi that are far

away from a constant function are penalised. This would lead to a loss function of the form

LT =
T∑
t=1

l (pt (yt) ; yt) + T γ
N∑
i=1

∫
C
|wi (y)− fC(y)|δ dy, δ > 0, 0 < γ < 1, (24)

where we impose the restriction
∫
|wi (y)− fC(y)|δ dy <∞ and fC(y) is the uniform density over

C. An alternative way to guarantee uniqueness for the solution of (6) is to impose restrictions
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that apply to the functions belonging in Φqi . Such a loss function could take the form

LT =
T∑
t=1

l (pt (yt) ; yt) + T γ
N∑
i=1

∞∑
s=1

|νs|δ , δ > 0, 0 < γ < 1, (25)

where we assume that
∑∞

s=1 |νs|
δ < ∞. This sort of modification relates to the penalisations

involved in penalised likelihood type methods. Given this, it is worth noting that the above

general method for combining densities can easily cross the bridge between density forecast

combination and outright density estimation. For example, simply setting N = 1 and q1t (y)

to the uniform density and using some penalised loss function such as (24) or (25), reduces the

density combination method to density estimation akin to penalised maximum likelihood.

2.1 Piecewise linear weight functions

In what follows we suggest, in particular, the use of indicator functions for ηs (y), i.e. ηs =

I (rs−1 ≤ y < rs), s = 1, ..., p, which defines p (p ≥ 2) intervals or regions of the density. The

(p − 1) inner thresholds r0 < r1 < ... < rp, given that r0 = −∞ and rp = ∞, are either known

a priori or estimated from the data. For example, these thresholds might be assumed known

on economic grounds. In a macroeconomic application, say, some models might be deemed

to forecast better in recessionary than expansionary times (suggesting a threshold boundary of

zero), or when inflation is inside its target range (suggesting threshold boundaries determined by

the inflation target). Otherwise, the thresholds must be estimated, as Section 3 below considers

further.

With piecewise linear weight functions, the generalised combined density forecast is2

pt (y) =
N∑
i=1

pT∑
s=1

ṽt(vis)qit (y) I (rs−1 ≤ y < rs) , (27)

2We note that this combination scheme can be equivalently parameterised with rather than without an inter-
cept. Both parameterisations are the same; e.g., we can rewrite as

pt (y) =

N∑
i=1

(
ṽ′t(vi1) +

pT∑
s=2

(
ṽ′t(vis) − ṽ′t(vi1)

)
qit (y) I (rs−1 ≤ y < rs)

)
, (26)

where
ṽ′t(vi1) =

vi1∑N
i=1

(
vi1 +

∑pT
s=2 (vis − vi1)κits

)
and

ṽ′t(vis) =
vis−vi1∑N

i=1

(
vi1 +

∑pT
s=2 (vis − vi1)κits

) , s = 2, .., pT .
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where νis are constants (to be estimated) and

κis =

∫
Y
I (rs−1 ≤ y < rs) qit (y) dy =

∫ rs

rs−1

qit (y) dy. (28)

Note that in (27), as anticipated before Theorem 1 above, we revert to the more general

space by allowing p = pT to depend on T and potentially tend to infinity. Then in Theorem 2

below we present a convergence result for our estimators of νis.

The piecewise linear weights allow for considerable flexibility, and have the advantage that

they let the combination weights vary by region of the density; e.g. as intimated it may be

helpful to weight some models more highly when y is negative, say there is a bear market, than

when y is high and there is a bull market. This flexibility increases as pT , the number of regions,

tends to infinity.

We now consider estimation of the threshold boundary parameters and inference about the

weights when the threshold boundary parameters are estimated.

2.1.1 Estimation of the thresholds

The thresholds, rs (s = 1, ..., p), need to be estimated if they are not assumed known a priori.

Similarly to threshold time-series models, we suggest constructing a grid of possible values

for these parameters, optimising the objective (loss) function for every value in the grid and

then choosing the value in the grid that yields the overall optimum. The design of the grid

will naturally depend on the likely values for y; so some knowledge of these is required and

assumed. Quantiles of (historical) y values might be used; or the anticipated range of y could

be divided into equally spaced intervals. Increasing the number of points in the grid carries a

computational cost, although when estimating a single generalised pool we found this cost not

to be prohibitive but also not to affect empirical results, for example, materially.

Of course, inference about these threshold boundary estimates is likely to be non-standard,

as with threshold models. For example, it is well known that for threshold autoregressive

(TAR) models the estimator of these parameters is super-consistent and has a non-standard

asymptotic distribution (see Chan (1992)). A way forward has been proposed by Gonzalo &

Wolf (2005) who use subsampling to carry out inference for the boundary parameters of a TAR

model. Kapetanios et al. (2013) have extended the use of subsampling for threshold models to

more complex panel data settings. Subsampling enables the determination of the rate at which

boundary parameters converge to their probability limits thus removing another problem with

the associated inference. In the appendix we show that subsampling can provide asymptotically

valid inference for the estimated threshold parameters.

9



2.1.2 Inference about the weights

A second issue relates to the ability to carry out inference on the weights when the boundary

parameters, the r’s, are estimated. Again, it is expected that if estimators of the boundary

parameters, rs, are superconsistent, as is the case for threshold models, then inference about

the remaining parameters does not depend on whether one knows or estimates these boundary

parameters. However, this result does not extend to tests of the null hypothesis in (22). In this

case it is well known that, under the null hypothesis, the boundary parameters are unidentified.

This problem is widely discussed in the literature. A review can be found in Hansen (1999)

where simulation based solutions to the problem are suggested (p. 564). These solutions are

expected to be applicable to the current setting, although we defer further analysis to future

research. An alternative solution is to use subsampling as discussed above.

2.2 Scoring rules

Gneiting & Raftery (2007) discuss a general class of proper scoring rules to evaluate density

forecast accuracy, whereby a numerical score is assigned based on the predictive density at time

t and the value of y that subsequently materialises, here assumed without loss of generality

to be at time t + 1. A common choice for the loss function LT , within the ‘proper’ class

(cf. Gneiting & Raftery (2007)), is the logarithmic scoring rule. More specific loss functions

that might be appropriate in some economic applications can readily be used instead (e.g. see

Gneiting & Raftery (2007)) and again minimised via our combination scheme. But an attraction

of the logarithmic scoring rule is that, absent knowledge of the loss function of the user of the

forecast, by maximising the logarithmic score one is simultaneously minimising the Kulback-

Leibler Information Criterion relative to the true but unknown density; and when this distance

measure is zero, we know from Diebold et al. (1998) that all loss functions are, in fact, being

minimised.

Using the logarithmic scoring rule, with piecewise linear weights, the loss function LT is

given by

LT =

T∑
t=1

− log pt (yt+1) =

T∑
t=1

− log

(
N∑
i=1

pT∑
s=1

ṽt(vis)qit (yt+1) I (rs−1 ≤ yt+1 < rs)

)
, (29)

where the restriction
N∑
i=1

pT∑
s=1

ṽt(vis)κis = 1, (30)

is satisfied automatically for any value of vis. As a result our normalisation in (10) and (11)

removes the need for constrained optimisation via Lagrangeans.

In practice, in a time-series application, without knowledge of the full sample (t = 1, ..., T )
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this minimisation would be undertaken recursively at each period t based on information through

(t−1). In a related context, albeit for evaluation, Diks et al. (2011) discuss the weighted logarith-

mic scoring rule, wt (yt+1) log qit (yt+1), where the weight function wt (yt+1) emphasises regions

of the density of interest; one possibility, as in (29), is that wt (yt+1) = I (rs−1 ≤ yt+1 < rs).

But, as Diks et al. (2011) show and we discuss below, the weighted logarithmic score rule is ‘im-

proper’ and can systematically favour misspecified densities even when the candidate densities

include the true density.

We can then prove the following rate of convergence result, as pT →∞, for the estimators of

the sub-vector of parameters νi, i = 1, ..., N , with the remaining parameters {rs}pTs=1 assumed

known, using Theorem 1 of Chen & Shen (1998).

Theorem 2 Let Assumptions 1, 3 and 4 hold. Let pT = T 1/2, and

LT =
T∑
t=1

− log pt (yt+1) (31)

and

ηs = I (rs−1 ≤ y < rs) (32)

where {rs}pTs=1 are known constants. Then,

∥∥ν0
i − ν̂i

∥∥ = op
(
T−ϕ

)
(33)

for all ϕ < 1/2.

Note that since we restrict our analysis to specific basis and loss functions we only need a

subset of our assumptions given in the previous Section. Unfortunately, the rate of convergence

in the Theorem is not fast enough to satisfy the condition associated with (4.2) in Theorem 2 of

Chen & Shen (1998) and, therefore, one cannot prove asymptotic normality for the parameter

estimates when pT →∞.

But we also have the following Corollary of Theorem 1 for the leading case of using the

logarithmic score as a loss function, piecewise linear sieves and component densities from the

exponential family, when p is finite.

Corollary 3 Let Assumptions 1 and 3 hold. Let qi(y) be bounded functions such that qi(y) ∼
exp

(
−y2

)
as y → ±∞ for all i. Let

LT =
T∑
t=1

− log pt (yt+1) (34)

and

ηs = I (rs−1 ≤ y < rs) (35)
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where {rs}ps=1 are known constants and p is finite. Then, the asymptotic normality result of

Theorem 1 holds.

We thereby establish consistency and asymptotic normality for the estimated sub-vector of

parameters ν̂i, i = 1, ..., N . When the thresholds are unknown but estimated, as discussed

above, it is reasonable to re-consider the analogy with threshold models. Threshold parameter

estimates are superconsistent and their estimation does not affect the asymptotic properties

of the remaining model parameters. Therefore, in our case it is reasonable to expect that the

conclusions of Corollary 3 hold when the threshold parameters are estimated; but we defer

detailed analysis to future research.

2.2.1 Extensions: interpreting the weights

The weights νis cannot easily be interpreted. They do not convey the superiority of fit for

density i for region s. This inability to interpret the weights arises due to the fact that, via (30),

restrictions are placed on the weights across regions.

In order to facilitate interpretation of the weights, which might be helpful in some applica-

tions, we draw on Amisano & Giacomini (2007) and Diks et al. (2011) who consider weighted

scoring rules and suggest the following restricted variant of our method.3

Define the sequence of weighted logarithmic score loss functions

Ls,T =

T∑
t=1

I (rs−1 ≤ yt+1 < rs) log

(
N∑
i=1

νisqit (yt+1)

)
, s = 1, ..., pT , (36)

where I (rs−1 ≤ yt+1 < rs) = ηs emphasises the region(s) of interest.

We could then minimise each Ls,T , s = 1, ..., pT with respect to νis, and thereby maximise the

logarithmic score over each region s by assigning a higher weight to better individual densities

i. This enables a clearer link between our estimated weights and the best performing density

in a given region, that the unrestricted approach we have been discussing thus far. Then, the

proper combined density, pwt (yt+1), can be defined, via normalisation, as

pwt (yt+1) =

∑N
i=1

∑pT
s=1 ν̂isqit (yt+1) I (rs−1 ≤ yt+1 < rs)∑N

i=1

∑pT
s=1 ν̂isκis

, (37)

where ν̂s = (ν̂1s, ..., ν̂pT )′ is the minimiser of Ls,T . The sum of these weighted logarithmic scores,

LwT =
∑pT

s=1 Ls,T , is such that LwT > LT is a likely outcome although not guaranteed as we use

different normalisations for the weights in the two cases.

3While we propose - in theory - use of these restricted weights, in practice we defer detailed analysis to future
work. However, as a start we did augment the set of Monte Carlo experiments reported below to consider use
of these restricted weights and found, without exception but as expected, use of the restricted weights to involve
a considerable loss in accuracy as measured by the average logarithmic score. Whether this loss is offset by the
additional interpretation benefits we again defer to future discussion.
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As discussed by Diks et al. (2011), the weighted logarithmic scoring rule, wt (yt+1) log qit (yt+1),

used in (36) is not proper (see also Gneiting & Ranjan (2011)); i.e., there can exist incorrect

density forecasts that would receive a higher average score than the actual (true) conditional

density. Therefore, following Diks et al. (2011), one might modify (36) and consider use of the

conditional likelihood score function, given by

L̃s,T =

T∑
t=1

I (rs−1 ≤ yt+1 < rs) log

(∑N
i=1 νisqit (yt+1)∑N

i=1 visκis

)
, s = 1, ..., pT , (38)

where the division by
∑N

i=1 visκis normalises the density
∑N

i=1 νisqit (yt+1) on the region s of

interest. Another possibility is to use the censored likelihood of Diks et al. (2011) rather than

the conditional likelihood to define region-specific loss functions.

3 Monte Carlo study

We undertake four sets of experiments to investigate the performance of the generalised pool

relative to the standard (optimised) linear pool. These four experiments differ according to

the assumed true (but in practice, if not reality, unknown) density and the nature of the (mis-

specified) component densities which are subsequently combined. Thereby we seek to provide

some robustness to our results; and some empirical relevance by considering some widely used

nonlinear and stochastic volatility models.

In the first Data Generating Process (DGP1) a non-Gaussian true density is considered, and

we compare the ability of linear and generalised combinations of misspecified Gaussian densities

to capture the non-Gaussianity. In DGP2 we instead assume the true density is Gaussian, but

again consider combinations of two misspecified Gaussian densities. In this case we know that

linear combinations will, in general, incorrectly yield non-Gaussian densities, given that they

generate mixture distributions. It is therefore important to establish if and how the generalised

combinations improve upon this. In DGP3 we consider a more realistic scenario in economics

where the component conditional densities change over time. Specifically, we consider a Thresh-

old Auto-Regressive (TAR) nonlinear model, and assess the ability of combinations of linear

Gaussian models with different autoregressive parameters to approximate the nonlinear process.

For robustness, we consider a variety of parameter settings to explore whether the performance

of the method is sensitive to characteristics like the persistence of the data. DGP4 assumes the

true density evolves over time according to an unobserved components trend-cycle model with

stochastic volatility. This model has been found to mimic successfully the changing behaviour

of US inflation and its transition from high and volatile values (in the so-called Great Inflation

period) to lower and more stable inflation (in the so-called Great Moderation period); see Stock

& Watson (2007). We then investigate the density forecasting ability of combinations of two
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widely used models without stochastic volatility, which are known to fit the Great Inflation and

Great Moderation sub-samples respectively.

The performance of the generalised pool relative to the linear pool is assessed by tests for

equal predictive accuracy on the basis of the logarithmic scoring rule, (29). A general test for

equal performance is provided by Giacomini & White (2006); a Wald-type test statistic is given

as

T

(
T−1

T∑
t=1

∆Lt

)′
Σ−1

(
T−1

T∑
t=1

∆Lt

)
, (39)

where ∆Lt is the difference in the logarithmic scores of the generalised and linear pools at time

t and equals their Kullback Leibler Information Criterion or distance measure; and Σ is an

appropriate autocorrelation robust, estimate of the asymptotic covariance matrix. Under the

null hypothesis of equal accuracy E(∆Lt) = 0, Giacomini & White (2006) show that the test

statistic tends to χ2
1 as T → ∞. We undertake two-sided tests of the null of equal accuracy at

a nominal size of 10% and in the Tables below report the proportion of rejections in favour of

both the generalised and linear pools.

For DGP1 as the true density in fact characterises a specific instance of what we call a

generalised combination we report some additional results. To gauge absolute density forecasting

performance we compute the Integrated Mean Squared Error (IMSE) of the density forecasts

relative to the true density. We also examine the size and power properties of the test of the

null hypothesis in (27); and consider the properties of the CV estimator for p.

Throughout we implement the generalised pool using piecewise linear weight functions, as in

(27); and we focus on its use in the realistic situation that p and the r’s have to be estimated.

We consider samples sizes, T , of 100, 200, 400, and 1000 observations and carry out 1000

Monte Carlo replications in each experiment. For a simulated T -sample, taking the component

densities as fixed, we estimate the parameters in the generalised and linear pools over the first

T/2 observations. When using CV, as discussed above (see (23)) based on a series of recursively

computed 1-step ahead generalised combination density forecasts over an out-of-sample period,

this involves using observations T/4 + 1, ..., T/2 to select p and estimate the r’s. Then, keeping

these parameters fixed, we generate the generalised and linear pools for the last T/2 simulated

observations and evaluate them either relative to the simulated outturn (to calculate the average

logarithmic score and conduct the Giacomini & White (2006) tests) or the true density (to

calculate the IMSE).

Below we provide details of and results for each of the four DGPs in turn.
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3.1 DGP1

The true density for the random variable Y has a two part normal density given by

f(Y ) =

{
A exp(−y − µ)2/2σ2

1 if y < µ

A exp(−y − µ)2/2σ2
2 if y ≥ µ

(40)

A =
(√

2π(σ1 + σ2)/2
)−1

.

We assume that the practitioner combines two Gaussian densities with the same mean µ and

variances given by σ2
1 and σ2

2, respectively. Combination is via (a) the generalised pool and (b)

the optimised (with respect to the logarithmic score) linear pool with fixed weights, as in Hall

& Mitchell (2007) and Geweke & Amisano (2011). We set µ = 0, σ2
1 = 1 and consider various

values for σ2
2 = 1.5, 2, 4 and 8.

Given that (40) characterises a generalised combination of N = 2 Gaussian component

densities with piecewise linear weights, where p = 2 and r1 = 0, we use this experiment to draw

out three facts. Firstly, to assess, in the unrealistic situation that we know both p = 2 and

r1 = 0, the accuracy of the generalised combination as a function of T . Secondly, to quantify

the costs associated with having to estimate r1 but still assuming p = 2. Thirdly, to quantify

the costs of having both to estimate p and the r’s. In practice, both p and the r’s are typically

unknown and so this third case is of particular relevance for applied work.

Implementation of the generalised combination when the r’s are to be estimated, as discussed

above, requires the practitioner to select the estimation grid. With the mode of the two part

normal set at µ = 0, we experimented with grids for r in the range −1 to 1 with an interval

of 0.1.4 When estimating p we consider values from p = 2, ..., 4 which is a reasonable spread of

values for this parameter trading off the bias inherent in small p with the variance inherent in

larger values of this parameter.

Table 1, in the columns labelled G/L (L/G), presents the rejection proportions (across the

simulations) in favour of the generalised (linear) pool using the Giacomini & White (2006) test

for equal density forecast performance, (39).

It is clear from Table 1 that, irrespective of whether p and rs are assumed known or estimated,

the generalised combination is preferred to the linear combination with rejection proportions

clearly in its favour. These proportions approach 1 as σ2
2 and T increase. Even for the smallest

values of σ2
2, which permit less skew in the true density, the generalised combination is still

preferred with rejection proportions above 0.9 for the larger sample sizes, T . In turn, across σ2
2

and T the linear combination is never preferred over the generalised combination with rejection

proportions below 0.03 and decreasing to 0 as σ2
2 and T increase. Estimation of both p and rs

(the “Unknown p” column in Table 1) does, in general, involve a loss of relative performance

4Inference was not found to be particularly sensitive either to widening these outer limits or to finer intervals.
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Table 1: DGP1: Rejection probabilities in favour of the Generalised (G) and Linear (L) pools
using the Giacomini-White test for equal density forecast performance

σ2
2 T r1 = 0 r1 estimated (p = 2) Unknown p

G/L L/G G/L L/G G/L L/G

1.5 100 0.302 0.012 0.188 0.008 0.138 0.022
200 0.514 0.000 0.380 0.000 0.254 0.008
400 0.718 0.000 0.616 0.000 0.536 0.000
1000 0.968 0.000 0.966 0.000 0.936 0.000

2 100 0.620 0.000 0.508 0.002 0.342 0.010
200 0.872 0.000 0.752 0.000 0.688 0.004
400 0.976 0.000 0.968 0.000 0.964 0.000
1000 1.000 0.000 1.000 0.000 1.000 0.000

4 100 0.966 0.000 0.920 0.004 0.748 0.012
200 1.000 0.000 0.996 0.002 0.932 0.004
400 1.000 0.000 1.000 0.000 0.996 0.000
1000 1.000 0.000 1.000 0.000 1.000 0.000

8 100 0.988 0.006 0.874 0.002 0.690 0.006
200 1.000 0.000 0.986 0.000 0.872 0.004
400 1.000 0.000 1.000 0.000 0.972 0.000
1000 1.000 0.000 1.000 0.000 1.000 0.000

for the generalised pool. But despite this loss the generalised pool still offers clear advantages

relative to the linear pool. Moreover this loss again deteriorates both with increases in T and

increases in the skewness of the underlying DGP, σ2
2.

To gauge absolute performance IMSE estimates are presented in Table 2 for the generalised

and linear pools as well as the two component Gaussian density forecasts. Table 2 shows that

the linear combination always delivers more accurate densities than either component density.

And when the threshold, r1, is assumed known and set to 0 the generalised combination scheme

dominates the linear scheme for all sample sizes and values of σ2
2 - with lower IMSE estimates as

expected. The gains in accuracy are clear, and increase with T and σ2
2. Continuing to assume

p = 2 but now estimating r1 as expected we find the accuracy of the generalised combination

scheme to deteriorate, with the IMSE estimates at least tripling and often quadrupling. For

small sample sizes and low values of σ2
2 this loss in accuracy is large enough for the linear

scheme to be preferred.5 But for larger T and larger variances, σ2
2, the generalised pool is again

the better performing pool; and by a considerable margin. Reassuringly, when both p and the r’s

are estimated although accuracy is again lost, the incremental losses associated with estimation

5But this superiority on the basis of IMSE does not translate into improved rejection proportions in Table
1. This is explained by the fact that IMSE and the logarithmic score are different measures of density forecast
“fit”. However, comparison of Tables 1 and 2 indicates that in general these different measures point in the same
direction.
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Table 2: DGP1: IMSE estimates for the Generalised and Linear Combinations

σ2
2 T Generalised Linear Component Densities

r1 = 0 r1 estimated (p = 2) Unknown p Component 1 Component 2

1.5 100 0.343 2.293 1.910 0.773 1.654 1.103
200 0.167 0.883 0.926 0.715 1.654 1.103
400 0.084 0.389 0.456 0.691 1.654 1.103
1000 0.032 0.149 0.197 0.673 1.654 1.103

2 100 0.297 1.520 1.562 1.592 4.421 2.211
200 0.139 0.679 0.772 1.531 4.421 2.211
400 0.072 0.293 0.445 1.505 4.421 2.211
1000 0.030 0.115 0.203 1.486 4.421 2.211

4 100 0.189 0.619 0.872 2.649 12.728 3.182
200 0.090 0.310 0.414 2.595 12.728 3.182
400 0.045 0.139 0.218 2.569 12.728 3.182
1000 0.019 0.062 0.103 2.556 12.728 3.182

8 100 0.101 0.291 0.373 2.221 19.413 2.427
200 0.053 0.139 0.196 2.190 19.413 2.427
400 0.026 0.073 0.100 2.174 19.413 2.427
1000 0.011 0.033 0.048 2.164 19.413 2.427

Table 3: Rejection probabilities for linearity test under the null hypothesis of linearity

T/σ2
2 1.1 1.25 1.5 2

100 0.021 0.021 0.014 0.014
200 0.017 0.014 0.016 0.012
400 0.042 0.019 0.014 0.023
1000 0.070 0.042 0.021 0.019

are confined to an order of 20−30%. Again larger values for T and σ2
2 help the generalised pool,

with the IMSE estimates approaching 0 as T and σ2
2 increase.

Finally, to study the properties of the linearity test, (22), Tables 3 and 4 report the test’s

rejection probabilities at the nominal 5% level under both the null of linearity and the alternative.

We focus on a narrower range of values for σ2
2 reflecting the finding that results were unchanged

for σ2
2 > 2; and deferring to future work analysis and implementation of the test in the unknown

parameters case when we know there are unidentified parameters (as discussed in Section 2.1.2

above) we estimate the generalised pools correctly assuming p = 2 and r1 = 0.

Table 3 shows that the test is, in general, slightly under-sized but Table 4 indicates that

power increases strongly with both T and σ2
2. Even for relatively modest T (e.g., T = 100) the

test has power above 0.6 even when σ2
2 is only 1.5. Note that we use much smaller values of
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Table 4: Rejection probabilities for linearity test under the alternative

T/σ2
2 1.1 1.25 1.5 2

100 0.024 0.134 0.611 0.998
200 0.028 0.267 0.915 1.000
400 0.081 0.552 0.997 1.000
1000 0.420 0.950 1.000 1.000

σ2
2 than in the previous Monte Carlo experiment. If we had used those values the rejections

probabilities would have been invariably equal to one. This simply illustrates that the test is

very powerful and is able to reject the linear combination in favour of the generalised one even

for small deviations from the case when the linear combination is optimal.

Figure 1 then investigates the properties of the CV estimator for p, by plotting across T and

σ2
2 a histogram indicating the number of times (out of the 1000 replications) a given value for p

was selected. We note that we continue to confine the CV search to values of p in the range 2

to 4. Figure 1 shows that encouragingly p = 2 is the modal estimate, although higher values are

often selected. This is a reasonable outcome since CV since provides some protection against

the risk of over-fitting, as without it, the maximum value of p would invariably be selected.

Further Tables 1 and 2 show that despite this estimation uncertainty over p the generalised pool

remains preferable to the linear pool.

3.2 DGP2

In contrast to DGP1 the true density is assumed to be the standard normal. We then entertain

two Gaussian component densities, each of which is misspecified as the mean is incorrect. We

fix the variances of the component densities at unity but consider different values for their

means, µ1 and µ2. We then take a combination of these two component normal densities via the

generalised and linear pools.6 In contrast to DGP1 there is neither a true value for p nor the r’s

and we therefore proceed to examine the generalised combination when both p and the r’s are

estimated. As in DGP1, we use an identical grid search design to estimate the thresholds, rs;

and when using CV to select p̂ consider values from p = 2, ..., 10. We consider higher values for

p than in DGP1 given that there is now no finite p value that would give the same loss function,

for any of the combinations we consider, as the true density.

Table 5 presents the rejection proportions in favour of the generalised and linear pools,

using the Giacomini-White test for equal density forecast performance. Results are presented for

values of (µ1, µ2) = (−0.25, 0.25) , (−0.5, 0.5) , (−1, 1) and (−2, 2). In general, both as µ1 and µ2

6Another possibility would have been to consider misspecified variances for the Gaussian components rather
than misspecified means. We feel that mean misspecification is usually a more influential misspecification (es-
pecially in explaining forecast failure; cf. Clements & Hendry (1999)) and, in any case, we consider volatility
misspecification in DGP4.
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Table 5: DGP2: Rejection probabilities in favour of the Generalised (G) and Linear (L) pools
using the Giacomini-White test for equal density forecast performance

(µ1, µ2) T Unknown p

G/L L/G

(−0.25, 0.25) 100 0.016 0.184
200 0.010 0.214
400 0.008 0.180
1000 0.010 0.158

(−0.5, 0.5) 100 0.008 0.114
200 0.028 0.112
400 0.016 0.062
1000 0.108 0.016

(−1, 1) 100 0.130 0.020
200 0.372 0.016
400 0.650 0.014
1000 0.954 0.000

(−2, 2) 100 0.748 0.000
200 0.900 0.000
400 0.986 0.000
1000 1.000 0.000

increase in absolute value (such that the component densities become less similar) and as T rises,

we see increasing gains to the use of the generalised pool rather than the linear pool.7 However,

when the component densities are more similar, for values of (µ1, µ2) = (−0.25, 0.25), the linear

pool does delivers modest gain. While the generalised pool nests the linear pool, especially for

smaller samples T , it requires extra parameters to be estimated and Table 5 reveals that this

pays off only for larger T and when the component densities become more distinct because µ1

and µ2 increase in absolute value. We also note (detailed results available upon request) that

the modal CV estimate of p̂ is around 4. While there is not a monotonic relationship - and

the pattern varies across both values of µ1, µ2 and T - increases in p lead to a deterioration

in the performance of the generalised combination beyond a changing threshold. This hints at

a nonlinear trade-off between the complexity or flexibility of the generalised combination and

estimation error.

7Both pools (results not reported) confer statistically significant advantages (with Giacomini-White rejection
rates close to unity) relative to use of either component density alone.
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3.3 DGP3

DGP3 generalises the two part normal density used in DGP1 to the more realistic time-series

case by assuming the true model is the TAR model

yt =

{
ρ1yt−1 + σ1εt, if yt−1 < q

ρ2yt−1 + σ2εt, if yt−1 ≥ q
, (41)

where εt is assumed to be standard normal, and ρ1 and ρ2 control the degree of persistence. We

consider values (ρ1, ρ2) = {(0.1, 0.7), (0.1, 0.9), (0.3, 0.7), (0.3, 0.9), (0.5, 0.7), (0.5, 0.9)}, where

(σ2
1, σ

2
2) = (1, 4) and q = 0. The two component density forecasts are N(ρ1yt−1, σ

2
1) and

N(ρ2yt−2, σ
2
2).

Following the same implementation of the generalised pool as in DGP2, Table 6 reports the

rejection proportions. These demonstrate that the generalised pool is preferred to the linear

pool, except on two occasions when T is only 100 and when ρ1 and ρ2 are relatively close

together. The superiority of the generalised pool increases with T , increases with the size of

ρ2 − ρ1 and, for a given sized difference ρ2 − ρ1, increases in the values of ρ1 and ρ2.

3.4 DGP4

DGP4 is the Unobserved Components (UC) model with Stochastic Volatility proposed by Stock

& Watson (2007) to model US inflation. This model allows the variances of both the permanent

and transitory component of inflation to evolve randomly over time. The UC-SV model is

πt = τ t + ηt, where ηt = ση,tζη,t

τ t = τ t−1 + εt, where εt = σε,tζε,t

lnσ2
η,t = lnσ2

η,t−1 + υη,t

lnσ2
ε,t = lnσ2

ε,t−1 + υε,t

where ζt = (ζη,t, ζε,t) is i.i.d. N(0, I2), υt = (υη,t, υε,t) is i.i.d. N(0, γI2), ζt and υt are indepen-

dently distributed and γ is a scalar parameter set equal to 0.01.8

The two component density forecasts are UC models but without stochastic volatility. The

first, in fact found by Stock & Watson (2007) to offer a good fit for high inflation values, sets

ση = 0.66 and σε = 0.91. The second component model was found to offer a good fit for the lower

and more stable inflation values during the Great Moderation and sets ση = 0.61 and σε = 0.26.

So by combining these two models we are seeing whether it helps to let the combination weights

8Stock & Watson (2007) found a value of γ = 0.2 best fit US inflation. We experimented with a range of γ
values; and as in Table 7 below found the generalised pool tended to be preferred over the linear pool. But higher
γ values did induce explosive behaviour in many Monte Carlo replications explaining why Stock & Watson (2007)
focus on forecasting a first difference of inflation.
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Table 6: DGP3: Rejection probabilities in favour of the Generalised (G) and Linear (L) pools
using the Giacomini-White test for equal density forecast performance

(ρ1, ρ2) T Unknown p

G/L L/G

(0.1,0.7) 100 0.121 0.064
200 0.236 0.007
400 0.304 0.000
1000 0.371 0.000

(0.1,0.9) 100 0.326 0.042
200 0.509 0.002
400 0.606 0.000
1000 0.600 0.000

(0.3,0.7) 100 0.065 0.097
200 0.114 0.017
400 0.210 0.014
1000 0.223 0.005

(0.3,0.9) 100 0.279 0.079
200 0.435 0.007
400 0.494 0.001
1000 0.482 0.001

(0.5,0.7) 100 0.026 0.122
200 0.045 0.039
400 0.071 0.024
1000 0.100 0.010

(0.5,0.9) 100 0.207 0.092
200 0.303 0.011
400 0.345 0.003
1000 0.364 0.003
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Table 7: DGP4: Rejection probabilities in favour of the Generalised (G) and Linear (L) pools
using the Giacomini-White test for equal density forecast performance

T Unknown p
G/L L/G

100 0.124 0.168
200 0.270 0.130
400 0.354 0.126
1000 0.476 0.180

vary according to the variable of interest.

Table 7 again indicates that the relative performance of the generalised pool is dependent on

the sample size, T . For T = 100 the linear pool is preferred more frequently than the generalised

pool. However, as T increases the generalised pool is preferred two to three time more frequently.

4 Empirical Application

We consider S&P 500 daily percent logarithmic returns data from 3 January 1972 to 9 September

2013, an extension of the dataset used by Geweke & Amisano (2010, 2011) in their analysis of

optimal linear pools. Following Geweke & Amisano (2010, 2011) we then estimate a Gaussian

GARCH(1,1) model, a Student T-GARCH(1,1) model and a Gaussian exponential GARCH(1,1)

via maximum likelihood; and the stochastic volatility model of Kim et al. (1998) using an

integration sampler. These four models are estimated using rolling samples of 1250 trading days

(about five years). One day ahead density forecasts are then produced recursively from each

model for the return on 15 December 1976 through to the return on 9 September 2013 giving a

total of 9268 observations. The predictive densities are formed by substituting the ML estimates

for the unknown parameters.

These component densities are then combined using either a linear or generalised combination

scheme in two, three and four model pools. We evaluate the combination schemes in two ways.

Firstly, we fit the generalised and linear combinations ex post (so effectively we treat the

forecast data as an in-sample dataset). This involves extending the empirical analysis in Geweke

& Amisano (2011) who analysed the optimised linear combinations of similar marginal (compo-

nent) densities, over a shorter sample, and found gains to linear combination relative to use of

the component densities alone. In Table 8 we provide the average logarithmic scores of the four

component models as well as the scores of two, three and four model pools of these component

densities. While we are able to replicate the results of Geweke & Amisano (2011) over their

sample period ending in 16 December 2005, Table 8 reveals that inference is in fact sensitive to

the sample period. Across the columns in Table 8 we see that over our longer sample period the
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optimised linear pool is at best able to match the performance of the best component density;

this means that the optimised weight vector in the linear pool often involves a unit element, i.e.,

one of the component densities receives all the weight.

But Table 8 does indicate clear gains to fitting the generalised pools. Indeed the reported

linearity test, (22), rejects linearity with p-values of 0.000 across all the columns in Table 8.

The generalised pools involve, in each variant, using CV to estimate p (with values from 2 to 10

considered) with the thresholds estimated via a grid search of width 0.5 in the interval −2.5%

to 2.5%. This interval was chosen on the basis of our historical judgment over the 1957-1976

period about the likely range of values for daily stock returns. Over this pre-estimation sample

the −2.5% to 2.5% interval amounts to more than a 99% confidence interval.

We see from Table 8 that the generalised pools, whether two or three model pools, involving

the T-GARCH density yield the highest scores; and importantly a much higher score than

use of the T-GARCH density alone. Interestingly, looking at the time-invariant weights (vis

in the notation of (10) but normalised to add to unity) on the different component densities,

we see that 5 of the 6 generalised pools involving the T-GARCH all yield identical scores of

2.762. Although this does involve weighting the component models in different ways across the

regions of the density, Table 8 shows that in these pools the T-GARCH does always receive a

high weight, approaching and reaching unity for the central regions of its forecast density. The

sixth generalised pool involving the T-GARCH is in fact the four-component density pool; and

this pool performs slightly worse than the two and three component pools. The prominence

of the T-GARCH component density seems reasonable given the volatility observed over the

sample period, which includes the turbulent 2007-8 crisis period; see Figure 2. But despite this

prominence Table 8 clearly shows how one can improve upon use of the T-GARCH component

density alone by taking a generalised combination. This adjusts, in particular, the T-GARCH

forecast density in its tails.9

Table 8 also lists the value for p chosen by CV, p̂, on the basis of the first 7000 observations

as the estimated values of p are used in the forecasting exercise discussed in the next paragraph.

For all the generalised pools except for the four-component pool p̂ = 7. But for the more complex

four-component pool p̂ = 1, reminding us that for more complicated pools there can be benefits

to use of a more parsimonious weighting function.

9Plots of the generalised densities over time (not reported) reveal that they can indeed capture fat-tails. While
their precise shape changes both over time and according to the component models considered the generalised
densities often experience modest spikes at the thresholds. As p increases the severity of these spikes decreases, and
the generalised densities become smoother. Table 8 reveals that accommodating these spikes does not prejudice
performance on the basis of the logarithmic score rule. But under alternative loss functions (e.g., those that
penalise lack of smoothness) these spikes may not deliver an improved score for the generalised combination
and may therefore be deemed unattractive. For these loss functions it may prove beneficial to fit generalised
combinations where p is higher, despite the extra parameters, to ensure smoothness. We defer analysis of the
generalised combinations under alternative loss functions to future work; but we do remark in defence of the
current analysis that the logarithmic scoring rule, as discussed above, is used widely because of its attractive
theoretical properties.
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The clear risk in using these piecewise functions is that because of their more flexible forms

they fit well in-sample, but provide disappointing performance out of sample because of addi-

tional parameter estimation error. Secondly, therefore, we estimate the weights and boundaries

in the pools recursively from 3 September 2004 (observation 7000) and form out-of-sample linear

and generalised pools over the remaining sample of 2268 observations (i.e., through to 9 Septem-

ber 2013), using the previously obtained estimates of p. To provide an indication of how robust

results are to the chosen out-of-sample window we also present results over two sub-samples.

These correspond to the period before and after August 2007 when the banking system began

to freeze up due to problems in US mortgage debt. These real-time exercises mean we are only

using past data for optimisation. This is an important test given the extra parameters involved

when estimating the generalised rather than linear combination. As before, we consider a range

of generalised pools and compare their average logarithmic score with the optimal linear com-

bination. We also test equal predictive accuracy between the linear and generalised pools using

the Giacomini-White test, (39), and report the p-values in Table 9 below.

Table 9 shows that real-time generalised combinations do deliver higher scores than the lin-

ear pools over all sub-periods; and these differences are statistically significant. While accuracy

is higher over the pre 2007 sample than the post 2007 sample, as we might expect given the

heightened uncertainty and volatility in the aftermath of the global financial crisis, the gener-

alised pool remains superior even in this more volatile period. Table 9 also indicates that despite

the potential for the four-model generalised pool to offer a more flexible fit it does not work

as well as the more parsimonious generalised pools. Over the pre-2007 evaluation period the

preferred generalised pool is in fact a pool of just two models.

We also find that unlike the generalised pools the (optimised) linear pools, on an out–

of-sample basis, can but often do not beat the four component densities individually. Thus

while, as Geweke & Amisano (2011) show on this same dataset, optimal linear combinations

will at least match the performance of the best component density when estimated over the

full sample (t = 1, ..., T ), there is no guarantee that the “optimal” linear combination will help

out-of-sample when the combination weights are computed recursively. By way of example,

over the 3 Sept 2004 - 9 Sept 2013 evaluation period as a whole, the average logarithmic scores

of the GARCH, EGARCH, SV and TGARCH forecast densities are −0.885, −0.773, −0.954

and −0.204, respectively. Thus, the T-GARCH is the preferred component density and always

delivers a higher average logarithmic score than any linear (but not generalised) pool containing

it. In contrast, demonstrating that some linear pools are helpful, Table 9 shows that the linear

pool of the GARCH and SV densities is preferred to either component alone. But again the

generalised pool of these two densities confers further gains in forecast accuracy; and these gains

are statistically significant.
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Table 8: In-sample (15 December 1976 to 9 September 2013) average logarithmic scores for the
Generalised pool, the Linear pool and the four component densities indicated 1 to 4. p̂ is the CV
estimator for p. H0 p-value refers to the p-value of the test that tests the null hypothesis that
the linear pool is the appropriate combination to use. The weights vis from (10) are normalised
to sum to one.

Component Densities (1: GARCH, 2: EGARCH, 3: SV, 4: TGARCH

1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 2,3,4 1,2,3,4

G -0.288 -0.313 2.762 -0.284 2.762 2.762 -0.288 2.762 2.762 2.572
L -1.169 -1.169 -1.169 -1.187 -1.183 -1.183 -1.169 -1.169 -1.183 -1.169

Component -1.169 -1.187 -1.580 -1.183 - - - - - -
p̂ 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 7.000 1.000

Lin. Test p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

GARCH Weight 1 0.500 0.501 0.403 0.334 0.333 0.001
GARCH Weight 2 0.000 0.994 0.000 0.956 0.000 0.000
GARCH Weight 3 0.001 0.439 0.007 0.134 0.000
GARCH Weight 4 0.936 0.853 0.162 0.034 0.104
GARCH Weight 5 0.000 1.000 0.000 0.000 0.000
GARCH Weight 6 0.367 0.460 0.007 0.460 0.008
GARCH Weight 7 0.458 1.000 0.001 0.857 0.001
GARCH Weight 8 0.500 0.551 0.500 0.334 0.333

EGARCH Weight 1 0.500 0.501 0.500 0.334 0.333 0.338 0.193
EGARCH Weight 2 1.000 0.779 0.007 0.040 0.000 0.000 0.000
EGARCH Weight 3 0.999 0.742 0.161 0.000 0.013 0.022
EGARCH Weight 4 0.064 0.934 0.020 0.000 0.092 0.092
EGARCH Weight 5 1.000 0.000 0.000 1.000 0.000 0.000
EGARCH Weight 6 0.633 0.162 0.007 0.105 0.000 0.000
EGARCH Weight 7 0.542 0.620 0.019 0.123 0.002 0.000
EGARCH Weight 8 0.500 0.501 0.500 0.334 0.333 0.339

SV Weight 1 0.499 0.499 0.476 0.333 0.323 0.102
SV Weight 2 0.006 0.221 0.000 0.003 0.000 0.000
SV Weight 3 0.561 0.258 0.002 0.865 0.033
SV Weight 4 0.147 0.066 0.002 0.966 0.022
SV Weight 5 0.000 1.000 0.000 0.000 0.000
SV Weight 6 0.540 0.838 0.000 0.435 0.002
SV Weight 7 0.000 0.380 0.000 0.020 0.000
SV Weight 8 0.449 0.499 0.475 0.333 0.323

TGARCH Weight 1 0.397 0.500 0.524 0.333 0.339 0.704
TGARCH Weight 2 1.000 0.993 1.000 1.000 1.000 1.000
TGARCH Weight 3 0.993 0.839 0.998 0.987 0.945
TGARCH Weight 4 0.838 0.980 0.998 0.805 0.886
TGARCH Weight 5 1.000 1.000 1.000 1.000 1.000
TGARCH Weight 6 0.993 0.993 1.000 0.992 0.998
TGARCH Weight 7 0.999 0.981 1.000 0.997 1.000
TGARCH Weight 8 0.500 0.500 0.525 0.333 0.339
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Table 9: Out-of-sample average logarithmic scores of the Generalised and Linear combinations
over selected evaluation periods; and the p-value for the Giacomini White test (GW) for equal
density forecast performance.

Component Densities (1: GARCH, 2: EGARCH, 3: SV, 4: TGARCH

1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 2,3,4 1,2,3,4

3 Sept 2004: 9 Sept 2013

G 0.742 0.775 0.659 0.803 0.690 0.724 0.808 0.723 0.735 -0.296
L -0.786 -0.585 -0.893 -0.531 -0.810 -0.610 -0.548 -0.793 -0.558 -0.554

GW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

3 Sept 2004: 31 Aug 2007

G 0.917 0.864 0.860 0.914 0.861 0.861 0.910 0.862 0.861 0.406
L -0.137 -0.183 -0.218 -0.117 -0.146 -0.193 -0.131 -0.143 -0.137 -0.135

GW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4 Sept 2007: 9 Sept 2013

G 0.652 0.730 0.555 0.746 0.603 0.654 0.757 0.652 0.670 -0.655
L -1.119 -0.791 -1.238 -0.743 -1.150 -0.823 -0.761 -1.126 -0.773 -0.769

GW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5 Conclusion

With the growing recognition that point forecasts are best seen as the central points of ranges

of uncertainty more attention is now paid to density forecasts. Coupled with uncertainty about

the best means of producing these density forecasts, and practical experience that combination

can render forecasts more accurate, density forecast combinations are being used increasingly in

macroeconomics and finance.

This paper extends this existing literature by letting the combination weights follow more

general schemes. It introduces generalised density forecast combinations or pools, where the

combination weights depend on the variable one is trying to forecast. Specific attention is paid

to the use of piecewise linear weight functions that let the weights vary by region of the density.

These weighting schemes are examined theoretically, with sieve estimation used to optimise the

score of the generalised density combination. The paper then shows both in simulations and in

an application to S&P500 returns that the generalised combinations can deliver more accurate

forecasts than linear combinations with optimised but fixed weights as in Hall & Mitchell (2007)

and Geweke & Amisano (2011). Their use therefore seems to offer the promise of more effective

forecasts in the presence of a changing economic climate.
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Figure 1: DGP1: Number of times a given p value was selected by CV
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Figure 2: S&P 500 daily percent logarithmic returns data from 15 December 1976 to 9 September
2013
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Appendix

Proof of Theorem 1

C or Ci where i takes integer values, denote generic finite positive constants.

We wish to prove that minimisation of

LT (ϑp) =
T∑
t=1

l (pt (yt,ϑp) ; yt) ,

where

pt (y,ϑp) =

N∑
i=1

wpη,i (y,ϑp) qit (y) ,

wpη,i (y,ϑp) = ṽt(vi0) +

p∑
s=1

ṽt(vis)ηs (y,θis) ,

produces an estimate, denoted by ϑ̂T , of the value of ϑp =
(
ν1, ..., νp,θ

′
1, ...,θ

′
p

)′
that minimises

limT→∞E(LT (ϑp)) = L (ϑp), denoted by ϑ0
p, that is asymptotically normal with an asymptotic

variance given in the statement of the Theorem. To prove this we use Theorem 4.1.3 of Amemiya

(1985). The conditions of this Theorem are satisfied if the following hold:

LT (ϑp)→p L (ϑp) , uniformly over ϑp, (42)

1

T

∂LT (ϑp)

∂ϑp

∣∣∣∣
ϑ0
p

→d N (0, V2) (43)

1

T

∂2LT (ϑp)

∂ϑp∂ϑ
′
p

∣∣∣∣∣
ϑ̂T

→p V1 (44)

To prove (42), we note that by Theorems 21.9, 21.10 and (21.55)-(21.57) of Davidson (1994),

(42) holds if

LT (ϑp)→p L (ϑp) , (45)

and

sup
ϑp∈Θp

∥∥∥∥∂LT (ϑp)

∂ϑp

∥∥∥∥ <∞, (46)

(46) holds by the fact that l (pt (.,ϑp) ; .) has uniformly bounded derivatives with respect to ϑp

over Θp and t, by Assumption 2. (44)-(45) and (43) follow by Theorems 19.11 of Davidson

(1994) and Jong (1997), respectively given Assumption 4 on the boundedness of the relevant

moments and if the processes involved are NED processes on some α-mixing processes satisfying

the required size restrictions. To show the latter we need to show that (A) l (pt (yt,ϑp) ; yt) and
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l(2) (pt (yt,ϑp) ; yt) are L1 − NED process on an α- mixing process, where l(i) (pt (yt,ϑp) ; yt)

denotes the i-th derivative of l with respect to yt, and (B) l(1) (pt (yt,ϑp) ; yt) is an Lr-bounded,

L2 −NED process, of size −1/2, on an α-mixing process of size −r/(r − 2). These conditions

are satisfied by Assumption 4, given Theorem 17.16 of Davidson (1994).

Proof of Theorem 2

We need to show that the conditions A of Chen & Shen (1998) hold. Condition A.1 is satisfied

by Assumption 3. Conditions A.2-A.4 have to be confirmed for the particular instance of the

loss function and the approximating function basis given in the Theorem. We show A.2 for

LT =

T∑
t=1

− log pt (yj+1) ,

where

pt (y) =
N∑
i=1

pT∑
s=1

ṽt(vis)qit (y) I (rs−1 ≤ y < rs) .

Let ν0 =
(
ν0

1, ..., ν
0
N

)
, ν0

i =
(
ν0
i1, ...

)′
denote the set of coefficients that maximise E (LT ) and

νT a generic point of the space of coefficients {νT,is}N,pTi,s=1. We need to show that

sup
{‖ν0−νT ‖≤ε}

V ar
(
log pt

(
y, ν0

)
− log pt (y, νT )

)
≤ Cε2. (47)

We have

log pt
(
y, ν0

)
−log pt (y, νT ) = log

(
pt
(
y, ν0

)
pt (y, νT )

)
= log

( ∑N
i=1

∑pT
s=1 ṽt(v

0
is)qit (y) I (rs−1 ≤ y < rs)∑N

i=1

∑pT
s=1 ṽt(νT,is)qit (y) I (rs−1 ≤ y < rs)

)
=

log

(
1 +

∑N
i=1

∑pT
s=1

(
ṽt(ν

0
is)− ṽt(νT,is)

)
qit (y) I (rs−1 ≤ y < rs)∑N

i=1

∑pT
s=1 ṽt(νT,is)qit (y) I (rs−1 ≤ y < rs)

)
.

But, ∣∣∣∣∣log

(
1 +

∑N
i=1

∑pT
s=1

(
ṽt(ν

0
is)− ṽt(νT,is)

)
qit (y) I (rs−1 ≤ y < rs)∑N

i=1

∑pT
s=1 ṽt(νT,is)qit (y) I (rs−1 ≤ y < rs)

)∣∣∣∣∣ ≤
C1ε+

∣∣∣∣∣
∑N

i=1

∑pT
s=1

(
ṽt(ν

0
is)− ṽt(νT,is)

)
qit (y) I (rs−1 ≤ y < rs)∑N

i=1

∑pT
s=1 ṽt(νT,is)qit (y) I (rs−1 ≤ y < rs)

∣∣∣∣∣ .
Then (47) follows from Assumption 5 and the uniform continuity of the mapping ṽt(.) over

t. Condition A.4, requiring that

sup
{‖ν0−νT ‖≤ε}

∣∣log pt
(
y, ν0

)
− log pt (y, νT )

∣∣ ≤ εsCUT (y) , (48)
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where supT E (UT (yt))
γ <∞, for some γ > 2, follows similarly.

Next we focus on Condition A.3. First, we need to determine the rate at which a func-

tion in ΦT
qi , where ηs = I (rs−1 ≤ y < rs) can approximate a continuous function, f , with

finite L2-norm defined on a compact interval of the real line denoted by M = [M1,M2].

To simplify notation and without loss of generality we denote the piecewise linear approxi-

mating function by
∑pT

s=0 νsI (rs−1 ≤ y < rs) and would like to determine the rate at which(∫
M (
∑pT

s=1 ṽt(νs)I (rs−1 ≤ y < rs)− f (y))
2
dy
)1/2

converges to zero as pT → ∞. We assume

that the triangular array {{rs}pTs=0}
∞
T=1 = {{rTs}pTs=0}

∞
T=1 defines an equidistant grid in the sense

that M1 ≤ rT0 < rTpT ≤M2 and

sup
s

(rs − rs−1) = O

(
1

pT

)
,

and

inf
s

(rs − rs−1) = O

(
1

pT

)
.

For simplicity, we set M1 = rT0 and rTpT = M2. We have

∫
M

(
pT∑
s=1

ṽt(νs)I (rs−1 ≤ y < rs)− f (y)

)2

dy =

pT∑
s=0

∫ rs

rs−1

(ṽt(νs)− f (y))2 dy.

By continuity of f and uniform continuity of ṽt(.), we have that there exist νs such that

sup
s

sup
y∈[rs−1,rs]

|ṽt(νs)− f (y)| = O

(
1

pT

)
.

This implies that

sup
s

∫ rs

rs−1

(ṽt(νs)− f (y))2 dy ≤ C1

p2
T

sup
s

∫ rs

rs−1

dy ≤ C1

p3
T

,

uniformly over t, which implies that

pT∑
s=0

∫ rs

rs−1

(ṽt(νs)− f (y))2 dy ≤ pT sup
s

∫ rs

rs−1

(ṽt(νs)− f (y))2 dy ≤ C1

p2
T

,

uniformly over t, giving∫
M

(
pT∑
s=1

ṽt(νs)I (rs−1 ≤ y < rs)− f (y)

)2

dy

1/2

= O
(
p−1
T

)
.

The next step involves determining HΦqi
(ε) which denotes the bracketing L2 metric entropy
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of Φqi . HΦqi
(ε) is defined as the logarithm of the cardinality of the ε-bracketing set of Φqi

that has the smallest cardinality among all ε-bracketing sets. An ε-bracketing set for Φqi ,

with cardinality Q, is defined as a set of L2 bounded functions
{
hl1, h

u
1 , ..., h

l
Q, h

u
Q

}
such that

maxj

∥∥∥huj − hlj∥∥∥ ≤ ε and for any function h in Φqi , defined on M = [M1,M2], there exists j such

that hlj ≤ h ≤ huj almost everywhere. We determine the bracketing L2 metric entropy of Φqi

where ηs = I (rs−1 ≤ y < rs), from first principles. By the definition of Φqi , any function in Φqi

is bounded. We set

sup
T

sup
h∈Φqi

sup
y
|h (y)| = B <∞.

Then, it is easy to see that an ε-bracketing set for Φqi is given by
{
hli, h

u
i

}Q
i=1

, where

hli = inf
t

pT∑
s=0

ṽt(ν
l
is)I (rs−1 ≤ y < rs) ,

hui = sup
t

pT∑
s=0

ṽt(ν
u
is)I (rs−1 ≤ y < rs) ,

νlis = νlT is takes values in {−B,−B + ε/pT ,−B + 2ε/pT , ..., B − ε/pT } and νuis = νuT is takes

values in {−B + ε/pT ,−B + 2ε/pT , ..., B}. Clearly for ε > C > 0, Q = QT = O
(
p2
T

)
and so

HΦqi
(ε) = ln

(
2Bp2T
ε

)
= O (ln (pT )). For some δ, such that 0 < δ < 1, Condition A.3 of Chen &

Shen (1998) involves

δ−2

δ∫
δ2

H1/2
Φqi

(ε) dε = δ−2

δ∫
δ2

ln

(
2Bp2

T

ε

)1/2

dε ≤ δ−2

δ∫
δ2

ln

(
2Bp2

T

ε

)
dε =

δ−2

(
δ ln

(
2Bp2

T

δ

)
− δ2 ln

(
2Bp2

T

δ2

))
< δ−1 ln

(
2Bp2

T

δ

)
,

which must be less than T 1/2. We have that

δ−1 ln

(
2Bp2

T

δ

)
≤ T 1/2,

or

δ−1 ln

(
p2
T

δ

)
= o

(
T 1/2

)
.

Setting δ = δT and parameterising δT = T−ϕ and pT = T φ gives ϕ < 1/2. So using the

result of Theorem 1 of Chen & Shen (1998) gives

∥∥v0 − ν̂T
∥∥ = Op

(
max

(
T−ϕ, T−φ

))
= Op

(
T−min(ϕ,φ)

)
.
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Proof of Corollary 3

We need to show that the conditions of Theorem 1 hold for the choices made in the statement

of the Corollary. We have that

l (pt (yt,ϑp) ; yt) = log

(
N∑
i=1

p∑
s=1

ṽt(νis)qit (yt) I (rs−1 ≤ yt < rs)

)
.

Without loss of generality we can focus on a special case given by

l (pt (yt,ϑp) ; yt) = log (ṽt(ν1)q1 (yt) + ṽt(ν2)q2 (yt)) .

It is clear that both l(1) (pt (yt,ϑp) ; yt) and l(2) (pt (yt,ϑp) ; yt) are bounded functions of yt

so, by Theorem 17.13 of Davidson (1994), the NED properties of yt given in Assumption 3 are

inherited by l(1) (pt (yt,ϑp) ; yt) and l(2) (pt (yt,ϑp) ; yt). So we focus on l (pt (yt,ϑp) ; yt) and

note that, since q(y) ∼ exp
(
−y2

)
as y → ±∞,

log
(
exp

(
−y2

))
= −y2.

Then, using Example 17.17 of Davidson (1994) we get that if yt is L2 − NED of size −a
and Lr-bounded (r > 2), then y2

t is L2-NED of size −a(r − 2)/2(r − 1). Since we need that

the NED size of l (pt (yt,ϑp) ; yt) to be greater than 1/2 the minimum acceptable value for r is

a ≥ (r − 1)/(r − 2).

Subsampling inference on threshold parameters

In this appendix we show that subsampling provides valid inference for estimated threshold

parameters. Subsampling provides valid inference for estimators under extremely weak condi-

tions. As a result it is easy to show the validity of subsampling even when other properties of

the estimator are difficult to obtain. This is the case for threshold parameter estimates where

consistency and a rate of convergence are difficult to derive. Without loss of generality, we carry

out the analysis for the case of a single threshold parameter. We start by assuming that the

estimator of r, r̂, has a probability limit, r0, and there exists some sequence cT such that the

distribution of cT
(
r̂ − r0

)
converges weakly to a non-degenerate limit. Subsampling can be used

to determine cT , as well, if it is unknown; but we refer the reader to (Politis et al. 1996) for

further discussion. For the remainder we will assume a known cT which we consider to be equal

to T, as is the case for threshold parameter estimates for threshold models.

Following (Politis et al. 1996), we suggest the following algorithm. Set the subsample sizes

to bT = T ζ , for some 0 < ζ < 1. Construct subsamples by sampling blocks of data temporally.

These are given by {ỹ1,bT , ỹ2,bT +1, ..., ỹT−bT +1,T } where ỹt1,t2 = (yt1 , ..., yt2)′. ζ is a tuning
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parameter related to block size. There exists no theory on its determination, but usual values

range between 0.7 and 0.8. Then, threshold parameters are estimated for each subsample created.

The empirical distribution of the set of estimates, denoted by r̂∗,(i), i = 1, ...B, B = T − bT + 1,

can be used for inference, and is given by

LbT (x) =
1

B

B∑
s=1

1
{
cbT

(
r̂∗,(s) − r̂

)
≤ x

}
. (49)

Below we show that this empirical distribution is valid for inference asymptotically.

Define

JT (x, P ) = PrP
{
cT
(
r̂ − r0

)
≤ x

}
. (50)

Denote by J(x, P ) the limit of JT (x, P ) as T →∞. We have assumed above that this limit

exists and is non-degenerate. The subsampling approximation to J(x, P ) is given by LbT (x).

For xα, where J(xα, P ) = α, we need to prove that

LbT (xα)→ J(xα, P ),

for the result to hold. But,

E(LbT (xα)) = JT (x, P ),

because as discussed in Section ??, the subsample is a sample from the true model, retaining

the temporal ordering of the original sample. Hence, it suffices to show that V ar(LbT (xα))→ 0

as T →∞. Let

1bT ,s = 1
{
cbT

(
r̂∗,(s) − r̂

)
≤ xα

}
, (51)

vB,h =
1

B

B∑
s=1

Cov (1bT ,s, 1bT ,s+h) . (52)

Then

V ar (LbT (xα)) =
1

B

(
vB,0 + 2

B∑
h=1

vB,h

)
= (53)

1

B

(
vB,0 + 2

CbT−1∑
h=1

vB,h

)
+

2

B

B∑
h=CbT

vB,h = V1 + V2,

for some C > 1. We first determine the order of magnitude of V1. By the boundedness of 1bT ,s,

it follows that vB,h is uniformly bounded across h. Hence, |V1| ≤ CbT
B maxh |vB,h|, from which
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it follows that V1 = O(CbT /B) = o(1). Examining V2 we notice that

|V2| ≤
2

B

B−1∑
h=CbT

|vB,h|. (54)

But

vB,h = o(1), uniformly across h. (55)

This follows from the β-mixing of the process which we have assumed above. Hence,

2

B

B−1∑
h=CbT

|vB,h| = o(1),

proving the convergence of LbT (xα) to J(xα, P ) and the overall result.
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